Complex Systems 4 (1990) 51-74

Stochastic Approximation and
Multilayer Perceptrons:
The Gain Backpropagation Algorithm

P.J. Gawthrop
D. Sbarbaro
Department of Mechanical Engineering, The University,
Glasgow G12 8QQ, United Kingdom

Abstract. A standard general algorithm, the stochastic approxima-
tion algorithm of Albert and Gardner [1], is applied in a new context
to compute the weights of a multilayer perceptron network. This
leads to a new algorithm, the gain backpropagation algorithm, which
is related to, but significantly different from, the standard backprop-
agation algorithm [2]. Some simulation examples show the potential
and limitations of the proposed approach and provide comparisons
with the conventional backpropagation algorithm.

1. Introduction

As part of a larger research program aimed at crossfertilization of the disci-
plines of neural networks/parallel distributed processing and control/systems
theory, this paper brings together a standard control/systems theory tech-
nique (the stochastic approximation algorithm of Albert and Gardner [1]) and
a neural networks/parallel distributed processing technique (the multilayer
perceptron). From the control/systems theory point of view, this introduces
the possibility of adaptive nonlinear transformations with a general structure;
from the neural networks/parallel distributed processing point of view, this
endows the multilayer perceptron with a more powerful learning algorithm.

The problem is approached from an engineering, rather than a psysiolog-
ical, perspective. In particular, no claim of physiological relevance is made,
nor do we constrain the solution by the conventional loosely coupled paral-
lel distributed processing architecture. The aim is to find a good learning
algorithm; the appropriate architecture for implementation is a matter for
further investigation.

Multilayer perceptrons are feedforward nets with one or more layers of
nodes between the input and output nodes. These additional layers contain
hidden units or nodes that are not directly connected to both the input and

© 1990 Complex Systems Publications, Inc.

52 P.J. Gawthrop and D. Sbharbaro

output nodes. These hidden units contain nonlinearities and the resultant
network is potentially capable of generating mappings not attainable by a
purely linear network. The capabilities of this network to solve different
kinds of problems have been demonstrated elsewhere [2-4].

However, for each particular problem, the network must be trained; that
is, the weights governing the strengths of the connections between units must
be varied in order to get the target output corresponding to the input pre-
sented. The most popular method for training is backpropagation (BP) [2],
but this training method requires a large number of iterations before the
network generates a satisfactory approximation to the target mapping. Im-
proved rates of convergence arise from the simulated annealing technique [5].

As a result of the research carried out by a number of workers during the
last two years, several algorithms have been published, each with different
characteristics and properties.

Bourland [6] shows that for the autoassociator, the nonlinearities of the
hidden units are useless and the optimal parameter values can be derived
directly by purely linear technique of singular value decomposition (SVD) [7].

Grossman [5] introduced an algorithm called choice internal representa-
tion for two-layer neural networks, composed of binary linear thresholds. The
method performs an efficient search in the space of internal representations;
when a correct set is found, the weights can be found by a local perceptron
learning rule [8].

Broomhead [9] uses the method of radial basis function (RBF) as the
technique to adjust the weights of networks with Gaussian or multiquadratic
units. The system represents a map from an n-dimensional input space to
an m-dimensional output space.

Mitchison [10] studied the bounds on the learning capacity of several
networks and then developed the least action algorithm. This algorithm
is not guaranteed to find every solution, but is much more efficient than
BP in the task of learning random vectors; it is a version of the so-called
“committee machine” algorithm [11], which is formulated in terms of discrete
linear thresholds.

The principal characteristics of these algorithms are summarized in
table 1.

The aim of this paper is not to give a physiologically plausible algorithm,
but rather to give one that is useful in engineering applications. In particular,
the problem is viewed within a standard framework for the optimization of
nonlinear systems: the “stochastic approximation” algorithm of Albert and
Gardner [1,7].

The method is related to the celebrated BP algorithm [2], and this rela-
tionship will be explored in the paper. However, the simulations presented
in this paper indicate that our method converges to a satisfactory solution
much faster than the BP algorithm [2].

