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Period Multiplying Operators on Integer Sequences
Modulo A Prime

Burton Voorhees
Athabasca University, Box 10,000,
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Abstract. We study properties of operators defined on the space
E+(p) of right half-infinite sequences with entries chosen from Zp
where p is prime. The operators in question allow solution of the
problem of finding predecessor states for certain cellular automata
evolutions and they can be thought of as discrete integration with
respect to sequence index.

These operators are self-accumulating, not solipsistic, and have no
dense orbits. In addition, they exhibit a period-multiplying property.
Many of these results are derived from properties of Pascal's triangle
modulo p which are presented in an appendix.

1. Introduction

Let E+(p) be the space of right half-infinite sequences with entries chosen
from Zp, where p is prime. A cellular automation defined on E+(p) can
be represented as a mapping Q : E+(p) ~ E+(p) where Q is an oper­
ator determined by the automation rule [I] . The automation is denoted
(Q,E+(p)). The predecessor problem for such a cellular automaton is to
determine for any given (3 E E+(p) the set of solutions to the equation
Q(J.l) = (3. Voorhees [2J has solved this problem for the class of linear oper­
ators defined by D(y,z) = yI +UT and D("x,y) = yI + xo-- 1 where 0- and 0--

1

are respectively the left and right shifts on E+(p) and the coefficients x , y,
and z are in Zp. This solution involves an operator B(b,r) : E+(p) ~ E+(p)
defined, for b,r in Zp, J.l in E+(p), by

[B(b,r)(J.l )Ji = I::[b(p-r)Ji -jJ.lj
j= 1

(1.1)

where the notation (3i denotes the ith entry in the sequence (3. Solution of
the equations D(r,s)(J.l) = (3 and D~,s)(J.l) = (3 are given by theorem 1.
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T heorem 1. 1. The general solution of D(r,s)(P.) = (3 is

p. = P.1(3(b,r )(0:1 ) + bB(b,r)(J -1((3 ). (1.2)

where 0:1 has first term equal to one and all oilier terms zero,
bs == 1 mod (p) , and 0 ~ P.1 < P is an "initial" or "boun dary"
condition.

2. Let 0 < b,c, t , r, s < p and let these numbers be chosen so that
cr == 1 and s + b(p - t) r == 0 mod (p). Then CB(b,t) is the unique
inverse of D~,s)'

It was also found that the family of operators B(b,r) exhibited an inter­
est ing period-mult iplying property, as will be discussed in section 2 of this
paper , and in a well-defined sense can be thought of as integration wit h
respect to sequence index.

The main purpose of this paper is to demonstrate that these "discrete
integrals" are self-accumulating but not solipsistic and have no dense orbits
in E+(p). In fact, it will turn out that they define a foliation of E+(p)
into infini te "st rings" of states. Man y of the proofs presented will depend
on number theoretic properties of Pascal's triangle modulo p. Derivation of
these properties is presented in the appendix.

2. Period multiplication

Let p. E E +(p) be periodic wit h period n . Then, under certain circum­
stances, B (b ,r)(P.) will have period kn where the multiplication factor k can
be determined.

Theorem 2. Let p. have perio d n in E+(p).

1. If [B(b,r)(P. )]n == 0 mod (p) then B(b,r)(P.) also has period n .

2. If [B(b,r)(P.) ]n # 0 mod (p) there exists a smallest integer k ~ p such
that [B(b,r)(P. )]kn == 0 mod (p), and B(b,r)(P.) has period kn .

P roof. By (1.1), [B(b,r)(P.) ]n+1 = b(p - r )[B(b,r) (P. )]n + {In+1' If p. has
period n an d [B (b,r)(P. )]n == 0 mod (p), then [B(b,r)(P. )]nH = P.nH = III =
[B(b,r)( p.)h and part (1) follows from the iterative form of (1.1).

Suppose that [B (b,r)(P. )]n # 0 mod (p). Setting b(p - r ) = x and making
use of the periodicity of u, (1.1) yields

[B(b,r)(P. )]kn = (2.1)

(1 + xn + x 2n +...+ x(k-1)n)(Xn- 11l1+ X
n- 1P.2+...+ Iln)

But z" is between 1 and p - 1. Hence, by standard theorems of number theory
(e.g., [3]) there is a smallest positive integer k such that (Xn)k == 1 mod (p).
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In this case z" is said to have order k modulo p(ordp(xn) = k). Choose the
kin (2.1) to be the order modulo p of z". Then

+X(k- l)n + xkn = 1 + xn + x2n +...+ x(k-l )n
xn(1 + z" +...+ x(k-l)n).

