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Abstract.
Potential interactions between connectionist learning syst ems and

algorithms modeled aft er evolutionary adapt ation are becoming of in­
creasing interest . In a recent short and elegant paper Hinton and
Nowlan extend a version of Holland's genetic algorithm (GA) t o con­
sider ways in which the evolution of species and th e learning of indi­
vidu als might in teract [17]. Their mod el is valuable both becaus e it
provides insight into potenti al interactions between th e natu ral pro­
cesses of evolution and learning and as a potential bridge between the
arti ficial questions of efficient and effective machine learning using
t he GA and connectioni st networks. Thi s pa per begins by describ­
ing the GA and Hinto n and Nowlan's simulati on . We then an alyze
their model, use thi s analysis to explai n its nontrivial dynamical be­
havio rs, and consider the sensitivity of the simulation to several key
parameters.

Our next step is t o in terpose a thi rd adapt ive system - culture ­
between the learning of individuals and the evolut ion of pop ulations .
Culture accumulates the "wisdom" of individuals' learning beyond the
lifetime of any one indi vidual but adapts more responsively than the
pace of evolut ion allows. We describe a series of exper iments in which
the most minimal notion of culture has been ad ded to the Hinton
and Nowlan mod el, and we use, this experience to comment on the
functional value of cult ure, and similarities between an d interac tions
among these three classes of adaptive systems.

1. Introduction

It is in t eresting to note t hat two of the mo st promising approaches t o the
design of algorithms for m achine learning can trace their or igin to the study of
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naturally occuring systems. Connectionist algorithms, since their cybernetic
beginnings, have often had a real concern with how neurons in biological
nervo us systems allow organisms to adapt to their envirnonment. Similarly,
models of simulated evolution generally and the genetic algorithm (GA) in
particular are attempts to mimic the way species become adapted to their
respective environmental niches. Both classes of algorithms have since been
developed so that their correspondence to the original natural phenomena is
often only metaphoric, but as we attempt to compare and possibly combine
these techniques it makes sense to start with a basic understanding of the
interaction between the natural processes of evolution and learning.

In order to adopt a perspective that allows one to capture the GA and
connectionism within a single view it is necessary to back up, far off-stage,
and each of the characters consequently becomes quite small. That is, in an
attempt to capture interactions among enormously complicated phenomena
- evolution, learning - the models of each of these constituents must neces­
sari ly become extremely simplified. There are certainly other comprehensive
models of learning in cognitive systems than the connectionist account (e.g .,
SOAR [23]). Even within connectionist models of learn ing there is great di­
versity, and most connectionist systems are extremely complicated in their
own right. The same is true of various models of evolution, and the com­
plexity of various versions of the GA. But our concern here is not with the
the validity of connectionism as a model of learning or the GA as a model
of evolution. A central premise of this work is that connectionism and the
GA represent two very adequate models for learning and evolut ion, respec ­
tively . We propose to take these two models as canonical in order that
we might begin to explore interactions between these two forms of adaptive
search.

Merging these models, and especially making sense of the hybrid's be­
hav ior, is difficult . In a very short and elegant paper in these pages, Hinton
and Nowlan describe a simulation suggesting "how learning can guide evolu­
tion" [17]. In order to achieve this goal, their model incorporates an impov­
erished notion of learning into the GA. The result of this simplification is a
simulation in which the interactions between the GA and individuals' learn­
ing are appropriately accentuated. The work reported here builds squarely
on this beginning.

The question of "how learning can guide evolution" is critically impor­
tant because it is concerned with how the results of one adaptive search
(individuals' learning) can be capitalized on by another (the evolution of a
population). When one considers the natural correlates of these adaptive
algorithms, it is not at all clear what the medium for this exchange of in­
formation might be; the time scales of individual learning and a species'
evolution is wildly different. Yet, at least in the case of the human species, it
does seem as if the learning accomplished over a lifet ime has become coupled
with the process of evolution. Whether this perception is accurate or not, we
will argue that it is appropriate to consider culture as a third, intermediate
adaptive system used by societies, between the learn ing used by individuals
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and th e evolut ion used by populations. Preliminary experiments sugg est the
addition of "cult ur al artifacts" helps mediate between the regularities found
by evolution (over many generations) and the learning accomplished by an
individual (within a single lifetime).

The rest of this report is divid ed into six sections." We begin by pre­
senting the basic features of the GA and Hinton and Nowlan 's model, then
make several comments about important assumptions built into these pre­
requisites . Section 3 pres ents our analysis of the model, and this provides the
basis for our characterization of the model's behavior in section 4. Section 5
considers the sensitivity of the simulation to some of its key parameters. In
sect ion 6 we introduce a very crude notion of culture, as an additional "chan­
nel" through which knowledge acquired by one individual might be passed
to other members of the species . The paper concludes with a discu ssion of
some of the issues raised by these experiment s and potential directions for
further research .

2. Preliminaries

This research builds squarely on two previous bodies of work , th e genet ic
algorithm (GA) and Hinton and Nowlan's model. This section will begin by
pr esenting the cent ral features of th e GA, then present Hinton and Nowlan's
model and the bas ic results of their simulations. Our preliminaries will con­
clude with several comments about important features of this model.

2.1 The genetic algorithm

The GA has been investigated by John Holland [1 8] and st udents of his
for almost twenty years now, with a marked increase in int erest within the
last few years [14,15,26]. The inte rested reader is advised to begin a more
thorough introduction to these algorithms with the excellent new text by
Goldberg [12].

Attemp t s to simulate evolutionary search date back as far as the first
attempt s to simulate neural networks [11] . The basic construction is to con­
sider a populat ion of individuals that each represent a potent ial solut ion to
a problem . Then, if the relative success of each indi vidual on this problem
is considered this individual's fitn ess, this number can be used to select the
most fit individuals to produce similar but not identical offspring for the next
genera tion. By iterat ing this process, the population efficiently samples th e
space of potential individuals and eventually converges on th e most fit .

More specifically, consider a population of N individuals Xi , each repre­
sented by a chromosonal string of L allele values . An initial population is
const ructed at random; call this generation go. Each individu al is evaluated
by some arbitrary environment function that returns the fitnesses P.( Xi) E R
of each individual in go. The evolutionary algorithm then performs two oper­
ations. First , its selection algorit hm uses the N fitn ess measure s to determine

1 Portions of th is report appeared in an early report [3].
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how many offspring each member of 90 contributes to 91. Second, some set of
gene tic operators are applied to these offspring to make them different from
th eir parents. The resulting population is now 91, these indi viduals are again
evaluated, and the cycle repeats itself. The iterat ion is terminated by some
measure suggesting that the population has converged.

A crit ical distinction among simulated evolut ionary algorithms is with
resp ect to their gene t ic operators. Often th e only geneti c operator used is
mut ati on: some number of alleles in the parent are arbitrarily changed in
the child . T his amo unt s to a random search aroun d the most successful in­
div idu als of the pr evious generat ion , and is therefore not very powerful. The
central feature of Holland's GA is it s use of an addit ional crossover operator
modeled on the biologically veracatious operation of geneti c recombination:
during sexual reproduct ion segments from each of the parents' chromosomes
ar e combined to form the offspring's. The GA's crossover operati on picks
two points 1 :s; m, n :s; L at random and builds the offspring 's bit string by
taking all bits between m an d n from one parent and the remaining bits from
the other parent. For example, if L = 10, m = 2, n = 6:

Parent(1): 111111 1111
Parent(2) : 0000000000

Offspring(1): 11000 01111
Offspring(2): 0011110000

T he appeal of the GA is due both to empirical studies that show the crossover
operator works extremely well on real, hard problems, and also to the "sche­
mata" analysis Holland has provided to show why this is the case.

