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Abstract. The Eigen model of macromolecular evolution is compared
with the Little-Hopfield neural network model with discrete-state neu­
rons. Similarities of these systems are shown by their description as
Ising spin models. Both of the systems show self-organizing behavior
in certain parameter regions . Energies for the single states can be
defined in such a way that self-organization results in a localization
around states with small energies . Therefore, both models can be used
as optimization algorithms for complex combinatorial problems, and
they can be interpreted as special cases of a more general optimization
algorithm. The self-organization process depends on nonnegative tran­
sition frequency matrices, which describe transitions of the systems
from one state to another. The transition frequencies are functions
of a Gaussian noise source, which models an internal temperature. A
standard deviation 8 ~ 0 for the distribution of the noise is necessary
in both cases for an exhaustive search of the state space . However,
the neural network can find local minima of the global energy func­
tion at 8 = 0, whereas the evolution model cannot do this because
noise has to be present for migration to new states in the evolution­
ary run . Maximal values of 8, 8t h , above which no self-organization
occurs, are given for both systems. In the evolution model there is a
sharp decrease of 8t h with the size of th e system. Self-organization is
possible for the evolution model up to a certain system size even at
noise levels which are higher than the critical noise level for the neu ­
ral network model. External requirements det ermine effective noise
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thresholds which are lower than the critical noise levels. Both systems
relax to stationary states. Numerical simulations show that the de­
pendence of the stationary state and the relaxation times on system
parame ters is different in the two models, although the same energy
function is used for optimization, and that the probability of obtain­
ing good solutions to optimization problems may be higher during the
relaxation process than at the stationary state.

1. Introduction

Biologica l systems contain structures which can give rise to complex behav­
ior. Interact ions of a biologi cal system with it s environment can lead to
macroscopic changes in the biological system . Such changes can be inter­
preted as adapt at ion of the system to external influences or const raints. We
see this for example in evolutionary systems and in the brain and nervous
system. These two systems pro cess and store information, and adapt over
t ime. One may ask the following questions: 1) are there simil arities in the
ways that models of such evolut ionary and neuronal systems operate with
inform ati on, and 2) can the wide varieties in adaptation and processing time
be ascri bed to differences in the models of the biological systems? We address
both of these questions in the following by examining the Eigen model of an
evolutio nary system and a neural network model as it was defined by Lit tle
an d Hopfield . We find that several similarities exist in these models: the dy­
namics in these two seemingly different systems occur on a sur face that can
be made to be topologically isomorphi c; however , the motion on this surface
is different, which result s in different dynamics and different adapt at ion in
the two models.

Prebiotic evolution in the Darwinian sense has been described by Eigen [1]
for macromolecules which may be polynucleot ide sequences. In Eigen's evo­
lu t ion model the macro molecules can be described as one-dimensional Ising
spin chains [2,3]. T he macromolecules are able to reproduce on themselves
and thereby generate other macromolecules as offspring . The length of the
spin chains is assumed to be constant during the evolutionary pro cess , and
only point mutations in the form of flipping of spins on the spin chains are
allowed; insertions and deletions do not occur in this model. Everyone of the
possible spin chains is assigned a certain fitness value, as measured by the
rate of reproduction, which reflects the extent of adaptation of each macro­
molecule to the environment. The fitn ess of each of the possible different
species can be evaluated according to different func tions of the spin chain
characte rist ics [3,4] or can simply be set to a certain value. The evolutio n­
ary process takes place in an evolution reactor (ER) which is a cont inuously
sti rr ed tank reactor with inflow and outflow . Through the inflow, energy -rich
molecules ar e int roduced into t he syst em. With these molecules a replica­
t ion machinery, operating at a given error rate, produces new macromolecules
from old ones, which are used as temp lat es. The environmental const raint
is given by the requirement of constant organization , i.e, the outflow is reg-
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ulated in such a way that th e overall concentrat ion of macromolecules in
t he ER st ays const ant . This selective pressure drives the ER system toward
mixtures of macromolecules with high replication ra tes. For this ER model,
the survival of a single species is therefore a function of the replication rate
of each of the species and of the error rate. Models of this kind are self­
organizing, i.e, t he competit ion among the species leads to the selection of a
so called quasi-species [1 ,5-7], which corresp onds to the calculated dist ribu­
tion of states at the stationar y state of the system. Various methods have
been employed to describe the behavior of this ER model: phenomenologi­
cal kinetic equations, stochastic descriptions of the temporal developme nt of
the system [4,8], and stationary st ate statist ics [3] of the ER model all give
qualit at ively the same resul ts; in particular, they all show a limitation of the
size of the species for a given error rate and selection of a quasi-species only
below a cert ain error rate [3,6-11].

Neur al networks (NN) have been used to descr ibe collect ive phenomena
of "neuron" -like elements [12- 15]. In the discrete state case neurons in an
NN are two-state model devices where the two states of a neuron loosely
correspond to th e firing and nonfiring st at es of biological neurons. The model
neurons are fully.interconnected, and each neuron is able to up dat e its state
according to a given algorithm. In most of these models the neur ons have
a threshold to the input from other neurons, so that they become act ive or
inactive if the input exceeds the threshold value or is below it , respect ively.
The size of an NN is given by a finite number of neurons. These kinds of NN
can be described as Ising spin systems as well [16-1 9].

The transit ions of the NN from one state to another state depend on the
connections between the single neurons. In most NN, learning algorithms
are employed which change the connections in such a way as to ensure st able
fixed points at desirable locations in state space. If the NN is to be used
as a content-addressable memory, the memory states can be defined for sys­
tems without noise as stable fixed points with the so-called Hebbi an learning
rule [12]. If we start the NN close enough [20] to one of the memory st ates,
the system will undergo a self-organization process, i.e. the NN will relax to
the memory state. During that process the NN minimizes an energy or cost
function [12] . In th e case of zero noise, st able fixed points of the syste m cor­
respond to minima of this energy function [12,13]. In the presence of noise,
the system can localize around states with low associated energy but also has
a finite probability of being in st ates with higher energies in the st ationary
st ate [21].

In this article we compare the ER mod el of Eigen with the NN mod el of
Lit t le, which is equivalent to the Hopfield model wit h synchronous updating.
These models are special examples of systems which can be used for finding
solutions in complex optimizat ion tasks [22-27]. Therefore we compare the
self-organizat ion pro cess and the capacities as opt imization algori thms of
both systems.

We review Ising spin system descriptions of the models (see for example
[3,19]) in sect ion 2; to make a comparison between the models possible we
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define noise in the ER model in a new way in terms of noise with a Gaus sian
distribution. First we discuss a general model of optimization in systems
wit h discrete states. Then we derive the transition matrices for both types
of systems in the case of a special energy func tion. The temporal behavior
of the models is governed by these transition matrices, with which it is also
possible to calculate the probability that a system will be in a certain state
at a certain time. The dependence of the transition matrices on noise and
energy functions is pointed out. For our description we assume a Gaussian
noise source with mean of zero and st andard deviation (). Energy or cost
funct ions ar e defined in such a way that they assign a value to every poss ible
st ate.

In sect ion 3 we discuss various properties of the transition frequency ma­
t rices and consider the importance of noise or the existence of t emperature,
noise thresholds, and the relaxation process in the ER and t he NN model.
Noise is an indispensable factor if a big portion of the st ate space needs to
be searched for low energy values, i.e. if good solutions are sought to an
opt imizat ion problem. In fact, noise has to be present in the ER case in
order for optimization to lead to states which were not represented at t ime
t = 0; otherwise, at ()= 0, optimization lead s only to selection of the best of
the states represented at time t = 0 in the ER model. For both algorithms,
critical noise thresholds can be defined and above these no self-organization
occurs. Finally, we address the question of relaxation times and usefulness of
the models as op timization algorithms, and we discuss results from numeric al
solutio ns of the equations of the ER and NN model.

