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Abstract. We study properties of operators defined on the space
E*(p) of right half-infinite sequences with entries chosen from Z,
where p is prime. The operators in question allow solution of the
problem of finding predecessor states for certain cellular automata
evolutions and they can be thought of as discrete integration with
respect to sequence index.

These operators are self-accumulating, not solipsistic, and have no
dense orbits. In addition, they exhibit a period-multiplying property.
Many of these results are derived from properties of Pascal’s triangle
modulo p which are presented in an appendix.

1. Introduction

Let E*(p) be the space of right half-infinite sequences with entries chosen
from Z,, where p is prime. A cellular automation defined on E*(p) can
be represented as a mapping @ : Et(p) — E*(p) where @ is an oper-
ator determined by the automation rule [1]. The automation is denoted
(Q,E*(p)). The predecessor problem for such a cellular automaton is to
determine for any given 8 € E*(p) the set of solutions to the equation
Q(p) = B. Voorhees [2] has solved this problem for the class of linear oper-
ators defined by Dyy,z) = yI + 20 and D, ) = yI + zo~! where ¢ and 07!
are respectively the left and right shifts on E*(p) and the coeflicients z,y,
and z are in Z,. This solution involves an operator B, : E*(p) — E*(p)
defined, for b,r in Z,, p in E*(p), by

By ()i = S0 — )y (L1)

J=1

where the notation 3; denotes the ¢th entry in the sequence 8. Solution of
the equations Dy, 5)(¢) = 8 and D(‘r’s)(u) = B are given by theorem 1.
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Theorem 1. 1. The general solution of D, 4)(1t) = B is
p = mBpry(a1) + bBeno™ (). (1.2)

where a; has first term equal to one and all other terms zero,
bs = 1 mod (p), and 0 < y; < p is an “initial” or “boundary”
condition.

2. Let 0 < b,c,t,r,s < p and let these numbers be chosen so that
er =1 and s+ b(p —t)r = 0 mod (p). Then cByy is the unique
inverse of D('r's).

It was also found that the family of operators By, exhibited an inter-
esting period-multiplying property, as will be discussed in section 2 of this
paper, and in a well-defined sense can be thought of as integration with
respect to sequence index.

The main purpose of this paper is to demonstrate that these “discrete
integrals” are self-accumulating but not solipsistic and have no dense orbits
in E*(p). In fact, it will turn out that they define a foliation of E*(p)
into infinite “strings” of states. Many of the proofs presented will depend
on number theoretic properties of Pascal’s triangle modulo p. Derivation of
these properties is presented in the appendix.

2. Period multiplication

Let p € E*(p) be periodic with period n. Then, under certain circum-
stances, By (1) will have period kn where the multiplication factor k can
be determined.

Theorem 2. Let p have period n in E*(p).

1. If [B(r) ()]s = 0 mod (p) then By, ,y(p) also has period n.

2. If [Bp,ry(#)]ln # 0 mod (p) there exists a smallest integer k < p such
that [B(,y(p)]xn = 0 mod (p), and By »(x) has period kn.

Proof. By (L.1), [Bp(t)ln+1 = b(p — r)[Bep,r)(#)ln + pinta. If p has
period n and [Bg,(#)]l. = 0 mod (p), then [Bpy(#)lnt1 = fnp1 = 1 =
[B@,(1)]1 and part (1) follows from the iterative form of (1.1).

Suppose that [Br) ()]s # 0 mod (p). Setting b(p —r) = = and making
use of the periodicity of x, (1.1) yields

(B (#)]ken = (2.1)
(I4+z" 4+ 4. 42y + 2™ e+ pn)

But z" is between 1 and p—1. Hence, by standard theorems of number theory
(e.g., [3]) there is a smallest positive integer k such that (z")F =1 mod (p).
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In this case 2" is said to have order k£ modulo p(ord,(z") = k). Choose the
k in (2.1) to be the order modulo p of ™. Then

"4 24 . GO p gk g g g
= z"(1+2"+... .+ D),

Hence (z" — 1)(1 + 2" + ... + z*~V") = 0 mod (p). If 2™ # 1 mod (p) the
term 14 2" + ... + 2®U" = 0 and by (2.1) [Bg,y(#)]kn = 0 mod (p). If
2" = 1 mod (p) then 1+ X™ + ...+ z®*=" = k and we choose k = p to
obtain [B,r)(#)]pn = 0 mod (p).