As Minsky and Papert [12] have pointed out, the BP algorithm is a hill-
climbing algorithm with all the problems implied by such methods. Our
method can also be viewed as a hill-climbing algorithm, but it is more sophis-

The Gain Backpropagation Algorithm 53

| Name | Activation function | Type of inputs | Main applications
SVD linear continuous or | autoassociators
discrete
Choice binary linear discrete logic functions
threshold
Least action | linear threshold discrete logic functions
RBF Gaussian or continuous or | interpolation
multiquadratic discrete
BP sigmoid discrete or general
continuous

Table 1: Algorithm summary.

ticated than the standard BP method. In particular, unlike the BP method,
the cost function approximately minimized by our algorithm is based on past
as well as current data.

Perhaps even more importantly, our method provides a bridge between
neural network/PDP approaches and well-developed techniques arising from
control and systems theory. One consequence of this is that the powerful an-
alytical techniques associated with control and system theory can be brought
to bear on neural network/PDP algorithms. Some initial ideas are sketched
out in section 5.

The paper is organized as follows. Section 2 provides an outline of the
standard stochastic approximation [1,7] in a general setting. Section 3 applies
the technique to the multilayer perceptron and considers a number of special
cases:

the XOR problem [2],
the parity problem [2],
the symmetry problem [2], and
coordinate transformation [13].

Section 4 provides some simulation evidence for the superior performance of
our algorithm. Section 5 outlines possible analytical approaches to conver-
gence. Section 6 concludes the paper.

2. The stochastic approximation algorithm
2.1 Parametric linearization

The stochastic approximation technique deals with the general nonlinear sys-
tem of the form

Y= F(0,X:) (2.1)

54 P.J. Gawthrop and D. Sharbaro

where 0 is the parameter vector (n, x 1) containing the n, system parameters,
X, is the input vector (n; X 1) containing the n; system inputs at (integer)
time ¢. Y; is the system output vector at time ¢. F(6,X;) is a nonlinear, but
differentiable, function of the two arguments 6 and Xj;.

In the context of the layered neural networks discussed in this paper, Y;
is the network output and X; the input (training pattern) at time ¢ and 6
contains the network weights. Following Albert and Gardner [1], the first
step in the derivation of the learning algorithm is to find a local linearization
of equation (2.1) about a nominal parameter vector 6°.

Expanding F' around 6° in a first-order Taylor series gives

F(6° + 0, Xi) = F(0°,Xt) + F'(GO,X,)O_ + € (2.2)
where
oF
r_
F' = 50 (2.3)

and e is the approximation error representing the higher terms in the series
expansion.

Defining
Y. = F(6° + 8, X,) — F(6°, X,) (2.4)
and
X, = F'(6°, X:)T (2.5)

equation 2.2 then becomes
V,=XT0+e (2.6)

This equation forms the desired linear approximation of the function F'(6, X;),
with e representing the approximation error, and forms the basis of a least-
squares type algorithm to estimate 6.

2.2 Least-squares and the pseudoinverse

This section applies the standard (nonrecursive) and recursive least-square
algorithm to the estimation of # in the linearized equation (2.6), but with
one difference: a pseudoinverse is used to avoid difficulties with a non-unique
optimal estimate for the parameters, which manifests itself as a singular data-
dependent matrix [7].

The standard least-square cost function with exponentlal discounting of
data is

XT: N - XT 0P 2.7)

'~3|

The Gain Backpropagation Algorithm 55

where the exponential forgetting factor A gives different weights to different
observations and T is the number of presentations of the different training
sets.
Using standard manipulations, the value of the parameter vector 67 min-
imizing the cost function is obtained from the linear algebraic equation
T
Stor =Y ATX.Y, (2.8)
=1
where the matrix St(n, X n,) is given by

T
Sr =Y 2Ttx, Xt (2.9)
=1
When applied to the layered neural networks discussed in this paper, St
will usually be singular (or at least nearly singular), thus the estimate will
be non-unique. This non-uniqueness is of no consequence when computing
the network output, but it is vital to take it into account in the computation
of the estimates. .
Here the minimum norm solution for 7 is chosen as
T
b7 = SFY_AT-H1X.Y, (2.10)
=
where S} is a pseudoinverse of Sr.
In practice, a recursive form of (2.10) is required. Using standard manip-
ulations