2. Description of the sy st em s

2.1 Gen er al description

In the following we look at the t emporal development of syst ems which can
only be in a finite number of discrete macrostates, henceforth called st ates
for simplicity. A state consists of a specification of n microstates. We as­
sume that the number N of possible states is equal to the number of all
combinat ions of types of microstates,

(2.1)

where r is the number of different types of microstates. A state which can
be obtained by such a combination is represented by the vector

k E {1,2 , . . . ,N}. (2.2)

To describe the temporal behavior of the syst em we introduce the vector

(2.3)
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to denote the state of the system at time t. O";(t) is therefore the type of the
ith microstate at time t.

In the example of an ER model the microstates are the single symbolic
nucleotides, 1, or - 1, either purine or pyrimidine residues, on different posi­
tions of a polynucleotide, e.g. an RNA-strand. In the case of the NN model a
microstate is one of the neurons in the NN; each single neuron can be in a fir­
ing (1) or in a nonfiring (- 1) state. Since there are only two different kinds of
microstates, both models have been treated as special spin systems [3,14,19];
with r = 2, the number of possible states of the systems is N = 2n .

An energy function can be associated with everyone of the states:

Vk. (2.4)

In the optimal case the values of the energy function are known for all states
and adaptation should lead to states close to or equal to states for which the
energy function has a deep minimum. For most cases only a few values of
the energy function may be known: the dependence of the energy function
on numerous system parameters might make it difficult to est imate the be­
havior of the energy function in some or all regions of the state space, or the
state size may be so big that explicit knowledge of the energy function at
every possible st ate is impossible. Even though an energy function may be
easily formulated, the behavior of the system or its movement in state-energy
space may still not be obvious. This situation occurs frequently in complex
combinatorial optimization problems, for which the analytical form of an en­
ergy function over a usually huge state space is known, but where it is not
obvious for which states the energy function is a minimum. In thes e cases
optimization algorithms are used to find states with low energy values . A
good optimization algorithm has to find good solutions, i.e. deep or absolute
minima in the energy function Ek • It has to achieve this without a complete
sear ch of the state space, since such a search quickly becomes impossible
because of the exponential growth of the number of possible states with n
(see (2.1)). The algorithm is only useful ifit can do this in a reasonably short
time and with acceptable computational effort.

ER and NN systems can be modeled in such a way that adaptation from
an arbitrary initial state can lead to minimization of an energy function, or
in other words, can lead to good solutions of an optimization problem. The
updating process is quite different in these two models, but the general pro­
cess can be characterized by a transition matrix W = IIw lk Iii': the elements
of that matrix are the transition frequencies :

Wlk = (quality termh(transition term)lk (2.5)

for the transition from state Sk to state 5 1 per unit time. The (quality terrnjj,
describes how good a solution 5k is, and the (transition term)lk gives the
probability for the transition from state 5k to state 51. Both terms in (2.5) can
be different in different optimization algorithms, although the optimization
problem itself as well as the energy function are the same in these models.
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This will be shown in later secti ons when we discuss the transition frequencies
in the ER and the NN model.

The (transition term)/k in (2.5) depends on the updating rule for the
system, which is

IJ"i(t + 1) = 9 [hi(t)] , (2.6)

a funct ion of the input hi(t) . We will define one of many possible functions
9 in sect ion 2.2 .

We int roduce probabilities of represent at ion,

(

u(t).= Sl )

'IjJ(t) = P : ,
u(t) = SN

(2.7)

to describe the updating process if stochastic elements are included, as they
will be in the ER and NN model in the form of noise . tPk(t) = P [u (t ) = Sk ]
of (2.7) is the probability that the system is in state Sk at time t.

In order to generate a test function for the energy, we use the Hopfield
Hamiltonian

where

IT' J ~ cl-'cl-' u ·..J. .
.Lij = - LJ '>i '>j, vZ r J

n 1-'=1

and T;i = 0, Vi.

(2.8)

(2.9)

J In is a parameter for modulating the interaction strength between different
spins. J is assumed to be nonnegative. The er E {-l,l} , Vj1.,i are chosen
randomly with equal probability and form states el-' of the systems. There­
fore, the el-' form a randomly chosen subset of the set of possible states Sk .
Equation (2.9), the Hebbian learning rule, constitutes an algorithm which
defines energy minima for the 2p states ±ew

We now review and develop descriptions of an NN and an ER model
which fit this general formalism. Transition frequencies are derived by for­
mulating (quality term)s and (transition term)s of (2.5) for both models . We
use the same variable names whenever possible and point at differences in
th e variables by using the superscripts " - " for the ER model and " - " for
the NN model.

2.2 The neural network model

In this section we describe the Little NN model [14,15]. This NN consists
of two-state model devices, the neurons, which are updated synchronously
at each timestep. The accuracy of the updating process depends on the
the amount of noise added to the system. Noise is taken to be a stochastic
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Vi. (2.10)

variable with a Gaussian probability distribution with mean equal to zero and
standard deviation 8j natural fluctuations like the ones caused by "imperfect"
connections, stochastic firing, and others are modeled by the noise term [21).
The updating function is

{

1, if h;(t) + (noise term);(t) > OJ
O";(t + 1) = 9 [h;(t)) = O";(t), if h;(t) + (noise term);(t) = OJ

- 1, if h;(t) + (noise term);(t) < OJ

The input function for the NN model, h;(t), is defined as
n

h;(t) = z: 1';jO"j(t),
j=1

Vi (2.11)

(2.12)

where all the (noise term);(t) have the same probability distribution (see
figure 1). Transition frequencies between two arbitrary states Sk and SI can
therefore be written as

Wlk .nQ (-sP~f)
.=1

= ;~1 {H1 - erf ( - ~)]}

where

and

Q(x) = 1 OOJ e- i (~rdx'
0$ :r:

= H1-erf(~) ]
(2.13)

2 :r:

erf(x) = .;:;Je-t'dt.
o

(2.14)

(2.16)

Here Q(-s~hf) is the probability that O";(t + 1) = s~ if u(t) = s k (compare
also with figure 1).

For presentation purposes and for ease of comparison with the ER model
description we now derive a standard description of transition frequencies in
the NN case . With the approximation

1 1
2" [1 - erf(x)) ~ 1 + e :r:' (2.15)

where the difference between the two sides of (2.15) is 0.01 at the maxi­
mum [28), we have from (2.12)

Wlk = D1[Hexp (_1e7,'lh~)]

exp (!e7,~ 'lh~)

nn[exp (1 1.1J;~ ) +exp (_1 I .IJ;~)]'2 M " 2M"
1=1
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Figure 1: Normal distribution of noise for e = 0.6 and probability
of incorrect updating, (1 - q) = Q(1), for the ER model (see equa­
tions 2.25 and 2.31).

With the use of

IT (ex; + e- x;) = :L exp (t SiXi )
i = 1 { . ; } i =1

Lit tle and Shaw [15,28] found

(2.17)

(2.18)

n n

L: exp ~~ L: 3fh~
;'=1 i= l

exp [-~H(IIk)]_

i: exp [-~H(j'l k)]'
) '= 1

Now we substitute for the Tij from (2.9) in (2.18) and get for the transition
frequencies

exp (~~~ tf: ~f~fs;sj)
~=1 'i~il

W/k = (2.19)
~ ( 1 1 J P n tl-' e» j ' k)
.L.J exp N22;;" L . ~ \, i \'j Si Sj
J'=l Jl= l ' i~il

Hence, by comparison of (2.5) with (2.12) and (2.19) we see that the
transit ion frequeny W /k in the NN case is the probability for a t ransitions from
state Sk to state 8/ per unit time. They all contain the same (quality term}, =
1, Vk. Therefore, transitions from states of higher energy to st at es of lower
energy must be more probable than vice versa in order for optimization to
occur. Peretto [28] showed that this is the case for NN as describ ed here and
derived Hamiltonians for the low and the high noise level.
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2.3 The evolution model

83

In this section we review the ER model description as it was introduced
by Eigen [1] and recently interpreted by Leuthausser [2,3] as an Ising spin
system. In Eigen's model of macromolecular evolution [1] exemplary macro­
molecules of length n are made up of only two kinds of monomers, which
we signify by 1 and - 1, in analogy to the two different orientations of a
spin . The behavior of the system is governed by the N coupled nonlinear
differential equations,

N N N

Ck = (bk - Vk)Ck + L WklCI - L WlkCk - Ck L(b, - VI)C/ ,
1# 1# 1=1

(2.20)

where the Ck are the normalized concentration variables for the species 5k,
i.e., 2:£1=1Ck = 1; the bk are their replication; and the Vk their decay rate
coefficients. Wi th Wlk we denote the rate coefficient for a mutation that pro­
duces a molecule of species 51 through a replic ation process with a molecu le
5k as a template. The last term in (2.20) is the outfiux term which ensures
a constant overall concentration of species in the ER.

