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Abstract. Learning by choice of internal representations (CHIR) is a
learning algorithm for a multilayer neural network system, suggested
by Grossman et al, [1,2) and based upon determining the internal
representations of the system as well as its internal weights. In this
paper, we propose an energy minimization approach whereby the in­
ternal representations (IR) as well as the weight matrix are allowed
to be modified. Carrying out the analysis, consistency with the back
propagation (BP) method (3) is demonstrated when a continuous val­
ued system is considered, while a generalization of the CHIR learning
procedure is obtained for the discrete case. Computer simulations
show consistency with the results obtained by Grossman et al. for the
restricted cases of parity, symmetry, and parity-symmetry problems .

1. Introduction

Learning by choice of internal representations (CHIR) [1,2J is a neural net­
work learning algorithm based upon introduction of changes in both the IR
of a discrete binary valued multilayer system, as well as its weights, for an
ensemble of learned vectors. The changes are designed to improve the output
value of each layer with respect to the current weights and the current IR
of the preceding layer, so that a neural network-based recognition or clas­
sification system is obtained. Once the IR are redefined, the perceptron
convergence rule [4J is applied for modifying the weights . The above men­
t ioned method has been published [1) without a convergence theorem and
provided quite successful simulation results. In this work, we concentrate in
studying an energy minimization approach which seeks generating changes
in the IR, while presenting an inherently consistent convergence mechanism.
Two distinct cases of neuron representation, a continuous value case and a
discrete one, are treated in this paper. The performance of the algorithm was
tested using computer simulations of problems int roduced in [1,2J . Several
papers have been recently presented using IR changes in the training pro­
cedure [5,6J, thus having cert ain resemb lance with the method used in this
work .
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2. An energy minimization approach for a continuous valued net

We will define an energy function in a similar way as defined in the BP
algorithm [3]:

P P N H

E = E EP = E E (vf'p - rf) 2

p=l p= l ' = l
(2.1)

where r P is the desired output vector related to the p vector out of P training
vectors used in the training procedure; vH,p is the continuous value output
vector of an H layer syst em, related to the p training vector; and NH is the
number of the output vector v H,r> is obtained the the following equation:

(2.2)

where

NH- l

uH,p = ~ W!f v
H- 1,p

~ L....J 'J J
j=l

The operator I, which represents the neural response, is considered to
be a nonlinear operator act ing on the product of the weight matrix W H ,

connecting layers H -1 and H, and the IR of the preceding layer VH- 1,p.NH- 1

is the number of neurons in the H - 1 layer.
As in the BP algor ithm, we will search for a procedure to min imize the

energy E. However , we will allow at t his time direct modificat ions of the IR
VH-1,r> as well as changes in the weights WH o

The der ivative of the energy function E is of the form

dE 8 E dWH P 8E dVH- 1,r>

di = 8WH ---a:t +E 8VH-1,r> dt
p=l

(2.3)

(2.4)

where t is the training index and the derivatives are applied to each int er­
connection weight and each neuron of the IR vector. The following changes
in W H and VH - 1,p will assure a negative contribution to the energy funct ion :

~W!f = - 8E = - 11 (v!f'P - rP) f' [uH,p] VH- 1,r>
'3 8Wl! ' , , 3

NH

~vH-1 ,r> = _ 8E = _~ (v!f'P _ rP) I' [u !f'p] WI!
3 8 H-1,r> L..J, , , '3

Vj .=1
(2.5)

f' stands for t he derivative of I with respect to the argument in the br acket ,
and 11 is a convergence coefficient. The modificat ions in the weight s matrix
and the IR can be pe rformed for each training vector vH,p taken one at a t ime
or any number of them taken in parallel. One should note that equat ion (2.4)
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is identical to that derived for the weight matrix modifications in the BP
algorithm.

Allowing these changes, to both the IR as well as to the weights, the
energy function will decrease with each iterat ion and converge to a minimum
value.

We will thereafter apply the same procedure to the former layer (H - 1),
thus obtaining the required changes for the weight matrix W H - 1 and the IR
V H - 2,p .