Hence (xn - 1)(1 + xn +... + x(k -l)n) == 0 mod (p). If xn =t- 1 mod (p) the
term 1 + z" + ... + x(k-l )n = 0 and by (2.1) [B(b,r) (Il)]kn == 0 mod (p). If
z" == 1 mod (p) then 1 + X n + ...+ x(k -l)n = k and we choose k = p to
obtain [B(b,r)(Il)]pn == 0 mod (p).

Now the same argument used to prove part (1) yields the result that
B(b,r) (Il) has period kn.

The next theorem indicates that iteration of B(b,r) will eventually multiply
the period of every periodic sequence in E+(p), even if it does not do so
initially:

Theorem 3. Let Il have period n, [B(b,r)(Il)] n == 0 mod (p), and Ilm be the
first nonzero term of tile sequence Il. Then there exists an s :::; n - m such
that [B(b,r) (Il)]n =t- 0 mod (p).

Proof. Taking x = b(p- r) and applying (2.1) with [B(b,r)(1l )]n == 0 mod
(p)

If [B{b,r)(Il)]n =t- 0 mod (p), we are done with s = 2. Therefore, suppose that

[B{b,r) (Il)] n == 0 mod (p). Since x =t- 0, thi s requires that [B[b,r)(Il)]n-1 ==
omod (p). Now, from (2.1),

X[B(b,r)(Il) ]n-1 + [B{b,r)(Il)]n = X[B(b,r) (Il)]n-1

X[X [B(b,r)(Il)]n-2 + [B{b,r)(Il)n- d

x2[B(b,r)(1l )]n-2

and again if [B[b,r)(Il)]n == 0 mod (p). We are done with s = 3. Therefore,
take [B(b,r)(Il)]m == 0 mod (p). This, however, requires

[B(b,r)(Il)]n- 2 == 0 mod (p). Clearly this process can be continued and, if
we are allowed to require that [B(b,r)(Il)]n == 0 mod (p) for all s, indicat es
that for some value of s all of the first n terms of [B{b,r )(Il)] n must become
O. On the other hand, let Ilm be the first nonzero te rm of the sequence
u, By equation (2.1) [B(b,r) (Il)]m = Ilm for all s, and hence is never zero.
Therefore, to avoid contradiction, there must be an s :::; n - m such t ha t
[B(b,r) (Il)] n == 0 mod (p).
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3 . Properties of B(b,r)

A metric can be defined on the space E+(p) as follows . Let 0 : E+(p) -+ [0, 1]
be defined by

00

0(Jl) = 2:. Jlj / pi
j=l

(3.1)

Lemma 1. The function 0 defined by (3.1) is a norm on E+(p).

Proof. Clearly 0(Jl) ~ 0 and equals zero if and onl y if Jl = 0 wh ere
o is t he sequence consist ing entirely of zeros. Thus, it is only necess ary to
demonst rate that 0(Jl + (3) :::; 0(Jl) + 0((3) . But addition in E+(p) is always
ter m by term modulo p. Therefore

00

0(Jl)+ 0((3) = 0(Jl + (3) + 2:. 8(Jlj, (3j) /p j
j=l

where

(3.2)

{
0 Jlj + (3j < p

8(Jlj, (3j ) = p Jlj+ (3j ~p

and the final term of (3.2) is nonnegat ive.
A metric on E+ (p) is now defined by the formula

g(Jl, (3 ) = 0(IJl - (3 1) (3.3)

with IJl - (3 li = IJli - (3;1. T he remainder of this sect ion is conce rn ed with
deduction of properties of the op erators B(b,r) with respect to the topology in­
duced on E+(p) by the metric g. The major tool in this will be an expression
for B~,r) in terms of entries in Pascal 's t riangle modulo p:

Theorem 4 . Let Jl be in E+(p) and write x = b(p - r ). Th en
i

[Bk ()] ~ rr(k+i- j) i- i(b ,r) Jl i = LJ i- j+l x Jlj
j=l

(3.4)

where rr~k ) is the ith entry in the kth row of Pascal's triangle m odulo p.

