
Complex Systems 4 (1990) 51-74

Stochastic Approximation and
Multilayer Perceptrons:

The Gain Backpropagation Algorithm

P.J. Gawthrop
D. Sbarbaro

Department of Mechanical Engineering, Th e University,
Glasgow G12 8QQ, United Kingd om

Abstract. A standard general algorithm, the stochastic approxima­
tion algorithm of Albert and Gardner [1] , is applied in a new context
to compute the weights of a multilayer per ceptron network. This
leads to a new algorithm, the gain backpropagation algorithm, which
is related to, but significantly different from, the standard backprop­
agat ion algorith m [2]. Some simulation examples show the potential
and limitations of the proposed approach and provide comparisons
with the conventional backpropagation algorithm.

1. Introduction

As part of a larger research program aimed at crossfertilization of the dis ci­
plines of neural networks/parallel distributed processing and control/systems
theory, this paper brings together a standard control /systems theory tech­
nique (the stochast ic approximation algorithm of Albert and Gardner [1]) an d
a neural ne tworks/ parallel distributed processing technique (the multilayer
percept ron). From the cont rol/systems theory point of view, this int rod uces
the possibility of adaptive nonlinear t ransformations with a general st ructure;
from the neural networks/parallel dist ributed processing po int of view, this
endows the mult ilayer perceptron with a more powerful learn ing algor it hm.

The problem is approached from an engineering, rather than a psysiolog­
ical, perspective. In part icular, no claim of physiological relevance is made ,
nor do we constrain the solu t ion by the conventional loosely coupled paral­
lel dist ributed processing archi tecture. The aim is to find a good learning
algorithm; the appropriate architecture for implement ati on is a matter for
fur ther inves tigation .

Multilayer percept rons are feedforward net s with one or more layers of
nodes between the input and output nodes. These additional layers contain
hidden units or nodes that are not directly connected to both the input and

© 1990 Complex Systems P ublications, Inc.

52 P.J. Gawthrop and D. Sbtubero

output nodes. These hidden units contain nonlinearit ies and the resultant
network is potentially capable of generating mappings not attainable by a
purely linear network. The capabili t ies of this network to solve different
kind s of problems have been demonstrated elsewhere [2- 4] .

However , for each particular problem, the network must be trained; that
is, the weights governing t he strengths of the connect ions between units must
be varied in order to get the t arget output corresponding to the inp ut pre­
sented. The most popular met hod for training is backpropagation (BP) [2],
but this t raining method requires a large number of iterat ions before the
network generates a sat isfactory app roximation to the target mapping. Im­
proved rates of convergence arise from the sim ulated annealing t echnique [5].

As a resu lt of the research carried out by a numb er of workers du ring the
last two year s, several algorithms have been published , each wit h different
characterist ics an d properties.

Bourl and [6] shows that for the autoassociator , th e nonlinearit ies of the
hidden unit s are useless an d the optimal parameter values can be derived
direct ly by purely linear technique of singular value decomposition (SVD) [7].

Grossman [5] introduced an algorithm called choice internal representa­
tion for two-layer neural networks, composed of binary linear thresholds. The
method performs an efficient sear ch in the space of internal representat ions;
when a correct set is found , the weights can be found by a local perceptron
learning rule [8].

Broomhead [9] uses the method of radial basis fun ction (RBF) as t he
technique to adjust the weights of networks wit h Gaussian or multiquadratic
units. The system represents a map from an n-dimensional input space to
an m-dimensional output space.

Mitchison [10] studied the bounds on the learning capacity of several
networks and then developed the least action algorithm. This algorithm
is not guaranteed to find every solution, but is much more efficient than
BP in the task of learning random vecto rs; it is a version of the so-called
"commit tee machine" algorithm [11] , which is formulated in terms of discrete
linear thresholds.

The principal characteristics of these algorithms are summarized in
table 1.

The aim of th is paper is not to give a physiologically plausible algorithm,
but rather to give one that is useful in engineering app lications. In particular,
the problem is viewed within a standard framework for the optimization of
non linear systems: the "stochastic approximation" algorithm of Albert and
Gardner [1,7].

The method is related to the celebrated BP algorithm [2], and this rela­
t ionship will be explored in the paper. However, the simulat ions presented
in this pap er ind icat e that our method converges to a sat isfactory solution
much faster than the BP algor ithm [2].

