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Nonrecursive Cellular Automata Invariant Sets
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Abstract. Languages corresponding to two invariant subshifts, the
limit set and periodic set are examined. The complement of the lan-
guage produced by a cellular automaton limit set is always recursively
enumerable (r.e.), and modulo intersection with a regular language
and e-limited homomorphism, all languages with r.e. complements
arise this way. The language produced by the periodic set is always
r.e.; the closure of the set of languages produced by all cellular au-
tomata is the set of all r.e. languages. As a corollary, a specific cellular
automaton I is produced whose limit language is not r.e. (although
its complement is), and a rule G whose periodic points give rise to a
language which is r.e. but not recursive.

Introduction

Cellular automata can be thought of as abstract continuous maps on a com-
pact metric space, or as a formal computational system which acts on doubly
infinite strings from a finite alphabet. Applying the techniques of the theory
of computation and formal languages to questions which are essentially dy-
namical in nature was first suggested by Wolfram in [22]. Formal definitions
and proofs of several conjectures in that paper appeared in [10]. Since this
time several papers have appeared with this general framework (see [3, 4]).

This paper focuses on the specific question of the complexity of the lan-
guage produced by the limit set and periodic points of an arbitrary cellular
automaton. More general results relating subshifts and languages can be
found in [4, 6]. A survey of results applying the theory of computation to
cellular automata can be found in [5].

Cellular Automata

The full shift on k& symbols, SZ, is the set of functions from the integers to
a set of k elements, S. Equivalently SZ is the set of doubly infinite words
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in the symbols from S. The full shift is topologized by giving S the discrete
topology and SZ the product topology, or equivalently by the metric:

d(z,y) = Z 8(zs, y:)27 M
where §(a,b) =0 if @ = b and 1 otherwise.
The full shift is acted upon by a homeomorphism o (the left shift map)
defined by o(z); = @i41. A closed, shift-invariant subset of SZ is referred to
as a subshift.

Definition 1. A cellular automaton is a continuous function F' : S%Z — S%
that commutes with o.

Cellular automata are specified by specifying an arbitrary local function
fi87H g
and defining the global function F : $% — $Z by:
Fla)e=F(@iorysi-9Biss)

The integer 7 > 0 is called the radius of the cellular automaton rule. All
shift-invariant continuous maps arise from such an f (see [8]). It is important
to observe that all cellular automata are completely described by a finite
amount of information (the rule table of f).

The Limit Set

Early studies of cellular automata (see [7, 16]) focused on so-called Garden-
of-Eden configurations, those configurations not in the image of F. This
construction can be generalized to configurations that appear in the image
of F™ but not in the image of F™*1. However, from the point of view of
dynamical systems it is more natural to look at the complement of these
sets, configurations that can arise at any time step.

The limit set, A(F"), is the intersection of all forward images of SZ. Equiv-
alently, it is the set of all z € SZ such that F~"(z) # 0 for all n > 0.

Definition 2. ”
A(F) = () Fi(5%)
=0

Since SZ is compact, and F is continuous, A(F) is a nonempty subshift.
Also, A(F) = SZ if and only if F is surjective. If Y C S% and F(Y) =
then ¥ C A(F). The limit set is the maximal F-invariant subset of S.

The limit set has the property that all configurations get closer to it
uniformly. In other words:

d(F™(S%),A(F)) — 0

as n — oo. The limit set is an attracting set in the sense of Conley (see [2])
and is maximal with respect to this property.
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The Periodic Set

In analyzing the dynamics of a map, it is useful to study the set of points
periodic under F. Since this set is not generally closed, one considers the
set, II( ) that is the closure of the periodic points, which is a subshift. This
set always satisfies [I(F') C A(F)'.

Definition 3.
Per(F) = {z € S% such that F?(z) = z for somep > 0}
The closure of this set is denoted II(F').

Subshifts and Languages

Subshifts give rise to languages in a natural way. In fact there is some interest
in studying the class of languages which arise from subshifts (see [1, 4, 17,
18, 19]. These languages are characterized completely in [11, 6]. For the
purposes of this paper, only a few definitions will be necessary.

Definition 4. The cylinder set, Cyl(s), associated with a string s = s1...8m
(s; € S) is the set of ¢ € S% such that ¢; = s; for —[(n —1)/2] < i < [n/2]
(where [z] represents the greatest integer in z).

These sets are not subshifts since they are not shift-invariant, but they
are open and closed, and form a basis for the topology of the shift.

