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Abstract. A continuous dynamical system is presented in which the
period-adding phenomenon is observed when a bifurcation parameter
is changed. This phenomenon is characterized by a family of one-
dimensional return maps of a cusp shape which exhibits a saddle-node
bifurcation.

1. Introduction

The behavior of some dynamical systems can be characterized by one-dimen-
sional unimodal return maps which have a cusp shape form [1-4]. The typical
phenomenon which appears for such types of maps is the so-called period
adding [5,6]. When a bifurcation parameter is changed in such a way that one
of the branches of the map tends to tangency with the diagonal (a saddle-node
bifurcation), a sequence of attracting periodic orbits appears: an n-periodic
orbit is followed by an (n + 1)-periodic orbit for n going to infinity.

In this paper we present a model of a continuous dynamical system in
which the period-adding phenomenon appears. This model has been inves-
tigated earlier but the sequence of bifurcations obtained did not agree with
known scenarios [4]. We will show that the bifurcations sequence can be
described by a family of one-dimensional return maps with a cusp shape.

2. Model

The model describes an open chemical system with coupled enzymatic re-
actions. The chemistry of the model is described by the following reactions
scheme. Only elementary reactions (mono- and bimolecular excluding auto-
catalytic steps) occur. The numbers on the right-hand side numerate rate
constants of respective reactions. ’
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VoV (£1) P+E & PE' S U+E  (£7)(£8)
V+EoVE—U+E (£2)(+3) P+ PE' & P,E' (£9)
V+VE o WLE (4) U+E o EU (£10)
U+Eo EU (£5) U+ PE'  PEU (£10)
U+VE & VEU (£5) U+ PE' & BEU (£10)
U+ V,E & VEU (£5) U+ E, & UE, — R, + B, (£11)(+12)
Py P (£6) PV (£13)

The scheme describes two coupled enzymatic reactions with enzymes E
and E', in which two different substrates V and P are transformed to the
same product U. Each of these reactions is inhibited by an excess of its own
substrate and the common product. It is assumed that rate constants for the
allosteric inhibition by product do not depend on how many molecules of the
product are present in the enzyme-product complex. The system is open for
substrates V and P due to reactions (£1) and (+6) (concentrations of P, and
Vo are kept constant). The irreversible outflow of the product U is realized
by another enzymatic reaction (£11) and (4+12). Further, it is assumed that
this reaction proceeds in its saturation regime. The inhibition of the two first
enzymatic reactions together with the irreversible transformation of P to V
create the desired coupling inside the scheme. Such coupling can be useful
in the modeling of time evolution of metabolites, which are produced in two
or more metabolic pathways.

Rates of the reactions follow mass—action law. To simplify the description
of the dynamical behavior of the system, it is assumed that total concentra-
tions of all enzymes are much lower than concentrations of substrates and
product. With this assumption, the concentrations of all enzymes and all
their complexes with substrates and product become fast variables. In a
slow time scale (appropriate for the description of changes of substrates and
product), they are determined by their quasi-stationary values and can be
eliminated from kinetic equations using the Tikhonov theorem [7]. The dy-
namical behavior of the system is then described by three kinetic equations.
In dimensionless form they are given by
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where v = [V]/K,,, p = [P]/K.,, u = K;[U] are dimensionless concentrations
of V, P,and U, and ¢t = ¢’ (k3E/K,,,) is dimensionless time (¢’ is real time).
The values of the parameters are defined as follows:

for i = 4,5,9,10,
Ay = ':3[2], Ay = %KT: As = KK,
e %‘! L=KsKp, &= K, Ks, s = K—Z

where Eq and Ej are the total concentrations of enzymes E and E'.
Some geometrical arguments concerning qualitative properties of trajec-
tories are given elsewhere [4].

3. Results

We have assumed the same values of the parameters as in the previous
work [4] (however, results analogous to those shown here can be obtained
also with the values approximated to the fourth decimal digit):

Ay = 0.08928606601, A, = 0.01486767767, As= 4, B =0.04,
B, = 0.000701754, B, = 0.000140351, Bs= 4, C =0.122,
D= 0.001, K = 10, L= 0.74 ande =0.2.

€3 plays the role of bifurcation parameter. We change €3 within the interval
(1.28,1.36).

One can roughly characterize periodic as well as chaotic orbits by a se-
quence of small (S) and large (L) loops or short and long ones respectively.
Looking at the coordinate u(t¢) along the orbit, one can see that it has local
maxima at approximately the same level (1.45 — 1.5) and local minima at
two different levels (the first at about 1.1 — 1.4 and the second at about
0.7 — 0.8). Small (short) loops correspond to maximum — upper minimum
— maximum, whereas large (long) loops correspond to maximum — lower
minimum — maximum.