The definition of the energy function will now be similar to the earlier
definition (2.1). However, for an internal layer the t arget vector for the
learning procedure will be the modified IR as computed from the previous
correction (2.5):

P P NH-l

E = L EP= L L (VH- 1,p - V~;;I,p) 2
p=1 p=1 ;=1 •

(2.6)

One should note that the difference between the old IR V H- 1,p and the new
one v;;';,I,P is actually the former modification of the IR, i.e., LlVH- 1,p (2.5).
The output vector of the H - 1 layer vH - 1,p can now be expressed in terms
of the previous weights W H - 1 and IR V H - 2 ,p as shown below:

(2.7)

Applying the same procedure for obt aining the required modifications for the
weight matrix and the IR, one gets

LlW!!-1 =
'J

where

BE _ _ (H- l ,P _ H-l ,P) J' [ H- l,P] H-2,p
BW!!-1 - TJ v Vnew i U. vJ

'J

BE
BvH 2,p

J
NH-l

L (VH- 1,P - vf[e,J/ ) J ' [u{f- l ,P] W;f- l
;=1

(2.8)

(2.9)

NH- 2
H- l ,p _ ""' WH- 1 H-2,p

U; - L..J ;j Vj
j =1

and the modifications are calculated for each vector V H - 1
,p . As previously

ment ioned, the corrections for the weights can be made for each training
vector one at a t ime or any number of them taken together.
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We will now show that the expressions just derived lead directly to the
known BP procedure. Inserting the explicit form of f:..vf -1,p (2.5) into the
brackets of (2.8) one indeed obtains:

NH

f:..W;f -1= - 771' [Uf-1,P] vf - 2,pL 6f, pwtf
k=l

where

(2.10)

which is identical to the modification of the weight matrix as derived from
the BP algorithm (3) . Repeating the same procedure for all preceding layers,
one obtains ident ical resul ts t o those obtained by the BP algorithm.

3. A n en er gy minimization approach for a discrete valued net

After proving the consistency of the energy minimization approach for the
continuous valued net with that of the BP algorithm, we apply the same
t heoretical tools to the case of a discrete valued net. We define t he energy
function in a similar way to the one used for the continuous valued net (2.1):

P P N H

E = L EP= L L (vf' p- Tf) 2
p=l p=l ;=1

(3.1)

where T P, vH,p are defined ins equation (2.1- 2.2) with one differen ce: the
opera tor i, which represent s the neural response, is now defined as the sgn
funct ion. The modifications for the IR and the weight matrix depend on the
derivative of the neural resp onse as shown ear lier (2.4-2.5). Since the sgn(x)
funct ion has zero derivative for most of its range, we will approximate it by
a function which has a smal l, almost constant, positive derivative along most
of its dynamic range. An example of such a funct ion is shown in figure 1.
We will neglect the region near x = 0 by defining the width of this area
to be smaller than our resolution. The IR and weight matrix modificati ons,
expressed in equations (2.4) and (2.5) are thus applicable also for the discrete
IR case. On e notes, however, t hat the derivative function 1', which is always
posit ive, can be omit ted in both equations: in the discrete IR modifications
equat ion, we are interested only in sign changes, while in the weight matrix
modificat ion equation the contribution of the derivati ve I' cap. be included
into the convergence coefficient 77 . As in the previous case, we will search for
a procedure to min imize the energy E, by allowing modifi cations to both t he
IR and the weight matrix as described earlier in equations (2.4-2.5).
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Figure 1: Typical function approximating sgn(x).

The required weight matrix modifications D.Wlf resembles the perceptron
learn ing rule:

D.Wlf = - oE = - 1]f- (v!f 'P _ rP) v!f - 1,p
IJ oW!! L...J: I J

IJ p=1

(3.2)

derived from equation (2.4) aft er eliminating the f' function as discussed
above. Likewise, the modificat ion D.vH-1,p, assu ring the convergence of the
energy function, is

NH
~E = _ " (v!f'P _ rP) Wlf

O l,p L...J I I I J

vi ;=1
(3.3)

Allowing discrete changes of the IR, the energy function decreases with
each iteration and converges to a minimum value. A flip in the IR will be
enforced whenever the modification D.vy-1,P is of opposite sign in relation to
the value of vy-1,P.

Due to the coefficient 1], the weight changes (3.2) contribute much less
to the energy function than those due to the IR changes (3.3). This might
lead to local minima traps from which one can escape if the weights are
updated several times in a row after each IR change, thus allowing the system
to stabilize in a global minima. The number of times one should perform
the weights change procedure for each IR modification is basically defined
experimentally, but one can make a rough estimation, as shown below, by
comparing the energy contributions of the two changes.



