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N onrecursive Cellular Automata Invariant Sets

Lyman P . Hurd
Lab for Plasma Researc h, University of Mary land,

College Park, MD 20742, USA

Abstract. Languages correspo nding to two invariant subshifts, the
limit set and periodic set are examined. The complement of the lan­
guage produced by a cellular automaton limit set is always recursively
enumerable (r .e.), and modulo intersection with a regular langu age
and s-limited homomor phism, all languages wit h r.e. complements
arise this way. Th e language produced by the periodic set is always
r.e.; the closure of the set of languages produced by all cellular au­
tom ata is the set of all r .e. languages. As a corolla ry, a specific cellula r
automaton F is produced whose limit language is not r.e. (although
its complement is) , and a rule G whose periodic points give rise to a
language which is r .e. but not recursive .

Introduction

Cellu lar autom ata can b e thought of as abs tract cont inuous maps on a com­
pact metric sp ace, or as a formal computational system which acts on doubly
infini te string s from a finite alphabet. Applying the techniques of the theory
of computation and formal languages to questions which are essentially dy­
namical in nature was first suggested by Wolfram in [22J. Formal definitions
and proofs of sever al conj ectures in that paper ap peare d in [10J. Sin ce t his
ti me several papers have appeared with t his general framework (see [3, 4]) .

T his paper focuses on the specific question of t he complexity of the lan­
guage prod uced by t he limit set and period ic points of an arbitrary cellular
automaton. More general res ults relati ng subshifts and languages can be
found in [4, 6J. A survey of results applying t he t heory of computation to
cellular automata can be found in [5J.

Cellular Automata

The full shi ft on k symbols , SZ, is t he set of functions from the in tegers to
a set of k elements, S. Equivalently SZ is the set of doubly infinite words
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in the symbols from S. The full sh ift is topologized by giving S the discrete
topology and SZ the product topology, or equivalently by the metric:

00

d(x ,y) = L 5(Xi,Yi)T1i l
i= - oo

where 5(a, b) = 0 if a = b and 1 ot herw ise.
The full shift is acted upon by a homeomorphism 0" (the left shift map)

defined by O"( X)i = Xi+l . A closed, shift- invariant sub set of SZ is referre d to
as a subshift .

Definition 1. A cellular automaton is a continuous fun ction F : S Z -+ SZ
that commutes wit h 0" .

Cellular automata are specified by specifying an arb itrary local function

! : S2TH -+ S

an d defining the global funct ion F : S Z -+ S Z by:

F (X)i = !(Xi- r, .. ' ,Xi+T)

The int eger T' > 0 is called the radius of the cellular automaton ru le. All
shift-invariant cont inuous maps arise from such an ! (see [8]). It is important
to observe that all cellular automata are completely described by a finite
amo unt of infor mation (t he rul e table of 1) .

The Limit Set

Ea rly studies of cellular automata (see [7 , 16]) focused on so-called Garden­
of-Eden configurations, those configurations not in the image of F. T his
construction can be generalized to configurat ions that appear in the image
of F" bu t not in the image of F nH . However , from the point of view of
dyn ami cal systems it is more natural to look at the complement of these
sets, configu rations that can arise at any time step.

The limit set, A(F) , is the intersection of all forward images of SZ. Equiv­
alent ly, it is the set of all x E S Z such tha t F - n(x ) -=f 0 for all n > O.

Definition 2.
00

A(F) = nFi(Sz)
i=O

Since SZ is compact, and F is continuous, A(F) is a nonempty subs hift.
Also, A(F) = S Z if and only if F is surjective. If Y ~ S Z and F(Y~ = Y
then Y ~ A(F) . The limit set is the maximal F -invariant subset of S .

T he limi t set has the property that all configurat ions get closer to it
uniformly. In ot her words:

as n -+ 00. The limit set is an attracting set in the sense of Conley (see [2])
and is maximal with respect to this property.
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The Periodic Set

133

In analyzing the dynamics of a map, it is useful to study th e set of point s
periodic un der F. Since this set is not generally closed , one considers th e
set, II(F ) that is the closure of the periodic points , which is a sub shift. This
set always satisfies II(F ) t::;; i\(F)l .

Definition 3.

Per(F) = {x E S Z such that F P(x) = x for somep > O}

Tb « closure of this set is denoted II (F ).

Subshifts and Languages

Sub shift s give rise to languages in a natural way. In fact th ere is some int eres t
in studying th e class of languages which arise from subshifts (see [1, 4, 17,
18, 19]. These languages are character ized completely in [11, 6]. For the
purposes of this paper , only a few definitions will be necessary.

Definition 4. Th e cylinder set, Cyl(s ), associated with a st ring s = Sl". Sm

(s, E S ) is the set of c E S Z such that c, = s, for -[(n - 1)/2] :::; i :::; [n/2]
(where [xl represents th e greatest integer in x).