Now the same argument used to prove part (1) yields the result that
B,y () has period kn.

The next theorem indicates that iteration of B,y will eventually multiply
the period of every periodic sequence in E*(p), even if it does not do so
initially:

Theorem 3. Let y have period n, [Bg,y(#)]n = 0 mod (p), and pun, be the
first nonzero term of the sequence yu. Then there exists an s < n —m such

that [Bf, ()} # 0 mod (p).

Proof. Taking = = b(p —r) and applying (2.1) with [B»)(%)]» =0 mod
(»)

[Blory (1) = €[Bly,ry (1)]n1 + [Beor) ()] = 2[Bfy ry (1))nr

If [Bf‘byr)(u)]n # 0 mod (p), we are done with s = 2. Therefore, suppose that
[B?byr)(p)]n = Omod (p). Since z # 0, this requires that [ng,r)(#)]n—l =
0 mod (p). Now, from (2.1),

[B?b,r)(:u)]n = x[B(Sb,r)(#)]n—l + [B(2b,r)(:u)]n = m[B?b,r)(:u)]n—l
x[x[B(Sb,r)(ﬂ)]n—z + [B(2b,r)(:u)n~1]
*[ By (1)]n-2

and again if [Bf; .)(#)]. = 0 mod (p). We are done with s = 3. Therefore,
take [BE, y(#)]m = 0 mod (p). This, however, requires

(B, (#)]n-2 = 0 mod (p). Clearly this process can be continued and, if
we are allowed to require that [B, ,)(x)]» = 0 mod (p) for all s, indicates
that for some value of s all of the first n terms of [Bf )(x)], must become
0. On the other hand, let p.,, be the first nonzero term of the sequence

p. By equation (2.1) [By ) (#)lm = pm for all s, and hence is never zero.
Therefore, to avoid contra,(fiction, there must be an s < n — m such that

[B{s,r)(#)]n = 0 mod (p).
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3. Properties of B,
A metric can be defined on the space £*(p) as follows. Let § : E*(p) — [0,1]
be defined by
() = > ms/v’ (3.1)
j=1

Lemma 1. The function () defined by (3.1) is a norm on E*(p).

Proof. Clearly (1) > 0 and equals zero if and only if x = 0 where
0 is the sequence consisting entirely of zeros. Thus, it is only necessary to
demonstrate that @(x + 8) < 0(x) + (8). But addition in E*(p) is always
term by term modulo p. Therefore

0) +0(6) = 0+ B) + - 805, B3) (3.2
where
6(ui, Bi) = { g Zjig; ;_z

and the final term of (3.2) is nonnegative.
A metric on E*(p) is now defined by the formula

9(u,8) = 0(|x — B)) (33)

with | — Bli = |#:i — Bi|- The remainder of this section is concerned with
deduction of properties of the operators B(b ) With respect to the topology in-
duced on E+(p) by the metric g. The major tool in this will be an expression
for B(b’r) in terms of entries in Pascal’s triangle modulo p:

Theorem 4. Let p be in Et(p) and write z = b(p — r). Then

(B, (1)]; }:H“:j;;” =iy (3.4)

J=1
where H,(") is the ith entry in the kth row of Pascal’s triangle modulo p.

Remark. The coefficients in (3.4) are the first 7 terms in the kth diagonal
of the mod(p) Pascal triangle.

Proof. Since H(l';_',_l’) = 1 for all 4,5( > j) equation (1.1) indicates
that the claim is true for ¥ = 1. The remainder of the proof will proceed
by induction. Assume the theorem is true for k. Then by (1.1) and the
induction hypothesis,

BES WK = [Bow(Blyn (W)l = _z’:xf-f[Bﬁ,,,)(u)L-

Il

5 E et (3.5)

Jj=1d=1
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Rearranging terms in (3.5) by grouping coeflicients of u4 yields

i [izi o
Bk = 3 [z Hﬁiﬁ”] i (5)

j=1 | s=0

but by lemma 8 of the

k+ (k+14i-
ZHEJ-H.’)_ —J+1 4

hence (3.6) is identical to (3.4) with k replaced by k£ + 1 and the theorem is
proved.

The first question asked of the operators B,y is whether or not they
have cycles. The next theorem answers this in the negative.

Theorem 5. B, : E*(p) — E*(p) has no cycles other than the trivial
cycle 0.