In the case Vk = v, Vk (2.20) can be simplified to

N N N

Ck = bkCk + L WklCI - L WlkCk - Ck L blC/.
I#k I#k 1=1

(2.21)

The constraint of constant overall organization imposes a selection pressure
which drives the system towards species mixtures with high averag e repli­
cation rates. With the transformation Yk(t) = Ck(t)exp [J~ 2:£1=1 bkq(T) dT]
the above rate equation becomes linear [29,30],

y(t) = Wy(t). (2.22)

If the evolution process is assumed to be discrete in time (2.22) becomes

y(t) = Wty(O) .

The Ck(t) can easily be recovered from (2.23) with

Yk(t)
q(t) = N .

2: Yi(t)
i =1

(2.23)

(2.24)

If it is assumed that the replication machinery in the ER copies every
spin of the template strand with an average replication accuracy q, q E [0, 1]
th en we can write

(2.25)
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Here dll, is the Hamming dist ance between Sk and SI,

(2.26)

i.e., the number of spins in which these two states differ from each other.
So, «:": in (2.25) is the probability that the spins which have the same
orientation for S, and Sk are copied correctly; (1- q )d1k is the probability that
the spins in which they differ are copied incorrectly.

To compare the ER model with the NN model we rewri te the descr iption
developed so far. In analogy to the description of the NN mod el we use the
updating fun ction from (2.10). We define the input function,

n

hi(t ) = L:'iijUj(t) ,
j = l

Vi (2.27)

for the ER model , and assume that

'iij = 0, Vi =j:. j and 'iii = 1, Vi. (2.28)

This is tantamount to saying that the ER model is a one-dimensional Ising
spin system with nearest-neighbor interact ions in the direct ion of develop­
ment of t ime [3]. A (t ransition term) 'k for the ER model can now be formu­
lated as in the NN case,

(transition term) lk = IT Q (-s~hn .
i=l

(2.29)

With (2.27) and (2.28) and considering the (quality termj, we get for (2.25)

(2.30)

The accuracy of replicat ion, q, is now defined in a new way in terms of a
Gaussian error integral (compare 2.13; see also figure 1):

q =Q (-l) . (2.31)

This means that q can only be in the interval [0.5,1] . However, the original
ER model also allows for replication for which incorrect updating is more
likely than correct updating; e.g., exact complementary replication at q = 0
causes every spin to be reversed in an updating process, O'(t +1) = - O' (t ). If
replication with a higher probability for incorrect than for correct updating
is to be described, the 'iii would have to be set to - 1.
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Using the same substitutions as in section 2.2 we can express W/ k as
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W/ k =

(2.32)

We use (2.8) to model the bk by setting

(2.33)

This relation between s, and s, was introduced by Leuthiiusser [3]. The
scaling factor l in prevents exponent ial growth of bk with n and reflect s ex­
perimental findings which show that the bk stay fairly const ant over a wide
range of n . We point out that any inverse relation of bk and Ek would result
in higher fitnesses for species with low energies. The agreement of model and
real system certainly depends on the specific relation of bk to E k but other
relat ions than the one used in (2.33) might well result in better performance
as an optimizat ion algori thm . We finally get from (2.32) and (2.33)

( )

(
1 1 ~ / k)1 1 J l' n exp 2M !-- sisi

~ L L tl-ltl-l k k ,=1W/k =exp - -- \, ' \, 'S 'S ' •
~ J t J n n u

n 2 n 1-1=1 ;.j=1 l: exp (1 1 l: sf s7).#, j ' =1 2 M i = 1

(2.34)

We see now that, unlike the t ransition frequencies in the NN case , the
transition frequencies in the ER model are determined by two terms (comp are
equations 2.5, 2.19, and 2.34). The first fact or in (2.34), the (quality termh,
is a maximum for st ates which are equal to the stored states ±el-l ; the second
factor in (2.34), the (transit ion term) /k' is a maximum for 1 = k, i .e. when
transitions occur from one state to the same state. That means that the
diagonal terms of Ware always greater than the other matrix element s in
the same row, W kk > W/k , Vl =1= k , We can interpret the updating process
in the ER model as a conservative pro cess: any given state tends to up date
preferably to itself; a (t ransit ion term)lk' Vl =1= k is only nonzero if noise is
present and decreases with increasing Hamming distance between state Sk

and state SI . The (transition term)lk is independent of the energies Ek and
E/. Only the compet ition between different sta tes, reflected in their different
(quality term)s or in their different replication rate constants, br ings about
a development of the system toward states with low associated energies .
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Figure 2: Energy surface, Ek, over a two-dimensional cut through
the n-dimensional hypercube for n = 9 and one stored pattern, p =
1. The two-dimensional cut through the hypercube is represented
in the bottom grid: crosspoints on this grid correspond to vertices
of the hypercube, which are possible states of the system; Hamming
distances between two states are given by the minimum number of
edges connecting them; an edge is a line connecting two adjacent
crosspoints. The two corners under the energy minima correspond to
±{l'

3. C omparison and simulations

In this section of the article we discuss various characterist ics of the ER
and the NN models and emphasize similarities as well as differences' by using
results from exemplary numerical calculations. For our numerical simulations
we use, if not stated otherwise, the simplest Hopfield Hamiltonian with one
trained state, p = 1, as an energy surface. Thereby an energy surface with
two minima of equal maximal depth is created; no spurious states or local
minima [12,16,19] exist (see figure 2). In the simulations we use the exact
trans it ion frequen cy matrices for both models, (2.12) and (2.30), respectively.
T he sca ling factor for the strength of spin interact ions is set to J = 1 for all
the simulations. We monitor the following variables during a calculation:

The probability that the' system is in state el at time t, P[u(t)
ell. This is the representation probability of the system at the energy
minimum at a certain time.

The probability that the system is closer to el than to -el,
N

P [u(t) E {stJ] = I: 'l/Jt(t),
k=l

(3.1)
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where the probabilities 1/J~(t) are given by
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(3.2)

The statistical average of the overlap of th e system with el at time t,

(3.3)

The st at ist ical average of the overlap of the system at time t with th e
pattern ±el, if the system is closer to ±el than to th e complementary
pattern =Fel,

(3.4)

At the stationary state (t = 00) the statistical average of the overlap
with el is met) = 0, because th e system is equally localized at el
and -eli therefore met) is no longer a good measure of the degree of
local ization aro und minimum energy states. m±(t) gives us information
about the width of localization around a stored pattern as t goes to
00, when the system approaches the stat ionary st ate (see section 3.1
below) .

The statistical average of the normalized overall energy of the syst em
at time t,

(3.5)

is an important measure of the performance of the system, if it is used
as an optimization algorithm for minimizing the energy function E.

3.1 Transition matrices

We begin the comparison of NN and ER with a discussion of transition
matrices. Matrices of the form of (2.19) for the NN and (2.33) for the ER are
nonnegative, and for most parameter sets they can be classified as posit ive
matrices. Since for the NN model Ef:l Wlk = 1 Vk, W is a stochast ic matrix
and updat ing is a Markov process [31], which can be described by

:;JJ(t) = W t:;JJ (O).