These sets are not subs hifts since they are not shift-invariant , but th ey
are open an d closed , and form a bas is for the topology of th e shift.

Definition 5. The language associated with a subsllift tc t::;; S Z, denoted
ate, t::;; S· consists of all finite strings s such that Cyl(s) n]{ =J 0.

Equivalently £ (]{) is the set of finite blocks which occur somewhere in
some configuration of]{. The usefulness of th is definition arises from the
fact t hat the set of finite st rings complet ely determines the subshift.

Lemma 1. If ]{1,]{2 t::;; S Z are subshifts, £ (]{1) = £ (]{2) implies that ]{1 =
](2.

Proof: This lemma was stated in [21] and proved in [10].•

Statement of Results

The following theorems outline the possible complexity of limit sets and
periodic points for a cellular automaton.

These theorems were motivated by a series of conjectures made by Wol­
fram in [22]. The const ruc t ion used to prove theorem 3 was introduced in [10]
and was motivated by a construct ion in [7] .

The first result relating cellular automat on dynamics and language theory,
was proved by Weiss [21], here restated in the notation of th is paper .

1It is also the case that II(F) ~ O(F) ~ A(F) where O(F) is th e non-w andering set
of F. Each of these inequali ties may be st rict (see [12]) .
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Theorem 1 (Weiss) For every cellular automata F : SZ --., SZ , th e lan­
guage generated by it s finite time im age, .C(Fi( S z », is regular.

T he limit set can be much more com plica te d. A series of examples of vary­
ing complexity can be found in [13]. In all cases the complexity is bo unded
above by the constraint that the complement of the limi t set must be recur ­
sively enumerable.

Theorem 2. For every cellular automata F : S Z --., S Z, the complement of
the limi t language, S· - £ (A. (F » , is recursively enumerable.

Proof: If a string s is in the compleme nt of the limi t langu age, it mu st
be in the complement of £ (F n(sZ» for some n > O. The strings of leng th
m allowed by the n th t ime-step may be compute d by calculating the im age
under F" of all strings of length m + 2nr. For each n determining whether
s is in S· - £(Fn(sZ» requires finite time. If s is in S· - £(A. (F» this
procedure will halt . •

Several of the theorems in this sect ion depend on using cellular automata
to simulate Turing machines. T he particular embedding used here was intro­
du ced in [10]. In that paper it is shown that this particular simulation has
the important property that the cellular automaton shows the pr esence of a
head in a given state at time n if and only if there is a valid Turing machine
computation which would yield this result . Without enumerat ing all prob­
lems, essent ially one wants to eliminate spurious t ransitions , and particularly
the chance that the cellular automaton is simulat ing two interfering Turing
machine heads.

A Turing Machine M = {Q, A, a, f3, I } is given by spec ifying a finite set
of states, Q, a finit e set of symbols, A, and t ransition functi ons that at any
t ime conside r the current state and the symbol on the square occupied by
the head and determine a new state (a(q,a) E Q), a new symbol to write
into the current square (f3 (q,a) E A), and the direction for the head to move
(,(q,a) E {± 1}).

Cellular automat a operate on a homogeneous space, so in theory each
square has the potential to hold a head . This problem is dealt with by
having an alarm conditio n ($), and have each blank square record whether
it is to the left or the right of the head. T he rule corresponding to a given
Turing Machine is reproduced in table 1.

Given this const ruct ion, the statement that a given configurat ion can oc­
cur as the ar bitr ary time image of the dynamics of a Turing machine , suffices
t o show that it is in the limit set of the cellular automaton. Furthermore if a
string in the limit set includes a head st ate, then the configurat ion can occur
as the arbitrary image of a Turing machine.

Theorem 3 . If L ~ A* is a language whose complement is recursively enu­
m erable, there exists a cellular automaton F : S Z --., SZ , a regular language
R ~ S*, and an (e-limii ed] homomorphism ¢i : S* --., A* such that :

¢i(£ (A. (F » n R) = L
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S = {r,l, ql , ...,qn} x {ab ..., am } U {$}

(r , ai)(r, aj )(r, ak) --4 (r, aj)

(I, ai)(I, aj)(l , ak) --4 (1, aj)

,(qn ,ai) = 1 (qn ' ai)(r , aj)(r, ak) --4 (a(qn' ai) , aj)

(1, ai)(qn, aj)(r, ak) --4 (1, f3( qn,aj))

,(qn,ai) = - 1 (1, ai)(1,aj)(qn, ak) --4 (a( qn,ak), aj)

(1, ai)(qn, aj)(r, ak) --4 (r, f3 (qn,aj))

otherwise --4 $

Table 1: The Rule FM associated with a Turing Machine M.
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Proof: By assumpt ion on L, t here is a Turing machine, M, which halts
pr ecisely when a string fai ls to be in L. Define a,new language L' ~ (A U{x })*
whi ch has the same alphabet as L and one ad ditional symbo l x, according
to the following rules:

1. All strings in L' have the form al ... anx . . . x.

2. A string al anxm E L' if and only if M started on a tape containing
the string al an will take at least m steps without halting.