Proof. Suppose that there is a ¥ > 0 and a nonzero p in E¥(p) such
that Bf; (1) = p. Then, for all 1

(p— Vi + Y TEL 2 ;= 0 mod (p) (3.7)
j=1

Let p, be the first nonzero term of the sequence p. Expansion of (3.7)
dropping terms which sum to zero modulo p, yields the hierarchy of equations

H£k+1)a:“’u, =1

I Vgi--1y, o I*p, = 0 (3.8)

Hgk—{—l)m,’_,,_z#s_n + H:(sk+2)$i—s—1‘us+1 e H£k+3)xi—s#3 =0

etc.

Since ps, ¢ # 0 the first equation of (3.8) requires that Hgk“) = 0. Substitu-
tion of this into the second equation yields the requirement that Hgk“) =0.
Continuation of this process indicates that H(k+J ) = 0 for all 7 > 0. How-
ever, these coefficients are drawn from the kth dlagonal of the mod (p) Pascal
triangle and no diagonal of this triangle consists entirely of zeros after the
leading one. Hence, (3.7) can never be satisfied for all 7 and the theorem is
true.

Proof of theorem 5 is based on the nonexistence in the mod(p) Pascal
triangle of a diagonal consisting only of zeros following the leading one. This
triangle does, however, contain diagonals which are mostly zeros. Thus,
although By ,) has no cycles and is therefore not periodic, it can be shown
to be “almost periodic” in the sense of being self-accumulating, i.e., every
iterate of By is an accumulation point for further iterates.
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Theorem 6. For all k,s > 0 and for all p in E*(p)
p5
9(Bfs (1), BEHE (1)) < [_Z1 Pl (3.9)
]=

Proof. Itis sufﬁcient’to prove the theorem for £ = 0. In this case consider
the sequence & = p — be,r)(,u) which can be shown to have components

+1 i
Z H(P J) J 1

The coefficients in the sum are the first ¢ entries of the p* diagonal of the
mod(p) Pascal triangle, with the first entry excluded (since the sum is only
to 2 —1). Thus, by lemma 6 of the appendix these coefficients are all zero
for : < p°. Indeed,

qe-d _ ] 11— =0,pp", ...
-+l 0 otherwise

so the values of ¢ giving nonzero contributions to §; are ¢ = mp® + 1,m > 1.
The maximum possible value of ¢; is p — 1. Hence

9(p, By (1) = Z&/p <SS -1/

1-—-1

[(p—1)/p] ;p“"

The final sum on the right is just 1/(p® — 1), which can be written as [(p —
1)(p*~ 4+ P*2+4...41)]7!. Multiplication by (p—1)/p now yields the desired
result.

The content of this theorem can be summarized by saying that with
respect to the topology induced on E*(p) by the metric g, the operators
B(b ) are self-accumulating. That is, under iteration of By,,) the sequence
[B(b T)( )] eventually returns to arbitrarily small neighborhoods of its pre-
vious iterates. The next question is whether or not these operators are
solipsistic—that is, does [B(b »(#)|0 < k < oo] exhaust all of the accumula-
tion points of B )? The answer to this question is not quite. Let x, be the
first nonzero term of a sequence p and consider

i—1
e — BP 7 (B) = (s — B) — 3 I Vai=i | (3.10)
7=1

From lemma 7 of the appendix, the (p—1) —st diagonal of the mod (p) Pascal
triangle is periodic, with first term 1, second term p — 1, followed by p° — 2
zeros. Setting the right side of (3.10) to zero for all ¢ < p® yields

m
S P HEgig =0 m< g
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e =By (3.11)
Hatm = Botm + (p—1)zBg4m-1 ¢+m<p.

The first of these equations requires that 3; = 0 for z < ¢q. Define

[Drs) ()i = { 1 i=1

f1 + Spi—; otherwise

(3.12)

Noting that (p — 1)z = b(p — 1)(p — r) = br mod (p), the right-hand side of
the first p° terms in equations (3.11) are just the components of D ;,(5).
Additional terms will enter for z > p°, but this does not alter the desired
result.

Theorem 7. For every y in E*(p)g(D(“lybr)(,u),be’,r_)l(y)) < p~®*-1). Thus,
D(_l,br)(lu) is an accumulation point of B ) iterated on p.
By direct computation using (1.1) and (3.12)

Dy Bory = Bioir) Dz pry = 1.

