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Abstract. The problem of how best to generalize from a given learn
ing set of input-output examples is cent ral to the fields of neural nets,
statistics, approximation theory, and ar tificial in telligence. T his series
of papers inv estigates this pr oblem from within an abstract and model
indep endent fr am ework and then tests some of the resulting concepts
in real- world sit uations. In this abs tract fram ework a gene ralizer is
completely specified by a certain countably infinite set of fun ctions ,
so the mathematics of generali zat ion becomes an investigation into
candida te set s of cri teria governing the behavior of that infinite set
of fun ctions. In the first pap er of thi s series, t he foundations of this
mathematics are spelled out and some relatively simple generaliza
tion criteri a are investigated. Elsewhere the real-world generalizing of
sys tems construct ed with these generalization crite ria in mind h ave
been favorably comp ared to neural nets for several real generali zation
problems , including Sejnowski's problem of reading aloud . T his leads
to the conclusion that (current) neural nets in fact cons titute a poor
means of generali zing. In th e second of this pair of papers, ot her sets
of crit eria, mor e sophistic at ed than those crit eri a embodied in thi s first
series of paper s, are investi gat ed. Generali zers meeting these more so
phisticated criteria can readil y be approximated on computers. Some
of th ese approxi mations employ net work structures built via an evo
lutionar y process. A preliminary and favorable in vestigati on int o the
generali zation behavior of these approximations fini shes the second
pap er of thi s series .

Outline of these papers

In section 1 of this p ap er the topic of generalizat ion is dis cussed fr om a
very broad perspective . It is argued that it is t he ir ability t o generalize that
consti t u tes the pr imary reason for curre nt interest in neural ne ts (even thoug h
suc h neural nets in fact gener a lize poorly on average, as is demonstrat ed
in [1- 3]) . This section goes on to discuss the b en efits that wo uld come fro m
h aving a particularly good generaliz ing algorithm. Section 1 t hen ends wi th a
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detailed out line of the rest of these pap ers , presented in terms of the pr eceding
discussion of generalization .

Here and throughout these pap ers, generalization is assumed to be t ak ing
place wit hout any knowledge of what the variables involved "really mean. "
An abs tract, model-independent formalism is the most rigorous way to deal
with this kind of generalizing.

Section 2 of this paper begins with a mathematically precise definition of
generalizers. It t hen goes on to exp lore some of the more basic properties
that can be required of generalizers and elucidates some of the more straight
forward mathematical consequences of such requirements . Some of these
conse quences (e.g., no linear mathematical model should be used to generalize
whe n the underlying syste m being mo delled is known to be geometric in
nature) are not intuitively obvious .

The par adigm here and throughout these papers is to make general, broad
requiremen ts for gen erali zing behavior , and then see what (if any) mathemat
ical solut ions there are for such requirements . This contrasts to the usual
(extremely ad hoc) way of dealing with generalizers, which is to take a con
crete generalizer and investigate its behavior for assorted tes t problems. In
these papers , the behavior defines the architecture, not the ot her way aro und.
The other way of trying to build an eng ine which exhibits "good" gene ral
ization is, ultimately, depend ent to a degree on sheer luck.

Sections 1 and 2 of the second paper present and explore some sets of
restrictions on generalization behavior which are more sophist ica ted than
those found in section 2 of the first pap er. The first of these new restric
tions , exp lored at length in sect ion 1 of the second pap er , is th e restriction of
"self-guess ing" in its various formulations. Intuitively, self-guessing refers to
the requirement that if taught with a subset of the full t raining set , the gen
eralizer should correctly guess the rest of the training set . One of the more
interesti ng results concern ing self-guessing is th at it is impossible to con
struct generalization crit eria which, along wit h self-guessing, specify unique
generalization of a learn ing set . (Any particular set of crite ria will always be
either under-restrictive or over-restricti ve.)

Sectio n 2 of the second pap er then discusses the restriction of information
compactification , which can be viewed as a mathematically precise stat ement
of Occam 's razor. Particul ar at tention is drawn to the fac t (and it s conse
quen ces) that at present there is no known way of making an a priori most
reason abl e definition of information measure in a model-independent way.