By construction, M fails to halt precisely on the strings in L. Hence
al ... an E L is equ ivalent to the statement al . . . anxm E L' for all m > O.
Furthermore, L' has been constructed so that there exists a Turing machine
which will recognize strings without leaving the area of tape on which the
string is written (such a machine is called a linear bounded automaton (see
[9]). Note that if the size of the portion of the tape which the head visits
does not change in forward or backward time, the Turing machine (and the
cellular automaton) must be in a periodic loop.

Construct a Turing Machine M' that examines Wlal .. .
anx . .. XWT • If t he string between WI and WT is in L', M' overwrites the
symbol an with W T moves to the beginning of the string and starts the com­
put ati on over aga in. This situation is the only case in which M' can re-enter
the start state.

Under no circumstances does the Turing Machi ne leave t he portion of
the tape between the markers , nor does it ever move the left -most marker.
Fur thermore, the right-hand marker may only be moved to the left.

A simple induction shows that M ' can be in the st art state on a tape
reading Wlal .. . anwT after an arbitrary number of time steps, if and only if
al ... an E L. Similarly defining the cellular automaton corresponding to M '
as above yields the resul t that the string (WI , l)(al ' qs)(a2' r) . .. (an' r)(wT , 1')
is in the limi t language of F if and only if al . . . an E L . All such strings may
be arrived at by intersection with a regu lar language, and a homomorphism
maps into the alphabet A yielding the theorem. •
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As a coro lla ry one has the following theorem a proof of which was sketched
in [10] and completed independently in [3].

Corollary 1. There exis ts a cellular automaton Fu : S Z -+ S Z such tha t
£( 11.(Fu ) ) <;;; S* is not a recursively enumerable langu age.

Proof: One form of Godel's Inco mp let eness theorem (see [15]) is the exis­
te nce of a language that is recursively enumerable, but whose complement is
not. The classical example is the language accepte d by a Universal Turing
Machine.

Choose a langu age L that is not recursively enumerable but whose com­
plement is . Form the cellular automaton Fu , regular langu age, and homo­
morphism guaranteed by the previous theorem. Since the class of recursively
enumerable languages is closed un der the operat ions of homomorp hism and
intersect ion with a regular language, the fact that L is not recursively enu­
merable implies that £ (A(Fu ) ) is not recursively enu merable. •

Theorem 4. If F is any cellular automaton rule, £( II(F )) is recursi vely
enum erable.

Proof: For any fixed period , p, blocks occurring in configuratio ns of period
p form a reg ular language (see [22]). Thus for each length n an d period p,
a finite calculation produces all strings of length n occurring in poi nt s of
period p.•

Theorem 5. If L <;;; A* is any recursive ly enumerable language, th ere exists
a cellular automaton rule F : S Z -+ S Z, a regul ar language R <;;; S*, and a
hom om orphism ¢ : S* -+ A* such that:

¢(£(II (F) ) n R) = L

Proof: T he proof of this result is similar to, but somewhat simpler than
that of theorem 3. Let M be a Turing Machine recogni zing L. Construc t
a new Tur ing Mac hine, M ' that t akes st rings of the form w /al .. . anW r and
if 111 halts on al ' " an, t hen M' restores th e tape to its ini ti al state , and
starts the com putation over again . In this case the left boundary is fixed,
but the right boundary is allowed to move to the right or left as required by
the comp utation. The only cons traint is that M ' must always keep t rack of
the initial state, so that it can return it. Once aga in, pass ing to a cellular
automaton simulating M ' gives the desired res ult. •

Once again an imme diate corolla ry of the prece ding theorem is the ex­
ist ence of a cellular auto maton whose periodic set is recurs ively enumera ble
but not recursive. Agai n it sho uld be noted that the pro of of this fact can
be made cons tructive.

Corollary 2. There exists a cellular automaton F : S Z -+ SZ such that
£( II(Fu ) ) <;;; S* is a recursively enumerable langu age but its complement is
not (i.e., it is r .e. but no t rec ursive) .
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Discussion
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Corollaries 1 and 2 are pro ved by obtaining lower bounds on t he complexi ty of
cert ain cellular automaton invariant sets ; this method of proof is not useful
for giving a complete sp ecification of a limit set. In [13] compleme nt ary
results are given illustrating cellular automata with recursive limit languages
of varying degrees of complexity.

The theorems here also conce rn the complexity of a single cellula r automa­
ton 's invari an t set s. Another typ e of result concerns collective properties of
the class of cellular au tomata. A strong t heorem in this directi on has been
proven by Kari [1 4J who is able to show that every non- trivial prop osition
about a cellular auto maton limi t set (includ ing the pro position that it has a
single element) is undecidable.
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