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Abstract.

Potential interactions between connectionist learning systems and
algorithms modeled after evolutionary adaptation are becoming of in-
creasing interest. In a recent short and elegant paper Hinton and
Nowlan extend a version of Holland’s genetic algorithm (GA) to con-
sider ways in which the evolution of species and the learning of indi-
viduals might interact [17]. Their model is valuable both because it
provides insight into potential interactions between the natural pro-
cesses of evolution and learning and as a potential bridge between the
artificial questions of efficient and effective machine learning using
the GA and connectionist networks. This paper begins by describ-
ing the GA and Hinton and Nowlan’s simulation. We then analyze
their model, use this analysis to explain its nontrivial dynamical be-
haviors, and consider the sensitivity of the simulation to several key
parameters. ’

Our next step is to interpose a third adaptive system — culture —
between the learning of individuals and the evolution of populations.
Culture accumulates the “wisdom” of individuals’ learning beyond the
lifetime of any one individual but adapts more responsively than the
pace of evolution allows. We describe a series of experiments in which
the most minimal notion of culture has been added to the Hinton
and Nowlan model, and we use this experience to comment on the
functional value of culture, and similarities between and interactions
among these three classes of adaptive systems.

1. Introduction

It is interesting to note that two of the most promising approaches to the
design of algorithms for machine learning can trace their origin to the study of
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naturally occuring systems. Connectionist algorithms, since their cybernetic
beginnings, have often had a real concern with how neurons in biological
nervous systems allow organisms to adapt to their envirnonment. Similarly,
models of simulated evolution generally and the genetic algorithm (GA) in
particular are attempts to mimic the way species become adapted to their
respective environmental niches. Both classes of algorithms have since been
developed so that their correspondence to the original natural phenomena is
often only metaphoric, but as we attempt to compare and possibly combine
these techniques it makes sense to start with a basic understanding of the
interaction between the natural processes of evolution and learning.

In order to adopt a perspective that allows one to capture the GA and
connectionism within a single view it is necessary to back up, far off-stage,
and each of the characters consequently becomes quite small. That is, in an
attempt to capture interactions among enormously complicated phenomena
— evolution, learning — the models of each of these constituents must neces-
sarily become extremely simplified. There are certainly other comprehensive
models of learning in cognitive systems than the connectionist account (e.g.,
SOAR [23]). Even within connectionist models of learning there is great di-
versity, and most connectionist systems are extremely complicated in their
own right. The same is true of various models of evolution, and the com-
plexity of various versions of the GA. But our concern here is not with the
the validity of connectionism as a model of learning or the GA as a model
of evolution. A central premise of this work is that connectionism and the
GA represent two very adequate models for learning and evolution, respec-
tively. We propose to take these two models as canonical in order that
we might begin to explore interactions between these two forms of adaptive
search.

Merging these models, and especially making sense of the hybrid’s be-
havior, is difficult. In a very short and elegant paper in these pages, Hinton
and Nowlan describe a simulation suggesting “how learning can guide evolu-
tion” [17]. In order to achieve this goal, their model incorporates an impov-
erished notion of learning into the GA. The result of this simplification is a
simulation in which the interactions between the GA and individuals’ learn-
ing are appropriately accentuated. The work reported here builds squarely
on this beginning.

The question of “how learning can guide evolution” is critically impor-
tant because it is concerned with how the results of one adaptive search
(individuals’ learning) can be capitalized on by another (the evolution of a
population). When one considers the natural correlates of these adaptive
algorithms, it is not at all clear what the medium for this exchange of in-
formation might be; the time scales of individual learning and a species’
evolution is wildly different. Yet, at least in the case of the human species, it
does seem as if the learning accomplished over a lifetime has become coupled
with the process of evolution. Whether this perception is accurate or not, we
will argue that it is appropriate to consider culture as a third, intermediate
adaptive system used by societies, between the learning used by individuals
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and the evolution used by populations. Preliminary experiments suggest the
addition of “cultural artifacts” helps mediate between the regularities found
by evolution (over many generations) and the learning accomplished by an
individual (within a single lifetime).

The rest of this report is divided into six sections.! We begin by pre-
senting the basic features of the GA and Hinton and Nowlan’s model, then
make several comments about important assumptions built into these pre-
requisites. Section 3 presents our analysis of the model, and this provides the
basis for our characterization of the model’s behavior in section 4. Section 5
considers the sensitivity of the simulation to some of its key parameters. In
section 6 we introduce a very crude notion of culture, as an additional “chan-
nel” through which knowledge acquired by one individual might be passed
to other members of the species. The paper concludes with a discussion of
some of the issues raised by these experiments and potential directions for
further research.

2. Preliminaries

This research builds squarely on two previous bodies of work, the genetic
algorithm (GA) and Hinton and Nowlan’s model. This section will begin by
presenting the central features of the GA, then present Hinton and Nowlan’s
model and the basic results of their simulations. Our preliminaries will con-
clude with several comments about important features of this model.

2.1 The genetic algorithm

The GA has been investigated by John Holland [18] and students of his
for almost twenty years now, with a marked increase in interest within the
last few years [14,15,26]. The interested reader is advised to begin a more
thorough introduction to these algorithms with the excellent new text by
Goldberg [12].

Attempts to simulate evolutionary search date back as far as the first
attempts to simulate neural networks [11]. The basic construction is to con-
sider a population of individuals that each represent a potential solution to
a problem. Then, if the relative success of each individual on this problem
is considered this individual’s fitness, this number can be used to select the
most fit individuals to produce similar but not identical offspring for the next
generation. By iterating this process, the population efficiently samples the
space of potential individuals and eventually converges on the most fit.

More specifically, consider a population of N individuals ;, each repre-
sented by a chromosonal string of L allele values. An initial population is
constructed at random; call this generation go. Each individual is evaluated
by some arbitrary environment function that returns the fitnesses p(z;) € ®
of each individual in go. The evolutionary algorithm then performs two oper-
ations. First, its selection algorithm uses the N fitness measures to determine

1 Portions of this report appeared in an early report [3].
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how many offspring each member of gy contributes to g;. Second, some set of
genetic operators are applied to these offspring to make them different from
their parents. The resulting population is now g, these individuals are again
evaluated, and the cycle repeats itself. The iteration is terminated by some
measure suggesting that the population has converged.

A critical distinction among simulated evolutionary algorithms is with
respect to their genetic operators. Often the only genetic operator used is
mutation: some number of alleles in the parent are arbitrarily changed in
the child. This amounts to a random search around the most successful in-
dividuals of the previous generation, and is therefore not very powerful. The
central feature of Holland’s GA is its use of an additional crossover operator
modeled on the biologically veracatious operation of genetic recombination:
during sexual reproduction segments from each of the parents’ chromosomes
are combined to form the offspring’s. The GA’s crossover operation picks
two points 1 < m, n < L at random and builds the offspring’s bit string by
taking all bits between m and n from one parent and the remaining bits from
the other parent. For example, if L = 10, m = 2, n = 6:

Parent(1): 1111111111  Offspring(1l): 1100001111
Parent(2): 0000000000 Offspring(2): 0011110000

The appeal of the GA is due both to empirical studies that show the crossover
operator works extremely well on real, hard problems, and also to the “sche-
mata” analysis Holland has provided to show why this is the case.