Finally, sect ion 3 of th e second paper is a partial investigation of t he
real-worl d efficacy of the tools elaborated in the first paper and in the first
two sections of the second paper. References [1- 3J consist of other such in
vestigations and show that these techniques far outperform backpropagation
[4, 5J and in particular easily beat NETtaik [6J. T he tests and investigations
pr esented in section 3 of this second paper are intended to be an extension
and elaboration of these tests presented in [1-3].
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"T his then is the measure of a man - that from the parti cu
lars he can discern the pattern in the greater whole ." [U. Merre,
from Studies on the Nature of ManJ
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1. Background

Neural nets is a field that has recently started to at t ract interest from many
separ ate discipl ines, including physics (especially condensed mat ter physics) ,
mat hematics, computer scien ce, neurobiology, and cognitive science . In ad
dition to the intrinsic mathematical interest in investigating net works of non
linear mappers , there are several other reasons why neural nets are pro ving
so popular . In this section some of these reasons are discussed , with par tic
ular attention paid to the reason of ability to generalize . The usefuln ess of
this ab ility is discussed, and then an outline of this series of papers, which
constitute an investiga tion into the problem of generalization, is pr esent ed
from the perspective of the discussion of the impor tance of t he ab ility to
generalize.

1.1 Reasons for interest in neural nets

Historically neural nets were first investig at ed as a means of modeling net
works of neurons (hence the name) . By int egrating models of neurons with
models ofthe connecti viti es in the human br ain , it was hoped th at something
of how brains function would be un covered [7-10J . Although this approach
is so compelling that it is hard to im agine a mature neurobiology not mak
ing use of it , to dat e neural nets have not made any novel and substan ti ve
pr edictions concern ing br ain funct ion whi ch were later corroborated in the
laboratory [I1J (although it can be argued that some aspec ts of neuromor
phology, especially in the hippocampu s, are eas iest to understand in te rms of
simple Hebbian neural nets [12]) . This lack of major results is probabl y du e
to the current extreme lack of knowledge of ju st exact ly how neur ons ope rate
and are connecte d [12 , 13J. Given how easy it is t o render a human br ain
inoperative, for example by slightly varying the amounts of various neuro
transmitters [14J, perhaps it should not be surprising that our inability to
model a human br ain has accompanied our lacking a detailed understanding
of it s operation all the way down to th e molecu lar level.

After investigating neurobiology, perhaps the next most obvious use of
neural nets is in the field of artificial intelligence (AI). Simply put, since brains
are intelligent, it is hoped that by modeling them one could bui ld an artificial
intelligen ce. Unfortunately, insofar as neural nets are unable to substantially
aid the field of neurobiology, they also ar e un able to substantially aid the field
of AI. Unmotivated hop es of "collective emergent intelligence," oft en heard
in connection with the field of neural net s [4], seem to be wishful thinking,
at least at present. No novel principles of how to design intelligent sys te ms
(wh atever that means) have yet been discovered through investigations of
neural net s. Yet , as pointed out by Clark [15], it is pr ecisely such novel
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principles which must be discovered if neural nets are to make any significant
addit ion to the field of AI.

Clark 's search for such principles, based on statistical mechanics, touches
on the third usual motivation for investigating neural nets, their similarity
to spin glasse s. This is the tradi t ional entry point into the field for physicists
[16, 17]. Unfortunately, although mu ch has been learned of how to model
neural net s as spin glass es, no new principles concerni ng intelligence have
emerged from this work to dat e.

In addit ion to these three broad reasons for interest in neural nets, there
are several features of neural ne ts which, although of more minor breadth,
do constitu te concrete results and not simply motivational generalities. The
first an d perhaps most famous of these grew out of the spin-glass approach
to the field . This is Hopfield 's [18] (and subsequent researchers ' [19, 20))
idea of using neural nets as a means of imp lementing associ at ive memories
in parallel. (See appendix A for a review of how Hopfield 's scheme works .)
Although Hopfield's associative memory scheme does indeed work, it sho uld
be noted that it does not provide any novel insights into how to construct
an artificial intelligence. What it does provide is a poss ible means of making
particular ly fas t associative memories. It constitutes a potential spee d-up
of something we can already do (build associ ative memories), but no t an
ent irely novel skill .