As Minsky and Papert [12] have pointed out, the BP algorithm is a hill­
climbing algorithm with all the problems implied by such methods. Our
method can also be viewed as a hill-climbing algor ithm, but it is more sophis-

The Gain Backpropagation Algorithm 53

IActivation function IType of inputs IMain applications I
SVD linear continuous or autoassociators

discrete
Choice binary linear discrete logic functions

threshold
Least action linear threshold discrete logic functions
RBF Gaussian or continuous or interpolation

multiquadratic discrete
BP sigmoid discrete or general

continuous

I Name

Table 1: Algorithm summary.

ti cated than the standard BP method. In particular, unlike the BP method,
the cost function approximately minimized by our algorithm is based on past
as well as current data.

Perhaps even more importantly, our method provides a bridge between
neural network/PDP approaches and well-developed techniques arising from
control and systems theory. One consequence of this is that the powerful an ­
alytical techniques associated with control and system theory can be brought
to bear on neural network/PDP algorithms. Some initial ideas are sket ched
out in section 5.

The paper is organized as follows. Section 2 provides an outline of the
standard stochastic approximation [1,7] in a general setting. Secti on 3 applies
the technique to the multilayer perceptron and considers a number of special
cases:

the XOR problem [2],

the parity problem [2],

the symmetry problem [2], and

coordinate transformation [13].

Sect ion 4 provides some simulation evidence for the superior performance of
our algorithm. Section 5 outlines possible analyti cal approa ches to conver­
gen ce. Section 6 concludes the paper.

2. The stochastic approximation algorithm

2.1 Parametric linearization

The stochast ic approximation technique deals with the gene ral nonlinear sys­
tem of the form

(2.1)

54 P.J. Gawthrop and D. Sbarbaro

where () is the parameter vector (np x 1) cont aining the np system parameters,
X, is the input vector (ni x 1) containing the n i system inpu ts at (int eger)
time t. Y; is the system output vector at t ime t. F ((), X t) is a nonlinear, bu t
differenti able, func t ion of the two arguments () and Xt.

In the context of the layered neural networks discussed in this paper, Y;
is the network output and X, the input (t raining pattern) at t ime t and ()
contains the network weight s. Following Albert and Gardner [1], the first
step in the derivation of th e learning algorithm is to find a local linear izati on
of equat ion (2.1) about a nominal parameter vector ()o.

Expanding F around ()o in a first-order Taylor series gives

where

F ' = of
o()

(2.2)

(2.3)

and E is the approximation error represent ing the high er terms in t he series
expansion.

Defining

(2.4)

and

(2.5)

equation 2.2 then becomes

(2.6)

This equat ion forms the desired linear approximation of th e function F(() , Xt),
wit h E repr esent ing the approximation error, and forms the basi s of a least­
squares type algorit hm to esti mate ().

2 .2 Least-squares and t h e pseudoinverse

This section app lies the standard (nonrecursive) and recursive least-square
algorithm to the estimation of () in the linearized equation (2.6) , but with
one difference : a pseudoinverse is used to avoid difficulties with a non-un ique
optimal estimate for the parameters, which manifests itself as a singu lar data-
dependent matrix [7]. •

T he standard least -square cost function with expo nent ial discounting of
dat a is

(2.7)

The Gain Backpropagation Algorith m 55

(2.9)

where the exponential forget ting factor A gives different weights to different
observations and T is the number of presentations of the different training
sets.

Using standard manipulations, the value of the parameter vector BT min­
imizing the cost function is obt ained from the linear algebraic equat ion

T

STBT = L AT- tX tYt (2.8)
t=1

where the matrix ST(np x np) is given by
T

ST = LAT-tXtxT
t=1

When applied to the layer ed neural networks discussed in this paper, ST
will usually be singular (or at least nearly singular), thus the est imate will
be non -unique. This non -uniqueness is of no consequence when computing
the network outpu t, but it is vital to take it into account in the comp utation
of the estimates.