One key property of the GA is that it works on a population of (binary) bit
strings with absolutely no knowledge of the semantics associated with these
bits. Its only contact with the environment is the global fitness measure
associated with the entire string. This is considered an advantage of the
algorithm because it ensures that the GA’s success is not related to the
semantics of any particular problem. This is not to say that the GA works
on all problems equally well, only that these differences can be attributed
to the underlying search spaces rather than the semantics of the problem
domain [4].

2.2 The Hinton and Nowlan model

Attempts to integrate the learned behaviors of individuals into their genetic
consequence on a species have dogged the theory of evolution since Darwin.
Every high school biology student knows that Lamarck’s theory — that mod-
ifications of the phenotype over the course of a lifetime can become directly
incorporated into the genotype — depends impossibly on mechanisms of “re-
verse transcription” for which there is almost no evidence. Less well known is
a hypothesis first attributed to Baldwin [2], but later expressed by others [30],
regarding an indirect effect the experiences of an exploratory organism can
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Figure 1: “Baldwin’s arm.”

have on its species’ genetic search. John Maynard Smith summarizes the
hypothesis:

Even if we accept [that individuals’ learning cannot alter in-
formation in the gene], it is still possible for individual learning to
facilitate evolution. If individuals vary genetically in their capac-
ity to learn, or to adapt developmentally, then those most able
to adapt will leave most descendants, and the genes responsible
will increase in fitness. In a fixed environment, when the best
thing to learn remains constant, this can lead to the genetic de-
termination of a character that, in earlier generations, had to be
acquired afresh each generation [28].

One useful way to graphically portray the effect is shown in figure 1. Evo-
lution can be viewed as a process for moving a “phenotype limb” (correspond-
ing to a species or gene pool) in order to better adapt it to an environment.
At least some organisms are capable of generating a range of behaviors, and
these can be viewed as a second, “behavior limb” being moved by the “joint”
of learning. To simplify, imagine that being fit means being able to reach a
point in space. The simple but profound idea of the Baldwin effect is that
since it is sufficient for the two-limbed, coupled arm of phenotype+learned
behavior to be able to reach that point, an improved capacity for learning
increases genetic fitness.

Hinton and Nowlan have developed a computational model that “demon-
strates the magnitude” of the Baldwin effect [17]. As connectionists they
assume a neural network as the basis for learning and use evolution to search
for a neural wiring that allows an individual to learn effectively.
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More specifically, they imagine trying to construct a neural network of L
potential connections. An individual is considered successful if and only if
they have all of these connections correctly specified. Thus there is exactly
one right answer out of the 2F possible combinations. By convention we
will imagine that this right answer is the string 111...1. It is important to
recognize what a difficult “environment” this problem poses; it is sometimes
called a “needle-in-a-haystack” or “impulse function” problem. Not only is
there only one correct answer out of a huge space of possible solutions, but
there is also no information available from any of the other solutions about
where the correct answer might be. In such problems there exists no better
way to search than by exhaustively sampling the entire space. In particular,
the GA would fare no better.

Individuals are represented by a ternary string z; € (0 1 ?)L. A 1 speci-
fies that a connection is present, a 0 that it is absent, and a 7 a “learnable”
connection: one that can be set either open or closed during the “lifetime” of
the individual. An individual’s life experience amounts to repeated attempts
to set these learnable connections correctly. In the interest of parsimony,
their model of learning is extremely austere. Each individual is given a fixed
number G of completely random guesses for the settings of their ? values.
They are also given the ability to recognize the fact that they have found the
correct setting.

For evolution, Hinton and Nowlan use a fairly standard version of the
GA. The fitness p associated with each individual z; is a function of the
number of guesses g that individual made before finding the correct settings:

(L-1)(G-9)
G

This function provides the key advantage that allows the GA to work. Hinton
and Nowlan describe it in terms of the “shoulders” that have been added to
the impulse fitness function of figure 1:

w(zi(g)) =1+ (2.1)

With learning, there is a zone of increased fitness around
the spike ...[corresponding] to genotypes which allow the cor-
rect combination of potential connections to be learned.

There is still only one correct answer, but now there is also a basin of attrac-
tion around this needle that the GA can use to moves its search toward that
needle. Another way to say the same thing is that for realistically large L
the chance of finding the needle, 2~%, is vanishingly small; without learning
this is what an evolutionary search must do. But with learning, evolution is
required only to find a solution that is within the basin of attraction of the
needle, and this is much more likely.

For their simulations, Hinton and Nowlan picked the parameters carefully.
With L = 20, if (on average) half of the alleles are learnable 7s, there are
210 — 1024 combinations to try and an individual given 1000 guesses stands
a very good chance of finding the correct one. It is no coincidence, then,
that Hinton and Nowlan began with a population consisting of 50% ?s, and
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25% 0s and 1s, and gave each individual G = 1000 guesses. They also used a
population of 1000 individuals, a crossover rate of 1.0,2 and no mutation [24].

One property the GA shares with connectionist systems is the notion
of “distributed representation.” That is, just as “concepts” in connectionist
networks are represented diffusely by a pattern of activity across many nodes,
so too are solutions found by the GA represented across individuals of a pop-
ulation. Thus, the simulation variables to be monitored are population-wide
characteristics rather than features of any individual. The major dependent
variables considered by Hinton and Nowlan are the population-wide distri-
butions of correct, incorrect, and undefined alleles.

Our own work began with a simple replication of the Hinton and Nowlan
results, as shown in figure 3.> Here their three major variables (the allele
ratios of undefined, correct and incorrect alleles) are plotted as a function of
generation. These basic results will be analyzed in some detail in sections 3
and 4 and then extended in sections 5 and 6.

2.3 Discussion of the Hinton and Nowlan model

The Hinton and Nowlan model is a very fertile platform from which to in-
vestigate questions about the interaction between evolutionary and learn-

2A crossover rate of 1.0 means that, on average, each individual will participate in 1.0
crossover operations.

3Greffenstedt has developed a useful simulation facility for GA investigation called
Genesis [13], and it was used as a basis for the simulations to be presented here.
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Figure 3: Hinton and Nowlan results.

ing adaptive mechanisms. It does incorporate some important assumptions,
however, and it is worth making these explicit.

First, a great deal of the simulation’s behavior depends critically on the
fitness function of equation 2.1:

ulaife)) =1+ E=CG=9)

The central feature is that it is a monotonically decreasing function of the
number of guesses required to find the needle. Hinton and Nowlan also chose
to scale this quantity by the ratio of chromosome length to the total number
of guesses allowed. This scaling is reasonable but also less critical to the
simulation’s behavior.

Equating learning with a series of statistically independent guesses is ob-
viously quite inadequate. In fact, by “learning” we typically mean almost
exactly that subsequent behaviors of an individual are dependent on his or
her previous experiences. Thus Hinton and Nowlan’s guessing model is prop-
erly considered an analytically tractable lower bound on the performance we
should expect of a realistic (e.g., connectionist) learning algorithm. In their
words, “Thus, using a more sophisticated learning procedure only strength-
ens the argument for the importance of the Baldwin effect.”
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It may seem suspect to assume that an individual is capable of recognizing
when they have found the correct solution (needle). Hinton and Nowlan
provide the following rationale:

This recognition ability . . .is required to make learning effective. . ..
Thus it is possible that some properties of an organism which are
currently genetically specified were once behavioral goals of the
organism’s ancestors.