Another contribut ion by Hopfield is the realization that his associative
memory neu ral nets can be used as a means of finding approximate solutions
to optimization problems quadrati c in their arguments [21]. Recently, the
reported efficacy of this technique has come un der at t ack [22]. However ,
even if the attacks are mistaken and the technique ends up proving usefu l, as
with neural net associative memories it will only constitute a potential speed
up of some thing we can alr eady do (approximate solutions to optimization
pro blems), not an entirely novel skill.

There is one last application of neural nets which, in addition to be 
ing mor e than just a sp eeding up of something we can already implement
through other means, is act ually exhibited by neural nets th at are up and
running right now . This application is the abi lity to generalize exhibited by
Boltzmann machines [4, 23], perceptrons [24], and in general all feedforward
neural nets made via backpropagation [4, 5], simu lated annealing [25], or
any other technique which does not try to restrict the net 's output to the set
of a tt ractors typical of Hopfield-type neural nets (and, ind eed, typical of all
asso ciative memories). (See appendix B for a review of Boltzmann machines
and the tec hn ique of back-propagation.) T hat is, it is the ability of such
neur al net s to be taught with a learni ng set of input- output pairs , be fed a
novel inpu t as a quest ion , an d then to form a (hopefully) reason abl e response
to that question, a response whi ch might differ from all of the outputs in the
learning set of input-outpu t pairs [26].1 It seems that in this ab ility to gen-

lThese nets have the advantage over Hopfield-t ype associative memories in that they
can respond to a query with an output not contained in those which make up the learni ng
set . Without such an ability you are not fully generalizing . You are only classifying. In a
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eralize neural nets can in fact do som ething that few other current systems
can do , or at least wh ich few other current systems can do as well wit h as
broad a range of applicability. Since it is the most widely studied neural net
generalize r, it is the techn iqu e of backpropagation that is taken to b e the
archetypical neural net generalizer for the purposes of this seri es of p ap ers.
It is the hope of the neural net community that this (or some other) neural
net scheme somehow picks out the important information from the learning
set whe n gene ralizing an d therefore gen eralizes well (see referen ce [4]).

1.2 Generalization

A generalizing syst em has very many potential uses, t he most obvious of
which lie in the field of statistics. Indee d, as has also been po inted out by
Wolp ert [I , 2], Lap ed es and Farber [27], and by Smi th [28], generalizing
neural nets can b e viewed as simply a novel kind of statistical curve fitt ing .
Clearly, a solution to the problem of how "best" to generalize fro m a learning
set when no a priori assumptions are made about the typ e of fun cti on do
ing the generalizing would have m any ramificati ons for the (non parametric)
stat istics problem of how best to generalize (sic) from experimental data to
the best model to fit the data.

In ad dit ion to this po tential application to statistics (and t herefore all
experimental science), a solution to the prob lem of how best to generalize
from a learning set might be helpful at the task of image reconstruction (t he
"learning set" here being incomplete inform ation about the full im age) . It
might also be helpful for approximation theory an d t herefore for numerical
analysis. Indeed , at the risk of be ing overspeculative , a successful solution
to the problem of generalization cou ld even be helpful in the broadest sci
entific task of all, the task of inferring the "best" theory to explain a set of
observations.?