Remark. The coefficients in (3.4) are the first i t erms in the kth diagonal
of the mod(p) Pascal triangle.

Proof. Since rr~~j~-;.j) = 1 for all i ,j(i ~ j) equat ion (1.1) indicates
that the claim is t rue for k = 1. The remainder of the proof will proceed
by induction . Assume t he t heorem is true for k. Then by (1.1) and the
induction hypothesis,

i

[Btb;r) (Jl)]i = [B(b,r)(Btb,r)(Jl))]i = 2:. xi-j [Btb,r)(Jl)]j
j=l

i i
~~ rr(k+ j- d) i-d
LJ LJ j -d+l X Jld
j=l d=l

(3.5)
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Rearranging terms in (3.5) by grouping coefficients of Jtd yields

[Btb~r) ( Ii )] i =~ [Err~~i' )] Xi- j li j

but by lemma 8 of the

i-j
~ rr(k+·) _ rr(k+l+i- j)
L.J .+1 - . - ; + 1
.=0

(3.6)

hence (3.6) is identical to (3.4) with k replaced by k + 1 and the theorem is
proved.

The first ques tion asked of the operators B(b,r) is whether or not they
have cycles. The next theorem answers this in the negative.

Theorem 5. B(b,r) : E+(p) -4 E+(p) bes no cycles oth er than the trivial
cycle O.

Proof. Suppose that there is a k > 0 and a nonzero Ii in E+(p) such
that Btb,r)(Ii) = Ii · Then, for all i

i

( 1) ~ rr(k+i-j) i - j - 0 d ( )P - Ii i + L.J i-j+I X li j = mo p
j=l

(3.7)

Let Ii . be the first nonzero term of th e sequence Ii. Expansion of (3.7)
dropping terms which sum to zero modulo p, yields the hierarchy of equations

rr(k+I) i- . - 0
2 X Ii. -

rr (k+1) i-. -1 + rri-. - 02 X 1i.+1 3 Ii .-

rr (k+ 1) i - . -2 + rr(k+2) i-.-l + rr(k+3) i-. - 02 X 1i.+2 3 X 1i.+I 4 X Ii. -

etc.

(3.8)

Since Ii., x =I- 0 the first equation of (3.8) requires that rr~k+I) = o. Substitu­
tion of this into the second equation yields the requirement that rr~k+2) = O.
Continuation of this process indicates that rr~~ij) = 0 for all j > O. How­
ever, these coefficients are drawn from the kth diagonal of the mod (p) Pascal
triangle and no diagonal of this triangle consists entirely of zeros after the
leading one. Hence, (3.7) can never be satisfi ed for all i and the theorem is
true.

Proof of theorem 5 is based on the nonexistence in the mod(p) Pascal
triangle of a diagonal consisting only of zeros following the leading one. This
triangle does, however, contain diagonals which are mostly zeros. Thus,
although B(b,r) has no cycles and is therefore not periodic, it can be shown
to be "almost periodic" in the sense of being self-accumulating, i.e., every
iterate of B(b,r) is an accumulation point for further iterates.
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Theorem 6. For all k, s ~ 0 and for all J1. in E+(p)

p5

g(Btb,T)(J1.),Btb;:"(J1.)) ~ [LP j t 1

j=1

Burton Voorhees

(3.9)

Proof. It is sufficient to prove the theorem for k = O. In this case consider
the sequence ~ = J1. - Br:,T)(J1.) which can be shown to have components

The coefficients in the sum are the first i entries of the pS diagonal of the
mod(p) Pascal triangle, with the first entry excluded (since the sum is only
to i -I). Thus, by lemma 6 of the appendix these coefficients are all zero
for i ~ p", Ind eed ,

(' ") {I; - J' - 0pS p2snv +.- ] = . - . " , ...
•-]+1 0 otherwise

so the valu es of i giving nonzero contributions to ~i are i = mp" + 1, m ~ 1.
The maximum possible value of ~i is p - 1. Hence

00 00

g(J1. , B(b,T )(J1.) ) = LUpi ~ L(P _ 1)/ piP' +1
i=l i=l

00

[(p -1 )/ p]LP-is
i = 1

The final sum on the right is just 1/(pS - 1), which can be written as [(p ­
1)(ps-1+ p s- 2+ . . .+1)]-1 . Multiplication by (p-l) /p now yields the desired
result.