Hence, Da,br) and B, are inverses of each other. This yields a proof
that the B,) are not solipsistic:

Theorem 8. Let Da,br) and B,y be as above, with s < 0 and a sequence
p given. There does not exist an integer k > 0 such that be,,)(,u) —

[Digom (1)-

Proof. Suppose that suc.h a k existed. Then Bf,:;’)(/z) = p. By theorem 5,
however, B, has no nontrivial cycles.
By theorem 7 it is possible to write

D@ ey (1) = Bf:,r_)l(#) +B

with B; = 0 for ¢ < p°. Thus, by (3.12) [D(,)(#)li = 0 for 2 < p*. Since
D(_l,br) is the inverse of B, there is a generalization of theorem 7:

Theorem 9. Forall k < p® and every pg((D_)be,)(y),B{;’,_)k(y)) <p~ -1,

We now show that By, ,) has no dense orbits. Define a partition of E*(p)
by E*(p) by Ef = [uinE*(p)|u:i = 0 if i < g;pq # 0]. By (1.1) By : EF —
E} so no orbit of By, can be dense in E*(p). Indeed, if p is in Ef and
p! is in EY with s < q then g(;z,B(kb’r)(ul)) > p~9. For all k,@(Bé‘b’T)(y)) is

contained in the interval [p~(*"), p=9] and the diagram of figure 1 commutes.

In other words, E*(p) = U2, Ef defines a stratification of E*(p) with
respect to § which is preserved under By,,y. (We might call this the Zeno
stratification—as above, so below.) The remaining question is whether or
not By, ;) might possess orbits which are dense in one of the E;" ,
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6 +
E, (p) +Er,,(D)
¢ ¢
l l
[1/p",1/p" ") +11/p™ " 1/p")
1/p

Figure 1: Stratified mapping to the unit interval.

Theorem 10. No orbit of By : E}Y — EF is dense in E} for any q.

Proof. It is sufficient to prove the theorem for E;f. Suppose that p is
an element of Ef such that the orbit [B(b »(#)|0 < k < oo] is dense in B,

Then, for any given 3,/ in Ef, and for all N < oo, there will be integers k,
m (dependent on N) such that

9(B, Bl (1)) <p™™ and  g(B1, B (1)) <p™V (3.13)

Without loss of generality assume that k,m are the smallest integers for
which this occurs for a fixed N, and k£ < m. (3.13) requires that

16 = Bl (W)l = |8 — BR(Wli =0 Vi <N

Thus, it must be possible to simultaneously satisfy the sets of equations
- Sne

i<N (3.14)

Br; = EH(T:: 3) = Ju‘7
j=1
Addition of these equations yields, for : < N

(B: + Br;) = z [ + A ?] 2 (3.15)

j=1
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which can be written in matrix form as
¥ = Izkm) (3.16)

where ¥ and £(*™) are column vectors in ZII,V with jth components given by
B; + Bt; and Hgkﬂ_l) + Hg-mﬂ_l) respectively, and I' is the Nz N matrix

g1 0 0 0 0
B2 T 0 0 0
2
p| P W wm ’ (3.17)

UN TUN-1 TUN—2 TpN-z TV i
Det(T) = £VWN-1/2,N £ 0 since p; = 1, hence I'"! exists and (3.16) has
a unique solution

gm) = -1y, (3.18)

Now suppose that ¥ — W + U*. This will change the solution of (3.18),
say to X* = X(m) 4 -1, In general, however, it is not true that X* can
be written as the sum of the first NV terms of two diagonals of the mod(p)
Pascal triangle. To see that this is so, let ¢ be such that p?~! < N < pf.
Then, for ¢ < p?, the first N terms of the (z + p?)th diagonal of the mod(p)
Pascal triangle equal the first N terms of the 7th diagonal. Thus, the number
of possible distinct combinations of the first N terms of diagonals of this
triangle, taken two at a time, is given by p?(p? — 1)/2. However, U* is
arbitrary, except that U7 = 0. Hence, there are pN=1 = pP*~1 possible
choices for ¥*, and IV can always be chosen large enough that this is greater
than p?(p? — 1)/2. (For example, the choice of N such that ¢ < (p? —1)/2 is
sufficient.) Thus, no p can have a dense orbit under iteration of B.