One key property ofthe GA is that it works on a population of (binary) bit
strings with ab solutely no knowledge of th e semant ics associated with these
bits . Its only contact with the environment is the global fitn ess measure
associated with the ent ire st ring. This is considered an advantage of the
algorithm because it ensures that the GA's success is not related to the
semant ics of any particular prob lem . This is not to say that the GA works
on all problems equally well, only that these differences can be at t ributed
to th e underlying search spaces rather than the semantics of th e problem
domain [4].

2 .2 T he H inton and Nowlan m od el

Attempts to integrate th e learned behaviors of ind ividuals into their genetic
consequence on a species have dogged the theory of evolution since Darwin.
Every high school biology st udent knows that Lamarck 's theory - that mod­
ifications of the phenotype over the cour se of a lifet ime can become directly
incorporated into the genotype - depends impossibly on mechanisms of "re­
verse transcription" for which there is almost no evidence. Less well known is
a hypothesis first at tributed to Baldwin [2] , but lat er expressed by ot hers [30],
regarding an indirect effect the experiences of an exploratory organism can



Evolution, Learning, and Culture

/l
Behavior

15

EVOLUTION
<c:»:

Figure 1: "Baldwin's arm."

have on it s species' gene t ic search. John Maynard Smith summar izes the
hypothesis :

Even if we accept [that individ uals' learning cannot alter in­
formation in the geneJ, it is st ill possible for individual lea rn ing to
facilitate evolution . If individ uals vary genetically in their capac­
ity to learn, or to adapt developmentally, then those most ab le
to adapt will leave most descendants , and the genes responsible
will increase in fitness. In a fixed env ironment , when the best
thing to learn remains constant, this can lead to the genet ic de­
te rmi nat ion of a character that , in earlier generations , had to be
acquired afresh each generation [28J.

On e useful way to graphically portray the effect is shown in figure 1. Evo­
lution can be viewed as a process for moving a "phenot ype limb" (correspond­
ing to a species or gene pool) in order to better adapt it to an environment.
At least some organisms are capable of generating a range of behaviors, and
these can be viewed as a second, "behavior limb" being moved by the "joint"
of learning. To simplify, imagine that being fit means being able to reach a
point in space. The simple but profound idea of the Baldwin effect is that
sin ce it is sufficient for the two-limbed, coupled arm of pheno type-l- learne d
behavior t o be able to reach that point , an improved cap acity for learn ing
increases genetic fitness.

Hinton and Nowlan have developed a computat ional mod el that "demon­
st rates the magnitude" of the Baldwin effect [17J. As connect ionists they
assume a neural network as the basis for learning and use evolution t o search
for a neural wiring that allows an individual to learn effect ively.
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More specifically, they imagine trying to construct a neural network of L
potential connections. An individual is considered successful if and only if
they have all of these connections correctly specified. Thus there is exactly
one right answer out of the 2£ possible combinations. By convention we
will imagine that this right answer is the string 111. .. 1. It is important to
recognize what a difficult "environment" this problem poses; it is sometimes
called a "needle-in-a-haystack" or "impulse function" problem. Not only is
th ere only one correct answer out of a huge space of possible solutions, but
th ere is also no information available from any of the other solutions about
where the correct answer might be . In such problems there exists no better
way to search than by exhaustively sampling the entire space. In particular,
the GA would fare no better.

Individuals are represented by a ternary string Xi E (0 1 iy-. A 1 speci­
fies that a connection is present, a 0 that it is absent, and a ? a "learnable"
connection: one that can be set either open or closed during the "lifet ime" of
the individual. An individual's life experience amounts to repeated attempts
to set these learnable connections correctly. In the interest of parsimony,
their model of learning is extremely austere. Each ind ividual is given a fixed
number G of completely random guesses for the set t ings of their? values .
They are also given the ability to recognize the fact that they have found the
correct setting.

For evolution, Hinton and Nowlan use a fairly standard version of the
GA. The fitness I-' associated with each individual Xi is a function of the
number of guesses 9 that individual made before finding the correct settings :

( ( )) 1
(L -1)(G-g)

I-' Xi 9 = + -'------'-:'--.=....:..
G

(2.1)

This function provides the key advantage that allows the GA to work. Hinton
and Nowlan describe it in terms of the "shoulders" that have been added to
th e impulse fitness function of figure 1:

With learning, there is a zone of increased fitness around
the spike .. . [corresponding) to genotypes which allow the cor­
rect combination of potential connections to be learned.

There is still only one correct answer, but now there is also a basin of attrac­
tion around this needle that the GA can use to moves its search toward that
needle. Another way to say the same thing is that for realistically large L
the chance of finding the needle, 2-£, is vanishingly small; without learning
this is what an evolutionary search must do. But with learning, evolution is
required only to find a solution that is within the basin of attraction of the
needle, and this is much more likely.

For their simulations, Hinton and Nowlan picked t he parameters carefully.
With L = 20, if (on average) half of the alleles are learnable ?s, there are
210 = 1024 combinations to try and an individual given 1000 guesses stands
a very good chance of finding the correct one . It is no coincidence, then,
that Hinton and Nowlan began with a population consisting of 50% ?s, and
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25% as and is, and gave each individual G = 1000 guesses . They also used a
population of 1000 individuals, a crossover rate of 1.0,2 and no mutation [24].

One property the GA shares with connectionist systems is the notion
of "distributed representation." That is, just as "concepts" in connectionist
networks are represented diffusely by a pattern of activity across many nodes,
so too are solutions found by the GA represented across individuals of a pop­
ulation. Thus, the simulation variables to be monitored are population-wide
characteristics rather than features of any individual. The major dependent
variables considered by Hinton and Nowlan are the population-wide distri­
butions of correct, incorrect, and undefined alleles.

Our own work began with a simple replication of the Hinton and Nowlan
results, as shown in figure 3.3 Here their three major variables (the allele
ratios of undefined, correct and incorrect alleles) are plotted as a function of
generation. These basic results will be analyzed in some detail in sections 3
and 4 and then extended in sections 5 and 6.

2.3 Discussion of the Hinton and Nowlan model

The Hinton and Nowlan model is a very fertile platform from which to in­
vestigate questions about the interaction between evolutionary and learn-

2A crossover rate of 1.0 means that, on average, each individual will participate in 1.0
crossover operations.

3Greffenstedt has developed a useful simulation facility for GA investigation called
Genesis [13], and it was used as a basis for the simulations to be presented here.
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Figure 3: Hinton and Nowlan results.
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ing adapt ive mechanisms. It does incorporate some important assumptions,
however, and it is worth making these explicit .

First, a great deal of th e simulat ion' s beh avior depends crit ically on the
fitness function of equat ion 2.1:

J.L (Xi (g)) = 1 + -=-(L_-_l-'-,~=-(G_-_g,-,-)

The central feature is that it is a monotonically decreasing funct ion of the
number of guesses requir ed to find the needle. Hinton and Nowlan also chose
to sca le this quantity by the ratio of chromosome length to the total number
of guesses allowed. This scaling is reasonable but also less critical to the
simulat ion' s behavior.

Equa t ing learning with a series of statist ically independent guesses is ob­
viously quite inadequate. In fact, by "learning" we typ ically mea n almost
exact ly that subsequent behaviors of an ind ividual are dependent on his or
her previous experiences. Thus Hinton and Nowlan 's guessing model is prop­
erly considered an analytically tract able lower bound on the performance we
should expect of a realisti c (e.g., connectionist) learn ing algorithm. In their
words, "Thus, using a more sophist icated learning pro cedur e only st rength­
ens the argument for the imp ortance of the Baldwin effect ."
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It may seem suspect to assume that an individual is capable of recognizing
when they have found the correct solution (needle) . Hinton and Nowlan
provide the following rationale:

This recognition ability . . . is required to make learning effect ive. . . .
Thus it is possible that some properties of an organism which are
currently genetically specified were once behavior al goals of the
organism's ancestors.