The content of this theorem can be summarized by saying that with
respect to the topology induced on E+(p) by the metric g, the operators
B(b,T) are self-accumulating. That is, under iteration of B(b,T) the sequence
[Btb,T)(J1.) ] eventually returns to arbitrarily small neighborhoods of its pre­
vious iterates. T he next question is whether or not these operators are
solipsis t ic-that is, does [Btb,T )(J1. )IO~ k < 00] exhaust all of the accumula­
tion points of B(b,T)? The answer to this question is not quite. Let J1.q be the
first nonzero te rm of a sequence J1. and consider

i-I
1J1. - BP' -I(,B )Ii = 1(J1.i - ,Bi) - L rr~:'.'/;;-j-l ) xi-i,Bj I

j=1

(3.10 )

m<q

From lemma 7 of the appendix, the (p-1) - st diagonal of the mod (p) Pascal
t riangle is periodic, wit h first term 1, second term p - 1, followed by pS - 2
zeros. Set ting the right side of (3.10) to zero for all i ~ pS yields

~ rr(p'+i- j -l) i - j a, - 0
L., i-j+l x~] -
j=1
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J.lq = (3q (3.11)

J.lq+m = (3q+m + (p - l)x(3q+m-l q +m ::; p",

The first of these equations requires that (3i = 0 for i ::; q. Define

[D ( )]. _ { J.ll i = 1
(r ,s) J.l , - J.ll+ SJ.li -l otherwise (3.12)

Noting th at (p - l )x = b(p - l) (p - r ) = br mod (p), the right -hand side of
th e first pS terms in equations (3.11) are ju st the compo nents of D(i,br)((3).
Addit ional ter ms will ent er for i > v' , but thi s does not alter the desired
result .

Theorem 7. For every J.l in E+(p)g(D(i,br)(J.l),Br.:,;)l(J.l)) ::; p-(P'-l) . Thus,

D(i ,br)(J.l) is an accumulation point of B(b,r) it erated on J.l.
By direct com putation using (l .1) and (3.12)

D(i,br)B(b,r) = B(b,r)D(i,br) = 1.

Hence, D(i,br) and B(b,r) are inverses of eacb other. This yields a proof
tbat th e B(b,r) are not solipsistic:

Theorem 8. Let D(i,br) and B(b,r) be as above, witb s < 0 and a sequ ence

J.l given. Tbere does no t exis t an in teger k > 0 sucb that Btb,r) (J.l) =
[D(i,br)] S(J.l) '

Proof. Suppose that such a k existed. Then Btb:rj(J.l) = J.l . By theorem 5,
however, B(b,r) has no nontri vial cycles.

By theorem 7 it is possible to write

D(i,br)(J.l) = Br.:,;/(J.l) + (3

with (3i = 0 for i ::; p", T hus, by (3.12) [D(i ,br)(J.l)]i = 0 for i ::; p", Since
D(i,br) is the inverse of B(b,r) there is a generalizat ion of theorem 7:

Theorem 9. For all k < v' and every J.lg((D - )t1,br) (J.l) , Br.:,;)k(IL)) ::; p-( p'- l) .
We now show that E(b,r) has no dense orbits . Define a parti tion of E+(p)

by E+(p) by E: = [J.l inE+(p)lJ.l i = 0 iii < q;J.lq =J 0]. By (i.i, B(b,r): E: ~
E: so no orbit of B(b,r) can be dense in E+(p) . Indeed, if J.l is in E: and

J.l' is in E; with s < q then g(J.l, Btb,r)(J.l')) > P-q· For all k ,0(Btb,r)(J.l)) is
contained in the interval [P-(Q-l) ,P- Q] and th e diagram of figure 1 com m utes .

In other words , E+(p) = U~l E: defines a strati fication of E+(p) witb
resp ect to 0 which is preserved under B(b,r)' (We migh t call this th e Zeno
stratifi cation- as above, so below.) Tb e remaining question is whether or
no t B(b,r) migh t possess orbi ts whi ch are dense in one of the E: .
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li p

Figure 1: Stratifi ed mapping to the unit interval .

T heorem 10. No orbit of B(b,r) : E: -+ E: is dense in E: for any q.