This argument sounds almost Lamarckian and perhaps even absurd when in
the context of an individual knowing when its own neural wiring is correct.
However, simply giving an individual the ability to recognize when it has
found a good thing is not so far-fetched.

A more unrealistic assumption (acknowledged by Hinton and Nowlan) is
that the correspondence between phenotypic feature (i.e., neural connection)
and genetic position is one-to-one. This is a great simplification. In actual-
ity, there are immensely complicated developmental processes that mediate
between genotypic description and phenotypic expression; a better under-
standing of this relationship is a critical issue for further work in this area.

Another troubling aspect of the simulation is that it ignores the real
semantics of neural networks: there is an obvious asymmetry between genet-
ically specified and learned connections. Virtually all connectionist learning
algorithms allow connections to come to have zero weight, making them act
as if the connection was not there. Thus an existing connection (1) can learn
to have zero weight; an absent connection (0) cannot ever become nonzero.
We should expect this bias to be exploited by any hybrid adaptive system
that combines evolutionary and (connectionist) learning subsystems.

Hinton and Nowlan make another strong and important claim:

...each learning trial can be almost as helpful to the learning
search as the production and evaluation of a whole new organism.

Thus they view each learning trial as a “cheap” version of actually producing
an individual. Our conception of the relation between these two adaptive
subsystems is considerably more complex, as we will discuss in section 6.

3. Analysis of the Hinton and Nowlan model
3.1 Definitions
We begin by defining some of the major variables of the simulation. Let:

= Length of individual
Maximum number of guesses allowed each individual

Population size

Fraction of population’s alleles that are 1

Fraction of population’s alleles that are ?

T aes 2 Q-
Il

= Fraction of population’s alleles that are 0
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Note that p, ¢, and r are defined in terms of the total population’s genetic
distribution. In many cases, however, this is also a good estimate of individ-
uals’ allele distributions, for example the probability that an individual allele
is 1 is also p. Also, we will on occasion use a subscript to indicate generation;
for example, po is the fraction of 1s in the initial population.

Unless noted otherwise, these parameters are set as in the Hinton and
Nowlan simulations:

L = 20 (3.1)
G = 1000
N = 1000
po = 0.25
g = 0.50
ro = 0.25

Also, recall that Hinton and Nowlan use a “needle-in-a-haystack,” im-
pulse function environment; i.e., there is exactly one value in the domain
with a nonzero fitness associated with it. By convention and without loss of
generality, we will assume this value to be the string 1111...1.

We will call an individual without any Os a Potential Winner, since only
such individuals are capable of using some combination of 1s and ?s to find
the needle. A Winner is defined to be a Potential Winner that actually
guesses the correct setting of its learnable alleles; a Loser contains at least
one 0. We will refer to the set of all Winners in the population as the Nobility
and the rest of the population as Commoners.*

We begin with the simple observation that if an individual has () learnable
(?) alleles, the probability of guessing their correct values is 2~?. Let us

define:

To be a Winner, an individual must first be a Potential Winner and second
guess the learnable (?) alleles correctly:

Pr(Winner)

Pr(no 0s) Pr(guessed correctly)
1-r)F1-(1-0f (3.2)

Using the parameter values given above, Pr(Winner) = 0.00198, and we
should therefore expect to find about 2 Winners in an average population of
1000. Our simulations agree with this estimate (see section 5).

4This terminology is admittedly colorful and perhaps even offensive, but as you trudge
through the symbology and simulation data, it helps to breath some life into it all.
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3.2 Expected fitness

It is important to know the expected fitness of an individual under Hinton
and Nowlan’s “random guessing” fitness function:

wlg) = 1+—-——(L_1)G(G—g)
. L—(L—l)% (3.3)

We begin by finding the expected number of guesses g required to pick
the learnable (?) alleles for an individual, and this can be derived in two
different ways.

First, we can begin with the straightforward derivation of E(g) by sum-
ming over the possibilities that the first correct guess comes on exactly the
kth trial is

E(g9) = li k(L —c)* e

However, because our function stops guessing after G attempts, this series
must be truncated:

E(g) = fj k(1 — c)k_lc> +G(1 o) (3.4)

Equation 3.4 is a geometric series. Beginning with the standard identity:
1 1— gt

Saf=

=0 -z

differentiation then gives:

i1 l4nz™ —(n+41)z”
Prada
=0 (1 - $)2

Then substituting z = (1 — ¢) and n = G into the identity and replacing the
series in equation 3.4 with this expression gives:

E(g) — 1+ G(l — C)G+1 e (G + 1)(1 —_ C)G 4 G(l _ C)G

c

1-(1-¢)¢
Sl (3.5)
We can arrive at equation 3.4 in a more elegant fashion by using Wald’s
Lemma [5]. This lemma relates the expected payoff E(Sy) of a run of inde-



22 Richard K. Belew

pendent, identically distributed trials, each with expected payoff p, using an
arbitrary stopping criterion N with expected value E(N):

E(Sn) = pE(N)

In our situation, “success” simply means guessing the @ learnable values
correctly and so p = ¢. Our strategy N stops either when we have guessed
correctly or guessed G times without success. Our payoff will therefore be
one unless we were unable to guess the correct combination in G trials, hence:

E(Sy)=1-(1-¢)°

Solving for E(N), which is exactly the same as the E(g) we desire, we again
get equation 3.4.

Note that if we are allowed many guesses, E(g) > ¢ and we are almost
certain to succeed; conversely, if there are many 7s, E(g) < ¢ and we will
almost certainly fail. Thus we are most interested in the case when E(g) ~ G.
Alternatively, if we define:

A=Ge

we are interested in the case A ~ 1. In this case, we can approximate
1 — ¢~ e7° and equation 3.4 becomes

G for A~ 0
E(g)~{ =2G for A~ 1 (3.6)
1/c for large A

We are now able to substitute £(g) into equation 3 to obtain the expected
fitness of an individual:

E(w) = L- L—;l- (1-(1-¢°) 3.7)

~ L—EA;}-(I—e“)‘)

Figure 4 approximates the derivative of this function with respect to ¢
using differences. This graph makes two important points that will be echoed
later. First, it shows how little selective pressure there is to replace ?s with
1s in a string of almost all ?s (see section 5.2). Second, it shows how little
selective advantage there is to replacing the last few 7s (see section 4).

3.3 Asymptotic behavior

Consider the situation late in the simulation, when the entire population is
composed of only 1s and ?s. Let us assume that all but one member of the
population has exactly ¢ 7s, and that this one individual z* is a bit more
fit, with exactly n less, @* = @ — n. We will ask just how likely it is that
this more fit individual will get to make more than one copy of itself in the
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next generation, thereby increasing the population’s ratio of 1is, since this is
just the process of gradual replacement underlying the system’s asymptotic
behavior.