This argument sounds almost Lamarckian and perhaps even absurd when in
the context of an individual knowing when its own neur al wiring is correct .
However, simply giving an individual the abilit y to recognize when it has
found a good thing is not so far-fet ched.

A more unrealistic assumption (acknowledged by Hinto n and Nowlan) is
that the corresponden ce between phenotypic feature (i.e., neural conn ection)
and genet ic position is one-to -one . This is a great simp lificat ion. In actual­
ity, there are immensely complicat ed developmental processes th at mediat e
between genotypic description and phenotypic expression; a be t ter under­
standing of this relationship is a critical issue for further work in this area.

Another troubling aspect of the simulati on is that it ignores th e real
semantics of neural networks: th ere is an obvious asymmetry between genet ­
ically specified and learned connections. Virtually all connect ionist learning
algorithms allow connect ions to come to have zero weight , making them act
as if the connection was not there. Thus an existing conn ect ion (1) can learn
to have zero weight; an absent connectio n (0) cannot ever become non zero .
We should expect this bias to be exp loited by any hybrid adaptive system
that combines evolut ionary and (connectionist ) learning sub syst ems .

Hinton and Nowlan make another strong and important claim:

. .. each learn ing t rial can be almos t as helpful to the learn ing
search as the production and evaluat ion of a whole new organis m.

Thus they view each learn ing trial as a "cheap" version of actually producing
an individual. Our conception of the relation between t hese two adaptive
subsystems is considerably more complex , as we will discuss in section 6.

3 . Analysis of t h e Hinton and Nowla n m od el

3 .1 Definitions

We beg in by defining some of the major variables of t he simulation. Let:

L Length of individual

G Maximum number of guesses allowed each individual

N Population size

p Fract ion of population's alleles that are 1

q Fraction of population's alleles that are?

r Fraction of population's alleles that are 0
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Not e that P, q, and r ar e defined in te rms of the total po pulation 's genetic
distrib ution. In many cases , however , this is also a good estimate of individ­
uals' allele distributions, for example the probability that an individual allele
is 1 is also p. Also, we will on occasion use a subscript to indicat e gen eration;
for exa mple, Po is the fraction of 1s in the initial populati on.

Unless noted otherwise, these parameters are set as in the Hinton and
Nowlan simulat ions:

L 20 (3.1)

G 1000

N 1000

Po 0.25

qo 0.50

ro 0.25

Also, recall that Hinton and Nowlan use a "needle-in-a-haystack," im­
pul se functi on environment ; i.e. , there is exactly one value in the domain
with a nonzero fitness asso ciated with it . By convent ion and without loss of
generality, we will assume this value to be the string 1111 ... 1.

We will ca ll an individual without any Os a Pot ential Winner, since only
such individu als are capable of using some comb ination of 1s and ?s to find
the needle. A Winner is defined to be a Potenti al Winner that act ually
guesses the correct setting of its learn abl e alleles; a Loser cont ain s at least
one O. We will refer to the set of all Winners in the population as the Nobi lity
and the rest of the po pulation as Commoners."

We begin wit h the simple observation that if an individual has Q learnab le
(? ) alleles, the prob ab ility of guessing their correct values is 2- Q • Let us
define:

To be a Winner, an individual must first be a Potent ial W inner and second
guess the learnable (?) alleles corr ect ly:

P I'(Winner) P r( no Os) Pr(guessed correctly)

(1 - r)L [1 - (1 - c)G] (3.2)

Using the parameter values given above, Pr(Winner) = 0.00198, and we
sho uld therefore expect to find about 2 Winners in an average populat ion of
1000. Our simulations agree with this est ima te (see sect ion 5).

4This te rminology is admittedly colorful and perhaps even offensive, but as you trudge
th rough the symbology and simulation data, it helps to breath some life into it all.



Evolution, Learning, and Culture 21

3.2 Expected fitness

It is important to know the expected fitness of an indi vidual under Hinton
and Nowlan's "random guessing " fitness function :

fl.(g)
(L -1)(G-g)

1+ G
9L - (L -1) -
G

(3.3)

We begin by finding the expected number of guesses 9 required to pick
th e learnable (?) alleles for an individual, and this can be derived in two
different ways.

First , we can begin with the straightforward derivation of E(g) by sum­
ming over the possibilities that the first correct guess comes on exactly the
kth trial is

00

E(g) = L k(l - c)k-1 C

k=1

However, because our fun ction stops guessing aft er G at tempts, this series
must be truncated:

(3.4)

Equation 3.4 is a geometric series. Beginning with the standard identity:

n . 1 - xn +1

L X' =- --
i =O 1 - x

differentiation then gives:

n . i -1 1 + n x n
+1 - (n + l) x n

LZX = ()2
i=O 1- x

Then subst it uting x = (1 - c) and n = G int o the identi ty and replacing the
series in equation 3.4 with thi s expression gives:

E(g)
1 +G(l - C)G+1 - (G +1)(1 - c)G G( )G----'----'-- -....:..-----'--'---- -'-- + 1 - c

c

1 - (1 - c)G

c
(3.5)

We can arrive at equa t ion 3.4 in a more elegant fashion by using Wald's
Lemma [5]. This lemma relates the expected payoff E(SN) of a run of inde-
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pendent, identically distributed t rials, each with exp ected payoff p, using an
arbit rary stopping criterion N with expected value E (N ):

In our situation, "success" simply means guessing the Q learnable values
correctly and so p = c. Ou r strategy N stops either when we have gue ssed
correctly or guessed G times wit hout success. Our payoff will therefore be
one unless we were unable to guess the correct combination in G trials, hence:

Solving for E(N ), which is exactly the same as the E(g) we desire, we again
get equation 3.4.

Not e that if we are allowed many guesses, E(g ) ~ c and we are almost
cert ain to succeed; conversely, if there are many ?s, E(g) ~ c and we will
almost certainly fail. Thus we are most interested in the case when E(g) ~ G.
Alt ernatively, if we define:

A == Gc

we are interested in the case ,\ ~ 1.
1 - c ~ e- C and equation 3.4 becomes

{

G for X~ 0
E (g) ~ l-rlG for A~ 1

llc for large ,\

In this case , we can approximate

(3.6)

We are now able to substitute E(g) into equation 3 to obt ain the expected
fitn ess of an individual:

L - 1 ( G)E (p, ) L --,\- l -( l -c)

L -1 ( >.)
~ L - -A- 1 - e"

(3.7)

Figure 4 approximates the derivative of this function with respect to q
using differences. This graph makes two important points that will be echoed
lat er . F irst , it shows how little selective pressure there is to replace ?s with
i s in a st ring of almost all ?s (see section 5.2). Second , it shows how little
selective advantage there is to replacing t he last few ?s (see section 4) .

3.3 Asymptotic behavior

Consi der the situation lat e in the simulat ion , when the ent ire populat ion is
compos ed of on ly i s and ?s. Let us assume that all but one memb er of the
populat ion has exactly Q?s, and that this one individual x* is a bit more
fit, with exactly n Iess, Q* = Q- n. We will ask just how likely it is that
t his more fit individual will get to make more than one copy of itself in the
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next generat ion, thereby increasing the populat ion 's ra t io of 1s, since this is
just the process of gradual replacement underlying the system's asymp to t ic
behavior .