Here the min imum norm solution for BT is chosen as
T

BT = S f L AT-HIXtYt (2.10)
t=1

where Sf is a pseudoinverse of ST.
In practice, a recursive form of (2.10) is requ ired. Using st andard manip­

ulations
" " + -OtH = Ot + S; Xt et (2.11)

where the error et is given by
- "T -

et = (Ye - 0t Xd (2.12)

but, using (2.4) and (2.5) ,
- "T - "Ye - 0t X, ~ Ye - F(Ot,Xt) (2.13)

and finally (2.11) becomes
" - + - "OtH = Ot +S; Xt(Ye - F(O,Xt)) (2.14)

S, can be recursively updated as
- -TSt = ASt_l + XtXt (2.15)

Indeed, st itself can be updated directly [7], but the details are not purs ued
further here.

Data is discar ded at an exponential rate with t ime constant T given by
1

T = -- (2.16)
I -A

where T is in units of samples. This feature is necessary to discount old infor ­
mation corresponding to estimates far from the convergence point and thus
inappropriate to the linearized model about the desired nominal paramet er
vector 0°.

56 P.J. Gawthrop and D. Sbarbaro

3. The multilayer perceptron

At a given t ime t, the ith layer of a multilayer perceptron can be represented
by

v. = W;Xi

where Xi is given by

(Xli)Xi =

and Xi by

(3.1)

(3.2)

(3.3)

The uni t last element of Xi corres ponds to an offset term when multiplied by
the appropriate weight vector. Equation (3.1) describes th e linear part of the
layer where Xi (n i+1 x l) cont ain the ni inputs to the layer together with 1 in
the last element, W i (ni +1 x ni+d maps the input to the linear output of the
layer, and Wi (ni X niH) does not contain the offset weights. Equation (3.3)
describes the nonlinear part of the layer where the fun ction J maps each
element of Yi-l, the linear output of the previous layer , to each element of Xi .
A special case of the nonlinear transformation of equation (3.3) occurs when
each element X of the vector Xi is obtained from the corresponding element
Y of the matrix Yi-l by the same nonlinear function:

X = f(y) (3.4)

(3.5)

There are many possible choices for f(y) in equation (3.4) , but , like the
backpropagation algorithm [2], our method requires f(y) to be differentiable.
Typical functions are the weighted sigmoid function [2]

1
f(y) = 1 + e - CXY

and the weight ed hyperbolic tangent function

eCXY _ e - cxy

f (y) = tanh(ay) = - - -
eCXY + e - CXY

(3.6)

The former is appropriat e to logic levels of 0 and 1; the latter is appropriat e
to logic levels of - 1 and 1. The derivative of the function in equat ion (3.5)
I S

J' (y) = ~: = ax(l - x)

and that of the function in equation (3.6) is

dx 2
J' (y) = dy = a(l + x)(l - x) = a(l- x)

(3.7)

(3.8)

The Gain Backpropagation Algoritbm 57

The multilayer perceptron may thus be regarded as a special case of the
function displayed in equation (2.1) where, at time t, 1'; = XN, 0° is a column
vector containing the elements of all the Wi matrices and X; = Xl . To apply
the algorithm in section 2, however, it is necessary to find an expression
for x, = F'(OO,Xt) as in equation (2.6) . Because of the simple recursive
feedforward structure of the multilayer perceptron, it is possible to obtain a
simple recursive algorithm for the computation of the elements of Xt. The
algorithm is, not surprisingly, related to the BP algorithm.

As a first step, define the incremental gain matrix Gi relating the ith
layer to the net output evaluated for a given set of weights and net inputs.

G. _ OXN
• - OXi

Using the chain rule [14], it follows that

G. - G. OXi+! °Yi
• - .+1 oYi OXi

and using equations (3.1) and (3.3)

(3.9)

(3.10)

(3.11)

(3.12)

Equation (3.11) will be called the gain backpropagation algoritbm or GBP.
By definition,

OXN
GN = OXN = In;

where In; is the ni X ni uni t matrix.
Applying the chain rule once more,

OXN OXN OXi+!
oWi = OXi+l oW;

(3.13)

(3.14)

Substituting from equations (3.1), (3.3), and (3.9), equation (3.13) becomes

OXN _ G OXi+l
oWi - i+! oWi

3.1 The algorithm

Initially:

1. Set the elements of the weight matrices Wi to small random values and
load the corresponding elements into the column vector 00 ·

2. Set>. between .95 and .99 and the matrix So to sol where I is a unit
matrix of appropriate dimension and So a small number.