Recall (equation 3.6) that when A is large, we can approximate
E(g) ~ 1/c. Some algebra then gives us the difference:

E(g*) - E(@) =292 - 1)

Substituting these values into equation 3.2, a bit more algebra gives us
the fitness advantage the loner z* enjoys over the rest of the population. We
will define this difference as a:

o = pr—p (3.8)
(1—2"") (3.9)

In order to relate the individuals’ fitness g to the number of copies made
of each individual, v, we must consider the details of the genetic algorithm’s
“selection” procedure. Following Baker [1], we can imagine each individual
being allocated a slice of a wheel proportional to its relative fitness and then
uniformly selecting from this wheel N times to pick our new population.
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Thus:
Ew) = £ (3.10)
7
IL#
= — (3.11)
%z;\;l/‘j

where [ is the average fitness of the population. In the case we are considering
(with exactly one more fit individual), this is particularly easy to compute:

. jita
E " 3.12
) = TNata) (3.12)
1+ ¢
= £ 3.13
L 2 (&13)

Consider the quantity «/ji, the ratio of the unique individual’s fitness
advantage to the fitness of the rest of the population. This ratio will always
be small and since a/ N[i is even smaller, we can legitimately approximate
this using the first two terms of the Taylor series expansion:

a o

E(v* ~ 1+T 1__. 3.14

) = 0+ (3.14)
a 1,a o

I ik~ i 3.15

2 G+ (5.15

Thus the number of copies we can expect to make of a slightly more fit
indivividual when the entire population is quite fit is only a bit greater than
one. For example, if we use the parameters of equation 2.1 and consider
the case when () = 6 (see figure 4) and the more fit individual has only one
less ? (n = 1), we find that o/ = 0.0324; the more fit individual has only
slightly better than a 3% chance of making any more copies of himself in the
next generation than anyone else. Even if a very lucky individual happens
to get two less 7 (n = 2), his or her chances improve only to about 4.8%.
Further, selection in the GA is discrete; even this slight advantage is only in
the expected value of E(v*).

4. Explaining the model’s behavior

Armed with the analytic tools of the previous section, we are in a position
to explain the simulation results presented in figure 5. This figure shows the
same three allele ratio curves of figure 3, but has been overlayed with the
average fitness of the population and delimited into what we will argue are
four significantly different phases. Beginning with the population composed
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Figure 5: Four phases.

of 50% ?s and 25% O0s and 1s, the population can be viewed as passing
through four different phases.

For a surprisingly long time, which we will call Phase 0, the allele ratios
of the population remained almost unchanged. One possible explanation for
this apparent equilibrium is that no individual has yet guessed the correct
solution. But this is not the case. The previous section shows that with the
parameters used we should expect approximately two Winners per genera-
tion, and figure 6a shows this to be the case; the important first generations
of this curve have been expanded in figure 6b.

A small number of Winners are being produced each generation, but they
have mininal effect on the population. The problem is that, because the GA
models sexual recombination, offspring of the Winner will also have signif-
icant genetic material from some Commoner and hence are almost certain
to be Losers themselves. However, these Winners do have the subtle effect
of enriching the population-wide ratios of 1s and 7s slightly. The reason is
simply that Winners, composed entirely of 1s and ?s, are much more fit than
average and hence make more copies of themselves. This constant, albeit
small, enrichment of 1s and ?s provided by Winners guarantees that the
number of Winners steadily increases.

John Maynard Smith has made a similar observation about the Hinton

and Nowlan simulation [28]. He notes that in a population without any
learning capability (i.e., with only 1s and 0s), asexual reproduction can be
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expected to find the solution more quickly than with sexual reproduction and
crossover. It will take both methods a very long time® to find the needle,
but once found asexual reproduction will reproduce this solution with more
fidelity than sexual reproduction.

During Phase 0, it is extremely unlikely that two Winners will “find one
another” and produce winning offspring. Phase 1 begins when two Winners
find one another, forming offspring that are themselves Potential Winners.
When this happens, Winners begin to beget Potential Winners and a strong
positive feedback cycle is entered in which Losers are steadily replaced with
Potential Winners. Note that the only difference between a Loser and a
Potential Winner is that all 0s have been replaced by a 1s. Hence, during
Phase 1 the ratio of 0s goes down, the ratio of 1s goes up and the ratio of

5There are 2F combinations to guess, so if the size of the population is N, it will take
2L /N generations.
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Figure 7: Long run.

?s remains almost unchanged. Notice also that the average fitness of the
population changes little during Phase 1.

Phase 2 continues this same basic trend, but begins to also apply pressure
against guessed alleles (?) in favor of genetically specified correct ones (1).
In terms of the fitness function (see equation 3.2) an individual is always
better off not having to guess, and so there is a constant selective pressue
against ?s. In other words, as the 0s of Losers are replaced to create Potential
Winners, the ?s in these Potential Winners are almost immediately replaced
to make them more likely to be actual Winners. Thus it is during Phase 2
that the average fitness of the population increases most markedly.

However, as Hinton and Nowlan correctly observe, this advantage dimin-
ishes as the number of 7s in a Potential Winner becomes small. The analysis
of section 3 shows how fitness depends on the number of ?s, and in particu-
lar how little adaptive advantage there is to replace the last few ?s with 1s.
Ultimately, in Phase 3 this effect results in an almost steady-state popula-
tion composed of approximately 30% ?s and 70% 1s. While these two curves
are in fact asymptotically approaching 1.0 and 0.0, respectively, progress is
extremely slow. In fact, figure 7 shows that these levels remain virtually
constant out to 500 generations.

The reasons the asymptotic convergence of the population has been ef-
fectively stalled can be found in the analysis of the last section. As shown
in figure 4, there is very little selective advantage to replacing the last few
?s. More concretely, the asymptotic analysis of section 3.3 showed that, late
in Phase 3, a single more fit individual has only a slightly higher probability
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of producing even one additional offspring. In short, the additional fitness
achieved by replacing a 1 with a ? in Phase 3 is so small that the proba-
bility of producing more than an average number of offspring and thereby
increasing the ratio of 1s is infinitesimal.

The picture we have, then, is of a dynamical process with first a slight
but constant movement toward a critical point (during Phase 0), an almost
instantaneous “ignition” (when Nobilepersons first find one another) that
within a few generations changes the composition of the entire population,
first by replacing incorrect alleles with correct ones (Phase 1) and then by re-
placing learnable alleles with correct ones as well (Phase 2) at an increasingly
slow rate (Phase 3).

5. Parameter sensitivity

One elegant aspect of Hinton and Nowlan’s simulation is the way in which
their parameters are delicately balanced against one another. For example G
— the number of guesses allotted — was chosen with regard to the average
number of ?s in an individual (see section 3). A second phase of our own
research perturbed some of the major variables of the simulation and found
it to be surprisingly robust. Section 5.1 considers stochastic variability and a
question we believed to be related, the size of the population. These experi-
ments also substantiate the predictions of section 3.3 concerning asymptotic
behavior of the model. The sensitivity to allele ratios in the initial population
is considered in the next section. Finally, we investigate the effect of mu-
tation on the model. Hinton and Nowlan did not include mutation in their
experiments, and so it is something of a misnomer to investigate it under
the rubric of “parameter sensitivity.” However, mutation is a very standard
part of most GA implementations and easily incorporated into the model.
Section 5.3 shows it to have nontrivial effects.