Recall (equation 3.6) that when A is large, we can approximate
E (g) ~ lie. Some algebra then gives us the difference:

Substi tuting these values into equation 3.2, a bit more algebra gives us
the fitness advantage the loner x* enjoys over the rest of the population. We
will define this difference as a:

(3.8)

(3.9)

In order to relate the individua ls' fitness J.L to the number of copies made
of each individual, v, we must consider the details of the genet ic algorithm's
"selection" procedure. Following Baker [1], we can imagine each individual
being allocated a slice of a wheel proportional to its relative fitness and then
uniformly selecting from this wheel N t imes to pick our new population.
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E(v*)

1 ",N
N L.j=l /lj
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(3.10)

(3.11)

where p. is the average fitness of the population. In the case we are considering
(with exact ly one more fit individual), this is particularly easy to compute:

E(v*)
[J, +a

1i(N[J, +a)
1 +~
-_1'-

1+ :/1

(3.12)

(3.13)

Consider the quantity a] [J., the ratio of the unique individual's fitness
advantage to the fitness of the rest of the population. This ra tio will always
be small and since a] N [J, is even smaller, we can legit imately approximate
this using the first two terms of the Taylor series expansion:

E(v*) (3.14)

(3.15)

Thus the number of copies we can expect to make of a .slightly more fit
indivividual when the entire population is quite fit is only a bit greater than
one. For example, if we use the parameters of equation 2.1 and consider
the case when Q = 6 (see figure 4) and the more fit individual has only one
less ? (n = 1), we find that a] [J. = 0.0324; the more fit individual has only
slight ly better than a 3% chance of making any more copies of himself in the
next generation than anyone else. Even if a very lucky individual happens
to get two less ? (n = 2), his or her chances improve only to about 4.8%.
Further, selection in the GA is discrete; even this slight advantage is only in
the expected value of E(v*) .

4. Explaining the model's behavior

Armed with the analytic tools of the previous section, we are in a pos ition
to explain the simulation results presented in figure 5. This figure shows the
same three allele ratio curves of figure 3, but has been overlayed with the
average fitness of the population and delimited into what we will argue are
four significantly different phases. Beginning with the population composed
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of 50% ?s and 25% Os and is , the population can be viewed as passing
through four different phases.

For a surprisingly long time, which we will call Phase 0, the allele ratios
of the population remained almost unchanged . One possible exp lanation for
this apparent equilibrium is that no individual has yet guessed the correct
solution. But this is not the case . The previous section shows that with the
parameters used we should expect approximately two Winners per genera­
tion, and figure 6a shows this to be the case; the important first generations
of this curve have been expanded in figure 6b.

A small number of Winners are being produced each generation, but they
have mininal effect on the population . T he problem is that, because the GA
models sexual recombination, offspring of the Winner will also have signif­
icant genetic material from some Commoner and hence are almost certain
to be Losers themselves . However, these Winners do have the subtle effect
of enriching the population-wide ratios of i s and ?s slight ly. The reason is
simply that Winners, composed ent irely of i s and ?s, are much more fit than
average and hence make more copies of themselves. This const ant , albeit
small , enr ichment of i s and ?s provided by Winn ers guarantees that the
numb er of Winners steadily increases.

John Maynard Smith has made a similar observation ab out th e Hinton
and Nowlan simulation [28J. He notes that in a population without any
learning capability (i.e., with only is and Os ), asexu al repro duction can be
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expected to find the solut ion more quickly than with sexual reproduction and
crossover . It will take both met hods a very long time'' to find the needle ,
but once found asexu al reproduction will reproduce t his solution with more
fidelity than sexual reproduction.

During Phase 0, it is extremely unlikely that two Winners will "find one
another" and produce winning offspring . Phase 1 begins when two Winners
find one ano ther , forming offspring that are themselves Potential Win ners.
Wh en this happens , Winners begin to beget Potential Winners and a strong
positive feedback cycle is ent ered in which Losers are steadily replaced with
Potential Winners. Note that the only difference between a Loser and a
Potential Winner is that all Os have been replaced by a 1s. Hence, during
Phase 1 the rati o of Os goes down, the ratio of 1s goes up and the ratio of

SThere are 2£ combinations to guess, so if t he size of the pop ulat ion is N , it will t ake
2£/ N generations.
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?s remains almost unchanged. Notice also that the average fitness of the
population changes little during Phase 1.

Phase 2 cont inues this same basic trend, but begins to also apply pressure
against guessed alleles (?) in favor of genetically specified correct ones (1).
In terms of the fitness function (see equation 3.2) an individual is always
better off not having to guess, and so there is a constant selective pressue
against ?s . In other words, as the Os of Losers are replaced to create Potential
Winners, the ?s in these Potential Winners are almost immediately replaced
to make them more likely to be actual Winners. Thus it is during Phase 2
that the average fitness of the population increases most markedly.

However, as Hinton and Nowlan correctly observe, this advantage dimin ­
ishes as the number of ?s in a Potential Winner becomes small. The analysis
of section 3 shows how fitness depends on the number of ?s, and in particu­
lar how little adaptive advantage there is to replace the last few ?s with 1s.
Ultimately, in Phase 3 this effect results in an almost steady-state popula­
tion composed of approximately 30% ?s and 70% 1s. While these two curves
are in fact asymptotically approaching 1.0 and 0.0, respectively, progress is
extremely slow. In fact, figure 7 shows that these levels remain virtually
const ant out to 500 generations.

The reasons the asymptotic convergence of the population has been ef­
fectively stalled can be found in the analysis of the last section. As shown
in figure 4, there is very little selective advantage to replacing the last few
?s. More concretely, the asymptotic analysis of section 3.3 showed that , late
in Phase 3, a single more fit individual has only a slightly higher probability
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of producing even one additional offspring. In short, the additional fitness
achieved by replacing a 1 with a? in Phase 3 is so small that the proba­
bility of producing more than an average number of offspring and thereby
increasing the ratio of is is infinitesimal.

The picture we have, then, is of a dynamical process with first a slight
but constant movement toward a critical point (during Phase 0), an almost
instantaneous "ignition" (when Nobilepersons first find one another) that
within a few generations changes the composition of the entire population,
first by replacing incorrect alleles with correct ones (Phase 1) and then by re­
placing learn able alleles with correct ones as well (Phase 2) at an increasingly
slow rate (Phase 3).

5. Parameter sensitivity

One elegant aspect of Hinton and Nowlan's simulation is the way in which
their parameters are delicately balanced against one another. For example G
- the number of guesses allotted - was chosen with regard to the average
number of ?s in an individual (see section 3). A second phase of our own
research perturbed some of the major variables of the simulation and found
it to be surprisingly robust. Section 5.1 considers stochastic variability and a
question we believed to be related, the size of the population. These exp eri­
ments also substantiate the predictions of section 3.3 concerning asymptotic
behavior of the model. The sensitivity to allele ratios in the initial population
is considered in the next section. Finally, we investigate the effect of mu­
tation on the model. Hinton and Nowlan did not include mutation in their
experiments, and so it is something of a misnomer to investigate it under
th e rubric of "parameter sensitivity." However, mutation is a very standard
part of most GA implementations and easily incorporated into the model.
Section 5.3 shows it to have nontrivial effects.

5.1 Stochastic variation and population size

The GA, let alone the individuals' guessing procedure, depends heavily on
stochastic procedures so we must be suspicious of anyone run. For this rea­
son a series of runs were performed that differed only in their initial random
number seed. Figure 8a shows the average and standard deviation of popu­
lation fitness (a typical statistic) of five separate runs . These statistics show
that while the initial and ultimate behaviors of the simulation are quite con­
sistent, there is significant variation during the middle generations. However,
figure 8b shows that this variation is of a particular form, viz., the genera­
tion in which Phase 1 begins. Recall that this event depends on two Winners
finding one another out of a large population of other potential mates, and
while the increasing levels of is and ?s during Phase 0 guarantees it will
occur sometime, the generation of the actual occurrance is highly variable.