In addit ion to these ap plications, the ability to generalize well also has
m any potential uses in the field of AI. To underst and one such use , first
note (as is pointed out in [1] and [2]) that in an abstract sense the goal of
AI research is to create a system which meets certain sets of "human-like"
crite ria . In general, the broader t he criteria a system satisfies, t he better.
When these criteria are specified very prec isely - "given a, respond with
b" - then the system created to meet them constitutes a database. As a
next st ep it is straightforward to incor porate into the system an algorithm
for mak ing logical inferences from the provid ed crit eria , resulting in wh at is
essentia lly an expert system. Insofar as dat abases , being a set of responses
to queri es, can be viewed as input-output fun ctions over an ap propria te
sp ace, such expert systems are just extensions of the domain of t he or iginal

certain sense , a Hopfield-type assoc iat ive memory is noth ing more than a crude, par allel,
Bayesian classifier, since its "bas ins of att raction" are nothing mor e th an th e set of vectors
strongly correlat ed wit h one another .

2See reference [29] for an interest ing attempt at solving this last task which might have
some app lications to the prob lem of generalization .
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database. The logical inference algorithm used has "broadene d" the (human
like) criteri a defining the prop erties of the syst em .

Unfortunately, such logical inference algorithms can not exte nd the do
main of the system to include the whole of the inp ut space. A purely deduc
ti ve algorithm can not solve the problem of inductive inference [30]. This is
not a trivial shortcoming. Inso far as it is impossible to explicitly list all of
th e behavioral attributes of hu man int elligence, it seems that any ar t ificial
syst em that will be abl e to fully mimic human beh avior will have to extrapo
late th at full behavior from a core subse t of (ext ernally provided) behavioral
attributes. It would therefore seem that any AI syst em that can successfu lly
pass the Turing test will have to be able to form an extension of an initial
set of behavior criteria . It will have to be able to generalize from the or iginal
criteria."

To understand th e second reason that generalization is cruci al to AI , first
define a system's gene ral inte lligence as a measure of how well it performs at
an arbitrary cognitive t ask for which it is provided limited informat ion , where
either the task and/or the information is novel. The system is explicitly told
beforehand how its performan ce is being measured . In an academic set ting ,
the limited information might be a chapter in a math book, the novel task
might be a problem set bas ed on that chapter , and the performance measure
might be the percentage of problems from the problem set done correctly.
At a more primitive level, the limited information might be a novel visual
image, the task might be to pick out any creatures which might be pr ed ators
from that image, and the performance measure might be whether the system
gets eaten or not . Alternatively, the limited information mig ht contain a set
of images with all pr edators in them pointed out , as well as the novel visual
image. The more generally intelligent a sys tem, the larger the numbe r of
(task, informat ion ) pairs at which it pe rforms well and the better it performs
at them (see appendix C for a mor e mathemat ically pr ecise formu lation of
this definition of intelligence) .

Now define generalization as the ab ilit y of a system to take a learn ing
set of input-output vector pairs from a particular pair of input and output
spaces, and, based only that learning set , make a "good" guess as to the
output vector corresponding to an input vector not contained in th e learni ng
set. The guessing is exp licitly ind ependent of any information not cont ain ed
in the learn ing set , such as what the input and output spaces "really mean."
Loose ly speaking, generalization is th e ability to perceive and extrapolate
pattern s in a learn ing set. It is clea r then that in addit ion to traits like
facility with logic and the ab ility to reason by an alogy with other, successfully
completed tasks , the ability to generalize well from limited information (i .e. ,

3Note that as opposed to a conventional "inside-out " system in which the internal
structure is externally (and overtly) provided, such a successful mimic of hum an behavior
would be "outside-in" in the sense of only having beh avioral criteria externally provided,
with the internal structure determined implic itly as a means of meet ing those criteria
(along with th eir extrapolation) .
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from a limited learning set ) is a prerequisite for any syste m to be intelligent
over a broad range of tasks."

As a final example of th e wide-ranging utility of being able to generalize
well, note that if you could construct a generalizer which , for whatever reason,
you thought was optimal for a particular collection of learni ng sets , then
by using that generalizer you could define a meas ur e of randomness (and
therefore you would be able to decide which of your learning sets was least
"random" ). The way to measure this generalizer-based randomness of a
learn ing set is to teach the generalizer using var ious subsets of the learning
set and then measure the generalization err or on the res t of the learning set .
The more random a learning set is with resp ect to the given generalizer, the
more slowly the average generalization error rate sho uld fall off as the size
of the subset being used to teach the generalizer increases. If the gen eralizer
can discern very little new about the learning set as a whol e as it is given
larger and larger samples of that learni ng set, then as far as that generalizer
is concerned the learn ing set is effectively "random."