5.1 Stochastic variation and population size

The GA, let alone the individuals’ guessing procedure, depends heavily on
stochastic procedures so we must be suspicious of any one run. For this rea-
son a series of runs were performed that differed only in their initial random
number seed. Figure 8a shows the average and standard deviation of popu-
lation fitness (a typical statistic) of five separate runs. These statistics show
that while the initial and ultimate behaviors of the simulation are quite con-
sistent, there is significant variation during the middle generations. However,
figure 8b shows that this variation is of a particular form, viz., the genera-
tion in which Phase 1 begins. Recall that this event depends on two Winners
finding one another out of a large population of other potential mates, and
while the increasing levels of 1s and ?s during Phase 0 guarantees it will
occur sometime, the generation of the actual occurrance is highly variable.
We hypothesized that increasing population size (N) would, because of
the Law of Large Numbers, decrease this variability, and a number of simu-
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Figure 8: Stochastic variation.

lations were run varying this parameter. In fact, stochastic variation did not
appear to vary with changing population size. The most significant effect
of varying population size was that smaller populations consistently moved
more quickly through all three phases than larger ones (see figure 9). This
behavior can be attributed to the fitness “scaling” strategy used in the Hin-
ton and Nowlan (and our) model: even the most fit individual can make at
most L copies of itself. Since this represents a much larger fraction of small
populations, Winners can come to dominate the population that much more
quickly.

5.2 Initial ratios

We can first limit the range of possible initial population compositions using
qualitative arguments. The central point of the Hinton and Nowlan paper is
that, without learnable (7) alleles, pure evolutionary search is blind and ex-
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ceedingly slow. Hence, go must be significant. With the analysis of section 3.2
we can make a more refined statement; figure 4 shows that an individual has
little additional fitness until he (or she!) contains about 7 ?s, which suggests
go must be about 35%. Similarly, an individual is completely unfit if it con-
tain even one incorrect 0 allele, so ry large simply delays the time before, by
chance, Potential Winners are created.

With these considerations in mind, a wide range of initial populations
were explored. Figure 10 shows a typical variation. In this run the initial
ratio of 7s to 1s was maintained at 2:1 (46% to 23%), but a higher ratio
of incorrect Os than correct 1s was used (31% vs. 25%). The result was
to significantly slow down the population’s ability to converge on the correct
solution. There is a long phase (which might be viewed as a Phase —1, coming
before the Phase 0 mentioned above) during which 0s are steadily replaced
with 1s. However, once the number of Winners produced in a generation is
sufficient to ensure the positive feedback of Phase 1, this population behaves
the same as the original one.

5.2.1 Poor man’s diploid

Experiments with varying initial population ratios produced another curious
result that helps to make an important point about representation and the
GA. Figure 11 shows a population that was begun with 50% ?s and 50% 1s
and no 0s. Yet by Generation 2 almost 8% of the population’s alleles are 0s.
If the mutation operator were in effect (see section 5.3 below), this could be
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Figure 10: Varying initial population.

expected to introduce new alleles in this manner but this run was without
mutation, but without mutation how is this possible?!

In order to explain this effect, recall the binary encoding of the three
allele values described in section 2.1: It obviously takes at least two bits to
represent the three allele values 0, 1, and ?. In our simulations the encoding
was

Allele | Bits
0 10
1 11
? 0*

with star (*) indicating “don’t care”; i.e., this bit can be either 0 or 1. Given
the random procedures for creating the initial population we should expect
about half the ?s to be of each type; call the two varieties 7 and 7;.

Now consider what happens when crossover is performed between two
parents in our initial population of only 1is and 7s. If one parent contains a ?
of the 7y variety and the other parent contains a 1, it is possible to produce
an offspring with a 0 allele by performing the crossover at the point between
the two bits of the allele. Despite the fact that the population begins without
any Os the genetic material for producing this allele value is still present due
to the redundancy of the encoding. It would obviously be possible to modify
the crossover operator so that it operated only between alleles rather than
between bits, but this is again against the “semantics-free” spirit of the GA
(see section 2.1).
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Figure 11: Initially no Losers.

This is more than a curiosity. It suggests an aspect of the GA’s repre-
sentation that might be called “Poor Man’s Diploid.” The ability of diploid
chromosomes to maintain recessive alleles while typically expressing the dom-
inant allele is a central component of population genetics. This mechanism
allows a species to maintain an alternative solution should the environment
(again) demand it. In true diploid species, however, the cost paid is the
representational redundancy of having two full copies of each allele.

Almost all versions® of the GA (including this one) use a single, haploid
chromosome, but these experiments show how any encoding redundancy can
have a similar effect, even in haploid species. As soon as there is any spare
representational capacity (e.g., the *-bit in this case), it is potentially avail-
able to hold information that is not of immediate functional consequence.

From another perspective, this effect helps to deflate a strict “adapta-
tionist” position that sometimes argues that any and all sustained genetic
variation is a direct reflection of increased fitness. This is true only if the
representation is miminal. Otherwise, unused representational capacity is
available for other purposes, such as maintaining alternative solutions, but
also including use by other adaptive systems (see section 7.1).

SGrosso’s thesis investigated diploid populations along with other, more biologically
plausible variations of the GA [16].
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5.3 Mutation

One important simplification of the Hinton and Nowlan model of evolution is
the absence of any mutation effects. “Mutation” is sometimes used to refer to
any and all modifications to the genotype passed from parent to child. In the
GA, however, mutation is used to describe only random modifications. These
play a much less important role than the principled modifications generated
by the crossover operator (see section 2.1), so that mutation is properly con-
sidered a “background” operator in the GA. Nevertheless, mutation has been
shown to play an important role in the GA, viz. preventing “fixation” [10].
That is, mutation provides the only mechanism for reintroducing allele values
that may, by chance, have become removed from an entire population. As a
result, without mutation it is possible for a population to converge prema-
turely on a suboptimal solution. On the other hand, it is also true that if the
mutation rate is too high, this random operator effectively stalls progress of
the GA by breaking up the schemata processed by crossover.

Mutation rates are typically defined in terms of the probability of chang-
ing bits, but when the alleles are not binary this definition is somewhat prob-
lematic. For one thing, it allows “silent” mutations (i.e., not changing the
allele value) if the *-bit is the one that happens to change. Alternatively, we
could modify the mutation operator to ensure that all modifications changed
allele values.” However, this seems against the “semantics-free” spirit of the
GA, and so the simulations presented here simply treat the individuals as bit
strings of length 2L.

A number of simulations were run with varying mutation rates; some of
these results are shown in figures 12. In some respects, these curves are in
agreement with intuition. Small mutation rates (107°) have little effect,®
intermediate mutation rates (1073) slow down the genetic search, and very
high mutation rates (0.2) disrupt the search entirely. However, notice that
during the early Phases 0 and 1 an intermediate mutation rate (1072%) has
about the same effect as that of no mutation whatsoever, but then slows
down the final convergence of Phase 3. Thus there is a nonmonotonic relation
between mutation rate and population convergence.

In order to explain these effects, we must notice that mutation has two
counterbalancing effects in the early phases. The first effect is to “clobber”
members of the Nobility. That is, an individual whose parents passed on
Potentially Winning genetic material is ruined if any of it is mutated. The
second effect is to increase the variance of the Commoners. With very small
mutation rates, neither of these two effects is achieved, and the result is the
standard simulation. With intermediate mutation rates, the fragile Winners
are likely to be ruined, but the variance of the Commoner population is

"This may become necessary to accurately capture real genetic phenomena such as
“back mutation,” where the probability of mutating from allele X to allele Y is not equal
to the probability of the inverse change.