58 P.J. Gawthrop and D. Sbarbaro

Figure 1: Architecture to solve the XOR problem.

At each time step:

1. Present an input X, = X l '

2. Propagate the input forward through the network using equations (3.1)
and (3.3) to give Xi and Yi for each layer.

3. Given Xi for each layer, propagate the incremental gain matrix G, back­
ward using the gain backpropagation of equations (3.11) and (3.12).

4. Compute the partial derivative OXN/OWi using equation (3.14) and
load the corresponding elements into the column vector X.

5. Update the matrix St using (2.15) and find its pseudoinverse s; (or
update s; directly [7]).

6. Compute the output error et from equation (2.12).

7. Update the parameter vector Bt using equation (2.14).

8. Reconstruct the weight matrices Wi from the parameter vector Bt •

3.2 The XOR problem

The architecture for solving the XOR problem with two hidden units and no
direct connections from inputs to output is shown in figure 1.

In this case, the weight and input matrices for layer 1 are of the form

(3.15)

The last row ofthe matrix in equation (3.15) corresponds to the offset terms.
The weight and input matrices for layer 2 are of the form

(3.16)

The Gain Backpropagation Algorithm 59

Once again , the last row of th e matrix in equation (3.16) corresponds to the
offset term.

Applying the GBP algorithm (3.11) gives

Hence, using (3.14) and (3.12),

OX3 -,
oW

2
= x d (Y2) = x2 x 3(1 - X3)

and using (3.14) and (3.17)

OX3 = G
2

OX2

OWl OW l

(3.17)

(3.18)

(3.19)

Thus, in thi s case, the terms X and () linearize d equat ion (2.6) are given
by

X llX21 (1 - X 21)X 3 (1 - X3)W2l1

X 12X21 (1 - X21)X3 (1 - X3) W 2l1

X21 (1 - X21)X3(1 - X3)W2l1

Xll X 22(1 - x22)x3(1 - X3)W221

X12 X 22(1 - x 22)x3(1 - X3)W221

x 22(1 - x22)x3(1 - X3)W221

X21X 3(1 - X3)

X21X3 (1 - X3)

x3 (1 - X3)

Wlll

W l21

Wl31

W 112

() = W l22

Wl32

W 211

W 221

W23 1

(3.20)

3 .3 T h e parity p rob le m

In this problem [2] , the outputs of the network must be TRUE if the inpu t
pattern contains an odd number of I s and FALSE otherwise. The st ructure
is shown in figure 5; there are 16 pattern and 4 hidden units.

This is a very demanding problem, because the solu t ion takes full advan­
tage of the nonlinear characteris t ics of the hidden un its in order to pro duce
an output sensitive to a change in only one input .

The linearization is similar to that of t he XOR network except that WI
is 4 x 4, W2 is 4 x 1, and input vector Xl is 4 x 1.

3.4 The symmetry problem

The out put of the network must be TRUE if the input pattern is symmetric
about its center and FALSE otherwise. The appropriate structure is shown
in figure 10.

The linearizat ion is similar to that of the XOR network except that WI
is 6 x 2, W2 is 2 x 1, and input vector X l is 6 x 1.

60

IProblem

P.J. Gawthrop and D. Sbarbaro

IGain (BP) Momentum (BP) A (BP) I
XOR 0.5 0.9 0.95
Parity 0.5 0.9 0.98
Symmetry 0.1 0.9 0.99
C. t ransform 0.02 0.95 0.99

Table 2: Parameters used in the simulations.

Xl X2 Y
0 0 0.9
1 0 0.1
0 1 0.1
1 1 0.9

Table 3: Pat terns for the XOR problem.

3.5 C oor d in ate transformation

The Cartesian endpoint posit ion of a rigid two-link manipulator (figure 14)
is given by

X = L I COS (OI) + L2 COS(OI +O2)

y = L I sin(OI) + L2 sin(OI +O2)

(3.21)

(3.22)

where [x,y] is t he position in the plane, L I = 0.3m, L 2 = 0.2m are the
lengths of the link s. The joints angles are 01> O2 ,

Equation (3.21) and (3.22) show that it is possible to produce this kind
of transformation using the structure shown in figure 15.

The linearization is similar to that of the XOR network except that WI
is 2 x 10, W2 is 10 x 1, and input vector Xl is 10 x 1.