At e3 = 1.28, the system approaches the periodic trajectory with the
sequence SSLSL for all initial conditions, whereas at €3 = 1.36 the periodic
trajectory with the sequence SSLSLSL is the sole attractor. Examples of
attracting periodic trajectories are shown in figure 1.
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Figure 1: Projections of attracting periodic trajectories on the planes
(u,v) and (u,p) for given values of e3: (a) e = 1.36 — the sta-
ble SSLSLSL-periodic orbit, (b) €3 = 1.34 — the first adding of
the sequence SSLSL to the SSLSLSL-periodic orbit is seen. The
SSLSLSL(SSLSL)-periodic orbit is attracting. (c) e = 1.28 — the
stable $.5LS L-periodic orbit.

To characterize the behavior of the system, we made the Poincaré section
at the plane u = 1.4343, looking only at those cases when trajectories cross
this plane with u(¢) decreasing. Examples are shown in figure 2.

The apparent one-dimensionality of the Poincaré sections is caused by the
very strong contraction of trajectories in one direction. All points of the cross
sections lie along (almost straight) three lines. The far-left line consists of
points belonging to large loops. All remaining points belong to small loops.
The number of lines is determined by the longest subsequence of successive
small loops (SSL in the considered range of €3). This is equal to the number
of successive small loops plus one, as large loops form the far-left line.

The first return diffeomorphism F,, gives the following picture. Subse-
quent iterations belong to small loops, provided the value of p increases,
whereas those with decreasing value of p always belong to large loops. The
sequence SL consists of one “jump” with increasing value of p belonging to a
subsequent line starting from the left one, followed by “jump” with decreas-
ing values of p belonging to the far-left line. The sequence SSL consists of
two small loops with increasing p followed by a large loops with decreasing p.



Period-Adding Phenomenon in a Model of Chemical System

RRAASRARRIRRREE RECEE RESES RELES RERS T T T T [ T 17T T I T T T T ' T
T2 Ed —~ Y
. ] V2.
nf ] |
P ] 1
708 [~ ] e —
.704‘ / -—- //'7 7
PRI FRETE FEETE FETS PR FERT FEwTe K4 ]

A48 A7 A8 A9 5 51 52 53
2 - ]
I ]
L i /// i
AW o ‘ —
{ NS O I | | 3 PN e e | l O S P | [ J P PR o | | 3% 1 1 | foad Ll l 1
H 55 6 .65 g 75

p
T T T T l T T T T T T T T T T T T [ T T T T ] T T T T ]
74— -
- ° -~

.
- . = |
73— =3
= . -
b o -
- oy
> =

12 — ]
L . i
L ! -88 i
A * =
- o"‘ )
L L1 1 | 1 1 1 I 11 1 ] I 1 ) | 7 1 | Lokl | 11 1 1 |
5 55 6 .65 g 75

P

Figure 2: The Poincaré sections at the plane u = 1.4343 for given
values of e3. Five sets of points Iy, I, I3, I4, Is are seen. (a) The most
left sets Iy, I, I3, 14, I5 correspond to €3 = 1.287, the middle to e3 =
1.301, and the most right to e3 = 1.32. In these cases the trajectories
seem to be chaotic. In the window the enlargement of I; and I,
is shown. (b) e3 = 1.28 (black pentagons), e3 = 1.34 (stars), and
€3 = 1.36 (white heptagons). The corresponding periodic trajectories
are shown in figure 1.
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For all e3, points belonging to the far-left line “jump” to the next middle line
and points belonging to the far-right line “jump” to the far-left line, whereas
points belonging to the middle line can “jump” with increasing value of p to
the subsequent right line or they can “jump” with decreasing p to the far-left
line. The Poincaré sections look like a union of five disjoint sets. Counting
from the left to the right let us call them: I, I, I3, Iy, Is. The sets I; and I,
belong to the left line, I3 and I; belong to the middle line, and I5 belongs to
the right line. It is seen that for all €5

F(]l) ' I3, F(Iz) . 14, F(Ia) cL UIs, F(I4) C I; and F(Is) C L.

In some subintervals of €3 the Poincaré sections contain finite numbers
of points in each set. In these windows trajectories are periodic. Outside of
the windows trajectories seem to be chaotic. The Poincaré sections seem to
contain infinite numbers of points in each set.

Let us notice that at a given €3, the trajectory intersects the plane u =
1.4343 at different values of coordinate p. So, one can use the changes of this
coordinate (at the Poincaré section) with €3 to characterize the appearing
bifurcations. In order to avoid transient behavior, some initial intersections
are omitted. The results of numerical calculations are shown in figure 3.