112 D. Saad and E. Marom

An energy change, generated by a bit flip in one of the output vectors,
can be attributed to either an IR update in the H - 1 layer or to an update
of the W H matrix:

vH,p = f {N~l WI!v~-I,p + ~WI!vH-I,p + WI!~vH-I,p
, L..J '1 1 '1 1 '1 1

j=l

+ (3.4)

Using equation (3.2) and comparing the contributions due to ~W and ~v,

one obtains:

Since the vectors are discrete, we can regard the summation over the output
vector differences in the numerator of equation (3.5) as a "random walk."
The IR modifications should be carried only over part of the IR neurons,
"the most contributing ones," as will be explained later. This enables us to
replace equation (3.5) by the expression

"NH-l "WH H-I p . /r--;::;-~H<7
L..Jj=1 U ij Vj' 2TfV oPN I

"NH 1 Wlf~vH l,p = 2/3NH-IIWlfl
L..J1=1 '1 1 '1 max

(3.6)

where IWi11max is the value of the maximal weight (since we selected to
modify the most significant neurons with the highest contributions), 0 is
the percentage of erroneous output bits, and /3 is the fraction of IR bits
that have been modified. Inserting practical values into equation (3.6), one
obtains approximately a ratio of order 10 between the number of iterations
carried out sequentially for implementing weight matrix modifications for
each iteration modifying the IR.

The same procedure for defining the weight updates as well as the IRmod­
ifications will be then applied to the preceding layer (H -1), thus obtaining
the changes required for the IR vH - 2,p, and so on for the other preceding lay­
ers. To perform these changes in a specific layer h, the network is addressed
with the same set of learning vectors. If the output vector differs from the
desired one, we update the IR of layer h, and then the weight matrix W h •

If on the other hand the output is correct, we adopt the current IR as the
proper one and go on to the other vectors.

The algorithm described until now was found to be too restrictive since
it might lead to situations in which we would not be able to implement
the IR changes by introducing modifications to the weights. Therefore, we
considered modifying only those neurons that show maximal overall energy
contribution and not all of them. To select such neurons, we examine the
energy expression (2.1) that provides an estimate of the contribution resulting
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from an IR bit flip:

113

D.E = ~~ [t (~~' Wif (VY-l 'P + D.VY-1,P)) - T[r (3.7)

- [I (~~' WifvY-1,P) - T[r
Since the vectors are discrete, it can be easily shown that the energy decrease
IS

D.E
2

(3.8)

Expanding D.E around uH,p, one obtains

P N H NH-l

D.E~ L L L J' {u[i'p} w;fD.vy-1,PT[

p=li=l j = l

(3.9)

Since f' is a positive constant, as indicated earlier, equation (3.9) becomes

(3.10)

The decrease of the energy function is guaranteed by the change rule of
D.vH- 1 (3.3). The neural flips with maximal contribution will be those for
which expression (3.10) is minimal; we will therefore modify only those neu­
rons . These modifications of the weight matrix and the IR, as well as the total
algorithm, show great similarity to the learning algorithm used by Grossman
et al. [1,2J and are in fact a generalization of their algorithm to the .multi­
hidden-layer and multi-output neurons cases. The CHIR algorithm for a
single output neuron [I] applies the following IR modification rule (for each
neuron i):

if WH H-1,p P < 0
ij Vj Ti then H-1,p H-1,p"s -t - Vj (3.11)

while the weight matrix modification is carried out by applying a modified
perceptron learning rule:

(3.12)
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where vh •p are the IR obtained in the former layer IR modification pro cedure
and h represents anyone of the layers. This rule regards the output error as
a source for weight corrections for the inner layers as well as for the output
layer.

In the CHIR genera lization [2], the IR modificat ion procedure is less
restrictive and IR modifications are determined by their overall contribution
to the out put vector.

The two algorithms CHIR (equations 3.11-3.12) and Energy Minimiza­
tion (equations 3.2-3.3) are very similar, almost identical, and provide similar
result s when testing various cases . However, there are two minor differences
between these algorithms worth mentioning:

1. In the CHIR mechanism, the select ion of the neurons that can be mod­
ified in the IR is determined stochastically. On the other hand, in the
energy minimization approach those neu rons are selected in a dete rmin­
istic way, as shown above. This difference results in a faster convergence
for the energy minimization approach , however with a lower percentage
of successfully converging cases, thus leading to an overall performance
similar to that of CHIR. By adding a stochastic process of some type, as
for instance jogging the weights and thresholds, random modifications
of the IR etc ., it seems possible to increase the convergence rate.