8To be concrete, a mutation rate of 10~5 means that with a population of 1000 indi-
viduals, with each individual of length 20 and with two bits/allele, there is only a 40%
chance that anyone in the population will be changed at all.
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Figure 12: Mutation.

not changed dramatically. As the mutation rate is increased, no additional
harm can be done to the already-ruined Nobility, but Commoners stand a
better and better chance of being mutated into Potential Winners. Thus,
intermediate mutation rates provide a new source of Winners. Finally, if the
mutation rate is made extremely high, the ability of crossover to pass on
solutions to subsequent generations is undermined.

Later, in Phase 3, the dominant effect of mutation is to introduce 0s into a
population that would otherwise be composed entirely of Potential Winners.
It is obvious that this will slow the population’s final convergence.

6. Incorporating culture into the model

Hinton and Nowlan’s original model and our extensions to it point to sub-
tle ways in which the learning of individuals and the evolution of species of
such individuals can be coupled to form effective, hybrid adaptive systems.
But when we consider the human species and the rate at which evolution
has shaped it as compared to the rate at which individual humans learn,
the mismatch (perhaps 12 orders of magnitude) is quite striking. Further,
it seems that, at least in the case of the human species, additional adaptive
processes have developed to allow the learning experiences of one individual
to become useful to other individuals much more quickly and directly. Cul-
ture can be viewed as a third, interposed adaptive system that allows the
hard-won knowledge learned by an individual to improve the evolutionary fit-
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ness of other conspecifics (i.e., members of the same species) via nongenetic
informational pathways.

Our basic model can be extended to investigate some of the issues raised
when the constructs of culture, evolution, and learning are juxtaposed in this
way. Obviously, such a model will be macroscopic to the extreme, just as the
genetic algorithm is a gross simplification of evolution and random guessing a
gross simplification of learning. However, when the object of investigation is
the interaction among three such extraordinarily complicated systems, such
radical simplification is necessary.

6.1 Dual inheritance

Boyd and Richerson have developed a “dual inheritance” model encompass-
ing both evolution and culture that emphasizes the two ways, genetic and
nongenetic, in which conspecifics can pass adaptively useful information [6].
Following a suggestion of Hutchins, we inject this notion of culture into the
Hinton and Nowlan model as directly as possible: If and when a parent be-
comes a Winner, they confer upon their offspring a cultural advantage (CA)
that gives these offspring a better than average chance of guessing the correct
value of the learnable alleles. So, for example, if CA = 0.1,° the offspring
of a Winner has a probability of 60/40 chance of guessing each of its learn-
able alleles correctly, rather than its normal (culturally disadvantaged) 50/50
chances. The rationale is that parents have some ability to “imprint” their
offspring by skewing the allocation of random trials somewhat. A slightly
more elaborate of notion will be considered in the next section, and the more
general issues of modeling culture are considered in section 7.

Figure 13 show the results of this modification using CA = 0.1. A CA
allows a population to find and then converge to a solution more quickly,
simply because more effective guessing broadens the shoulders of the search
space around the correct answer still further. Just as learning creates a basin
of attraction around the solution needle, information (in this case passed
extra-genetically) that makes the learning/guessing process more effective
broadens this basin still further.

The second observation, however, is that a CA removes some of the pres-
sure to achieve optimum performance; i.e., while the population converges
more quickly, the solution it converges to is not as good as without CA. The
reason can be seen in figure 14, comparing the allele ratios with and without
CA. The most striking difference is that the maximum levels of ?s and 1s
have been reversed. The population with CA reaches a ratio of about 80%
?s and 20% 1s before beginning its slow descent through Phase 3. Because
an individual is now more likely to guess learnable alleles (?s) correctly (be-
cause of the CA imparted by its parent), a much larger number of ?s can be
tolerated and the selective pressure against them is much reduced.

The pressure is not entirely removed, however, as the slight slope on these
two lines indicates. It is still always advantageous to replace a ? with a 1,

9This value was used in the simulations described below unless noted otherwise.
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since knowing for sure is always better than even effective guessing. Figure 15
shows the number of Winners and Potential Winners, both with CA and
without. It is interesting because it shows that even though a population
with CA does not produce as many actual Winners, it does produce just the
same number of Potential Winners. CA can therefore be viewed as making
the population something of an “underachiever.” CA is useful for initially
discovering the solution, but it also removes the selective pressure required
to push the population to its optimal performance with all 1s.

It turns out that this diffidence can be corrected by introducing a very
low mutation rate. Figure 16 shows that a combination of cultural advantage
and mutation produces a population that converges even more quickly than
with cultural advantage alone, and finds an equally good optimum. Again,
CA facilitates the initial discovery of the solution “needle,” and mutation
then increases the pressure against 7s by increasing the probability that they
will be replaced by 1s.

6.2 Plasticity

Allowing some information to be passed extragenetically from generation
to generation allows a population to maintain a higher ratio of learnable
versus genetically specified alleles, for longer. Why might such “plasticity”
be advantageous? One reason is that learnable alleles can be modified in the
face of a changing environment, while genetically fixed ones cannot. A series
of simulations were performed to illustrate this point. At fixed intervals
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(25 generations in this simulation) several of the bits of the needle (i.e.,
correct answer) were changed; this can be viewed as moving the needle in the
search space slightly. Figure 17 shows the response of various populations to
this sort of modification. First, a standard population, without mutation or
cultural advantage, is unable to track these environmental changes. Without
some mechanism to reintroduce lost alleles, the population converges on the
early solution but is then unable to search any other portion of the space;
this “premature convergence” effect is well known in the genetic algorithm
literature [9]. ;

Mutation is an extremely robust mechanism for allowing a population to
back out from (what has become) a maladaptive solution. When the new
solution is relatively close to the old one, the simple random-walk strategy
of mutation has a good chance at success. But as these curves show, random
changes are not terribly intelligent and so this can be a slow process.

Cultural advantage was successfully able to respond to the first of the en-
vironmental changes (at generation 25), exactly because it had learnable ver-
sus genetically fixed alleles at these positions. This was the expected result.
Notice, however, that the population with CA was not able to respond to
the environmental change at generation 50. While cultural advantage allows
individuals to have a higher ratio of 7s, some positions are still genetically
fixed, including (it so happens) one of those involved in the environmental
change at generation 50. A population with CA will remain more plastic
but once an allele becomes genetically fixed it is no better off in the face of
environmental change than one without. The best solution, as shown by the
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fourth curve in the figure, is the combination of both mutation and cultural
advantage. This gives the population the responsiveness of culture with the
robustness of mutation. Together, these two mechanisms allow a population
to track environmental change very well.1°

6.3 Broadcast vs. lineage models

The “dual inheritance” notion of culture broadens the range of possible chan-
nels through which the experience acquired by one individual might be con-
veyed to another. Rather than requiring that all information be encoded
genetically, we have allowed some useful (albeit unspecified) information to
be passed from parent to child extra-genetically. But now that the trans-
mission of information has been cleaved from a strictly genetic basis, culture
can also allow for a broadened range of recipients for this information than
strictly biological offspring. Rather than conveying the cultural advantage
only via lineage, we can tell it to other, genetically unrelated members of
the population. In other (more metaphoric) words, when we find the secret
of the needle, we don’t have to tell (only) our own children; we can tell the
kids down the street. In fact, we could “broadcast” the CA to as many as

10pollowing a suggestion of Phillip Kitcher, it would be interesting to explore how quickly
the environment can change and still have the population able to track it. Similarly,
variation of the size of environmental changes (the number of bits altered) can be expected
to be a critical parameter.
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we like! We might expect this use of a powerful new communication ability
to improve the ability of a population to converge quickly.