Oer1 = 0, + St Xses (2.11)
where the error e, is given by

€t = (Yt = ég'j(t) (2.12)
but, using (2.4) and (2.5),

Y~ X. 2%~ Flle, X)) (2.13)
and finally (2.11) becomes

0141 = 0, + SHX,(Y: — F(6, X)) (2.14)

S; can be recursively updated as
Sy = A8y + X XT (2.15)

Indeed, Sit itself can be updated directly [7], but the details are not pursued
further here.
Data is discarded at an exponential rate with time constant = given by

1
TS (2.16)
where 7 is in units of samples. This feature is necessary to discount old infor-
mation corresponding to estimates far from the convergence point and thus
inappropriate to the linearized model about the desired nominal parameter

vector 6°.

56 P.J. Gawthrop and D. Sbarbaro

3. The multilayer perceptron

At a given time ¢, the ith layer of a multilayer perceptron can be represented

by
yi=Wig; (3.1)

where z; is given by

@=(?> (3.2)

and Z; by
% = f(yi1) (33)

The unit last element of z; corresponds to an offset term when multiplied by
the appropriate weight vector. Equation (3.1) describes the linear part of the
layer where z; (n;+1x 1) contain the n; inputs to the layer together with 1 in
the last element, W; (n; +1 X n;y1) maps the input to the linear output of the
layer, and W; (n; X niy1) does not contain the offset weights. Equation (3.3)
describes the nonlinear part of the layer where the function f maps each
element of y;_1, the linear output of the previous layer, to each element of %;.
A special case of the nonlinear transformation of equation (3.3) occurs when
each element z of the vector &; is obtained from the corresponding element
y of the matrix y;_; by the same nonlinear function:

z = f(y) (3.4)

There are many possible choices for f(y) in equation (3.4), but, like the
backpropagation algorithm [2], our method requires f(y) to be differentiable.
Typical functions are the weighted sigmoid function [2]

O (35)
and the weighted hyperbolic tangent function
oY _ gy
f(y) = tanh(ay) = g (3.6)

The former is appropriate to logic levels of 0 and 1; the latter is appropriate
to logic levels of —1 and 1. The derivative of the function in equation (3.5)
is

dz
’ _ = _)
1) = 3 = as1—2) (3.7
and that of the function in equation (3.6) is

Pl = j—y = a(l +2)(1 - 2) = o(l — %) (3.8)

The Gain Backpropagation Algorithm 57

The multilayer perceptron may thus be regarded as a special case of the
function displayed in equation (2.1) where, at time ¢, ¥; = zx, 6° is a column
vector containing the elements of all the W; matrices and X; = z;. To apply
the algorithm in section 2, however, it is necessary to find an expression
for X; = F'(6° X;) as in equation (2.6). Because of the simple recursive
feedforward structure of the multilayer perceptron, it is possible to obtain a
simple recursive algorithm for the computation of the elements of X;. The
algorithm is, not surprisingly, related to the BP algorithm.

As a first step, define the incremental gain matrix G; relating the 7th
layer to the net output evaluated for a given set of weights and net inputs.

637N
Gy= % (3.9)
Using the chain rule [14], it follows that
_ 35”;’“ Oy;
G;= GH'I—@-;;TBE (3.10)
and using equations (3.1) and (3.3)
Gi = Gipa f'(ys)WT (3.11)

Equation (3.11) will be called the gain backpropagation algorithm or GBP.
By definition,

O0in
=—=1. 3.12
GN 65}\] ng ()
where I,; is the n; X n; unit matrix.
Applying the chain rule once more,
3:cN _ 89:N 65:,'.*.1
OW; 0%y, OW;

Substituting from equations (3.1), (3.3), and (3.9), equation (3.13) becomes

(3.13)

0%i1
i
oW,

6:1:]\]

aw, =~ ¢

(3.14)

3.1 The algorithm
Initially:

1. Set the elements of the weight matrices W; to small random values and
load the corresponding elements into the column vector 6q.