4. Byg,) as discrete integration

The operators D, ;) and D('r' 5 can be considered as discrete derivatives with

respect to the sequence index, via an analogy to the Taylor formula f(z) =
f(a) + (z — a) f/(a). The analogy is

pivr = (p — )i + B[ Dr ) (1)
pit1 = (p —)pi + 0[Diy o (#)]i41

where bs = 1 mod (p). The equation D, (1) = B can be directly “in-
tegrated” since the inverse of D, is bB,) so that p = bB,)(8). The
equation D, (1) = B can also be “integrated” via theorem 1. Thus the op-
erators By, ) are analogues to discrete integration with respect to sequence
index.
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Restricting consideration to p = 2, By = B is closely related to two
operators studied by Rogers and Weiss [4,5].

A=0B (Accumulator operator)
T =0+ [o,B] (Twisted-shift operator).

In order to derive formulas for powers of these operators we need the
following:
r=1
Lemma 2. Bo" =¢"B+ BP, Z o’
5=0

where Py(p) = pie.

Proof. This is true for = 1 and we proceed by induction. Assuming
(4.1) is true for r then

Bo™! = Bo"o =o¢"Bo+ BP, Z oAl

s=1

o""'B + ¢"BP, + BP, Z o’
s=1
which yields the desired result since for any r,c” BP; = BP;.
Making use of equation (4.1) together with lemma 2, an induction argu-
ment also proves:

Theorem 11. With A and T defined as above
T* = of+Bo*F'p, (4.2)

k
AF = > 0"B Z_,
r=1
where the Z, are defined recursively by
Zo = 1, Z,- = Pl Z Z O'qBr_—‘HFlZ_,_l

s=1¢=0

5. Discussion

This paper has introduced a family of operators By, : E* — E* which have
been interpreted as discrete integrals with respect to sequence index. Prop-
erties of these operators have been determined: they are self-accumulating,
not solipsistic, and have a period-multiplying property. In terms of applica-
tion, these operators are significant in solution of the problem of determining
predecessor states for certain cellular automata evolutions [2]. They have
also been found useful in studies of arithmetic properties of the mapping
D :[0,1] — [0,1] defined in terms of the operator D : E¥ — E* and the
mapping (3.1) by D(0(x)) = B(D(x)) [6]. Although conceptually and mathe-
matically simple, this family of operators is found, at least in the p = 2 case,
to have a direct relation to other more complicated operators such as Rogers
and Weiss’s twisted-shift and accumulator operators.
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Appendix A. The mod(p) Pascal triangle

Several of the proofs given in section 3 of this paper are based on properties
of Pascal’s triangle reduced modulo p, and the coeflicients in expansions of
powers of the operators studied in this paper are drawn from this triangle.
The properties of the mod(p) Pascal triangle which are important for the
present paper are derived in this appendix. Many of the results presented
here are due to Long [7].

Long has proved an elegant structural theorem for the mod(p) Pascal
triangle. For p prime let k,n, and m be integers with 0 <k <n and 1 < m.
Let A, denote the triangle

np™
\ k™ ],

np™+p™ =11 np™ +p™ —1
kp™ kp™ +p™ —1

Theorem 12. (Long, [7]) A, defined above is the triangle

nopm=1\ n pt—1
E 0 k p™—1

with all products reduced modulo p. Further,

A+ DAnirr = Dogiksr

where the addition is element-wise modulo p. Finally, every element in Pas-
cal’s triangle and not in one of the A, Is congruent to 0 modulo p.

Proof of this theorem is contained in Long’s paper. The triangles A,
are in one-to-one correspondence with the residues 0,1,2,..., p — 1 so that
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the triangle of triangles:

Aoy

is isomorphic to the mod(p) Pascal triangle. This leads to the basic self-
similarity property for the mod(p) Pascal’s triangle: “If we repeatedly iter-
ate this process by mapping the triangles A, onto the residues it follows
that, modulo p, Pascal’s triangle is a triangle that contains a Pascal’s trian-
gle of triangles, that in turn contain a Pascal’s triangle of triangles, ..., ad
infinitum” (from (7], author’s italics).

It also turns out that the entries of Pascal’s triangle not contained in any
of the A, ; form inverted triangles of the form

i A ST np"™
kp™ +1 ) kp™ +p™ + 1

np™ +p™ —2
kp™ +p™ —1

Every element of these inverted triangles is congruent to 0 modulo p.

Figure 2 shows the first 33 rows of the mod(2) Pascal triangle, illustrat-
ing Long’s results.