Another set of simulations were run investigating the broadcast of CA to
arbitrarily selected members of the population. More specifically, once the
needle is found by a Winner, CA is passed on to an audience of B randomly
selected members of the next generation. Typical results are summarized in
figure 18. This figure compares a standard run (with no CA), a population
with CA passed in the “lineage” fashion discussed above, two runs in which
the CA is passed from a Winner to either B = 2 or B = 16 randomly selected
members of the next generation, and finally one in which again B = 16 but
the CA has been reduced by half, CA = 0.05.

There are several interesting things to note here. First, broadcasting the
CA can be more effective than passing it to just biological offspring, but only
if a fairly large audience is allowed to benefit. Comparing the lineage and
B = 2 results, we note that the latter does significantly worse; giving the CA
to two, randomly selected members of the next generation is less effective
than conveying it to biologically related ones.!’ The reason is that it does
little good to convey CA to an offspring that is genetically unfit to receive it.
The probability that a randomly selected offspring will be a Loser is much
higher than that of a biological offspring of a Winner. In other words, much
of the wisdom of broadcast CA falls on “deaf ears.”

1 This comparison is a bit simplified, since in the lineage model the number of biological
offspring to which the CA may be conveyed can be more, or less, than two.
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But if the CA is broadcast to a sufficiently large population, as in the
B = 16 curve, this form of communication can become more effective. In the
extreme, if the CA is made available by a Winner to the entire population of
the next generation this becomes a clear advantage over the lineage model.
However, it is also reasonable to expect the “fidelity” of the broadcast mes-
sage (whatever it might be) to erode as the size of the audience increases.
We can model this as simply a smaller CA, and this condition is shown in
the final curve of the figure.

In summary, biological evolution proceeds by conveying partial solutions
from parents to children via genetic material. Introducing a cultural con-
struct allows us to consider both the effect of allowing a parent to pass
extra-genetic information to his or her own children, as well as the effect of
passing this information to conspecifics that are not biological offspring.

7. Discussion
7.1 Modeling culture

Our current experiments have only begun to address the phenomena of cul-
ture. They treat culture simply as an extra-genetic channel through which
information about successful search can be passed from one generation to
the next. Because our model of individual lives is so crude (viz., a number of
guesses for the correct settings of plastic alleles), culture takes on a similarly
crude form (an increased probability of success at this guessing game). Still,
the exercise has been useful in that it has helped to define a set of issues for
future work.

In our model, culture has been reduced to a single real number, reflecting
a “cultural advantage” in the otherwise random process of searching for a
solution. It is conferred by an individual that has found the correct solution
to some members of the next generation. Even in this crude model we can
distinguish two separate issues that seem common to any model of culture,
the artifact (object of the transmission) and the audience (recipients of the
transmission).

In our model, the artifact is a single real number. Note that this is a par-
ticulary uniform, global notion of culture and certainly wrong. Exactly the
same artifact is used throughout the entire society /population, and uniformly
at each bit position. Thus all the critical issues of language — how succesful
individuals describe their solution, how others understand this description
— are ignored in favor of a single variable capturing the effectiveness of any
and all extra-genetic information flow.

We have experimented with two different notions of audience. The first,
“lineage” model has only biological offspring of successful individuals re-
ceiving cultural advantage. Our second, “broadcast” model comes closer to
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capturing culture’s ability to communicate information to arbitrary, nonbio-
logically related elements of the population.'?

Another key distinction has to do with the “age” of the audience. In
the simulations reported here, each generation is disjoint in time from pre-
vious and future ones.!® Similarly, the audience for a successful individual’s
cultural advantage is always restricted to members of the next generation
only. This was useful for investigating “dual transmission” questions of inter-
generational genetic and cultural information. However, it is also possible
to consider intra-generational communication of cultural information. It is
difficult to imagine the value of intra-generational communcation within the
current model, but the next section suggests a role for this kind of “symbiotic”
search. In fact, it seems likely that these two types of cultural transmission
will play profoundly different roles in an account of evolution, culture, and
learning; this observation dates back to Vygotsky [29].

Finally, it is important to note the way in which our ability to model
culture is constrained by our model of individual learning. Our individuals
spent their (bleak!) lives making a set of random, disconnected guesses. In
this simple model, the only obvious way culture can enrich these individuals’
lives is by making them better guessers. However, as we allow more so-
phisticated learning mechanisms we are given the opportunity to pass more
interesting, useful artifacts. Hutchin’s “citizens” provide an excellent ex-
ample [22]. His individuals use several PDP networks for learning and are
given the opportunity to learn both from direct experience (with the envi-
ronment) and “mediated” experience (with artifacts left by others). If we are
interested in the central questions of culture and language, especially intra-
generational communication, we must expect that our models of individual
lives and learning will contain more complexity of this sort.

7.2 Functional consequence of culture

An immediate benefit of even the crudest attempts to integrate culture into
a model with learning and evolution is that it provides concrete proposals for
exactly why culture is valuable. Anthropology typically takes as axiomatic
that culture is important and then proceeds to catalog and explicate various
cultural activities. However, this leaves a gap as to why culture is important
that threatens to undermine any theoretic understanding of culture or how it
relates to other aspects of individual behavior in a physical environment. By
casting the problem as one of adaptive search by a species, we can motivate
culture in very functional terms of improved performance.

Our model illustrates two clear advantages for culture. First, populations
with cultural advantage are able to converge on a solution significantly faster

12This model could be refined further with a spatial distribution of the population that
would limit the broadcast of information to “near” neighbors.

13Genesis has a very convenient parameter, “generation gap,” controlling the overlap
between generations. Simulations investigating interactions between this parameter and
cultural variables are planned.
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than those without. In our model, culture helps individuals guess better than
chance, and anything that makes an individual better at guessing improves
their fitness.

The second advantage of culture suggested by our model is the additional
robustness it provides a population in the face of environmental change. An
improved ability to guess caused the population to devote more genetic ma-
terial to learnable vs. genetically specified alleles. This additional plasticity
allowed the population to track environmental changes, through changed cul-
tural information, rather than being trapped into obsolete, genetically fixed
solutions.

We can envision several other functional advantages for culture that go
beyond our current model and are necessarily more speculative. These re-
quire intra-generational communication among peers within the timespan of
a single generation (in addition to the inter-generational communication now
used) and attempt to capture a notion of symbiotic search.

The most straightforward extension of our current model is suggested by
the critical event of the two Winners finding one another and igniting the
population into Phase 1 (see section 4). Currently, mates are selected at
random from the entire population and this event is therefore highly vari-
able (though guaranteed) and slower than it might be. If some mechanism
could cause Winners to “find one another” more quickly, this would almost
certainly expedite the population’s search. There has been significant inves-
tigation of “restricted mating” strategies with the GA literature (e.g., [9])
and this seems very relevant, but we envision culturally-based mechanisms.
For example, if individuals were simply allowed to communicate some re-
duced and perhaps errorful description of themselves to potential mates*
and similarities in these descriptions were used to bias mate selection, Win-
ners would be much more likely to find one another. This observation is
consistent with the critical role attributed to mate selection in the models of
“niche construction” of modern theoretical biology [25].