P roof. It is sufficient to prove the theorem for Et. Suppose that /J- is
an element of Et such that the orbit [Btb,r)(/J- ) IO :S k < 00] is dense in Et.
Then, for any given (3, (3' in Et, and for all N < 00, there will be integers k,
m (dependent on N) such that

(3.13)

Without loss of generality assume that k, m are the smallest integers for
which this occurs for a fixed N, and k :S m . (3.13) requires that

Thus, it must be possible to simultaneously satisfy the sets of equations

(3 . - ~ rr(k+ 1- j ) i -j .
• - L.J i -j+l X /J-J

j=l

(3 .14)

(3, . - ~ rr(m+i - j ) i -j .
• - L.J ' - J+1 X /J-J

j =l

Addit ion of these equat ions yields, for i :S N

(3.15)
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which can be written in matrix form as

W= fx(k ,m) (3.16)

whe re Wand x(k,m) are column vectors in Z;: with jth components given by

(3j + (3f j and II;k+j-l) + II;m+j-l) respectively, and f is the N xN matrix

fJ.l 0 0 0 0
fJ.2 XfJ. l 0 0 0

f = fJ.3 XfJ.2 X2fJ.l 0 0
(3.17)

0

fJ.N XfJ.N-l X2fJ.N_2 X3fJ.N_3 XN-1fJ.l

Det(f) = x N(N- l )/2fJ.'( =I- 0 since fJ.l = 1, hence f - 1 exists and (3.16) has
a un ique solution

(3.18)

Now suppose that W -+ W+W*. This will change the solution of (3.18),
say to X* = X(k,m) + f -1w*. In general, however, it is not true that X * can
be written as the sum of the first N terms of two diagonals of the mod(p)
Pascal t riangle. To see that this is so, let q be such that pq-l < N ~ pq.
Then, for i ~ pq, the first N terms of the (i + pq)th diagonal of the mod(p)
Pascal triangle equal the first N terms of the ith diagonal. Thus, the number
of possible distinct combinations of the first N terms of diagonals of this
t riangle, taken two at a t ime, is given by pq(pq - 1)/ 2. However, W* is
arbitrary, except that wr = O. Hence, there are v":' = pl'q-l possible
choices for w*, and N can always be chosen large enough that this is greater
than pq(pq - 1)/2. (For example, the choice of N such that q < (pq - 1)/ 2 is
sufficient.) Thus, no fJ. can have a dense orbit under iteration of B.

4. B(b,r) as d iscrete integr at ion

The operators D(r,.) and Dr;,.) can be considered as discrete derivatives with
respect to the sequence index, via an analogy to the Taylor formula f(x) =
f(a) + (x - a)fl(a). The analogy is

fJ. i+l = (p - r )fJ. i + b[D (r,. )(fJ. )]i

fJ.i+l = (p - r )fJ.i + b[D r;,s)(fJ.)hl

where bs == 1 mod (p). The equation Dr;,s)(fJ.) = (3 can be directly "in­

tegrated" since the inverse of Dr;,.) is bB(b,r) so that fJ. = bB(b,r)((3). The
equation D(r,.)(fJ.) = (3 can also be "integrated" via theorem 1. Thus the op­
erators B (b,r ) are analogues to discrete integration with respect to sequence
index.
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Restricting consideration to p = 2, B(l,l) == B is closely related to two
operators studied by Rogers and Weiss [4,5] .

A = a B (Accumulator operator)
T = (7 + [(7 , B] (Twisted-shi ft operator).

In order to derive formulas for powers of these operators we need th e
following :

Lemma 2.
r - l

B(7r = a" B + BPI 2: (7'

. =0
where Pl(J-!) = J-!lCXl.

Proof. This is true for r = 1 and we proceed by indu ction . Assuming
(4.1) is true for r then

r

B(7r+l = B(7r(7 = o" B(7 +BPI 2: (7'

.=1
r

(7r+l B +o "BPI +BPI 2: (7 '

.=1
which yields the desired resu lt since for any r, o" BPI = BPI.

