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Abstract. A continuous dynamical system is presented in which the
period -adding phenomenon is observed when a bifurcation parameter
is changed . This phenomenon is characterized by a family of one­
dimensional return maps of a cusp shape which exhibits a saddle-node
bifurcation .

1. Introduction

The behavior of some dynamical systems can be characterized by one-dimen­
sional unimodal return maps whi ch have a cusp shape form [1-4]. The typical
phenomenon which appears for such types of maps is the so-called period
adding [5,6]. When a bifurcation parameter is changed in such a way that one
of the br an ches of the map tends to tangency with the diagonal (a saddle-node
bifurcation ), a sequence of attracting periodic orbits appears: an n-periodic
orbit is followed by an (n + I)-periodic orbit for n going to infinity.

In this paper we pr esent a model of a continuous dynamical system in
which the period-adding phenomenon appears. This model has been inves ­
t igated earlier but the sequence of bifurcations obtained did not agree with
known scenarios [4] . We will show that the bifurcations sequence can be
described by a family of one-dimensional return maps with a cusp shape.

2. Model

T he model describes an open chemical system with coupled enzymatic re­
actions. The chemist ry of the model is described by the following reactions
scheme. Onl y element ary reactions (mono- and bimolecular excluding auto­
catalyt ic st eps) occur. The numbers on the right-hand side numerate rate
constants of resp ective reactions. .
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The scheme describes two coupled enzymatic reactions with enzymes E
and E' , in which two different substrates V and P are transformed to the
same product U. Each of these reactions is inhibited by an excess of its own
sub strate and the common product . It is assumed that rate constants for the
allosteric inhibition by product do not depend on how many molecules of the
product are present in the enzyme-product complex. The system is open for
sub strates V and P due to reactions (±1) and (±6) (concentrations of Po and
Vo are kept constant). The irreversible outflow of the product U is realized
by another enzymatic reaction (±1l) and (+12). Further, it is assumed that
this reaction proceeds in it s saturation regime . The inhibition of the two first
enzymatic reactions together with the irreversible transformation of P to V
create the desired coupling inside the scheme. Such coupling can be useful
in the modeling of time evolution of metabolites, which are produced in two
or more metabolic pathways.

Rates ofthe reactions follow mass-action law. To simplify the description
of th e dynamical behavior of the system, it is assumed that total concentra­
tions of all enzymes are much lower than concentrations of substrates and
product . With this assumption, the concentrations of all enzymes and all
th eir complexes with substrates and product become fast variables. In a
slow time scale (appropriate for the description of changes of subst rates and
pro duct ), they are determined by their quasi-stationary values and can be
elimina ted from kinetic equations using the Tikhonov theorem [7] . The dy­
namical behavior of the system is then described by three kinetic equat ions.
In dimensionless form they are given by
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where v = [V]/Km , P= [P]/K:,., u = tc, [U] are dimensionless concentrations
of V, P, and U, and t = t' (k3Eo/ K m ) is dimensionless time (t' is real time) .
The values of the parameters are defined as follows:

for i = 4,5,9,10,

B - k6[PO] B - L 6K:" B T/ K'
1 - k

3Eo ' 2 - k
3Eo ' 3 = Hg m'

K lO tc;
J{ = «,: L = J{SJ{mll £2 = J{mJ{S, £3 = J{:"

where Eo and Eh are the total concentrations of enzymes E and E'.
Some geometrical arguments concerning qualit ative properties of trajec­

tories are given elsewhere [4] .

3. Results

We have assumed the same values of the parameters as in the previous
work [4] (however , results analogous to those shown here can be obtained
also with the values approximated to the fourth decimal digit ):

Al = 0.08928606601, A2 = 0.01486767767, A3 = 4,
B, = 0.000701754, B2 = 0.000140351, B3 = 4,
D = 0.001, J{ = 10, L = 0.74

B = 0.04,
C = 0.122,
and £2 = 0.2.

£3 plays the role of bifurcation parameter. We change £3 within the interval
(1.28, 1.36).

One can roughly characterize perio dic as well as chaot ic orbits by a se­
quence of small (S) and large (L) loops or short and long ones respectively.
Looking at the coordinate u(t) along the orb it , one can see that it has local
maxima at approximately the same level (1.45 - 1.5) and local min ima at
two different levels (the first at about 1.1 - 1.4 and the second at about
0.7 - 0.8). Small (short) loops correspo nd to maximum - upper minimum
- maximum , whereas large (long) loops correspond to maximum - lower
minimum - maximum.