In the case of the ER model

W =W'B

(3.6)

(3.7)
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where W' is the stochastic matrix of (transition term)s and B is a diagonal
matrix with elements bl:. Therefore W is only a stochastic matrix if all the
bk = 1. In general this is not the case; then the probabilities of representation
must be calculated with (2.24) and

~(t) = c(t)

because the Ck are normalized concentration variables per definition.
Processes like the ones described by (3.6) and (2.23),

x(t) = Wtx(O),

(3.8)

(3.9)

can be rewritten in terms of eigenvalues A k and eigenvectors ep k of the matrix
W ,

(3.10)

These processes undergo a relaxation to a stationary state. A system has
reached its stationary state if the probabilities of representation do not
change with time any more. Theoretically this will only be the case at t = 00;
practically, the 'l/J(t) change only marginally after a finite number of updat­
ing st eps . Therefore we say that the system has relaxed to its stationary
state if the magnitude of changes in some system variables is lower than a
criterial value (see section 3.5). We will see that ER and NN systems relax
to stat ionary states but , because of the different dynamics of these syst ems ,
relaxation t imes and stationary states are different in the two models.

3.2 N oise dependence

In the case of no noise, () = 0, the transition frequency matrices become
sparse matrices. In the ER case we get a diagonal matrix with Wkk = bk ,

Vk . Selection occurs only between species which are present at the beginning
of an evolut ionary run. The space of possible sequences, including states
with higher bk , cannot be explored because mutations to these states are not
possible: the replication machinery works with an accuracy q = 1. If the
system is in one of the N states with probability 1 at any time, it will stay
in this state for all future times. For the NN model updating to other states
is st ill possible, even in the case () = O. The transition frequency matrix
has entries Wlk = 1 only if sl = g(hf), Vi, and Wlk = 0 otherwise. Since
the updating function (2.10) leads to states of lower or equal energy [12],
updating usually occurs until a state with a local energy minimum is reached.
In our simulations we use systems with an odd number of microstates and
one stored pattern, p = 1. For such NN updating at () = 0 leads with
probability 1 to the energy minimum state which is closer to the initial state.
Oscillations between two states with equal energies can occur at () = 0, and
an example of such an oscillation is described in [28] . Oscillations of this
typ e cannot be observed for () = 0 for the ER model. Energy minima which
are reached by NN at () = 0 are not necessarily global minima. Therefore,
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especially in cases with complicated energy functions and many local minima,
the updating process with 8 = 0 may not result in satisfactory solutions. This
is a problem (e.g., in NN which have been trained with too many patterns)
so that the requirement of pseudo-orthogonality of the patterns is no longer
fulfilled. In that case, spurious states [12], combinations of patterns, may be
generated which correspond to local minima in the energy function [19].

Noise plays an important role in both systems. In the ER model it makes
updating from one state to another possible, and in both models noise allows
escape, with finite probability, from states corresponding to local minima
in the energy function. An appropriate search of the state space can only
occur if noise is present, i.e. 8 > 0, in the system, see (2.19) and (2.34).
As soon as noise is introduced in the system updating with erro rs generally
allows transitions from any state to any other state. The negative side of this
advantage is that, even as t goes to 00, not only states at energy minima are
populated but also nearby states. The width of the distribution around an
energy minimum state depends on the level of noise and is different for the
two systems (see also sections 3.3 and 3.6).

In the NN model the probability of flipping of one spin in an updating
process depends on the "signal -to-noise" ratio for this spin, ltd8 (see equa­
tions 2.12 and 2.19, [21]). For the ER model, flipping of any spin is equally
likely in the updating process for all states (see equations 2.30 and 2.34).

3 .3 Noise threshold

The amount of noise which can be added to either system in order to have
the possibility of improving optimization in the course of the self-organization
process is limited by the acceptable width of the distribution around good
solutions at the stationary state (see section 3.6) and ultimately by noise
thresholds which can be defined for both systems. Self-organization occurs
only below this threshold, characterized by 8t h ; above the noise threshold the
updating process leads to a random walk on the n-dimensional hypercube: no
gained information is preserved, and the distribution around good solutions
is no higher than around bad solutions at the stationary state. Therefore the
noise threshold at 8th represents an upper limit for the amount of acceptable
noise in the discussed systems. If the models are used as optimization al­
gorithms a lower effective threshold value, 8eff ' is defined by the acceptable
width of the distribution around states with min imal associated energy: the
probabilities of representation at minimum energy states are higher if the
noise is kept at low levels. If an energy minimum state has to be represented
with a minimum probability, noise levels have to be used which allow suffi­
cient .localization. At higher noise levels, on the other hand, transitions to
other states are more likely and a bigger part of the state space is searched
in less t ime. Therefore, both algorithms are used most efficient ly at noise
levels just below the effective noise level.

We have reported a noise threshold for the Hopfield NN [21], which is
similar to a Little NN except the neurons are updated randomly and asyn -
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Figure 3: Bifurcation diagram of the statistical average of the overlap
of the system with el at time t = 00, m(00), and stan dard deviation
of the noise thres hold, 8th , of the NN model as the size of the system
goes to infinity, n ...... 00(see equation 3.11, compare [21]); J = 1. Solid
lines correspond to stable solutions and the dashed line to unstab le
fixed points .

chronously, one neuron at a time. T he long-t erm behavior of the Hopfield
NN is equivalent to that of the Little NN [17,28J. In [21J we calculated a
noise threshold at

(3.11)

(3.12)

for noise with a Gaussian distribut ion . Below this noise threshold self-orga­
nization takes place and the final stat ist ical average of the overlap of the
system wit h a stored pattern, or the pattern complementary to the stored
pat tern , is nonzero. Fig ur e 3 shows stable fixed points for the st atisti cal
average of the overlap (see 3.3) wit h the stored pattern as a fun ction of () for
an infinite ly large NN.

In an ER the replication rate for a state at an energy minimum has
to be greater than the average replication rate of the system without this
state, otherwise self-organization and localization aro und this state do not
occur [1 ,l1J. For the Ising model description ofthe ER model, with the same
replicat ion rates as in (2.33), a threshold copying accuracy,

n
qth = J +n'

has been derived in [3J for the limit Jln ~ 1. For a given n we can calculate
a crit ical error threshold, qth, or a critical standard deviation for the noise
distribution, Bth , as we introduced it . Alternatively, we can calculate a max­
imum system size, nm ax , for a given q with (3.12); nmax = lnJ is the largest
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Figure 4: Maximum size of the system, Tlmax, as a function of the
standard deviation of the noise threshold, 8th, for the NN (a) and ER
models (b) (see equations 3.11 and 3.12).

integer which is not greater than n. Below qth or above nm ax a localized
quasi-species can no longer be selected. Figure 4 shows nmax as a function of
the noise distribution standard deviation, fJ, for the ER and the NN model
at J = 1. We see that 8th for the ER is a function of n , whereas 8th for the
NN is a constant.

We find for the specific example of J = 1 (compare figure 4) that for small
systems, n < 10, lower noise levels are necessary to achieve organization for
the ER model than for the NN model: e.g. for n = 10, 8th ~ 0.8 and
8th ~ 0.74. Most optimization problems require system sizes with larger n.
Therefore, ways to circumvent the problem of low noise thresholds should be
very useful for some applications, and we mention ways to increase the noise
threshold for both models in section 3.4. In section 3.6 we discuss why the
ER model performs worse at large system sizes than at small system sizes
for a given noise level.

We also note that small size ER models, nmax :::; 8, are able to localize
at values 8 > 8th. To see when and for which n the ER model still shows
self-organizing behavior even when the noise level is too high for the NN,
we calculate nmax[Bth(J)], the maximum system size for the ER at the noise
threshold for the NN. From (2.25) and (2.31) we have for q(8th), the accuracy
of replication for the ER model at the noise threshold of the NN model,

q (8th) = Q (-1; 8th) .