Making use of equation (4.1) together with lemma 2, an induction argu­
ment also prove s:

T heorem 11 . Wi th A and T define d as above

(7k + B (7k- l r,
k

2: a" B rZk-r
r =l

where the Z; are defined recursively by

T rr- s

z; = 1, z, = PI 2:2:a"Br-.+ l Z. _l
. = lq=O

5. Discussion

(4.2)

This paper has int roduced a fami ly of operators B(b,r ) : E + ---+ E + which have
been interpreted as discrete integrals with resp ect to sequence ind ex. Prop­
erties of these operators have been determined: they are self-accumulating,
not solipsistic, and have a period-multiplying property. In te rms of applica­
tion, these operators are significant in solut ion of th e problem of det ermining
predecessor st a tes for certain cellular automat a evolutions [2]. They have
also been found useful in studi es of ar ithmetic properties of th e mapping
D : [0, 1] ---+ [0, 1] defined in terms of the operator D : E + ---+ E+ and the
mapping (3.1) by D(0(J-!)) = 0(D(J-!)) [6]. Although conceptually and mathe­
matically simple, this family of operators is found , at least in the p = 2 case,
to have a direct relation to ot her more complicated operators such as Rogers
and Weiss's twisted-shift and accumulator operators .
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Appendix A. The mod(p) Pascal tr iangle

Several of the proofs given in section 3 of this paper are bas ed on properties
of Pascal 's tr iangle reduced modulo p, and th e coefficients in expansions of
powers of the operators st udied in this pa.per are drawn from t his triangle.
The properties of the mod(p) Pascal t riangle wh ich are important for the
present paper are derived in this a.ppen dix. Many of the results presented
here are du e to Long [7].

Long has proved an elegant structural theorem for the mod(p) Pascal
triangle. For p prime let k, n, and m be integers wit h 0 ::; k ::; n and 1 ::; m .
Let ~n,k denote the t riangle

Theorem 12 . (Long, [7}) ~n,k deiiued above is the triangle

(~ ~)
(n 1) (n1)

k 0 k 1

(~ ) ( ~

with all produ cts redu ced mo dulo p. Further,

where th e addition is elem ent -wise modulo p. Finally, every element in Pas­
cal's trian gle and not in one of the ~n,k is congruent to 0 m odulo p.

Proof of this theorem is contained in Long 's paper. T he triangles ~n,k

are in one-to-one correspondence with the residues 0,1 , 2, ... , P - 1 so that
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th e triangle of triangles:

D.o,o

Burton Voorhees

is isomorphic to the mod(p) Pascal triangle. This leads to the basic self­
similarity property for the mod(p) Pascal's triangle: "If we repeatedly iter­
ate this process by mapping the triangles D.n,k onto the residues it follows
that, modulo p, Pascal's t riangle is a triangle that contains a Pascal's trian­
gle of triangles, that in turn contain a Pascal's triangle of triangles, ... , ad
infinitum" (from [7], author's italics).

It also turns out that the entries of Pascal's triangle not contained in any
of the D.n ,k form inverted triangles of the form

Every element of these inverted triang les is congruent to 0 modulo p.
Figu re 2 shows the first 33 rows of the mod(2) Pascal triangle, illustrat­

ing Long's results .
What is of particular interest for this paper are the locations of the in­

verted triangles of zeros , and the self-similar property which follows from
Long's results. In particular, these results indicate that inverted triangles of
zeros will be based only on rows k such that (k - l ) lp. Further , if k = p' +1
then there will be one such inverted t riangle with base length pS - 1. T hat is,
the pS + 1 row of the mod(p ) Pascal triangle consists of an initial and final
one separated by p' - 1 zeros. The general pattern of self-similar ity for the
mOd(p) Pascal triangle is indicated in figure 3 below:

Lemma 3. Let A. be the mod (p) Pascal triangle truncated at row p", Then
A. consists ofp(p +1)/2 upright triangles isomorphic to As - 1 and p(p - 1)/ 2
inverted triangles of zeros having base length p.-l - 1. Tbese last are the
largest inverted triangles of zeros contained in A s» Th e upright triangles have
the numerical form mAs- 1 with 1 :::; m < p.