At £3 = 1.28, the system approaches the periodic trajectory with the
sequence SSLSL for all initial conditions, whereas at £3 = 1.36 t he periodic
trajectory with the sequence S SLSLSL is the sole attractor. Examples of
att racting periodic trajectories are shown in figure 1.
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Figure 1: Projections of attracting periodic trajectories on the planes
(u, v) and (u,p) for given values of (3 : (a) (3 = 1.36 - the sta­
ble SSLSLSL-periodic orbit , (b) (3 = 1.34 - the first adding of
the sequence SSLSL to the SSLSLSL-periodic orbit is seen. The
SSLSLSL(SSLSL)-periodic orbit is attracting . (c) (3 = 1.28 - the
stable SSLSL-periodic orbit .

To characterize the behavior of the system, we made the Poincare section
at the plane u = 1.4343, looking only at those cases when trajectories cross
this plane with u(t) decreasing. Examples are shown in figure 2.

The apparent one-dimensionality of the Poincare sections is caused by the
very strong contraction of trajectories in one direction. All points of the cross
sections lie along (almost straight) three lines. The far-left line consists of
points belonging to large loops. All remaining points belong to small loops.
The number of lines is determined by the longest subsequence of successive
small loops (SSL in the considered range of (3). This is equal to the number
of successive small loops plus one, as large loops form the far -left line.

The first return diffeomorphism F'3 gives the following picture. Subse­
quent iterations belong to small loops, provided the value of p increases,
whereas those with decreasing value of p always belong to large loops. The
sequence SL consists of one "jump" with increasing value of p belonging to a
subsequent line starting from the left one, followed by "jump" with decreas­
ing values of p belonging to the far-left line. The sequence SSL consists of
two small loops with increasing p followed by a large loops with decreasing p.
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Figure 2: The Poincare sections at the plane u = 1.4343 for given
values of £3 . Five sets of point s I1,Iz ,h'!4'!S are seen. (a) The mos t
left sets II, Iz,h,!4 ,Is correspond to £3 = 1.287, the middle to £3 =
1.301, and the most right to £3 = 1.32. In these cases the trajectories
seem to be chaotic. In the window the enlargement of II and Iz
is shown. (b) £3 = 1.28 (black pentagons), £3 = 1.34 (stars), and
£3 = 1.36 (white heptagons). The corresponding periodic trajectories
are shown in figure 1.
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For all (;3, po ints belonging to the far -left line "jump" to the next middle line
and points belonging to the far -r ight line "jump" to the far -left line, whereas
po ints belonging to the middle line can "jump" with increasing value of p to
the subsequent right line or they can "jump" with decreasing p to the far-left
line. T he Poincare sections look like a union of five disjo int sets . Counting
from the left to the right let us call them: 11, 12 , h, 14 , Is . The sets 11 and 12

belong to the left line , hand 14 belong to the middle line, and Is belon gs to
the righ t line. It is seen that for all 1:3

In some subintervals of 1:3 the Poincare sections contain finite numbers
of points in each set. In these windows trajectories are periodic. Outside of
t he windows trajectories seem to be chaot ic. The Poincare sect ions seem to
cont ain infinite numbers of po ints in each set.

Let us notice that at a given 1:3, the trajectory intersect s the plane u =
1.4343 at different values of coordinate p. So, one can use the changes of this
coord inate (a t the Poincare sect ion ) with 1:3 to characterize the appearing
bifurca tions . In order to avoid transient behavior, some initial inte rsections
are omit te d. The results of numerical calculations are shown in figure 3.

T he values of p at intersections are grouped into five bunches correspond­
ing to the five sets seen in Po incare sections. T he windows where t raj ectories
are period ic are clearly seen . They are separated by intervals of 1:3 where tra­
jectory is chaotic. Going with 1:3 from right to left , we see that one addit ional
intersecti on ap pears in each of the five bunches of p valu es. T his corresponds
to the appearance of the new sub sequence S SLSL , which is added to the
pr evious sequ ence S S LS LSL( S S LSL )n describing periodic trajectory.