2. Set A between .95 and .99 and the matrix Sy to sgf where I is a unit
matrix of appropriate dimension and sg a small number.

P.J. Gawthrop and D. Sbarbaro

Figure 1: Architecture to solve the XOR problem.

At each time step:
1. Present an input X; = z;.

2. Propagate the input forward through the network using equations (3.1)
and (3.3) to give z; and y; for each layer.

3. Given g; for each layer, propagate the incremental gain matrix G; back-
ward using the gain backpropagation of equations (3.11) and (3.12).

4. Compute the partial derivative 0zn/0W; using equation (3.14) and
load the corresponding elements into the column vector X.

5. Update the matrix S; using (2.15) and find its pseudoinverse S; (or
update S directly [7]).

6. Compute the output error e; from equation (2.12).
7. Update the parameter vector f, using equation (2.14).

8. Reconstruct the weight matrices W; from the parameter vector 6,.

3.2 The XOR problem

The architecture for solving the XOR problem with two hidden units and no
direct connections from inputs to output is shown in figure 1.
In this case, the weight and input matrices for layer 1 are of the form

Wi11 Wii2 T11
W1 = Wi21 Wi22 5 Ty = ZT19 (315)
Wiz Wisg 1

The last row of the matrix in equation (3.15) corresponds to the offset terms.
The weight and input matrices for layer 2 are of the form

Wa11 Z21
W= | w1 |, Zz=| 2z (3.16)
Wa31 1

The Gain Backpropagation Algorithm 59

Once again, the last row of the matrix in equation (3.16) corresponds to the
offset term.
Applying the GBP algorithm (3.11) gives

T
6= W) = (42) o) ()
Hence, using (3.14) and (3.12),
0 _
8—;/3; = 22f'(y2) = zow3(1 — 23) (3.18)

and using (3.14) and (3.17)

0933 _ 3572
WL G26_W—/1— (3.19)

Thus, in this case, the terms X and @ linearized equation (2.6) are given

by

51311"621(1 - 1'321)133(1 - $3)w211 Wi11

2129321(1 - 3’21)33(1 - 173)“’211 Wi21

9321(1 - 1721)933(1 - 933)“’211 Wi31

. T11T92(1 — T2)x3(1 — 23)waz Wiz
X = 11712.'1722(1 — $22)$3(1 — .’I)3)'Ll)221 5 9 = w122 (320)

Z2(1 — z22)z3(1 — 23)wanm w132

z1w3(1l — z3) Wa11

1'21-"33(1 = $3) Wa21

933(1 = 11?3) W231

3.3 The parity problem

In this problem [2], the outputs of the network must be TRUE if the input
pattern contains an odd number of 1s and FALSE otherwise. The structure
is shown in figure 5; there are 16 pattern and 4 hidden units.

This is a very demanding problem, because the solution takes full advan-
tage of the nonlinear characteristics of the hidden units in order to produce
an output sensitive to a change in only one input.

The linearization is similar to that of the XOR network except that Wi
is4 x4, Wyis 4 x 1, and input vector z; is 4 x 1.

3.4 The symmetry problem

The output of the network must be TRUE if the input pattern is symmetric
about its center and FALSE otherwise. The appropriate structure is shown
in figure 10.

The linearization is similar to that of the XOR network except that W;
is 6 x 2, W, is 2 x 1, and input vector z; is 6 x 1.

60 P.J. Gawthrop and D. Sbarbaro

[Problem Gain (BP) Momentum (BP) X (BP) |
XOR 0.5 0.9 0.95
Parity 0.5 0.9 0.98
Symmetry 0.1 0.9 0.99
C. transform | 0.02 0.95 0.99

Table 2: Parameters used in the simulations.

T1[T2 1Y

00109
110(01
0|1]01
111109

Table 3: Patterns for the XOR problem.