Definition 5. The language associated with a subshift K C SZ%, denoted
L(K) C S* consists of all finite strings s such that Cyl(s) N K # 0.

Equivalently £(K) is the set of finite blocks which occur somewhere in
some configuration of K. The usefulness of this definition arises from the
fact that the set of finite strings completely determines the subshift.

Lemma 1. If Ky, K; C SZ are subshifts, L(K1) = L(K>) implies that K; =
K,.

Proof: This lemma was stated in [21] and proved in [10]. B

Statement of Results

The following theorems outline the possible complexity of limit sets and
periodic points for a cellular automaton.

These theorems were motivated by a series of conjectures made by Wol-
fram in [22]. The construction used to prove theorem 3 was introduced in [10]
and was motivated by a construction in [7].

The first result relating cellular automaton dynamics and language theory,
was proved by Weiss [21], here restated in the notation of this paper.

1t is also the case that II(F) C Q(F) C A(F) where Q(F) is the non-wandering set
of F. Each of these inequalities may be strict (see [12]).
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Theorem 1 (Weiss) For every cellular automata F' : 8% — SZ, the lan-
guage generated by its finite time image, L(F*(S%)), is regular.

The limit set can be much more complicated. A series of examples of vary-
ing complexity can be found in [13]. In all cases the complexity is bounded
above by the constraint that the complement of the limit set must be recur-
sively enumerable.

Theorem 2. For every cellular automata F : S% — 5%, the complement of
the limit language, S* — L(A(F')), is recursively enumerable.

Proof: If a string s is in the complement of the limit language, it must
be in the complement of L£(F"(S%)) for some n > 0. The strings of length
m allowed by the n'* time-step may be computed by calculating the image
under F* of all strings of length m + 2nr. For each n determining whether
s is in S* — L(F™(S%)) requires finite time. If s is in $* — L(A(F)) this
procedure will halt. B

Several of the theorems in this section depend on using cellular automata
to simulate Turing machines. The particular embedding used here was intro-
duced in [10]. In that paper it is shown that this particular simulation has
the important property that the cellular automaton shows the presence of a
head in a given state at time n if and only if there is a valid Turing machine
computation which would yield this result. Without enumerating all prob-
lems, essentially one wants to eliminate spurious transitions, and particularly
the chance that the cellular automaton is simulating two interfering Turing
machine heads.

A Turing Machine M = {Q, A, o, 3,7} is given by specifying a finite set
of states, @, a finite set of symbols, A, and transition functions that at any
time consider the current state and the symbol on the square occupied by
the head and determine a new state (a(g,a) € @), a new symbol to write
into the current square (3(¢,a) € A), and the direction for the head to move
(1(q,a) € {£1}).

Cellular automata operate on a homogeneous space, so in theory each
square has the potential to hold a head. This problem is dealt with by
having an alarm condition ($), and have each blank square record whether
it is to the left or the right of the head. The rule corresponding to a given
Turing Machine is reproduced in table 1.

Given this construction, the statement that a given configuration can oc-
cur as the arbitrary time image of the dynamics of a Turing machine, suffices
to show that it is in the limit set of the cellular automaton. Furthermore if a
string in the limit set includes a head state, then the configuration can occur
as the arbitrary image of a Turing machine.

Theorem 3. If L C A* is a language whose complement is recursively enu-
merable, there exists a cellular automaton F : $% — S%, a regular language
R C S*, and an (e-limited) homomorphism ¢ : S* — A* such that:

¢(LAF)NER) =L
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S={rlLq, g} x{a1,....,an} U {8}

(7'7 ai)(r’ aj)(r7 ak) =% (T7 aj)
(La)(lai)(ar)  — (4, a5)
Yqn,a:) =1 | (n,ai)(r,a5)(r,ax) —  (algn, @i), a;)
(1, ai)(gn, a;)(r, ax) (1, B(gn, a;))
Y(gn,ai) = =1 | (1, a:)(1, a;)(gn, ax) (a(gn, ar), a;)
(1, ai)(gn, a;)(r, ax) (r,B(gn, a;))

otherwise $

Table 1: The Rule Fjs associated with a Turing Machine M.

-
-
5
=

Proof: By assumption on L, there is a Turing machine, M, which halts
precisely when a string fails to be in L. Define a new language L' C (AU{z})*
which has the same alphabet as L and one additional symbol , according
to the following rules:

1. All strings in L’ have the form a; ...a,2...z.

2. A string a; ...a,z™ € L' if and only if M started on a tape containing
the string a; ... a, will take at least m steps without halting.