We hypothesized that increasing population size (N) would, because of
the Law of Large Numbers , decrease this variability, and a number of simu-
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lations were run varying this parameter. In fact , stochast ic variation did not
appear to vary with changing population size. The most significant effect
of varying population size was that smaller populations consistently moved
more quickly through all three phases than larger ones (see figure 9). This
behavior can be attributed to the fitness "scaling" strategy used in the Hin­
ton and Nowlan (and our) model: even t he most fit individual can make at
most L copies of itself. Since this represents a much larger fract ion of small
populations, Winners can come to dominate the population that much more
quickly.

5 .2 Initial ratios

We can first limit the range of possible initial population compositions using
qualitative arguments. The central point of the Hinton and Nowlan paper is
that , without learn able (?) alleles , pure evolut ionary search is blind and ex-
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ceedingly slow. Hence , qo must be significant . With the analysis of section 3.2
we can make a more refined statement ; figure 4 shows that an individual has
lit tl e additional fitness unti l he (or she!) contains about 7 ?s, which suggests
qo must be about 35%. Similarly, an individual is complet ely unfit if it con­
t ain even one incorrect 0 allele, so TO large simply delays the time before, by
chance, Potent ial Winners are created.

Wit h these considerations in mind, a wide range of initial populations
were explored . Figure 10 shows a typical variation. In this run the initial
ratio of ?s to i s was maint ained at 2:1 (46% to 23%) , but a higher ratio
of incorrect Os than corre ct i s was used (31% vs. 25%). The resu lt was
to significantly slow down the pop ulation's abi lity to converge on the correct
solution. There is a long phase (which might be viewed as a Phase -1, coming
before the Phase 0 mentioned above) during which Os are steadily replaced
with i s. However, once the number of Winners produced in a generation is
sufficient to ensure the positive feedback of Phase 1, this population behaves
the same as the original one.

5 .2.1 P oor man's d iploid

Experiments with varying initial population ratios produced another cur ious
result t hat helps to make an important point about rep resent at ion and the
GA . Figure 11 shows a population that was begun with 50% ?s and 50% i s
and no Os. Yet by Generat ion 2 almost 8% of the pop ulation's alleles are Os.
H th e mut ation operato r were in effect (see section 5.3 below), this could be
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expected to introduce new alleles in this ma nner but t his run was without
mutation, but without mu tat ion how is this possible?!

In order t o explain this effect, recall the binary enco ding of the three
allele values described in section 2.1: It obviously takes at least two bits to
represent the thr ee allele values 0, 1, and ? In our simulations the encoding
was

Allele Bits
0 10
1 11
? 0*

with star (*) indicating "don't care" j i.e., this bit can be either 0 or 1. Given
the random pro cedures for creating the initial population we should expect
about half the ?s to be of each type; call the two varieties ?0 and ?1 .

Now consider what happens when crossover is performed between two
parents in our ini t ial population of only 1s and ?s . If one parent contains a ?
of the?0 variety and the other parent contains a 1, it is possible to produce
an offspring with a 0 allele by performing the crossover at the point between
t he two bits of the allele. Despite the fact that the population begins without
any Os t he genetic material for pr oducing this allele value is st ill present due
to the redundancy of the encoding. It would obviously be possible to modify
the crossover operator so that it operated only between alle les ra ther than
between bits, but this is again against the "semantics-free" spirit of the GA
(see section 2.1) .
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This is more than a curiosity. It suggests an aspect of the GA's repre­
sent ation that might be called "Poor Man's Diploid." The ability of diploid
chromosomes to maintain recessive alleles while typically expressing the dom ­
inant allele is a cent ra l component of pop ulation genetics . This mechanism
allows a spec ies to maintain an alte rnative solution should the environment
(again) demand it. In true diploid species, however, the cost paid is the
representational red undancy of having two full copies of each allele.

Almost all ver sions" of the GA (including this one) use a single, haploid
chromosome, bu t these experiments show how any encoding red undancy can
have a similar effect, even in haploid species . As soon as there is any spare
representational capacity (e.g., the *-bit in this case), it is potentially avail­
able to hold information that is not of immediate functional consequence.

From another pers pective, this effect helps to deflate a strict "adapta­
tionist" position that sometimes argues that any and all sust ained genetic
variation is a direct reflect ion of increased fitne ss. This is true only if the
represent at ion is miminal. Ot herwise, unused representational capacity is
availa ble for other purposes, such as maint aining alternative solut ions , but
also includin g use by other adaptive systems (see section 7.1).

6Grosso's thesis investigated diploid populations along with other , more biologically
plausible variations of the GA [16].
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One important simplification of the Hinton and Nowlan model of evolution is
the absence of any mutation effects. "Mutation" is sometimes used to refer to
any and all modifications to the genotype passed from parent to child. In the
GA, however, mutation is used to describe only random modifications. These
playa much less important role than the principled modifications generated
by the crossover operator (see section 2.1), so that mutation is properly con­
sidered a "background" operator in the GA. Nevertheless, mutation has been
shown to play an important role in the GA, viz. preventing "fixation" [10].
That is, mutation provides the only mechanism for reintroducing allele values
that may, by chance, have become removed from an entire population. As a

. result, without mutation it is possible for a population to converge prema­
turely on a suboptimal solution. On the other hand, it is also true that if the
mutation rate is too high, this random operator effectively stalls progress of
the GA by breaking up the schemata processed by crossover.

Mutation rates are typically defined in terms of the probability of chang­
ing bits, but when the alleles are not binary this definition is somewhat prob­
lematic. For one thing, it allows "silent" mutations (i.e., not changing the
allele value) if the *-bit is the one that happens to change. Alternatively, we
could modify the mutation operator to ensure that all modifications changed
allele values ." However, this seems against the "semantics-free" spirit of the
GA, and so the simulations presented here simply treat the individuals as bit
strings of length 2L.

A number of simulations were run with varying mutation rates; some of
these results are shown in figures 12. In some respects, these curves are in
agreement with intuition. Small mutation rates (10- 5 ) have little effect,8
intermediate mutation rates (10- 3 ) slow down the genetic search, and very
high mutation rates (0.2) disrupt the search entirely. However, notice that
during the early Phases 0 and 1 an intermediate mutation rate (10- 2 ) has
about the same effect as that of no mutation whatsoever, but then slows
down the final convergence of Phase 3. Thus there is a nonmonotonic relation
between mutation rate and population convergence.

In order to explain these effects, we must notice that mutation has two
counterbalancing effects in the early phases. The first effect is to "clobber"
members of the Nobility. That is, an individual whose parents passed on
Potentially Winning genetic material is ruined if any of it is mutated. The
second effect is to increase the variance of the Commoners. With very small
mutation rates, neither of these two effects is achieved, and the result is the
standard simulation. With intermediate mutation rates, the fragile Winners
are likely to be ruined, but the variance of the Commoner population is

7This may become necessary to accurately capture real genetic phenomena such as
"back mutation," where the prob ability of mutating from allele X to allele Y is not equal
to th e probability of the inverse chang e.

8To be concrete, a mutation rate of 10- 5 means that with a population of 1000 indi ­
vidu als, with each individual of length 20 and with two bits/allele, there is only a 40%
chance that anyone in the population will be changed at all.
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not changed dramatically. As the mutation rate is increased, no additional
harm can be done to the already-ruined Nobility, but Commoners stand a
bet ter and better chance of being mutated into Potenti al Winners. Thus,
intermediate mutation rates provide a new source of Winners . Finally, if the
mutation rate is made extremely high, the ability of crossover to pass on
solutions to subsequent generations is undermined.