With (3.12) and (3.13) we get

[- ] l Jq [Bth(J)] j
n max 8th(J ) = [-].

1 - q fJth(J)

(3.13)

(3.14)
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Figure 5: Maximum size of the system for the ER model at 8th(J ),
7lmax [8th (J)] (see equation 3.14): for a given J self-organization is
possible for the ER model up to 7lmax[8th(J )], but it is not possible
for the NN model at () > 8th (J) .

If the syst em size of the ER is less than nmax [8th(J) ] self-organization is
possible in the ER model for a standard deviation of the noise dist ribution
which is greater or equal than 8th(J ). Figure 5 shows a plot of nmax[Oth(J)]
as a function of J . For all J there exist ER model sizes for which self­
organizat ion is possible at noise levels which are higher than the threshold
noise levels for the NN model. The smallest "advantage" of this kind for
the ER model occurs if J is approximately in the int erval [1.5,3 .2] which
corre sponds to a 8th-range of [1.2, 2.6] or a q-range of [0.80, 0.65]. For this
J-int erval nmax[Oth (J)] is 5. A region in which self-organization may occur
for significantly longer sequences in the ER model than for the NN model lies
in the regime of low J - and high q-values. For the regime of high J - and low
q-values (3.14) is no longer a good approximation for nmax since nmax -+ J:
q[8th(J )] approaches 0.5 as J goes to 00. Therefore the ER model may have
a significant advantage over the NN model if optimization is sought at low
spin interaction parameters and low noise levels.

3.4 Higher-order inter act ion

We mention higher-order interactions as an interest ing but certainly not fully
explored way of dealing with low noise t hresholds, in particular how to oper­
ate wit h self-organization above these thresholds. We have shown in [21] how
neuron-neuron interact ions via secondary connections, T ijk, can be used to
move the error threshold to higher values. With these connections the abili­
ti es of an NN to funct ion as a content -addressable memory can be ret ained
ab ove the threshold calculated for systems with first -order input funct ion
terms.
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Higher-order interactions, Wklm, symbolizing species-species interactions,
have been proposed for the ER model [5,9,10]. Recently it has been shown [32]
that these interactions may also cause the noise threshold to rise .

Although the type of these interact ions are complet ely different in the
two models, the resulting qualitative result is the same. In both models noise
thresholds are shifted to higher values and hysteresis effects in the statist ical
average of the overlap with a st ored pattern, met), can be observed .

3.5 R elaxation process

The temporal development of the ER and NN models can be described with
eigenvalues Ak an d eigenvectors 'Pk of the matrix W (see section 3.1 and
equation 3.10). The probabilities of representation 1/J(t) can be calculated by
using (3.10):

1/J(t) = ,F!!L =
l:>i(t)
1=1

~' 'P,>'1 +a2'P2>"+"·
L:a,CPt >'1+a2 CP~ >'2+'"
i=l

'Pl+(~) (~)''P2 + '"

it, cp! +(~) (~) ' cP~+· · . ·

(3.15)

(3.15) shows that the rate of relaxation of each system to its stationary state
of probabilities of representation depends on the ratio of the second largest to
the largest eigenvalue of W, (f,-) ,and on (~), which in turn depends on the
overlap of the system with 'Pl at t = O. For small systems det ermination of
the temporal development and the stationary state is possible if all the te rms
in (3.15) can be calculated. For systems with large n it becomes impossible
to calculate the complete t ransit ion matrix becaus e N grows exponenti ally
wit h n. We therefore investigate the behavior of both systems for small
n (n ~ 10) and try to extrapolate our results to larger systems. We use
a standard deviation of the noise distribut ion, () = 0.6, which allows self­
organization for both models (compare figure 4). The presence of noise makes
it poss ible for both syst ems to up date to other st ates and explore the whole
state space. For practical purposes we say that the system has reached its
stationary state, in our simulations, when the it erated processes in (2.23) or
(3.6) yield a distribution of states , 1/J(t), for which Im+(t) - m-(t) 1~ 0.01
and l1f'k(t + 1) - 1f'k (t )1 < 0.01 ' 1f'k(t ), Vk. We record the syst em variables
listed at the beginning of sect ion 3 (figure 6), and the relaxation times, tn ,
the number of t imesteps from beginning to end of a simul ation, when the
system has reached its stat ionary state (figure 7).

Figu re 6 shows initial stages of optimization runs for the ER and NN
models. In figure 6A (ER model) and figure 6C (NN model), for n = 5,
the system is started in a state with a maximum Hamming distance from el
such that d[O'(t ),ell < d[O'(t ),- ell. In figure 6B (ER model) and figure 6D
(NN model), for n = 7, the system is started in one of the next nearest­
neighbor states of el so that d[O'(t),el] = 1. In all cases we observe an early
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Figure 6: Initial stages of the relaxation process in the ER and
NN model for different st ate size, n , and different initial conditions
a(O); J = 1, () = 0.6, and p = l.for all simulations . Th e size
of the syst ems, n, and the Hamming distance between the ini tial
state and an energy minimum state , d[a(O)'€l ] (see equation 2.26)
vary in the simulations. The curves are recordings of the follow­
ing system variables: (A) P [aCt ) E {stl] (3.1), (B) m+(t) (3.4),
(C) the probability of finding the system in the state €l at time
t , P [a Ct) = €l], (D) met ) (3.3), (E) E(t) (3.5). Diagrams : A : ER
model, n = 5, draCO),€l] = 2; B: ER model, n = 7, draCO), €l ] = 1;
C : NN model , n = 5, d[a( O)' €l ] = 2; D : NN model, n = 7,
draCO) ,€l] = 1.

localizat ion at the stored pat tern, el' which causes attainment of m axima in
curve s c for P [a(t) = ell, e.g. in figures 6A and 6D at early t imes. Further
indicators of this early localization are maxima in curves b and curves d for
m+(t) and m(t), re spectively, in figures 6A , B , D, and a minimum in curve e
for E(t) in figure 6d . Updating of a state in the ER model leads to states
around this state: newly generated states closer to an energy minimum have
a higher bk than states which are further away from an energy minimum
st ate and will have a select ive advantage. Because the initial st ate is closer
to el th an to -el,localization occurs first around the stored pattern. In the
NN model updating is most likely to occur to the closest energy minimum
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Figure 7: Relaxation times, tn , for ER (diagram A) and NN model
(diagram B) for relaxation from the initial state, u (O), to the sta­
tionary state vs. size of the system, n . J = 1, () = 0.6, and
p = 1 for all simulations. The Hamming distan ce from the ini­
tial state to an energy minimum state is d[u (0),t1J = (n - 1)/ 2
(symbol ~), and d[u (O),ttl = 1 (symbol 0). The relaxation cri­
teria were: Im+(t ) - m-(t)1 ~ 0.01 and l'ljIk(t + 1) - 'ljIk(t) I <
0.01· 'ljIk (t) Vk.
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state, an d only noise allows a spreadout from this state. Therefore, early
localization occurs in general much sooner for the NN than for the ER model.
A further consequence of the up dating algor ithm in the ER model is a short­
term spreadout effect before early local ization. In the earliest phases of a
simu lation the influence of the (transition term)s may be much larger than
that of the (quality term)s. As soon as states with high enough replication
rate coefficients, bk , are sufficiently represented, the influence of the noise
controlled (transit ion term)s becomes secondary, which leads to the early
localization around the stored pattern. Minima in curves a, b , and d in
figures 6A and 6B for P [u (t ) E {snj, m+(t) and m(t), respectively, as well
as the maximum in curve e for E(t) in figure 6B are indicati ve of this effect
which does not occur in the NN model.