2. An IR bit flip occurs in our energy minimization approach subsequent
to the summation of the total contribution due to all of the next layer
neurons (3.2). The CHIR mechanism [1] enables such a flip due to a
single neuron cont ribution (3.11). In ord er to avoid multiple cont ra dict­
ing IR flips of the same neuron, Grossman [2] int roduced a criterion for
the IR mod ification, based upon its contribution to the whole output
vector. The two crite ria (Energy Minimization and CHIR) are similar
bu t differ in probing the total contribution to the output vector. In
our mechanism, due to the gradient descend procedure, we probe the
contribution prior to the neural activation function, while the CHIR
mechanism probes the output vector itself.

The generalization of the CHIR algor ithm presented in this section, re­
sulting from an energy minimization process, can be applied to mult ilayer
and mul ti-output-neurons systems.

4. Computer simulations

In order to show the similar ity between the performance of our procedure and
the CHIR mechanism, we examined some of the the toy problems introduced
by Grossman et al. [1,2] under the same condit ions. The problems examined
are: symmetry, parity, and parity-symmetry.

Symm et r y. In this case the desire d out put is +1 if the input vector is sym­
met ric around its center and -1 otherwise. The learning procedure
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Figure 2: Symmetry. Median number of sweeps required for training
a network of the form N:2:1 to solve the symmetry problem using an
exhaustive training set.

was tested for N = 2,4,6,8,10 input neurons, 2 hidden neurons, and
a single output neuron with the following parameters: 7J = 0.1 for the
weights and 7J = 0.05 for the thresholds; the weight update repetition
parameters (using Grossman's notation: 112 for the W 2 matrix and 123

for the W 3 matrix) are 112 = 10, 123 = 5. The maximum number of
overall iterations was 200, each iteration carried over the exhaustive
ensemble. Figure 2 compares the median number of pattern represen­
tations required for a fully successful learning based on this algorithm
versus the results obtained by Grossman et al , [1] .

Parity. The definition of the parity criterion is to provide an output 1 when
the number of +1 bits in the input vector is even and - 1 otherwise.
In the simulations we used an N = 3,4,5,6,7 input neurons, a 2N
neuron hidden layer, and a single output neuron. The algorithm pa­
rameters were 7J = 1 for both the weight updates and the thresholds;
the repet it ion parameters were 112 = 8,9,12,12,12 and 123 = 4,3,4,4,4
corresponding to the number of input neurons (same parameters were
used in [1]). The maximal numb er of overall iterations was 300, each
iterat ion car ried over the exhaustive ensemble. In order to compare the
results with those int roduced by Grossman et al. [1] and by Tesauro et
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Figure 3: Parity. The inverse average of the number ofsweepsrequired
for training a network of the form N:2N:l to solve the parity problem
using an exhaustive training set .

al. [7] we introduced in figure 3 the inverse average paramet er -r repre­
senting the numb~r of iterat ions required for a fully successful learning
pro cedure. The inverse average is defined as

(4.1)[
I n 1]-1

r - - 2:-
n k=l tk

where t k is the number of it erations required for a successful learning
procedure with certain initi al conditions (the summation includes only
converging cases).

Parity-Symmetry. The parity-symmetry problem combines the two pr ob­
lems discussed above into one system, providing a two-neuron output:
one rep resents the parity of the input vector and the other it s symme­
try. The simulations included N = 4, 5, 6 input neurons, 2N hidden
neurons, and two output neurons. The parameters used were 7J = 1
for both weight updates an d thresholds, an d the repetition paramet ers
112 = 12,1 4,1 8 and 123 = 8, 7,9 with respect to the number of input
neurons (the same parameters as used in [2]). Figure 4 compares our
results to those presented by Grossman [2].
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Figure 4: Parity-Symmetry. The inverse average of the number of
sweeps required for training a network of the form N:2N:2 to solve
the parity-symmetry problem using an exhaustive training set .

Conclusion

We have demonstrated that a continuously valued multilayer system, where
both the IR and the interconnection weights are simultaneously modified
according to energy minimization principles, behaves similarly to the BP
learning procedure whereby only the weights are directly modified and the
IR are only later indirectly changed. Applying a similar approach to a dis­
crete system, we obtained a general version of the CHIR learning algorithm.
The convergence procedure and the simulation results seem very promising,
raising the possibility for a new, rapidly converging learning algorithm.
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