3.5 Coordinate transformation

The Cartesian endpoint position of a rigid two-link manipulator (figure 14)
is given by

@ = Ly cos(0;) + Ly cos(0; + 65) (3.21)
y = Lysin(61) + L sin(6; + 03) (3.22)

where [z,y] is the position in the plane, L; = 0.3m, L, = 0.2m are the
lengths of the links. The joints angles are 6y, 0.

Equation (3.21) and (3.22) show that it is possible to produce this kind
of transformation using the structure shown in figure 15.

The linearization is similar to that of the XOR network except that W,
is 2 x 10, W5 is 10 x 1, and input vector z; is 10 x 1.

4. Simulations

The simple multilayer perceptrons discussed in section 3 were implemented
in Matlab [15] and a number of simulation experiments were performed to
evaluate the proposed algorithm and compare its performance with the con-
ventional BP algorithm. The values of the parameters used in each problem
are shown in table 2.

4.1 The XOR problem

The training patterns used are shown in table 3. The conventional BP and
GBP algorithms were simulated. Figure 2 shows the performance of the BP
algorithm, and figure 3 shows the performance of the GBP algorithm.
The reduction in the number of iterations is four-fold for the same error.
The effect of discounting past data is shown in figure 4; with a forgetting
factor equal to 1, the algorithm does not converge.

The Gain Backpropagation Algorithm 61

2% 200 400 600 800 1000 1200 1400 1600 1800
Figure 2: Error for the BP algorithm.

4.2 The parity problem

The output target value was set to 0.6 for TRUE and 0.4 for FALSE. The
algorithm used to calculate the pseudoinverse is based on the singular value
decomposition [15]; with this formulation it is necessary to specify a lower
bound for the matrix eigenvalues. In this case the value was set to 0.001.
With the presentation of 10 patterns, the algorithm converged in 70 presen-
tations of each pattern (see figure 6). Figure 8 shows the error € and figure 9
shows the trace of S* for each iteration when 16 patterns are presented in a
random sequence. The GPA algorithm converged at about 80 presentations
of each pattern, compared with about 2,400 for the BP algorithm (figure 7).
Note that the solution reached by the GBP algorithm is different than that
of the BP algorithm. The difference between the results obtained with both
methods could be explained on the bases of 1) the different values assigned
to the expressions TRUE and FALSE and 2) a difference in the initial con-
ditions.

4.3 The symmetry problem

In this case there are 64 training patterns. The forgetting factor was set
A = 0.99, higher than that used in the parity problem because in this case
there were more patterns. The targets were set at 0.7 for TRUE and 0.3

62 P.J. Gawthrop and D. Sbarbaro

0.6r

L

I

[
|

0 50 100 150 200 250 300 350 400 450
Figure 3: Error for the GBP algorithm.

for FALSE. Errors are shown in figures 11 and 12. It can be seen that
the rate of convergence is very fast compared to that of the BP algorithm.
The convergence depends on initial conditions and parameters, including
the forgetting factor A and the output values assigned to the targets. The
solution found by the GBP algorithm is similar to that found by the BP
algorithm.

4.4 Coordinate transformation

The neural network was trained to do the coordinate transformation in the
following range of 6; = [0,27] and 6, = [0,]; from this region a grid of
33 training values were used. The evolution of the square error (measured
in m) using BP and GBP is shown in figures 16 and 17. The GBP algo-
rithm converges faster than the BP algorithm and reaches a lower minimum.
Table 4 shows the number of presentations required for both algorithms to
reach a sum square error of 0.02. Figures 18 and 19 show the initial and final
transformation surface reached by the network.

4.5 Summary of simulation results

The results for the four sets of experiments appear in table 4.

The Gain Backpropagation Algorithm 63

"o 200 400 600 800 1000 1200 1400 1600 1800

Figure 4: Error for the GBP algorithm with forgetting factor = 1.

Figure 5: Architecture to solve the parity problem.

P.J. Gawthrop and D). Sbarbaro

0.8—

0.4 -

0.2 N

u

-0.4f1

bk

L

-0.6F -

0.8 : : : :
0 100 200 300 400 500 600 700 800

Figure 6: Error for the GBP algorithm (presentation of only ten pat-

terns).
Problem N(BP) | N(GBP)
XOR 300 70
Parity 2,425 | 81

Symmetry 1,208 | 198
C. Transform |[3,450 | 24

Table 4: Simulation results, number of presentation.