Later, in Phase 3, the dominant effect of mutation is to introduce Os into a
population that would otherwise be composed entirely of Potential Winners .
It is obvious that this will slow the population's final convergence.

6. Incorporating culture into the m odel

Hinton and Nowlan's original model and our extensions to it point to sub­
tle ways in which the learning of individuals and the evolution of species of
such ind ividuals can be coupled to form effective, hybrid adaptive systems.
But when we consider the human species and the ra.te at which evolut ion
has shap ed it as compared to the rate at which individual humans learn,
the mismatch (perhaps 12 orders of magnitude) is quite striking. Further,
it seems that, at least in the case of the human species, additional adaptive
processes have developed to allow the learning experiences of one individual
to become useful to other individuals much more quickly and directly. Cul­
ture can be viewed as a third, interposed adaptive system that allows the
hard-won knowledge learned by an individual to improve the evolutionary fit-
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ness of other conspecifics [i.e., members of the same species) via nongenetic
informational pathways.

Our basic model can be exten ded to investig ate some of the issues raised
when the const ru ct s of culture , evolut ion, and learning are juxt ap osed in this
way. Obviously, such a model will be macroscopic to the extreme, ju st as the
genet ic algorithm is a gross simplification of evoluti on and random guessing a
gross simplification of learning. However, when the obj ect of investigation is
the int eraction among three such extraordinarily complicated systems, such
radic al simplification is necessary.

6 .1 Dual inheritance

Boyd and Richerson have develop ed a "dual inherit ance" model encompass­
ing both evolution and culture that emphasizes the two ways, genetic and
nongeneti c, in which conspecifics can pass adaptively useful information [6J.
Following a suggest ion of Hutchins, we inject this not ion of culture int o the
Hint on and Nowlan model as directly as possible: If and when a parent be­
comes a Winner, they confer upon their offspring a cultural advantage (CA)
that gives these offspring a better than average chance of guessing the correct
value of the learn able alleles. So, for example, if CA = 0.1,9 the offspring
of a Winner has a probability of 60/40 chance of guessing each of its learn­
able alleles correct ly, rather than it s normal (culturally disadvantaged) 50/50
chances . The rati onale is that parents have some ability to "imprint" their
offspring by skewing t he allocat ion of random trials somewhat . A slight ly
more elaborate of not ion will be considered in the next section, and the more
general issues of mod eling cult ure are considered in sect ion 7.

Figure 13 show the results of this modificatio n using CA = 0.1. A CA
allows a populat ion to find an d then converge to a solut ion more quickly,
simply because more effective guessing broadens the shoulders of the search
space around the correct answer st ill further. J ust as learning creates a basin
of attraction around the soluti on needle, information (in this case passed
extra-genetically) that makes the learning/guessing process more effective
broadens this basin still further.

The second observation, however , is that a CA removes some of the pres­
sure to achieve optimum performance; i.e., while the population converges
more quickly, the solution it converges to is not as good as without CA. The
reason can be seen in figure 14, comparing the allele ratios with and witho ut
CA. The most striking difference is that the maximum levels of ?s and i s
have been reversed. The population with CA reaches a ratio of about 80%
?s and 20% is before beginni ng it s slow descent through Phase 3. Because
an individual is now more likely to guess learnable alleles (?s ) correctly (be­
cause of the CA imparted by its parent), a much larger number of?s can be
tolerated and the select ive pressure against them is much reduced.

The pressure is not entirely removed, however, as the slight slope on these
two lines ind icates. It is still always advantageous to replace a ? with a 1,

9This value was used in the simulations described below unless not ed oth erwise.
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since knowing for sure is always bet t er than even effective gues sing . Figure 15
shows the number of Winners and Potenti al Winners , both with CA and
without . It is interesting because it shows that even though a population
with CA does not produce as many actual Winners , it does produce just the
same number of Potential Winners. CA can therefore be viewed as making
the population something of an "underachi ever ." CA is useful for initially
discovering the solution, but it also removes t he selective pressure required
to push the population to its optimal performance with all is.

It turns out that this diffidence can be correct ed by introducing a very
low mutation rate. Figure 16 shows that a combination of cult ural advantage
and mutation pro duces a pop ulation that converges even mor e quickly than
with cultural advantage alon e, and finds an equally good optimum. Again,
CA facilitates the initial discovery of the solution "needle," and mutation
then increases the pressure against ?s by increasing the prob ability that they
will be replaced by i s.

6.2 P las t icity

Allowing some-information to be passed ext ragenet ically from generation
to generation allows a population to maintain a higher ratio of learnable
versus genetically specified alleles, for longer. Why might such "plasticity"
be advantageous? One reason is that learn able alleles can be modified in the
face of a changing enviro nment , while genetically fixed ones cannot. A series
of simulations were performed to illustrate this point . At fixed intervals
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(25 generations in this simulation) several of the bits of the needle (i.e.,
correct answer) were changed; this can be viewed as moving the needle in the
search space slightly. Figure 17 shows the response of various populations to
this sort of modification. First, a standard population, without mutation or
cultural advantage, is unable to track these environmental changes. Without
some mechanism to reintroduce lost alleles, the population converges on the
early solution but is then unable to search any other portion of the space;
this "premat ure convergence" effect is well known in the genetic algorithm
literature [9] .

Mutation is an extremely robust mechanism for allowing a population to
back out from (what has become) a maladaptive solution. When the new
solution is relatively close to the old one , the simp le random-walk strategy
of mutation has a good chance at success . But as these cur ves show, random
changes are not terribly intelligent and so this can be a slow process.

Cultural advantage was successfully able to respond to the first of the en­
vironmental changes (at generation 25), exactly because it had learnable ver­
sus genetically fixed alleles at these positions. This was the expected result.
Notice, however, that the population with CA was not able to respond to
the environmental change at generation 50. While cultural advantage allows
individuals to have a higher ratio of ?s, some positions are still genetically
fixed, including (it so happens) one of those involved in the environmental
change at gener ation 50. A population with CA will remain more plastic
but once an allele becomes genetically fixed it is no better off in the face of
environmental change than one without . The best solution, as shown by the
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fourth curve in the figure, is the combinat ion of both mutation and cultural
advantage. This gives the population the responsiveness of cultur e with the
robustness of mutation. Together, thes e two mechanisms allow a population
to track environmental change very well.l?

6.3 Broadcast vs. lineage models

The "dual inheritance" not ion of cult ure broadens the range of possible chan­
nels through which the experience acquired by one indi vidual might be con­
veyed to another. Rather than requ iring that all information be encoded
geneti cally, we have allowed some useful (albeit unspecified) information to
be passed from parent to child extra-genetic ally. But now that the trans­
mission of informati on has been cleaved from a strictly genetic basis, culture
can also allow for a broadened range of recipients for this information than
st rictly biological offspr ing. Rather than conveying the cultural advantage
only via lineag e, we can tell it to other, gene tically unrelated members of
the population. In other (more metaphoric) words, when we find the secret
of the needle, we don't have to tell (only) our own children; we can tell the
kids down the st reet . In fact , we could "broadcast " the CA to as many as

lOFoliowing a suggestion of Phillip Kit cher, it would be interesting to explore how quickly
the enviro nment can change and still have t he population ab le to track it . Similarly,
vari ation of the size of environmental changes (the numb er of bits alt ered) can be expected
to be a critical parameter .
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Figure 18: Broadcast CA.

we like! We might expect this use of a powerful new communication ability
to improve the abil ity of a population to converge quickly.