After the early localizat ion at the stored pattern, both systems relax to
their stationary states. The relaxation to the stat ionary state occurs on
a larger timescale than the early localization . At the stationary state the
systems are equally localized at the two energy minima. We can see this in the
long-term behavior of both systems: as t -t 00 we have P [u (t ) E {snj =

0.5, m(t) = 0 (see figure 8) and m+(t) = m-(t) . However, the amount of
localization around an energy mini mum is different for the two systems (see
section 3.6).
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Figure 8: Stationary state values of m+(t) (symbol zx, s.a. (3.4)), the
probability of finding the system in the state el at time t, P [aCt ) = ell
(symbol +), met) (symbol 0 , s.a. (3.3)), and E (t ) (symbol 0 , s.a,
(3.5)) for simulations with the ER (diagram A) and NN model (dia­
gram B); J = 1, 8 = 0.6, and p = 1 for all simulations.

Relaxation times , tn , are in general different for the ER and NN models
(comp are figure 7). At least for small systems the NN relaxes significantly
fast er to its stationary state than the ER model at high a-values, a> 0.5. For
the NN model relaxation times seem to grow exponentially with n . In the ER
model, relaxation times for a cert ain a reach a maximum and decline after
that as t he syst em size increases. For small system sizes, relaxation t imes
increase with n, as they do in the NN case. The decline of relaxation times
with increasing system size in the ER model is a result of the approach to the
maximum state size, nm ax , for a given O. Increases in relaxation times in the
NN case are caused by a growth in the input signals to a single neuron, hi,
which grows with n for st ates with the same Hamming distance to the stored
pattern. The result is a faster relaxation to the next energy minimum and
a slower t ransition process to other states with the same energy (compare
sect ions 3.2 and 3.3).

3.6 Use of ER and NN m odels as opt im iza t ion al gorithms

In sect ion 2 we have defined one of many possible energy functions , which as­
signs energy values Ek to every possible state (see e.g. figure 2 and figure 10).
The ER as well as the NN model can be interpreted as algorithms used to
min imize this energy function, i.e. find states with low energies. Optimiza­
tion algorithms have to do exactly this, therefore th ese two mod els can be
understo od as tools used to find good or optimal solutions to a combinatorial
cost problem. If a different energ y function has to be minimized, different
sets of connect ions Iij have to be used in the NN case to make a min imiza-
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t ion of the new energy function possible. That this can be done has been
shown in a variety of applications (see e.g. [23,25-27]). For the ER model,
any inverse relation between Ek and bk , as in (2.33), is acceptable. Which
set of possible Tij and bk are to be preferred for an energy function is not
always obvious; sometimes it is a matter of tast e, and often it is a matter
of luck to find a useful one. In this and the following section we discuss th e
performance of both models as optimization algorithms, if we use the energy
function defined in sect ion 2.1. We describe performan ce not only in terms of
st atist ical average of the overall energy, E(t), bu t also in terms of probabil ity
to be in an energy minimum state, P [O'"(t ) =ell, and in terms of overlap with
this state, m+(t) and met), since good performan ce has different meanings
for different opt imizat ion problems; e.g., one could imagine a problem having
the same energ y function as the one we discussed in (2.8) wit h the exception
that some of the possible state s, which may have low energies, are physically
meaningless: in this case we are inte rested rather in P [O'" (t) = ell than in
E(t ) or m+(t ).

We observe, that minimal values of E(t) do not necessarily coincide
with maximal values of P [O'" (t ) = ell, m+(t ) or of met) (see e.g. figure 6D)
in the course of a simulation. Also stat ionary st ate values (figure 8) for
P [O'" (t ) = ell, m+(t) or of met) do not have to be equal to extremal values
during a simulation (figure 9). Stationary state values are a valuable indi ­
cator for how well a system would perform if it were to be used as a black
box for an optimization algorithm, with the answer to a problem being taken
after system variables have approached asymptotic values. Furt hermore, sta­
t ionary state values provide us wit h good clues on the extent of localization
around energy minima. Maximal values are important because efficient use
of the algorithm also means intermediate recording of good soluti ons . By
comparison of figures 8 and 9 we find that better solutions to the optimiza­
tion problem are supplied by the algori thms with higher probability at an
early time in the simulat ions, well before the st at ionary state is reached, than
at the stationary st ate itself. For problems for which we know the general
shape of the energy function, it may therefore be possible to stop an opti­
mization algorithm before the stationary state is reached. But a general ru le
cannot be given as to when to stop the relaxation process in order to get
good solutions with a high probability.

Both systems yield more extremal intermediate values the closer the pro ­
cess is started to one of the energy minima (compare figures 9A with figure
9B and figure 9C with 9D). This is to be expected (compare section 3.5)
since early locali zation around the stored pattern is more likely the smaller
the Hamming distance of the initial state to an energy minimum, d[O'"(O), ell.

The ER model gives better performance as an optimization algorithm for
small n , but the NN model outperforms the ER model at large n, for the
chosen set of parameters and our range of n (compare figure 9A with 9C and
figure 9B with 9D): at n = 3 maximal intermediate values of P [O'" (t ) = ell,
met), and m+(t) are higher for the ER model than for the NN model, and
minimal intermediate values of E(t) are lower in the ER model than in the
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Figure 9: Maximal values of P [oo (t ) = ed, the probability of find­
ing the system in the state {I at time t, (symbol + ), m(t) (symbol
0, s.a, (3.3)), and m+(t) (symbol zx, s.a. (3.4)), and minimal values
of E(t) (symbol 0 ) for simulations with the ER and NN model for
different state size, n, and different initial conditions, 00 (0); J = 1,
() = 0.6, and p = 1 for all simulations . Diagrams: (A) ER model,
d[oo(O)'{l ] = (n - 1)/2; (B) ER model, d[oo(O),{d = 1; (C) NN
model, d[oo(O), { I ] = (n - 1)/2; (D) NN model, d[oo(O) ,{d = 1.

NN model; at n = 5 extremal intermediate values of these observables are
approximately the same for both models; for n 2:: 7 the situation is reversed
with higher maximal intermediate values of P [oo(t) = ell, m(t) , and m+(t)
for the NN model than for the ER model, and with lower minimal interme­
diat e values of E(t) for the NN model than for the ER model. As the system
size get s bigger, the system size approaches the maximum system size in the
case of the ER model, n -t nm ax , and the width of localization around an
energy minimum state grows. This effect is clearly visible well below the the­
oret ical value of nmAX in our simulations, e.g. see figure 8A and figures 9A,
B; for the parameter sets used in these figures 3.12 gives a maximum syst em
size, nm ax , of 19. This means that the noise level has to be adjusted in the ER
model, not only for different energy functions but also for different system
sizes. The NN model on the ot her hand gives the same statistical average
of the overlap, m+(t), even as the size of a problem increases (see figures 8B
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Figure 10: Energy surface, Ek, over a two-dimensional cut through the
n-dimensional hypercube (s.a. explanations for figure 2) for n == 10
and three stored patterns, p == 3 with ~l == ~2 and d(~1'~3) == n/2.
The two corners under the deeper energy minima correspond to ±~l '

and the other two corners correspond to ±~3 '

99

and 4); but P [u (t ) = elldecreases with n, making adjustment of the noise
level necessary if P [u(t) = ellhas to be maximized .

A dynamic internal noise regulation, as it is employed in simulated an ­
nealing [33], may therefore be useful for many optimization problems: as the
probability of representation of good solutions increases the noise level is de­
creased. This approach leads to a better localization around energy minima
states. Problems with this method can occur if the noise reduction occurs too
rapidly; the system might then get trapped in local minima for all pr actical
purposes, because t ransitions to other states become very unlikely; opt imal

.solutions may not be found.