The most difficult problem to solve with the GBP algorithm was the
parity problem, in which case it was necessary to run several simulations to
get convergence. The other problems were less sensitive to the parameters of
the algorithm.

5. Comments about convergence
Following the derivations of Ljung [16], if exists a 6° such that
€t = K - F(GO, Xt) = € (51)

where ¢; is a white noise, and introducing

91 = éi — 90 (5.2)

The Gain Backpropagation Algorithm

PO O

{1

ene B

ol

Figure 7: Square error for the BP algorithm.

in equation (2.11),

Stét-f-l = Stét + Xtet
= XS+ XtXtTét + Xie,

Using the expression
Se=3BUGOXXT
J
and setting

A =BGy .
Sibeyr = B(0,4)Sofo + 3 B(j,) X;[XTG; + ;]
J

and in general
€ = }/t - F(Bg,Xt)
considering a linear approximation around 6°

etzet—X;‘rGt

0 560 1000 1500 2000 2500

3000

65

(5.3)
(5.4)

(5.5)

(5.6)
(5.7)

P.J. Gawthrop and D. Sbarbaro

0.2~ '
| ‘ g

0 20 40 60 80 100 120

Figure 8: Square error for the GBP algorithm.

So, equation (5.7) becomes

Sibuar =3 B0, 1) Xjes (5.10)
by = S > A0,)X e; (5.11)
J

Then §, — 0 as t — oo, representing a global minimum if

1. S; has at least one nonzero eigenvalue.
2. 2, || Xk|| = oo and some of the following conditions are met.
3. The input sequence X; is such that X, is independent of ¢ and

4. (a) € is a white noise and is independent on what has happened up
to the time n — 1 or

(b) € = 0.

The Gain Backpropagation Algorithm

7000

6000

4000}
3000+ [

20001

1000

0 50 100 150 200 250 300

Figure 9: Trace of the covariance matrix for the GBP algorithm.

Figure 10: Architecture to solve the symmetry problem.

350

67

68

P.J. Gawthrop and D. Sharbaro
:‘r
2.5%— \ .
! \
| 1
| \, |
: \
1.5l» :]
| i
1 | i -
| |
0.5 % 1
|
ol d .
0 500 1000 1500 2000 2500 3000
Figure 11: Square error for the BP algorithm.
Comments:
1. This analysis is based in two assumptions: first that , is close to 6°,

that is, the analysis is only local, and second that an architecture of
the NN that can approximate the behavior of the training set. Even
though these assumptions seem quite restrictive, it is possible to have
some insight over the convergence problem.

. The conditions (1) and (2) are the most important from the solution

point of view, because if they are not met it is possible to have a local
minimum.

. The condition (2) means that the derivatives must be different from 0,

that is, all the outputs of the units cannot be 1 or 0 at the same
time. That means if the input is bounded will be necessary bound the
parameters; for example, one way to accomplish that is to change the
interpretation of the output [2].

. If S is not invertible, the criterion will not have a unique solution. It will

have a “valley” and certain linear combination of the parameters will
not converge or converge an order of magnitude more slowly [17]. There
are many causes for the nonexistence of S inverse, such as the model
set contains “too many parameters” or when experimental conditions

The Gain Backpropagation Algorithm 69

2.5:

0.45 -
| 4

0.4H =
| |

|
0.35H

0.3 IF]

| .

0.25+ -
\

|
22k =
|

0.15+

adir

20 Mhemzadfy, o

0.05 = .

00 20 40 60 80 100 120

Figure 12: Square error for the GBP algorithm.

are such that individual parameters do not affect the predictions [17].
These effects arise during the learning process, because only some units
are active in some regions contributing to the output.

5. The condition (4b) arise when the structure neural network’s structure
can match the structure of the system.

6. Condition (3) shows that the order of presentation can be important
to get convergence of the algorithm.

6. Conclusions

The stochastic approximation algorithm presented in this paper can success-
fully adjust the weights of a multilayer perceptron using many less presenta-
tions of the training data than required for the BP method. However, there
is an increased complexity in the calculation.