The ob jection has sometimes been made that however you define "good"
generalization you can never be assured that a "good" generalizer will pro
duce the correct generalization for an arbitrar y real-world guessing sit uation
[31]. However, not e that all real intelligences (i.e., people) generali ze all the
time, in t he broadest sense possible, and that such generalizing seems to
constitute an essential part of their intelligence. Although in fact people
pe rform such "intelligent guessing" surprisingly well, such guessing carries
no assurance of being corr ect. Rather , it is used as a strategy for dealing
with an ex ternal environment. Try ing to find rules for generalizing well in a
series of generalizing situations is similar to using a particular game th eory
strategy (1ike minimax say) for a series of different games . No such strat
egy is guaranteed to give you best resu lts in all games, so you try to find
a strategy which will give as good resu lts as poss ible over a wide variety of
games. Similarly, the problem of finding a good generalization scheme is to
find a scheme which gives good results over a wide variety of generalizing
sit uations .

While a lot of work has been done that relates to the problem of gener
alization, none has bee n done that directly ad dr esses the issue its elf:

1. App roximation theory an d reg ular ization t heory [32, 33] can be viewed
as attempts to deal with the problem of generalization when one knows
what the inp ut and output spaces "really mean."

2. The field of machine learn ing [34- 36] consists to a large degree of var ious
schemes for how to generalize in certain strictly limi ted cont exts (e.g.,
having Boo lean valued variables) .

3. Bayesian classifica tion [37], and in general all of the work on class ifica
ti on in image processing [38], is similar to the problem of gen eraliza tion,

4Note tha t the pro blem of "making a best guess for Imiss> given I proy and J," discussed
in ap pendix C, is a generalization problem.
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the major distinction between the two being that in classification the
set of possible answers to questions is strictly controlled and finit e (in
deed , often hav ing only two elements).

4. Time-series an alysis and prediction theory, especially as extended to
chaotic systems by Farmer [39] (and consequently, using backpropa
gated neural nets, by Lapedes and Farber [27, 40]), can be viewed as
an ad 110C approach to a limited version of the full problem of general
ization.

5. Information complexity theory [41J can be viewed as dealing with a
generalization problem modified by adding to the condition that they
have to reproduce the learning set some extra, rather stringent pro blem
dependent conditions on the allowable generalizations.

6. The work with local languages [42], with grammatical inference [43],
with mathematical criteria for associaters [44], and with finding the
min imal high-level language set of statements to reproduce a learning
set [45] can also all be viewed as dealing with problems related to that
of generalization, but not with the full problem itself.

Not dealing directly with the full problem of generalization, these ap
proaches do not provide any set of tractable mathematical criteria for good
generalization . Accordingly, the criterion in common use for judging how well
an algorit hm gene ralizes is to simp ly test the performance of the algori t hm
on lots of learn ing sets created with a "correct" generalization in mind. T he
accuracy of the algor ithm in guessing this "correct" generalization from the
learni ng set is taken to be a measure of how well it generalizes. (Alt hough the
field of machine learning can make use of more objective criteria in measuring
generalization efficacy, since it is restricted to situations in which the num
ber of possible input-output mappings is finite, its applicability to real-world
problems is limited .) Clearly, this is an unsatisfactory state of affairs, having
lit tl e if any potential to meet the promise of a full theory of generaliza tion.

1.3 Synopsi s of the rest of these papers

It is due to these inadequacies in conventional approaches to the problem
of generalization that using neural nets to generalize has excited so much
interest . Unfortunately, there does not currently exist any understanding of
which features of neural nets are helpful for generalizing and which are not .
Nonetheless, of all the motivating causes for interest in neural nets listed in
section 1.1, it is the abi lity of such nets to generalize which seems to be the
most substantive and which seems to have the most potential.