What is of particular interest for this paper are the locations of the in-
verted triangles of zeros, and the self-similar property which follows from
Long’s results. In particular, these results indicate that inverted triangles of
zeros will be based only on rows & such that (k¥ —1)|p. Further,if k =p*+1
then there will be one such inverted triangle with base length p* —1. That is,
the p° + 1 row of the mod(p) Pascal triangle consists of an initial and final
one separated by p® — 1 zeros. The general pattern of self-similarity for the
mod(p) Pascal triangle is indicated in figure 3 below:

Lemma 3. Let A, be the mod (p) Pascal triangle truncated at row p°. Then
A, consists of p(p+1)/2 upright triangles isomorphic to A,—; and p(p—1)/2
inverted triangles of zeros having base length p*~' — 1. These last are the
largest inverted triangles of zeros contained in A,. The upright triangles have
the numerical form mA,_; with1 < m < p.

Proof. The upright triangles are the A;; defined by Long. Since the tri-
angle of these triangles is isomorphic to Pascal’s triangle mod (p) the number
of upright triangles isomorphic to A,_; is the same as the number of elements
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101
1111
10001
110011
1010101
TIrIvaan
100000001
1100000011
10100000101
111100001111
1000100010001
11001100110011
101010101010101
EESAEE RGNS BER
10000000000000001
110000000000000011
1010000000000000101
11110000000000001111
1000 10000000000010001
1100110000000000110011
10101010000000001010101
111111110000000011111111
1000000010000000100000001
11000000110000001100000011
101000001010000010100000101
1111000011110000111100001111
10001000100010001000100010001
110011001100110011001100110011
101010101010101010 1010101010101
IR R R R R R R ERERERRE
100000000000000000000000000000001

Figure 2: Pascal’s triangle modulo 2.

611

in the first p rows of this triangle and this is just the sum of the first p in-
tegers, that is, p(p 4+ 1)/2. The inverted triangles of zeros fall between the
upright triangles so that the number of these is just the sum of the first p—1

integers, that is, p(p — 1)/2.

On the basis of this lemma, it is possible to count the number of inverted
triangles of zeros of any size which are contained in A;. That is, there are
p(p —1)/2 with the maximum base of p*~* — 1. Each of the upright triangles
has the form mA,_;. But, A;—; contains p(p + 1)/2 triangles isomorphic to
A,_z and p(p — 1)/2 inverted triangles of zeros with base length p°=% — 1.
Thus, there are p?(p?—1)/4 of these inverted triangles and a total of p?(p+1)?

triangles isomorphic to A,_,. Continuation of this yields

Lemma 4. A, contains 2~9p%(p + 1) upright triangles isomorphic to As_q
and 2-%p*(p+1)*"(p—1) inverted triangles of zeros with base length p*~*—1,

where1 <d <s-—1.
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It is also possible to specify which rows of A, the inverted triangles are
based on and how many are based on each of these rows.

Lemma 5. For1 < d < s—1 there are my inverted triangles of base length
p*~% — 1 based on row myp*~¢ 4+ 1 with 1 < my < p? — 1 and point p? not a
divisor of my for any ¢ < d.

There are also some formulas relating to properties of diagonals of the
mod(p) Pascal triangle which can be derived from:

Lemma 6. The p°* diagonal of the mod(p) Pascal triangle is periodic with
period p°. The first p® terms consist of a leading one followed by p* —1 zeros.

Proof. The first term of every diagonal of Pascal’s triangle is 1. However,
there is an inverted triangle of zeros with base length p°* — 1 based on row
p® + 1 and the next p° — 1 terms of the p* diagonal lie along a side of this
triangle. Periodicity follows from the self-similarity properties of the Pascal
triangle modulo p.

With a similar argument we prove:

Lemma 7. The p* — 1 diagonal of Pascal’s triangle modulo p has period p°
and consists of a leading one followed by p — 1, followed by a total of p* — 2
Z€ros.

Finally, any element of the mod(p) Pascal triangle can be written as a
sum of elements along a diagonal.

Figure 3: Self-similarity pattern for Pascal’s Triangle modulo p. In-
dicated triangle continues to row p**! and this defines Ag41.
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Figure 4: Backward decomposition from an element of Pascal’s trian-

gle.

. i ?
Lemma 8. H£k+‘+l) = ZHET{J )
=0

Proof. An analytic proof follows directly from the addition rule for
Pascal’s triangle, noting that Hgk) = ng) =1 for all k,7. The essence of this
proof, however, is most easily conveyed through consideration of figure 4.

The given entry marked by the lowest circle is the sum of the two en-
tries immediately above it, and this property propagates back to the initial
diagonal which consists entirely of ones.
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