By construction, M fails to halt precisely on the strings in L. Hence
aj...a, € L is equivalent to the statement a;...a,z™ € L' for all m > 0.
Furthermore, L’ has been constructed so that there exists a Turing machine
which will recognize strings without leaving the area of tape on which the
string is written (such a machine is called a linear bounded automaton (see
[9]). Note that if the size of the portion of the tape which the head visits
does not change in forward or backward time, the Turing machine (and the
cellular automaton) must be in a periodic loop.

Construct a  Turing Machine M’ that examines way...
an ...zw,. If the string between w; and w, is in L', M’ overwrites the
symbol a, with w, moves to the beginning of the string and starts the com-
putation over again. This situation is the only case in which M’ can re-enter
the start state.

Under no circumstances does the Turing Machine leave the portion of
the tape between the markers, nor does it ever move the left-most marker.
Furthermore, the right-hand marker may only be moved to the left.

A simple induction shows that M’ can be in the start state on a tape
reading wiay . .. a,w, after an arbitrary number of time steps, if and only if
@ ...an, € L. Similarly defining the cellular automaton corresponding to M’
as above yields the result that the string (wi,!)(a1,¢s)(az,7) ... (an,7)(w,,7)
is in the limit language of F' if and only if @y ...a, € L. All such strings may
be arrived at by intersection with a regular language, and a homomorphism
maps into the alphabet A yielding the theorem. B
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As a corollary one has the following theorem a proof of which was sketched
in [10] and completed independently in [3].

Corollary 1. There exists a cellular automaton F, : S% — S% such that
L(A(F,)) € 5* is not a recursively enumerable language.

Proof: One form of Gddel’s Incompleteness theorem (see [15]) is the exis-
tence of a language that is recursively enumerable, but whose complement is
not. The classical example is the language accepted by a Universal Turing
Machine.

Choose a language L that is not recursively enumerable but whose com-
plement is. Form the cellular automaton F,, regular language, and homo-
morphism guaranteed by the previous theorem. Since the class of recursively
enumerable languages is closed under the operations of homomorphism and
intersection with a regular language, the fact that L is not recursively enu-
merable implies that £(A(F,)) is not recursively enumerable. B

Theorem 4. If F' is any cellular automaton rule, L(II(F")) is recursively
enumerable.

Proof: For any fixed period, p, blocks occurring in configurations of period
p form a regular language (see [22]). Thus for each length n and period p,
a finite calculation produces all strings of length n occurring in points of
period p. B

Theorem 5. If L C A* is any recursively enumerable language, there exists
a cellular automaton rule F : S% — SZ%, a regular language R C S*, and a
homomorphism ¢ : S* — A* such that:

¢(L(F)NE) =1L

Proof: The proof of this result is similar to, but somewhat simpler than
that of theorem 3. Let M be a Turing Machine recognizing L. Construct
a new Turing Machine, M’ that takes strings of the form wja; ...a,w, and
if M halts on ay...a,, then M’ restores the tape to its initial state, and
starts the computation over again. In this case the left boundary is fixed,
but the right boundary is allowed to move to the right or left as required by
the computation. The only constraint is that M’ must always keep track of
the initial state, so that it can return it. Once again, passing to a cellular
automaton simulating M’ gives the desired result. B

Once again an immediate corollary of the preceding theorem is the ex-
istence of a cellular automaton whose periodic set is recursively enumerable
but not recursive. Again it should be noted that the proof of this fact can
be made constructive.

Corollary 2. There exists a cellular automaton F : SZ — S% such that
L(II(F,)) C S* is a recursively enumerable language but its complement is
not (i.e., it is r.e. but not recursive).
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Discussion

Corollaries 1 and 2 are proved by obtaining lower bounds on the complexity of
certain cellular automaton invariant sets; this method of proof is not useful
for giving a complete specification of a limit set. In [13] complementary
results are given illustrating cellular automata with recursive limit languages
of varying degrees of complexity.

The theorems here also concern the complexity of a single cellular automa-
ton’s invariant sets. Another type of result concerns collective properties of
the class of cellular automata. A strong theorem in this direction has been
proven by Kari [14] who is able to show that every non-trivial proposition
about a cellular automaton limit set (including the proposition that it has a
single element) is undecidable.
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