4. Simulations

The simple multilayer perceptrons discussed in section 3 were implemented
in Matlab [15] and a number of simulation experiments were performed to
evaluate the proposed algorithm and compare its performance with the con­
venti onal BP algorithm. The values of the parameters used in each problem
are shown in table 2.

4.1 The XOR problem

The training patterns used are shown in table 3. The conventional BP and
GBP algorithms were simulated. Figure 2 shows the performan ce of the BP
algorithm, and figure 3 shows the performance of the GBP algori thm.

T he reduct ion in the number of iterations is four -fold for the same error .
The effect of discounting past da t a is shown in figure 4; with a forgetting

factor equa l to 1, the algorithm does not converge.

The Gain Backpropagation Algorithm 61

200 400 600 800 1000 1200 1400 1600 1800

Figure 2: Error for the BP algorithm.

4.2 The p arity problem

The output target value was set to 0.6 for TRUE and 0.4 for FALSE. The
algorithm used to calculate the pseudoinverse is based on the singular value
decomposition [15]; with this formulation it is necessary to specify a lower
bound for the matrix eigenvalues. In this case the value was set to O.OOL
With the presentation of 10 patterns, the algorithm converged in 70 presen­
tations of each pattern (see figure 6). Figure 8 shows the error e and figure 9
shows the trace of S+ for each iteration when 16 patterns are presented in a
random sequence. The GPA algorithm converged at about 80 presentations
of each pattern, compared with about 2,400 for the BP algorithm (figure 7).
Note that the solution reached by the GBP algorithm is different than that
of the BP algorithm. The difference between the results obtained wit h both
methods could be explained on the bases of 1) the different values assigned
to the expressions TRUE and FALSE and 2) a difference in the initial con­
ditions.

4.3 The symmetry problem

In this case there are 64 training patterns. The forgetting factor was set
). = 0.99, higher than that used in the parity problem because in this case
there were more patterns. The targets were set at 0.7 for TRUE and 0.3

62 P.J. Gawthrop and D. Sbarbaro

I1 .b"- - - - - ---- _

-O.6f- ."'m . "

i
j

j

Figure 3: Error for the GBP algorithm.

for FALSE . Errors are shown in figures 11 and 12. It can be seen that
th e rate of convergence is very fast compared to that of the BP algorithm.
The convergence depends on initial conditions and parameters, including
the forgetting factor .A and the output values assigned to the targets. The
solution found by the GBP algorithm is similar to th at found by the BP
algorithm.

4.4 Coordinate transformation

The neural network was trained to do the coordinate transformation in the
following range of ()1 = [0,21l'] and ()2 = [O, 1l']j from this region a grid of
33 training values were used. The evolution of the square error (measured
in m) using BP and GBP is shown in figures 16 and 17. The GBP algo­
rithm converges faster than the BP algorithm and reaches a lower minimum.
Table 4 shows the number of presentations required for both algor ithms to
reach a sum square error of 0.02. Figures 18 and 19 show the init ial and final
transformation surface reached by the network.

4.5 Summary of simulation results

The results for the four sets of experiments appear in t able 4.

The Gain Backpropagation Algorithm 63

-0.6

800 1000 1200 1400 1600 1800600400200
-O.8 '---~---'---~---'---'---~--~-~~--'

o

Figure 4: Error for the GBP algorithm with forget tin g factor = 1.

Figure 5: Archi tec ture to solve th e parity pro blem.

64 .P.J . Gawthrop and lJ . ~barbaro

0.8rl--~----~--------------

0.6

I
I
1
I

!

!

600 700 800500
!

300200100

-0.6

I
_0.8L..!---'---~--~--------'---~----'

o

Figure 6: Error for the GBP algorithm (presentation of only ten pat­
terns).

Problem N(BP) N(GBP)
XOR 300 70
Parity 2,425 81
Symmetry 1,208 198
C. Transform 3,450 24

Table 4: Simulation results, number of presentation.

The most difficult problem to solve with the GBP algorithm was the
parity problem, in which case it was necessary to run several simulations to
get convergence. The other problems were less sens itive to the parameters of
the algorithm.