3.7 Energy surfaces with local minima

In order to compare the two models in their performance on an energy land­
scape with local minima, we choose a Hopfield Hamiltonian with three stored
patterns, P = 3, for the energy function. We use systems with an even number
of microstates and choose the patterns so that el = e2 and d(el,e3) = n/2;
spurious states are not created because el and e3 are exact ly orthogonal. The
energy minima at ±el are exactly twice as deep as the local energy minima
at ±e3 (see figure 10). In this case crit ical noise thresholds, Bth, are no longer
the same as the ones pointed out in section 3.3; also relaxation times and
stationary states must be different in cases of energy functions with multiple
minima compared to cases of energy functions with only two energy minima
of equ al depth, which are on exactly opposite corners of the n- dimensional
hypercube, as discussed above.
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Figure 11: Initial stages of the relaxation process in the ER (dia­
gram A) and NN model (diagram B) for an energy landscape with
four minima; two minima are twice as deep as the other two local
minima (p = 3, ~l = ~2 and d(~i'~3) = n/2. J = 1, () = 0.6, n = 8.
Initially the systems are in one of the local energy minimum states,
u(O) = ~3 ' The curves are recordings of the following system vari­
ables: (A) the probabili ty of finding the system in the state ~l at
time t, P [u(t) = ~l] ' (B) the probability of finding the system in the
state ~3 at time t , P[u(t) = ~3]' (D) m+(t) (s.a , (3.4)), (D) E(t ) (s.a.
(3.5)).

In our simulations we always started the systems in one of the local min­
ima. Init ial st ages of these optimizat ion runs are recorded in figure 11. We
find again that it t akes the ER model longer to migrate from the local to the
deepest minima st ates. This can be seen in curves d of figure l lA (ER model)
and figure llB (NN mo del). The maxima in curves d reflect the high energy
values of states between the loca l and th e deepest minima (see figure 10)
over which the systems migrate during relaxat ion . Changes in P [u (t ) = el l
(curves a), P [u (t ) = e3] (curves b), and m+(t ) (curves c) are slower in the
ER than in the NN case. Accordingly, this results in longer relaxation times,
in, for the ER model than for the NN mode l (compare figure 12A and 12B),

/ although the relaxation times are now of the same order of magnitude for
n ::; 10 in the two models, compared to differences of two orders of magni­
t ude in the tn in the cases discussed in sect ion 3.6 (compare also figure 7).
Also, relaxation times increase only linearly with n for the ER model before
they start decreasing, whereas they again increase exponentially for the NN
model.

The performance in terms of find ing best solutions or minimizing E (t )
is still higher for the NN than for the ER model. St ationary st ate values of
m+(t), P [u(t) = ell, P [u (t ) = e3], and E(t ) are shown in figure 13. For both
models the low energy minimum states ±e3 are practically not represented
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Figure 12: Relaxation times, in, for ER (diagram A) and NN models
(diagram B) for relaxation from the initial state, u(O) = {3, to the
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at the stationary state, P [u (t) = e3l ~ 0 ~ P [u (t ) = ell, but the NN
model gives significantly better values for P [u (t ) = ell and E(t) than the
ER model. For the NN model at system sizes n ~ 6 and with the used set of
parameters, the system localizes almost completely at the two deeper energy
minimum states, ±el' at the stationary state. This can be seen in figure 13
for system sizes n ~ 6 for which P [u (t ) = ell and m+(t) are close to the
maximum values of 0.5 for the stationary state.

In general, it is easier for both systems to migrate from one energy min­
imum state to another if low energy states exist between them. Therefore
the relaxat ion process to the stationary states of these systems is shorter in
the case of optimization on an energy surface with local minima than in the
case of optimization on energy surfaces with few energy minima which are
isolated and far away from each other.

4. Summary

We have reviewed the Eigen ER model and the Little-Hopfield NN, and
we have outlined a general description of optimization algorithms for com­
plex combinatorial problems which cont ains both models as special cases; a
formulation in terms of spin systems is used for both models to point out
similarities and differences . These models, as well as their natural counter­
parts , show self-organizing beh avior, which is defined as localization of the
system around certain states under given constraints. An energy function
can be associated with the possible states of the systems in such a way that
the systems tend toward states with low associated energies in th e course of
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Figure 13: Stationary state values of m+(t) (symbol zx, s.a , (3.4)), the
probability of finding the system in the state e1 at time t , P [u (t ) =ell
(symbol +), the probability of finding the system in the state e3 at
time t, P [u(t ) = e3] (symbol x) , and E(t) (symbol 0 , s.a, (3.5)) for
simulations with the ER (diagram A) and NN model (diagram B};
J = 1, 8 = 0.6, and p = 3 (el = e2 and d(el,e3 ) = n/ 2 for all
simulations.

t he localizat ion process. This process can be thought of as an optimization
process and the models can be used as optimization algorithms for complex
combinatorial problems.

The self-organizat ion proces s is governed by transition frequency matri­
ces, which are derived for the two models: they are nonnegative and in the
case of the NN that matrix is st ochas ti c. Simple Hopfield Hamiltonians,
gener ated by the Hebbian learn ing rule, are used for our comparison of the
models.

By defining input functions and updating rul es for the single microstates
of a system, specific interact ions between the microstates are imposed on
the models. The NN is a high ly interactive system in which the types of
all microstates at one time have an influence on the updating of one single
microstat e. Interactions inside a macrostate of the ER model are only defined
from every microstate to itself. In the ER model, (transition term)s between
two st ates are independent of the energy of the two states and depend only
on the Hamming distance between the two states. Select ion pressure drives
the system toward mixtures of states with high average (quality term)s or
with lower associated energy values . In the NN, no select ive advant age is
given for any state. Updat ing occurs with higher probability to states with
equa l or lower energy than to states with high er energy.

Noise is an essential factor in both syst ems if freezing at subopt imal state­
soluti ons is to be prevented. Although the NN finds local minima even in t he
absence of noise, such states may, for example, correspond to bad solutions of
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an optimization problem with many local minima. For the ER model, on the
other hand, movement through state space is only possible in the presence
of noise. Therefore noise is generally a positive feature of th ese systems,
enabling them to reach energy minimum states, and plays the same role as
temperature in a statistical system.

For both systems, noise thresholds can be defined . Localizat ion is only
possible below these thresholds. In the ER case the system size is limited by
the amount of noise present; bigger systems have lower thresholds. In t he
NN the noise threshold is constant for all sizes of the system at a certain
spin interaction parameter J. For example, with the Hopfield Hami ltonian
as energy function and the noise level at () = 0.6, the ER system can operate
at higher noise levels than the NN only for small system sizes, i.e. n < 8. In
order for the ER to localize at bigger sizes of the system, a very small () has
to be used that may not be available for certain applications. Depending on
J, a maximum system size can be given for the ER model up to which self­
organization occurs in the ER model even if self-organizat ion is not possible
in the NN case. This effect may be most pronounced at regime s of low J ­
values and low noise levels. Whether the overlap with good sequences is
higher in the NN than in the ER model depends strongly on the system size.

Higher noise levels make it possible to relax to the stationary state faster,
but for noise levels above the threshold a random updating process follows.
The environment or the requirement of usefulness of the optimization algo­
rithm determines an effective noise threshold which is lower than the critical
threshold. Both models operate most efficiently at noise levels, just below
this effective noise threshold. At these levels good solutions are found quick­
est and with a sufficiently high probability.

In our simulations we find relaxation times up to two orders of magnitude
larger for the ER than for the NN model at smaller system sizes, i.e. n ~ 10,
but they are expected to grow exponentially with n for constant () in the NN
case. Relaxation very often occurs in two phases: a quick relaxation to nearby
energy minima and a slow relaxation to the stationary state (see figure 6,
and compare figures 8 and 9). Thus, expectation values for an overlap with
good solutions may be higher at a very early phase in the relaxation process
than in the stationary state. This suggests a dynamically self-regulating
noise level as in simulated annealing to 'achieve faster and better localization
around energy minima states.