We can parametrize a bunch by coordinate p and induce a one-dimension al
ret urn map on this bunch. In this way, a map of the interval of p to it self is
constructed. In figure 4, examples of maps for different 1:3 are shown .

They are all the cusp-shape typ e. T hey are conti nuous , but the derivative
at maximum changes discontinuously from large positive to large negative.
With 1:3 decreasing, the left branch of the family of maps changes it s position
and tends to t angency with the diagonal. The change of 1:3 is accompanied
by th e period adding. A new attracting orbit appears wit h one more fixed
point for appropriate iterat e of the map when we go to the left , from one
window to the next.

With decreasing 1:3 in the inte rva l (1.28,1.36) the sequence SSLSL ap ­
pea rs more and more frequently in the attracting periodic t rajectories. At
the tang ency of the left br anch with the diagonal ( 1:3 ,t = 1.28562 . . .), t he
sequence S SLSLSL disappear s and the sequence SSLSL remains the only
one an d composes the attracting periodic trajectory.

4 . Discussion

The family of the first return diffeomorphism F<3 seems to be of the Henon
type and therefore hard to analyze quan t it at ively. However , the complex
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Figure 3: (a) Th e changes of "asym ptoti c" values of p at the Poincare
section for <3 belonging to [1.28, 1.36]. The 150 initial loops were
omitted. Five bunches of p values corresponding to the five sets I, are
seen. (b) , (c) T he enlargements of two fragments of (a).
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Figure 4: One-dimensional return maps of the p values along the set
h for given values of (3' Crosses correspond to (3 = 1.32, five-armed
stars to (3 = 1.3072, white triangles to (3 = 1.301, white squar es to
(3 = 1.2904, and three-armed stars to (3 = 1.287.

behavior of our system can be described by the family of one-di mens ional
return maps exhibit ing the saddle-node bifurcation. Sufficiently close to the
tangency of the br anch of the map with the diagonal the appe arance of an
SSLSLSL(SSLSL)n-periodic attracting orbit can be scaled according to the
well-known scaling law

t3,n+l - t3,n = constant(n - 2 - (n +1)-2)

wher e t3,n denotes the value of (3 at which SSLSLSL(SSLSL )n-periodic
orb it ap pe ars.

The period adding sequ ence of bifurcations for the family of one-dimen­
sion al maps ob t ain ed here does not appear in the "pure" form as for the
family of maps composed from hyp erbolic curves [5,6] . The difference is that
in some windows period doub ling cascades are seen. This phenomenon is
shown in figur e 5 for the range of 103 where S SLSLSL( SSLSLh is attract­
ing. The successive (S SL SLSL(SSLSLh h n (for n = 1, 2, ...) t rajectories
ap pear.
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The fifth iterate of our family of one-dimensional maps has smo ot h ex­
t rema around its stable fixed po ints and, with the change of 103, the period
doubling appears according to a well-known scenari o [8].

To our best knowledge, our model is the first example of a cont inuous
system in which the period-adding phenomenon is found. It seems, how­
ever , that the two-period-adding phenomenon has been observe d in exper­
iments. At least in two chemical systems [9,10] and in one electrochemical
syste m [11], stable periodical oscillations of con cent rations of in termediate
species or electrical current wit h large amplitude followed by one, two, three,
and so on small amplitudes appear when the appropriate bifurcation pa­
ramet er is changed. These oscillations are stable in some windows of the
paramet er . T he windows are sep arated by some ranges of the parameter
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Figure 5: (a) The changes of "asymptotic" values of p at the Poincare
section for £3 belonging to [1.3061, 1.3068]. Only a subset of II is
shown. The picture is very similar to bifurcation diagram for logis­
tic map . The period doubling cascade is seen. (b) One-dimensional
retu rn maps for the whole set I I . £3 = 1.307 - large pent agons cor­
respond to the S SLSLS L( S S LSL )3 orbit, £3 = 1.3064 - medium
pent agons correspond to the (SSLSLSL( SSLSL)3)2 orbit , and £3 =
1.30634 - small pent agons correspond to the (SSLSLSL(SSLSLh)4
orbit.
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where oscillat ions are chaotic. The authors do not use one -dimensional re­
turn map s to characterize these oscillations, but it seems to us that the
sequence of stable periodic orbits in these systems can be described by fam­
ilies of one-dimensional return maps with cusp shape in the same way as in
our model.
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