5. Comments about convergence

Following the derivations of Ljung [16], if exists a ()O such that

et = Yt - F(()O,Xt) = f t (5.1)

where f j is a white noise, and introducing

- . °()t=()t-() (5.2)

Th e Gain Backpropagation Algorithm 65

3000
\

2000 250015001000500
OLI --~---~---c-:------=-:-:-:----'---:-:::~-----:-:.
o

Figure 7: Square error for the BP algorithm.

in equat ion (2.11) ,

StOHl StOt + Xtet
- - -T- -

=)..SA + XtXt 0t + Xtet
(5.3)
(5.4)

Using the expression

s, = I: {j(j, t)XjXT
j

(5.5)

and setting

)..t-j =
StOHl

(j(j, t)

{j(D, t)SoOo +I: {j(j, t)Xj[X!OJ + ei]
i

(5.6)

(5.7)

and in gener al

(5.8)

considering a linear approximation around 00

-T -et ~ tt - X t Ot (5.9)

66 P.J. Gawthrop and D. Sberber o

1.4----- --- - - - - - - - --------
, \

lr-
I,

08~
I

0.6;-

\

0.4 ~ \
0.2;-

~I
0 1

0 20 40 60 80 100 120

Figure 8: Square error for the GBP algorithm.

So, equation (5.7) becomes

StOHl = L (J(j, t)XjEj
j

OtH = S: L (J(j, t)XjEj
j

Then Ot -+ 0 as t -+ 00, representing a global minimum if

1. S, has at least one nonzero eigenvalue.

2. E~l IIXkII = 00 and some of the following conditions are met.

3. The input sequence X; is such that Xt is independent of ft and

(5.10)

(5.11)

4. (a) Et is a white noise and is independent on what has happened up
to the time n - 1 or

(b) Et=O.

The Gain Backpropagation Algorithm 67

7000
I

I
6000

1

•4000 I

3000 l

i
I

2000
~

1000

0 1

o 50 100 150 200 250 300 350

Figure 9: Trace of the covariance matrix for the GBP algorithm.

Figure 10: Architecture to solve the symmetry probl em.

68 P.J. Gawthrop and D. Sbsrbeto

J
I
I
I

I
.;,
1
I
i
i
i

j
2000 2500 3000

L-,
\:
\

500 1000 1500

I
OLI---~--__,__:_:_--"-~---~--__,_~--~

o

3,,------- - - - ---- - - - - - - - - - - -.....,

Figure 11: Square error for the BP algorithm.

Comments:

1. This analysis is based in two assumptions: first that 00 is close to eo,
tha t is, the analysis is only local, and second that an arch itecture of
the NN that can approximate the behavior of the t raining set. Even
though these assumptions seem quite restrictive, it is possible to have
some insight over the convergence problem.

2. The conditions (1) and (2) are the most important from the solution
point of view, because if they are not met it is possible to have a local
rrummum,

3. The condit ion (2) means that the derivatives must be different from 0,
that is, all the outputs of the units cannot be 1 or 0 at the same
time. That means if the input is bounded will be necessary bound the
parameters; for example, one way to accomplish that is to change the
int erpretation of the output [2].

4. If S is not invert ible, the criterion will not have a unique solution. It will
have a "valley" and certain linear combination of the par ameters will
not converge or converge an order of magnitude more slowly [17]. There
are many causes for the nonexistence of S inverse, such as the model
set cont ains "too many parameters" or when experimental conditions

The Gain Backpropagation Algorithm 69

' .S.- - - ---------------------

L'.-tS~

'J.4H
II

03Si\
0.3 ~

o2sl\
() 2 ~ \

O.IS r
,

'1.1 r

(I.OS t,

no10080604020
O'-----~--~----------"'----------'o

Figure 12: Square error for the GBP algorithm.

are such that individual parameters do not affect the predict ions [17] .
These effects ari se during the learning process, because only some units
are act ive in some regions cont ribut ing to the output .

5. The condi t ion (4b) arise when the st ru ct ure neural network's st ructure
can match the st ru cture of the system.

6. Condition (3) shows that the order of present at ion can be important
to get convergence of the algorithm.

6. C onclusions

The stochastic approximation algorithm presented in this paper can success­
fully adjust the weights of a multilayer perceptron using many less presenta­
tions of the training data than required for the BP method. However, there
is an increased complexity in the calculation.