Optimization algorithms are always limited by the way a problem is for­
mulated for the algorithms: e.g., one numerical problem might be solved by
using one of several computer programs which again might be run on one
of several different computers. Although the numerical problem stays the
same, the implementation of the problem, the choice of a specific prog ram
and a specific computer on which it is executed, might be quite different.
This can well result in a different computat ional effort to solve the problem
and might possibly lead to answers of different precision. We have used the
same energy functions for two different algorithms. Our formulation of the
(quality term)s and the (transition term)s resulted in better performance of
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the NN in big parts of the parameter space. Simi larly, we imagine different
adaptations of the same problem for the same model, resulting in different
performances of the model. For examples we refer the reader to various im­
plementations of the traveling salesperson problem on an ER model [24,34,35)
and to implementations of the same problem on NN [23,25,26) . The ER ver­
sions do not operate with the mutation operator for single microstates which
we discussed (compare equation 2.25) but with operators wh ich may change
a whole range of microstates in the course of one updating step. The NN
implementations work with continuous state neuron NN [23,25,26) in which
microstates can take on real values between zero and one. Some of the ER
algorithms may not find solutions to the traveling salesperson problem very
quickly [24,34), but all of them always give valid tours. The NN algorithm as
described in [25,26) may give illegal tours and is more likely to do so as the
size of the problem increases [36). The implementation on a NN as described
in [23], on the other hand, does not produce impossible tours.

In this and other contexts, capacities of hybrid ER-NN algorithms should
be investigated. We believe that algorithms which use ER and NN models at
different times of an optimization process, as well as models which combine
features of both algorithms, may perform better in many optimization tasks
than a single algorithm alone.

Acknowledgments

This work was supported in part by the National Science Foundation and
the Air Force Office of Scientific Research . E.P. acknowledges support by
the Exportakademie der Osterreichischen Bundeswirtschaftskammer and the
Oster reichischen Bundesministerium fiir Wissenschaft und Forschung.

References

[1] M. Eigen, "Self-organization of matter and the evolution of biological macro­
molecules," Naturwissenschaften, 58 (1971) 465-523.

[2] I. Leuthausser, "An exact correspondence between Eigen's evolution model
and a two-dimensional Ising system," Journal of Chemical Physics, 84(3)
(1986) 1884-1885.

[3] I. Leuthausser, "Statistical mechanics of Eigen's evolution model," Journal
of Statistical Physics, 48(1/2) (1987) 343-360 .

[4] W. Fontana and P. Schuster, "A computer model of evolutionary optimiza­
tion," Biophysical Chemistry, 26 (1987) 123-147.

[5] M. Eigen and P. Schuster, "The hypercycle, a principle of natural self­
organization, Part A: Emergence of the hypercycle," Naturwissenschaften,
64 (1977) 541-565.

[6] M. Eigen and P. Schuster, "Stages of emerging life - Five principles of early
evolution," Journal of Molecular Evolution, 19 (1982) 47-61.



Comparison of Self-Organization and Optimization 105

[7] M. Eigen, J. McCaskill, and P. Schuster, "Molecular quasi-species ," Journal
of Physical Chemistry, 92 (1988) 6881-689 1.

[8] L. Demetrius, P. Schuster, and K. Sigmun d, "Polynucleotide evolution and
branching processes," Bulletin of Mathematical Biology , 47(2) (1985) 239­
262.

[9] M. Eigen and P. Schuster, "The hypercycle, a principle of natural self­
organi zation, Part B: The abstract hypercycle," Naturwissenschaften, 65
(1978) 7-41.

[10] M. Eigen and P. Schuster, "The hypercycle, a principle of natural self­
organization , Par t C: The reali stic hype rcycle," Nat urwissenschaften, 65
(1978) 341- 369.

[11] J. Swetina and P. Schuster, "Self-replication with errors - A model for
polynucleotide replication," Biophysical Chemistry, 16 (1982) 329-345.

[12] J.J . Hopfield, "Neural networks and physical systems with emergent col­
lective computational abili ties ," Proceedings of the National Academy of
Sciences USA, 79 (1982) 2554-2558.

[13] J.J. Hopfield, "Neurons with graded response have collective computational
properties like those of two-state neurons," Proceedings of the National
Academy of Sciences USA, 81 (1984) 3088-3092.

[14] W.A. Little, "The existence of persistent states in the brain," Mathematical
Biosciences, 19 (1974) 101-120.

[15] W.A . Little and G.L. Shaw, "Analytic study of the memory storage capacity
of a neural network," Mathematical Biosciences, 39 (1978) 281-290.

[16] D.J. Amit, H. Gutfreund, and H. Sompolinsky, "Spin-glass models of neural
networks," Physical Review A, 32(2) (1985) 1007-1018.

[17] D.J . Amit, H. Gutfreund, and H. Sompolinsky, "Storing infinite numbers of
patterns in a spin-glass model of neural networks," Physical Review Letters,
55(14) (1985) 1530--1533.

[18] D.J . Amit, H. Gutfreund, and H. Sompolinsky, "Information storage in neu­
ral networks with low levels of activity," Physical Review A, 35(5) (1987)
2293-2303.

[19] D.J. Amit, H. Gutfreund, and H. Sompolinsky, "Statistical mechanics of
neural networks near saturation," Annals of Physics, 173 (1987) 30--67.

[20] M. Cottrell, "Stability and attractivity in associative memory networks,"
Biological Cybernetics, 58 (1988) 129-139 .

[21] J.D. Keeler , E.E . Pichler, and J. Ross, "Noise in neural networks: Thresh­
olds, hysteresis, and neuromodulation of signal -to -noise," Proceedings of the
National Academy of Sciences USA, 86 (1989) 1712-1716.



106 Elgar Pichler, James Keeler, and John Ross

[22] D.G. Bounds, "New optimization methods from physics and biology," Na­
t ure, 329 (1987) 215-21 9.

[23] R. Durbin and D. Willshaw, "An analogue approach to the t ravelling sales­
man problem using an elastic net method," Natu re, 326 (1987) 689-691.

[24] W . Fontana, Ein Compu termodell der Evolutioniiren Optimierung (Disser­
tat ion, University of Vienna, Austria, 1987).

[25] J.J. Hopfield and D.W. Tank, ''' Neural' computation of decisions in opti­
mization problems," Biological Cybern etics, 52 (1985) 141-152.

[26] J. J. Hopfield and D.W. Tank , "Computing with neural circuit s: A model,"
Science, 233 (1986) 625-633.

[27] W. Jeffrey and R. Rosne r, "Op timization algorithms: Simulated annealing
and neural network pro cessing," The As trophysical Journal, 310 (1986) 473­
481.

[28] P. Peret to, "Collective properties of neural networks: A st atistical physi cs
app roach ," Biological Cy bernetics, 50 (1984) 51-62.

[29] B.L. Jones, R.H. Enn s, and S.S. Ragnekar, "On the theory of selection of cou­
pled macromolecular systems ," Bulletin of Mathematical Biology, 38 (1976)
15-28.

[30] C.J. Thompson and J.L. McBride, "On Eigens 's theory of the self­
organization of mat ter and the evolution of biological macromolecules,"
Mathematical Biosciences, 21 (1974) 127-142.

[31] F. R. Gantmacher, Th e Th eory of Matrices, Vols. 1 and 2 (Chelsea Pu blishing
Company, New York, 1959).

[32] A. Garcia-Tejedor, F . Moran, and F. Mont ero, "Influence of the hyp ercyclic
organization on the error threshold," Journal of Theor etical Biology, 127
(1987) 393-402.

[33] S. Kirk patrick, C.D. Gelat t J r. , and M.P. Vecchi , "Optimization by simulated
anneali ng," Science, 220 (1983) 671-68 0.

[34] W. Font ana, W . Schnabl , and P. Schust er , "Physical aspects of evolutionary
optimization and adaptation," Physical Review A, 40 (6) (1989) 3301-3 321.

[35] D.B. Fogel, "An evolutionary approach to the traveling salesman problem,"
Biological Cybernetics, 60 (1988) 139-144.

[36] G.V. Wilson and G.S. Pawley, "On the stability of the t ravelling salesman
problem algorithm of Hopfield and Tank," Biological Cybernetics, 58 (1988)
63-70.