Another set of simulat ions were run investigating the broadcast of CA to
arb itrarily selected members of the populat ion. More specifically, once the
needle is found by a Winner, CA is passed on to an audience of B ra ndomly
selected members of the next gener ation . Typical results are summarized in
figure 18. This figure compares a standard ru n (with no CA), a populat ion
wit h CA passed in the "lineage" fashion discussed above, two runs in which
the CA is passed from a Winner to either B = 2 or B = 16 randomly selected
members of the next generat ion , and finally one in which again B = 16 but
th e CA has been reduced by half, CA = 0.05.

There are several int eresting things to not e here. First, bro ad cast ing the
CA can be more effect ive than passing it to just biological offspr ing, bu t only
if a fairly large audience is allowed to benefit . Comparing the lineage and
B = 2 result s, we note that the lat ter does significantly worse; giving the CA
to two, randomly selected memb ers of the next generation is less effective
th an conveying it to biologically related ones .l ! The reason is that it does
lit tle good to convey CA to an offspring that is genetically unfit to receive it .
The probability that a rand omly selected offspring will be a Loser is mu ch
higher than that of a biological offspring of a Winner. In other words, mu ch
of th e wisdom of broadcast CA falls on "deaf ears."

llThis comparison is a bit simplified, since in the lineage model the numb er of biological
offspring to which th e CA may be conveyed can be mor e, or less, th an two.
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But if the CA is broadcast to a sufficiently large population, as in the
B = 16 curve, this form of communication can become more effective. In the
extreme , if the CA is made available by a Winner to the entire population of
the next generation this becomes a clear advantage over the lineage model.
However, it is also reasonable to expect the "fidelity" of the broad cast mes­
sage (whatever it might be) to erode as the size of the audience increases.
We can model this as simply a smaller CA, and this condit ion is shown in
the final curve of the figure .

In summary, biological evolution pro ceeds by conveying partial solut ions
from parents to child ren via genet ic material. Introducing a cultural con­
struct allows us to consider both the effect of allowing a par ent to pass
ext ra-geneti c information to his or her own children , as well as the effect of
passing this information to conspecifics that are not biologica l offspr ing.

7. Discussion

7.1 Modeling culture

Our current experiments have only begun to address the phenomena of cul­
tur e. T hey treat cult ure simp ly as an extra-genetic channel through which
informat ion about successful search can be passed from one generation to
the next. Because our model of individual lives is so crude (viz., a number of
guesses for the correct set tings of plast ic alleles), cult ure t akes on a similarly
crude form (an increased probability of success at this guessing game). Sti ll,
the exercise has been useful in that it has helped to define a set of issues for
future work .

In our model, culture has been reduced to a single real number, reflecting
a "cultural advantage" in the ot herwise random process of searching for a
solution. It is conferred by an individual that has foun d the correct solution
to some members of the next generation. Even in this crude model we can
dist inguish two separate issues that seem common to any model of cult ure,
the ar tifact (ob ject of the transmission) and the audience (recipients of the
transmission) .

In our model, the artifact is a sing le real number . Note that this is a par­
t iculary un iform, global not ion of culture and certain ly wrong. Exactly the
same artifact is used throughout the ent ire society/populat ion, and uniformly
at each bit posi tion. Thus all the crit ical issues of language - how succesful
individuals desc ribe their solution , how others understand this description
- are ignored in favor of a sing le var iable capturing the effecti veness of any
and all extra-genetic information flow.

We have exp erimented with two different notions of audience. The first,
"lineage" model has only biological offspring of succes sful individuals re­
ceiving cultural advantage . Our second, "broadcast" model comes closer to
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capturing culture's abi lity to communicate information to arbitrary, nonbio­
logically related elements of the population.P

Another key dis tinction has to do with the "age" of the audience. In
the simulat ions reported here, each generation is disjoint in time from pre­
vious and future ones.P Similarly, the audience for a successfu l individual's
cultural advantage is always restricted to members of the next generation
only. This was useful for investigating "dual transmission" questions of int er­
generational genet ic and cultural information. However , it is also possible
to consider int ra-generational communicat ion of cultural information . It is
difficult to imagine the value of intra-generational communcation withi n the
curr ent model, but the next section suggests a role for this kind of "symbiotic"
search. In fact , it seems likely t hat these two types of cultural transmis sion
will play profoundly different roles in an account of evolution, culture, and
lea rni ng ; this observation dates back to Vygotsky [29].

Finally, it is important to note th e way in which our ability to model
cult ure is const rained by our model of ind ividual learn ing. Our individuals
spent their (bleak!) lives making a set of random, disconnected guesses. In
this simple model, the only obvious way culture can enrich th ese individuals'
lives is by making them better guessers . However , as we allow more so­
phisticated learn ing mechanisms we are given the opportuni ty to pass more
interesting, useful artifacts. Hut chin 's "citizens" provide an excellent ex­
ample [22]. His individuals use several PDP networks for learn ing and are
given the opportunity to learn both from direct experience (with the envi­
ronment) and "mediated" experience (with art ifact s left by others) . If we are
interested in the central questions of cult ure and language, especially intra­
generational communicat ion, we must expect that our models of individual
lives and learning will contain more complexity of this sort.

7.2 Functional co n sequen ce of cu ltur e

An immediate benefit of even the crudest attempts to integrate culture into
a model with learning and evolution is that it provides concrete proposals for
exactly why culture is valuab le. Anthropology typically takes as axiomatic
th at culture is important and th en pro ceeds to catalog and explicate various
cult ura l activiti es. However, this leaves a gap as to why culture is important
that threatens to undermine any theoretic understanding of culture or how it
relates to other aspects of individual behavior in a physical environment. By
casting the problem as one of adaptive sear ch by a species, we can motivate
cult ure in very funct ional terms of improved performance.

Our model illustrates two clear advant ages for culture. First, populations
wit h cultur al advantage are able to converge on a solution significantly faster

12T his model could be refined fur ther with a spatial distr ibution of the population tha t
would limit the broadcast of information to "near" neighbors.

13 Genesis has a very convenient parameter, "generation gap," controlling the overlap
between generations. Simulations investig ating interactions between this parameter and
cultural variables are planned .
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than those without . In our model, culture helps individuals guess better than
chance, and anything that makes an individual bet ter at guessing improves
their fitness .

The second advantage of cult ure suggested by our model is the addit ional
robustness it provides a population in the face of environmental change . An
improved ability to guess caused th e population to devote more genet ic ma­
terial to learnable vs. genet ically specified alleles. This addit ional plasticity
allowed the populati on to track environmental changes, through changed cul­
tural informat ion, rather t han being trapped into obsolete, genetically fixed
solutions.

We can envision several other functional advantages for cult ure that go
beyond our cur rent model and are necessarily mor e speculative. These re­
quire intra-generational communicat ion among peers wit hin the t imespan of
a single generat ion (in addit ion to t he inter-genera t ional communication now
used) and attempt to capture a notion of symbiotic search.

The most straightforward extension of our current model is suggest ed by
th e crit ical event of th e two Winners finding one another and igniting the
population into Phase 1 (see secti on 4). Currently, mates are select ed at
ra ndom from the entire populat ion and this event is therefore highly vari ­
able (t hough guaranteed) and slower than it might be. If some mechani sm
could cause Winners to "find one another" mor e quickly, t his would almost
certainly expedite the population's search. There has been significant inves­
tigat ion of "rest ricted mating" strategies with th e GA literature (e.g ., [9])
and this seems very relevant, but we envision cult urally-based mechanisms.
For example, if indi viduals were simp ly allowed to communicate some re­
duced and perhaps erro rful description of themselves to potential matesl"
and similar it ies in these descript ions were used to bias mate selection, Win­
ners would be much mor e likely to find one another. This observation is
consist ent with the critical role attributed to mate selection in the models of
"niche construct ion" of modern theoretical biology [25].