A formal proof of the convergence properties of the algorithm in this con­
text has not been given; instead, some insights into the convergence problem,
together with links back to appropriate control and systems theory, are given .
Moreover, our experience indicates that the GPA algorithm is better than
the BP method at performing continuous transformations. This difference is
produced because in the continuous mapping the transformation is smooth

70 P.J. Gawthrop and D. Sbarbaro

bOOO~, ---- - - ----- - - - - - - - ----

I
i

l OOO~

'~\
4000L

. \1 I
3000 ~ VI

IV!
l

1"0100806040"0
0- - - - - - - - - - - ---- - - - -----
o

Figure 13: Trace of the covariance matrix for the GBP algorithm.

Figure 14: Cartesian manipulator.

The Gain Backpropagation Algorithm 71

Figure 15: Architecture to solve the coordinate transformation prob ­
lem.

2.5

2

1.5

1000 1500 2000 2500 3000 3500 4000 4500500
°OL_~_~_~--~-=:::L::========d

0.5

Figure 16: Squar e error for the BP algorithm.

72 P.J. Gawthrop and D. Sberbsro

3.5r---~---~----~---~---~-----.

2.5

2

1.5

0.5

\
20 40 60 80 100 120

Figure 17: Square error for the GBP algorithm.

Figure 18: Initial surface.

The Gain Backpropagation Algorithm

Figure 19: Final and reference surface.

73

and it is possible to have a great number of patterns (theoretically infinite)
and only a small number are used to train the NN, so it is possible t o choose
an adequate training set for a smooth representation, giving a better behavior
in terms of convergence.

A different situation arises in the discrete case, where it is possible to
have some input patterns that do not differ very much from each other and
yet produce a very different system output. In terms of our interpretations,
this means a rapidly varying hypersurface and therefore a very hard surface
to match with few components.

Further work is in progress to establish more clearly under precisely what
conditions it is possible to get convergence to the required global solution.

References

[1] A.E. Albert and L.A. Gardner, Stochastic Approximation and Nonlinear
Regression (MIT Press, Cambridge, MA, 1967).

[2] J.L. McClelland and D.E. Rumelhart, Explorations in Parallel Distributed
Processing (MIT Press, Cambridge, MA 1988).

[3] T.J. Sejnowski, "Neural network learning algorithms," in Neural Computers
(Springer-Verlag, 1988) 291-300 .

[4] R. Hecht-Nilsen, "Neurocomputer applications," in Neural Computers
(Springer-Verlag, 1988) 445-453.

74 P.J. Gawthrop and D. Sbarbaro

[5] R. Meir, T . Grossman, and E. Domany, "Learning by choice of internal
representations," Complex Systems, 2 (1988) 555-575 .

[6] H. Bourland and Y. Kamp, "Auto-association by multilayer perceptrons and
singular value decomp osition," Biological Cybernetics, 59 (1988) 291-294.

[7] A.E. Albert, Regression and the Moore-Penrose Pseudoinverse (Academic
Press, New York, 1972).

[8] L.B. Widrow and R. Winter, "Neural nets for adaptive filte ring and adaptive
pattern recognition," IEEE Computer, 21 (1988) 25-39 .

[9] D.S. Broomhead and D. Lowe, "Multivariable functional int erpol ation and
adaptive networks ," Complex Systems, 2 (1988) 321-355.

[10] G.J. Mit chison and R.M. Durbin, "Bounds on the learning capacity of some
multilayer networks," Biological Cybernetics, 60 (1989) 345-356.

[11] N.J . Nilsson, Learning Machines (McGraw-Hill, New York, 1974).

[12] M.L. Minsky and S.A. Pap ert, Perceptrons (MIT Press, Cambridge, MA,
1988).

[13] G. Josin, "Neural-space generalization of a topological transformation," Bi­
ological Cybernetics, 59 (1988) 283-290.

[14] W .F . Trench and B. Kolman, Multivariab le Calculus with Linear Algebra
and Series (Academic Press, New York, 1974).

[15] C. Moler , J. Little, and S. Bangert, MATLAB User's Guide (Mathworks
Inc., 1987).

[16] L. Ljun g, Systems Iden tification - Theory for the User (Prenti ce Hall, En­
glewood Cliffs, NJ , 1987).

[17] L. Ljung and T. Soders trom, Parameter Identification (MIT Press, London,
1983).