A second construct assumes a more complex, “conditional” environment
of several different, mutually exclusive regions, with individuals thrown at
random into some one of these regions. The problem facing the species, then,
is to allow specialization with respect to each of the conditions, despite the
fact that an individual does not know “at birth” the environment in which
it will find itself. Culture could play a critical role here in allowing adaptive
specialization without the genetic speciation that irreversibly partitions the
population. We imagine a cultural mechanism that helps to match the genetic
abilities of a new offspring with the range of environmental conditions to be
solved.

Another possible role we see for culture in symbiotic search is when the
solution to be found requires the distinct abilities of more than one indi-
vidual. For example, imagine that the “needle” being found by our current
search had twice as many bits. Imagine further that we add only a single

1Something like a “Personals” column!
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bit to the length of current individuals, with its semantics being whether the
individual was “good at” the first half of the solution or the second. Finding
the needle would now be much harder, requiring not only the construction
of two individuals specialized at the “jobs” of the first and second halves
of the needle but also that these two specialists be able to communicate at
least enough to find one another and work together. This construction is
admittedly contrived but it helps to illustrate yet another important role
for culture: the solution of problems more complex than those soluable by
individuals working alone. :

In summary, we see several clear, functional motivations for what culture
can add to an adaptive system using evolution and learning. Culture helps
to expedite the search process by disseminating information about success
more quickly than genetic mechanisms alone. Second, the extra-genetic in-
formational channel provided by culture helps to keep the genetic description
more plastic, a characteristic that can be critical as the species’ environment
changes. Culture may also help compatible mates to find one another, to
allow specialization to environmental niches despite indeterminism as to the
niche in which an individual will find itself, and allow groups of individuals
to collectively solve complex problems that would be beyond their isolated
efforts. Our current simulations provide some evidence as to the efficacy of
the first two of these, while only suggesting the last.

7.3 Adaptive algorithms

It is possible to view the interacting processes of evolution, learning, and
culture as adaptive algorithms that search huge spaces (environments) for
potential solutions. In this view, our criterion for success changes from accu-
rate modeling to efficient computation.!® In this section we outline some of
the basic features of evolution, learning, and culture as adaptive algorithms.
One obvious approach is to view evolution, learning, and culture as three
distinct and competitive types of adaptive algorithm, looking for their rela-
tive advantages and disadvantages. It certainly appears, for example, that
the local search performed by most gradient descent connectionist learning
algorithms makes it appropriate for much different adaptive problems than
the kind of global sampling performed by something like the GA.
Alternatively, we can view evolution, learning, and culture as components
of a single adaptive system. Figure 19 presents a view of how the three sys-
tems might interact, as joints of a single movable arm that each help the
ultimate “fingers” reach a desirable point; this is obviously an elaboration of
the picture of Baldwin’s arm of figure 1. This image is meant as evocative
metaphor, but it does help to make several observations. The first is the
mutually constraining relationships among evolution, learning, and culture.
Culture must be built upon the results of evolution, while individuals’ learn-

151n the background, of course, is the “Holy Grail” of cognitive science: correct models
of naturally occuring phenomena and efficient artifical computations will turn out to be
two faces of the same solution.
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Figure 19: Robot arm.

ing depends both on the artifacts made available to them by culture and
the genetic material given them by evolution. Second, this image helps to
capture the way in which the plastic systems (“joints”) of evolution, culture
and learning mediate between the more rigid constraints (“bones”) of extant
genetic material, species, and artifacts. Finally, the relative size of the three
limbs is meant to indicate their relative inertias. That is, the process of
evolution is much slower and cumbersome than the process of cultural de-
velopment, which in turn is slower than the process of individual learning.

It is this notion, that the three adaptive systems are each attempting
to capture environmental regularities of different time scales, that is most
persuasive. Refering to interactions among a slightly different set of adaptive
subsystems, Simon has made a similar comment [27]:

What is invariant in adaptive systems will depend on the time
intervals during which we observe them. There are at least three
time scales of relevance to such systems, corresponding to three
different forms of adaptation. On the shortest time scale in-
telligent — hence adaptive — systems continually change their
behavior in the course of solving each problem situation they
encounter.... On a somewhat longer time scale, intelligent sys-
tems make adaptations that are preserved and remain available
for meeting new situations successfully.... On the longest time
scale, intelligent systems evolve.
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EVOLUTION

Environment

Figure 20: Environmental wave.

Thus, the relative inertia of each of these adaptive systems is appro-
priate to the time scale of the environmental variations it is tracking. In
particular, the learning trials of individuals are not commensurate with the
evolution of individuals, as Hinton and Nowlan seem to suggest (see sec-
tion 2.3). Evolution is responsive to the most glacial of changes, culture
to more rapid changes, and learning to those changes in the environment
that can be observed within a lifetime. Of course there is nothing special
about these three particular rates of environmental change except that we
have identified adaptive systems associated with each. A whole continuum
of rates of environmental change are constantly in operation. The resulting
picture (see figure 20) is of the environment as a constantly changing wave
form, with lower frequency components being tracked by evolution, interme-
diate frequencies by culture, and the highest frequencies being tracked by
learning.

Notice also that the “granularity” of the representations used by each
adaptive system is proportional to the time scale within which it operates.
Genetics provides an alphabet of appropriate “building blocks” [19] for ex-
perimenting with phenotypic variations and measuring the gross fitness of
the results, culture develops systems of artifacts that convey useful solutions
across generations, and neural networks capture reliable correlations among
perceptual and motoric phenomena experienced by an individual. This last,
most high-resolution representation of an individual’s experience with its en-
vironment is subjected to enormous “data reduction” as it enters into the
slower adaptive systems of culture (e.g., if the individual writes an autobi-
ography) or evolution (e.g., perturbs the gene pool frequencies). Conversely,
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the granularity of the environmental space experienced by individuals is much
smaller than the cumulative experience of entire societies, which is in turn
much smaller than the cumulative experience of entire species. In each case,
the adaptive system depends on a repository for its accumulated experience
that is appropriate to the time scale of its regularities and the mechanisms
available for modifying this representation.

These are only a sample of the large set of important issues that arise
when we consider any one adaptive system (e.g., learning, culture, evolution)
as components of a single, grand adaptive system. We hope to investigate
these in terms of the time scales in which they find invariants, the information
structures used to represent regularities, and the way regularities discovered
by one adaptive system serve to constrain the search of the other systems.
Another intriguing possibility is that the environmental regularities are “self-
similar” across time scales, i.e., fractal. If true, this would allow self-similar
adaptive techniques to be exploited at several levels within the cognitive sys-
tem. An adaptive mechanism that worked at evolutionary time scales might
actually be useful at the level of seconds, just because the regularities they
are respectively tracking have self-similar structure selections. For example,
so-called “selectionist” generalizations of biological evolution of species have
also been used to account for the creativity of individuals [8] and the develop-
ment of cultural processes like science [7,20]. The argument is that while the
“substrates” on which evolution, creativity, and science work are of course
wildly different, approximately the same selectionist adaptive algorithm is
effective in all these cases. Certainly this must be considered only specula-
tion at the moment, but if true it would help to explain the fact that the
apparently disparate phenomena of learning, evolution, and culture are all
of central concern to modern cognitive science.
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