A second construct assumes a more comp lex, "cond itional" environment
of several different , mutually exclusive regions , with individuals thrown at
random into some one of these regions . The problem facing the species, then,
is to allow speci alization with respect to each of the conditions , despite the
fact that an ind ividual does not know "at bir th" th e environment in which
it will find it self. Culture could playa critical role here in allowing adapt ive
specialization without the genet ic speciat ion that irr eversibly partitions th e
population. We imagin e a cult ural mechanism that helps to mat ch the genet ic
abilitie s of a new offspr ing with the range of environmental conditions to be
solved.

Another possible role we see for culture in symbiotic search is when the
solution to be found requ ires the dist inct abilit ies of more than one indi­
vidual. For example, imagine that the "need le" being found by our curre nt
search had twice as many bits . Imagine further that we add only a single

14Something like a "Personals" column !
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bit to the length of current individuals, with its semantics being whether the
individual was "good at" the first half of the solution or the second. Finding
th e need le would now be much harder, requiring not only the construction
of two individuals specialized at the "jobs " of the first and second halves
of th e needle but also that these two specialists be able to communicate at
least enough to find one another and work together. This construction is
admittedly cont rived but it helps to illustrate yet another import ant role
for cult ure: the solution of problems more complex than those soluable by
individuals working alone. \

In summary, we see several clear, functional motivations for what cult ure
can ad d to an adaptive system using evolution and learning. Culture helps
to expedite the search process by disseminating information about success
mor e quickly than genetic mechani sms alone. Second, the extra-genetic in­
form ational channel provided by culture helps to keep the geneti c description
more plast ic, a characteristic th at can be critical as the species' environment
changes. Culture may also help compatible mates to find one another, to
allow specializat ion to environmental niches desp ite indeterminism as to the
niche in which an individual will find itself, and allow groups of individuals
to collect ively solve complex problems that would be beyond their isolated
effort s. Our current simulations provide some evidence as to the efficacy of
th e first two of these, while only suggest ing the last.

7.3 Adaptive algorithms

It is possible to view. the interacting processes of evolution, learning, and
culture as ad aptive algorithms that search huge spaces (environments) for
potential solutions. In this view, our criterion for success changes from accu­
rat e modeling to efficient computat ion. P In this section we outline some of
the bas ic features of evolution, learning, and culture as adaptive algorithms.

One obvious ap proach is to view evolut ion, learning, and culture as three
distinct an d compe titive typ es of adaptive algorithm, looking for their rela­
tive advantages and disadvantages. It certainly appears, for example, that
the local search performed by most gradient descent conn ecti onist learning
algorithms makes it appropriate for much different adaptive problems than
the kind of global sampling performed by something like the GA.

Alternatively, we can view evolution, learning, and culture as comp onent s
of a single adaptive system. Figure 19 presents a view of how the three sys­
tems might interact, as joints of a single movable arm that each help the
ultimate "fingers" reach a desirable point; this is obviously an elaborat ion of
th e pict ure of Baldwin's arm of figure 1. This image is meant as evocat ive
met aphor, but it does help to make several observat ions. The first is the
mutually const raining relationships among evolut ion, learni ng, an d culture.
Culture must be built upon the results of evolution, while individuals' learn-

15In th e background, of course, is the "Holy Grail" of cognitive science: corre ct models
of naturally occur ing phenomena and efficient art ifical computations will turn out to be
two faces of th e same solution.
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Figure 19: Robot arm.
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ing depends both on the artifacts made available to them by culture and
the genetic mat erial given them by evolution. Second, this image helps to
capture the way in which the plastic systems ("joints" ) of evolution, culture
and learning mediate between the more rigid constraints ("bones") of ext ant
genet ic material, species , and artifacts. Finally, the relative size of the three
limbs is meant to indicate their relative inertias. That is, the pro cess of
evolut ion is much slower and cumbersome than the pr ocess of cultural de­
velopment , which in turn is slower than the process of individual learning.

It is this notion, that the three adaptive systems are each at tempt ing
to capture environment al regularities of different t ime scales, that is most
persuas ive. Refering to interactions among a slight ly different set of adapt ive
subsyst ems, Simon has made a similar comment [27]:

What is invariant in adapt ive systems will depend on the ti me
intervals during which we observe them. There are at least three
time scales of relevance to such systems, corresponding to three
different forms of adaptation. On the shortest t ime scale in­
telligent - hence ad aptive - systems cont inua lly change their
behavior in th e course of solving each problem situat ion they
encounter. . . . On a somewhat longer time scale, intelligent sys­
tems make adaptations that are preserved and remain available
for meeting new situations successfully. . . . On the longest t ime
scale, intelligent systems evolve.
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Figure 20: Environmental wave.

Thus, the relative inertia of each of these adaptive systems is appro­
priate to the t ime scale of the environmental variations it is tracking. In
pa rticular, the learning t rials of individuals are not commensurate with the
evolut ion of individuals, as Hinton and Nowlan seem to suggest (see sec­
tion 2.3) . Evolution is responsive to the most glacial of changes, culture
to more rapid changes, and learning to those changes in the environment
that can be observed within a lifet ime. Of course there is nothing special
about these three particular rates of environmental change except that we
have ident ified adaptive systems associated with each. A whole cont inuum
of rates of environment al change are constantly in operation . The resu lting
picture (see figure 20) is of the environment as a constantly changing wave
form , with lower frequency components being tracked by evolut ion, inte rme­
diat e frequ encies by culture, and the highest frequencies being tracked by
learn ing .

Not ice also that the "granularity" of the representations used by each
adaptive system is proportional to the time scale within which it operates.
Gene tics provides an alphabet of appropriate "building blocks" [19J for ex­
perimenting with phenotypic variations and measuring the gross fitness of
the results, cult ure develops systems of artifacts that convey useful solut ions
across generations, and neural networks capture reliable correlations among
perceptual and motoric phenomena experienced by an individual. This last,
most high-resolution representation of an individu al's exp erience with its en­
vironment is subjected to enormous "dat a reduction" as it enters into the
slower adaptive systems of culture (e.g., if the indi vidual writes an autobi­
ography) or evolut ion (e.g., perturbs the gene pool frequencies). Conversely ,
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the granularity of the environmental space experienced by individuals is much
smaller than the cumulative expe rience of ent ire societies, which is in turn
much smaller than the cumulative experience of entire species. In each case,
the adaptive system depends on a repository for its accumulated experience
that is appropriate to the time scale of its regularities and the mechanisms
available for modifying this representation .

These are only a sample of the large set of import ant issues that ari se
when we consider any one adaptive system (e.g., learning, culture, evolut ion)
as components of a single, grand ad aptive system. We hop e to investigate
these in terms of the time scales in which they find invari ants, the information
structure s used to represent regularities, and the way regularities discovered
by one adaptive system serve to const rain the search of the other systems.
Another intriguing poss ibility is that the environmental regularities are "self­
similar" across time scales , i.e., fractal. If true, this would allow self-similar
adaptive techniques to be exploited at several levels within the cognitive sys­
tem. An adaptive mechanism that worked at evolutionary time scales might
act ually be useful at the level of seconds, just because the regularit ies they
are respectively tracking have self-similar structure selections. For example,
so-called "select ionist" generalizations of biological evolut ion of species have
also been used to account for the creat ivity of individuals [8] and the develop­
ment of cultural pro cesses like science [7,20J . The argument is that while the
"substrates" on which evolution, creativity, an d science work are of course
wildly different, approximately the same select ionist adaptive algorithm is
effective in all these cases. Certainly this must be considered only specula­
tion at the moment , but if t rue it would help to exp lain the fact that the
apparent ly disparate ph enomena of learning, evolution, and culture are all
of cent ral concern to modern cognitive science.
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