A formal proof of the convergence properties of the algorithm in this con-
text has not been given; instead, some insights into the convergence problem,
together with links back to appropriate control and systems theory, are given.
Moreover, our experience indicates that the GPA algorithm is better than
the BP method at performing continuous transformations. This difference is
produced because in the continuous mapping the transformation is smooth

70

P.J. Gawthrop and D. Sbarbaro

[7ry) IR S,

Figure 13: Trace of the covariance matrix for the GBP algorithm.

Figure 14: Cartesian manipulator.

The Gain Backpropagation Algorithm

Figure 15: Architecture to solve the coordinate transformation prob-
lem.

25

1.5

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 16: Square error for the BP algorithm.

72 P.J. Gawthrop and D. Sbarbaro

0 20 40 60 80 100 120

Figure 17: Square error for the GBP algorithm.

Figure 18: Initial surface.

The Gain Backpropagation Algorithm 73

Figure 19: Final and reference surface.

and it is possible to have a great number of patterns (theoretically infinite)
and only a small number are used to train the NN, so it is possible to choose
an adequate training set for a smooth representation, giving a better behavior
in terms of convergence.

A different situation arises in the discrete case, where it is possible to
have some input patterns that do not differ very much from each other and
yet produce a very different system output. In terms of our interpretations,
this means a rapidly varying hypersurface and therefore a very hard surface
to match with few components.

Further work is in progress to establish more clearly under precisely what
conditions it is possible to get convergence to the required global solution.

References

[1] A.E. Albert and L.A. Gardner, Stochastic Approximation and Nonlinear
Regression (MIT Press, Cambridge, MA, 1967).

[2] J.L. McClelland and D.E. Rumelhart, Explorations in Parallel Distributed
Processing (MIT Press, Cambridge, MA 1988).

[3] T.J. Sejnowski, “Neural network learning algorithms,” in Neural Computers
(Springer-Verlag, 1988) 291-300.

[4] R. Hecht-Nilsen, “Neurocomputer applications,” in Neural Computers
(Springer-Verlag, 1988) 445-453.

P.J. Gawthrop and D. Sbarbaro

[5] R. Meir, T. Grossman, and E. Domany, “Learning by choice of internal
representations,” Complex Systems, 2 (1988) 555-575.

[6] H. Bourland and Y. Kamp, “Auto-association by multilayer perceptrons and
singular value decomposition,” Biological Cybernetics, 59 (1988) 291-294.

[7] A.E. Albert, Regression and the Moore-Penrose Pseudoinverse (Academic
Press, New York, 1972).

[8] L.B. Widrow and R. Winter, “Neural nets for adaptive filtering and adaptive
pattern recognition,” IEEE Computer, 21 (1988) 25-39.

[9] D.S. Broomhead and D. Lowe, “Multivariable functional interpolation and
adaptive networks,” Complex Systems, 2 (1988) 321-355.

[10] G.J. Mitchison and R.M. Durbin, “Bounds on the learning capacity of some
multilayer networks,” Biological Cybernetics, 60 (1989) 345-356.

[11] N.J. Nilsson, Learning Machines (McGraw-Hill, New York, 1974).

[12] M.L. Minsky and S.A. Papert, Perceptrons (MIT Press, Cambridge, MA,
1988).

[13] G. Josin, “Neural-space generalization of a topological transformation,” Bi-
ological Cybernetics, 59 (1988) 283-290.

[14] W.F. Trench and B. Kolman, Multivariable Calculus with Linear Algebra
and Series (Academic Press, New York, 1974).

[15] C. Moler, J. Little, and S. Bangert, MATLAB User’s Guide (Mathworks
Inc., 1987).

[16] L. Ljung, Systems Identification — Theory for the User (Prentice Hall, En-
glewood Cliffs, NJ, 1987).

[17] L. Ljung and T. Soderstrom, Parameter Identification (MIT Press, London,
1983).