It was with the idea of exp loring generalization as a more abstract, math
ematical problem and (hopefully) thereby improving upon the performance
of neural nets that the generalization theory of this series of papers was de
veloped. Generalization theory is an abstract mathematics of generalizers,
various reasonable criteria that can be required of them, and the consequences
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of those criteria. Some examp les of such crite ria are invari an ce under vari
ous kinds of coordinate tran sformations of the input and/or output spaces,
having the gene raliza tion of part of the learn ing set guess the rest of it (self
gue ssing) , and information compactificat ion (i.e. , Occam 's razor). All the
generalizers commonly used at pr esent can be categori zed in terms of which
of these and other similar crite ria they meet . Section 2 of this first paper and
sections 1 and 2 of the second paper in this series of papers describe general
ization theory in more detail, spelling out the categories created by various
sets of criteria and investigating the problem of finding a set of criteria which
specify a unique generalization of any learning set .

To qu antify the advantages of neural nets as gen eralizers , it is important
to develop a benchmark for measuring the efficacy of a sys tem's generalizing
from a learning set. Without use of such a benchmark , any claims for neural
nets having "emergent and adaptive intelligence" (beyond that which follows
simply from their ability to form associative memories) are vague at best, and
mis leading at worst. Such a benchmark should be very easy to construct,
flexib le, quick, and possess simple to an alyz e generalization behavior. (It
is important to realize that the unanalyzability of neural net s is not reason
to believe they generalize well, bu t rather is just an imp ediment to seeing
precisely how they go abo ut trying to generalize.) The generalization theory
crit eria discuss ed in the first pap er whi ch most naturally lead to such a bench
mark are those defining a HERBIE (HEuRisti c BInary Engine) . In essence,
a HERBIE benchmark generalizer is a simple surface-fitter which creates an
input-output surface which goes through all the points of the learning set
and has the whole of the inputs space as its domain. A pr ecise definition of
a certain kind of benchmark HERBIE (a hyperplanar HERBIE) , exploration
of its behavior, and use of it to benchmark the generalization of neural nets
makes up reference [1]. As is discussed in [1- 3J, the hyp erp lanar and other
kinds of HERBIEs have been found to be very helpfu l in ben chmarking gen
eralization, and actually beat backpropagated neural nets rather decisively
in the tests performed so far."

Despite it s usefulness as a benchmark for measuring generalization , how
ever, there is no reason to believe this HERBIE and the crite ria defining
it will be the best generalizer for an arbitrar y learning set. It is not the
definitive answer to the question, "If I have a given learning set and several
different algorithms which can generalize from it , whi ch one do I choose?"
Some of the other generalization criteria which const itute a possible answer
to this question ar e those making up self-guessing and information compacti
fication, which are presented in the second paper. Discussion of some systems
approximately obeying self-gu essing and information compactification, along
with examples of some tests of such systems make up section 3 of the second
pap er. In addition to utilizing evolut ionary (as opposed to neuro-) biology,
such systems tend to make use of parallel distributed network structures. In

S"Beats" here meaning what it does in the pr esent-day literature: HERBIE does better
at guessing the "correct" input-output mapping the researcher had in mind when making
up the learning set.
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this sense, this series of papers comes full circle, concluding with an explo
ration of what can be thought of as very sophisticated, feedback, variable
number of iteration, neural nets.

2. Introduction to generalization theory

As mentioned in section 1, a generalizer is any program which tries to
"broaden the criteria" defining a system's behavior by extrapolating from
them and making guesses for appropriate behavior when faced with any sit
uation, whether or not it is contained in these original criteria fed to the
system. These extrapolations are often "human-like," in that they are not
necessarily made according to the rules of logic. Their being nonlogical ex
trapolators of the database of the defining criteria allows such generalizers
to make a guess in situations where such a guess is not decidable by logic
alone - the whole of the input space is in their domain. In this section, the
foundations of a mathematical framework for exploring such gene ralizers will
be presented and explored. In particular, various sets of criteria which can
be required of generalizers will be investigated from within this framework.