Proof. The upright triangles are the D.i,j defined by Long. Since the tri­
angle of these triangles is isomorphic to Pascal's triangle mod (p) the number
of upright triangles isomorphic to A. - 1 is the same as the number of elements
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1
1 1

1 01
1111
10 0 0 1

1 1001 1
1010101

111 11111
10 0 0 0 0 0 0 1

11 00000011
10100000101

1 1 1 10000 1 1 1 1
100 010001000 1

1 1001 10011 0011
10 10101010 10 101

1 1 1 11 11 11 1 1 1 1 1 1 1
10 0 0 0 0 0 0 0 0 0 00 000 1

1 10 000000 00 0 00001 1
1010 0 0 0 0 00 0 0 0 00 0 10 1

1 11 1 00 0 0 0 0 0 0 0 0 0 011 1 1
1 00 0 10000000000010001

110 01 10000000000110011
10 101010000000 001010101

111111 1' 00000000 11111111
100 00 00010000000100000001

1 1000000110 000001100000011
101 000001010000010 100000101

111100001 111000011 1100001111
10001000 1000 1000 1000100010001

1 1 00 1 1 00 1 100 1 100 1 1 00 1 , (}O 1 1 00 1 1
10 10 10 1 0 10 10 10 10 1 0 1 0 1 0 1 0 1 0 10 10 1

111111111111 111 111 11 1 1 11111111 1 1
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 2: Pascal's triangle modulo 2.

in the first p rows of th is tr iangle and this is just the sum of the first p in­
tegers, that is, p(p + 1)/2 . The inverted tri angl es of zeros fall between the
upright t riangles so that th e number of these is just th e sum of the first p- 1
int egers, that is, p(p - 1)/2.

On the basis of this lemma, it is possible to count the numb er of inverted
triangles of zeros of any size which are contai ned in A s. That is, there are
p(p -1 )/2 with the maximum base of p.-l -1. Each of th e up right triangles
has th e form mAs-l . But, As-l contains p(p + 1)/2 triangles isomorphic to
A s- 2 and p(p - 1)/2 inverted t riangl es of zeros with base length ps-2 - 1.
Thus , th ere are p2(p2- 1)/4 of th ese inverted tri angles and a tot al of p2(p+ 1)2
triangles isomorphic to A s - 2 ' Continua tion of this yields

Lemma 4 . A. contains 2- dpd(p + l)d uprigh t triangles isom orphi c to As- d
and 2-dpd(p+ 1)d-l(p _1) inverted triangles of zeros with base length pS-d_1 ,
where 1 ::; d ::; s - 1.
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It is also possible to specify which rows of A. the inverted triangles are
based on and how many are based on each of these rows.

Lemma 5. For 1 ::; d ::; s -1 th ere are md inverted triangles of base length
r:' _1 based on row mdps-d + 1 with 1 ::; md ::; pd - 1 and point pq not a
divisor of md for any q < d.

Th ere are also som e formul as relating to properties of diagonals of the
mod(p ) Pascal triangle which can be derived from:

Lemma 6. Th e pS diagonal of the mod(p) Pascal triangle is periodic wit h
period pS. Th e first pS terms consist of a leading one followed by pS- 1 zeros.

Proof. The first term of every diagonal of Pascal 's triangle is 1. However,
there is an inverted triangle of zeros with base length pS - 1 based on row
pS + 1 and the next pS - 1 terms of the pS diagonal lie along a side of this
triangle. Periodicity follows from the self-similarity properties of the Pascal
triangle modulo p.

With a similar argument we prove:

Lemma 7. The p' - 1 diagonal of Pascal's triangle modulo p has period p'
and consists of a leading one followed by p - 1, followed by a total of p' - 2
zeros.

Fin ally, any element of the mod(p) Pascal triangle can be written as a
sum of elements along a diagonal .

s3p~I- ~ """ ~

• • • • •

Figure 3: Self-similarity" pat tern for Pascal's Triangle modulo p. In­
dicat ed tr iangle continues to row ps+l and this defines A.+ 1 .
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•

• •

p • •
/ +

4 .-, •\ }-J
\/ +

• ,p • •
\. I +

• • '< p • •
\\ / +

• • • < '1 • •\ Y
• • • • ;~( • • •

• • • • • • • • •

Figure 4: Backward decomposition from an element of Pascal 's t rian­
gle.

Lemma 8. rr
(k+i+l) _ ~ rr(k+i)
i - L.J j+l

j=O

Pro of, An analytic proof follows directly from the addition rule for
Pascal's triangle, noting that rr~k) = rr~r) = 1 for all k, T. The essence of t his
proof, however, is most easily conveyed through conside rat ion of figure 4.

The given ent ry marked by the lowest circle is the sum of the two en­
tries immediately above it, and this proper ty propagates back to the initi al
diagonal which consists entirely of ones.
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