The values of p at intersections are grouped into five bunches correspond-
ing to the five sets seen in Poincaré sections. The windows where trajectories
are periodic are clearly seen. They are separated by intervals of €3 where tra-
jectory is chaotic. Going with €5 from right to left, we see that one additional
intersection appears in each of the five bunches of p values. This corresponds
to the appearance of the new subsequence SSLSL, which is added to the
previous sequence SSLSLSL(SSLSL), describing periodic trajectory.

We can parametrize a bunch by coordinate p and induce a one-dimensional
return map on this bunch. In this way, a map of the interval of p to itself is
constructed. In figure 4, examples of maps for different e; are shown.

They are all the cusp-shape type. They are continuous, but the derivative
at maximum changes discontinuously from large positive to large negative.
With e; decreasing, the left branch of the family of maps changes its position
and tends to tangency with the diagonal. The change of €; is accompanied
by the period adding. A new attracting orbit appears with one more fixed
point for appropriate iterate of the map when we go to the left, from one
window to the next.

With decreasing €3 in the interval (1.28,1.36) the sequence SSLSL ap-
pears more and more frequently in the attracting periodic trajectories. At
the tangency of the left branch with the diagonal (e3; = 1.28562...), the
sequence SSLSLSL disappears and the sequence SSLSL remains the only
one and composes the attracting periodic trajectory.

4. Discussion

The family of the first return diffeomorphism F, seems to be of the Hénon
type and therefore hard to analyze quantitatively. However, the complex
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Figure 3: (a) The changes of “asymptotic” values of p at the Poincaré
section for ez belonging to [1.28,1.36]. The 150 initial loops were
omitted. Five bunches of p values corresponding to the five sets I; are
seen. (b), (c) The enlargements of two fragments of (a).
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Figure 4: One-dimensional return maps of the p values along the set
I, for given values of €3. Crosses correspond to €3 = 1.32, five-armed
stars to €3 = 1.3072, white triangles to €3 = 1.301, white squares to
€3 = 1.2904, and three-armed stars to e3 = 1.287.

behavior of our system can be described by the family of one-dimensional
return maps exhibiting the saddle-node bifurcation. Sufficiently close to the
tangency of the branch of the map with the diagonal the appearance of an
SSLSLSL(SSLSL),-periodic attracting orbit can be scaled according to the

well-known scaling law
€3,n+1 — €3, = constant(n™? — (n 4+ 1)7%)

where €3, denotes the value of €3 at which SSLSLSL(SSLSL),-periodic
orbit appears.

The period adding sequence of bifurcations for the family of one-dimen-
sional maps obtained here does not appear in the “pure” form as for the
family of maps composed from hyperbolic curves [5,6]. The difference is that
in some windows period doubling cascades are seen. This phenomenon is
shown in figure 5 for the range of €3 where SSLSLSL(SSLSL)s is attract-
ing. The successive (SSLSLSL(SSLSL)3)s (for n = 1,2,...) trajectories

appear.
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The fifth iterate of our family of one-dimensional maps has smooth ex-
trema around its stable fixed points and, with the change of €3, the period
doubling appears according to a well-known scenario [8].

To our best knowledge, our model is the first example of a continuous
system in which the period-adding phenomenon is found. It seems, how-
ever, that the two-period-adding phenomenon has been observed in exper-
iments. At least in two chemical systems [9,10] and in one electrochemical
system [11], stable periodical oscillations of concentrations of intermediate
species or electrical current with large amplitude followed by one, two, three,
and so on small amplitudes appear when the appropriate bifurcation pa-
rameter is changed. These oscillations are stable in some windows of the
parameter. The windows are separated by some ranges of the parameter
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Figure 5: (a) The changes of “asymptotic” values of p at the Poincaré
section for €3 belonging to [1.3061,1.3068]. Only a subset of I is
shown. The picture is very similar to bifurcation diagram for logis-
tic map. The period doubling cascade is seen. (b) One-dimensional
return maps for the whole set [;. e3 = 1.307 — large pentagons cor-
respond to the SSLSLSL(SSLSL)s orbit, es = 1.3064 — medium
pentagons correspond to the (SSLSLSL(SSLSL)s), orbit, and €3 =
1.30634 — small pentagons correspond to the (SSLSLSL(SSLSL)3)4
orbit.
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where oscillations are chaotic. The authors do not use one-dimensional re-
turn maps to characterize these oscillations, but it seems to us that the
sequence of stable periodic orbits in these systems can be described by fam-
ilies of one-dimensional return maps with cusp shape in the same way as in
our model.
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