For the purposes of this invest igat ion , all broadenings of criteria can be
assumed to first transform the space of the criteria into an m +n dimensional
(usually) Euclidean vector space, where m of the dimensions span the input
space, and n of the dimensions span the output space. Such a transformation
can always by done - if need be, every distinct variable in the database can
be assigned its own dimension, and every distinct state of the variable can be
assigned an arbitrary number . More rigorously, by Church's hypothesis any
criteria computable by humans is computable by a Turing machine [46], and
therefore can be digitally encoded - this encoding can serve as the desired
transformation. In this way, every piece of information in the data base is
mapped to a data vector in the vector space, producing a numerical learni ng
set. In general, since the vector space is supposed to be an input-output
space, it's required that every m-dimensional image of an inp ut component of
an element of the data base uniquely specifies the associated n-dimensional
image of the output component of that data base element . All of these
considerations also apply to encoding criteria for use by neural nets.

Define the n separated systems as the n vector spaces formed by taking
the Cartesian products of the m -dimensional input space with each of the n
distinct output dimensions. The set of all the resultant data vectors for one
of the separated systems is called the learning set or sometimes the training
set.

The essence of any generalizer, even a neural net generalizer, is to take
each separated system and fit a surface with an infinite domain (i.e., extend
ing over the who le of the m -dimensional input space) to the data vectors of
that system. More precisely, given an output value for each of m -dimensional
input vectors, i.e., given k m + l-dimensional vectors, a generalizer creates
a surface in the m + l -dimensional space which passes through all k of the
m + I -dimensional vectors, and which has an output value for any and all
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ot her input vectors - the domain of the mapping delineated by the surface
is the entire input space. To ask a generalizer a question, one takes the
appropriate input vector and reads off the output value on the surface gen
erated by the surface-fitting algorithm. The surface's passing through the
n original vectors makes the generalizer a superset of the database (for any
one of the original input vectors it returns the correct output value ), and
the surface's having an m + lth dimensional value for any input coordinates
constitutes the broadening of the orig inal criteria. Different generalizers use
different surface-fitting algo rithms . In ad dition to choosing between different
generalizers, in general there will be an infinite number of transformations
from the data base to n m + 1 dimensional separated systems . Usually it is
best to pick such a transformation with as small an m as possible, to channel
the information contained in the data to the de tailed shape of the surface,
which is where we want it.

From an abs tract point of view, the generalization problem then is to first
create broadly applicable mathematical criteria for whet her or not a given
generalizer performs well the generalization of a given learning set living in
a particular separated system (these criteria for good generalization should
no t be confused with the criteria making up the learn ing set). Once th is is
done, a procedure must be created to take as input any learning set an d from
it build a generalizer which generalizes in at least approximate accordance
wit h the generalization criteria, for that learning set . To date, several sets of
seemingly reasonable generalization criteria have been exp lored. Although
some such sets have turned out to be over-restrictive (certain learning set s
cannot be generalized at all), most are under-restri ct ive (the generalization
of a learning set is not unique) and therefore, ins tead of specifying a unique
generalization for any learning set , serve to categorize equivalence sets of
such gene ralizations. In addition to this theoretical work, computer programs
des igne d to approximate some of these (under-restrictive) crite ria sets have
been tes ted. As explained in section 3 of the second paper of this ser ies,
these programs have usually proven to be good generalizers in such tests, in
the sense that they do well at the task of guess ing the parent funct ion the
researcher has in mind and from which the elements of the learning set were
constructed. Such res ults serve as (partial) real-world corroboration of the
reasonableness of these criteria sets.

All of the more sophisticated sets of generalization criteria investigated
so far have made use of the criteria of self-guessing and/or information com
pactification. Information compactification, which is discussed in sect ion 2
of the second paper, has proven to be under-restrictive. Depending on the
criteria that go wit h it, self-guessing, discussed in section 1 of the second pa
per, has turned out to be either over- or under-restrict ive. For the futur e, it
is hoped t hat some combination of the two will be discovered which is a fully
satisfactory generalizer (i.e ., which specifies a unique generalization of any
learn ing set) . Before discussing these sophisticated kinds of cri te ria, t hough,
it is first necessary to formulate a rigorous definition of the generalization
from a learning set (of arbitrary cardinality) to a mapping from questions
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to guesses, and then to investigate some of the simp ler sets of generalization
criter ia . The rest of the current section constitutes such an investi gation .

2.1 Defin ition of a generalizer

A generalizer is a set of cont inuous mappings from learning sets of arbi trary
car dinalit y along with a single quest ion, to an output. More precisely,

(2 .1) An m-dimensional generalizer is a count ab ly infinite set of continuo us
functions from a subset of (Rm x R x R '" ) to R, from a subset of
(R'" x R x R'" x R x R m) to R, etc ., where R denotes the space of
real nu mb ers and R'" denotes the Carte sian product of m such spaces.
Notationally, an m-dimensional generalizer is a set of cont inuous fun c
tions g{i} along with associate d domains of definition, i being a nonzero
natur al number, and g{i} being from R i(m+l)+m to R.

T he 9 {i } are defined for all of R i(m+l)+m, up to explicit holes in the space
discusse d below. The last R '" comp onent of the input to any g{i} is referred
to as the question. The rest of the compo nents of the inp ut constit u te the
learning set . (Sometimes, as ab ove in the discussion of separat ed systems and
as below in the discussion of expansions of a learning set , the term "learning
set" will be taken to mean simp ly t he set of all input- output pairs provided
to the resear cher , as opposed to th e set provided to a particular g{i} . The
context shou ld make it clear which defini t ion is bei ng used .) Each R '" x R
input- ou tpu t pair of the learning set is called a datum space. T he numbe r
of datum spaces is the order of the learning set. As explain ed above, any
question in generalization theory can be cast such that the image of the
gu essing fun ction is one dimensional. This is why the mapping is taken to
betoR1

.

If desir ed , decom position and expansion of generalizers can be performed
quite eas ily. One natural way of doing this is to use a pseudo inner pr oduct ,
mapping to a countabl y infinite set of real numbers , rather than the usual
inner product mapping to a single real number. The pseudo inner product
between any t wo generalizers G and H, (GIH) , is defined as the set of all of
th e (g{i} Ih{i} ), where the 9{i} are the set of functions making up G and the
h{i} are the set of functions making up H. The inner product between the
g{i} and the h{i} can be defined as any of the usual inner products amongst
(L2

) real functions (see appendix D).
Any g{i } can be ap proximate d by a Turing Machine (T M), of course.

What is more, any T M can be uniquely specified by a pair of two-dimensional
g{i} . Each of the two g{i} t akes a real number and an int eger as its quest ion :
the current state of the tape and the head's position on it is given by the
real number , and the internal st ate of the TM is given by the integer. One
of the g{i}'s has its output interpreted as the new tape and head positi on
an d the other one has its ou tput int erpr et ed as the new intern al state of the
machine. To run a TM, you just feed the outputs of this pair of g{i}'s back
into themselves as inputs , t erminat ing when the integer ou tput corresponds
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to the hal t ing internal state of the TM.6 The number of pos sible internal
st at es of a given TM sets i, and the ru le table for the TM sets both the
learni ng set an d how t he g{i } generalize from the learning set.

In addit ion to this relation wit h TMs, any scheme for bui lding neural
net s from learning sets can be viewed as a generalizer, though for some such
schemes the requirement of the cont inuity of the g{i} has to be relaxed . Since
any g{i } can be approximated by an appropriate gen eralizer, it is also true
t hat any g{i} can be approximated by a neural net . Similar comments hold
for genetic algorit hms and classifier systems [47]. A final, and perhaps most
imp ortan t example of a generalizer is any statist ical algori thm for finding a
cur ve which has in some sense the least var iation from a set of data po ints .
In t his case, the learni ng set simply consis ts of the data points.

2.2 Basic generalization criteria

Beyond those implicit in the simple definition (2.1), there are several other
restrict ions which immediately come to mind when t rying to formulate crite
ria for generaliza t ion . The first of these is that the or der in which the datum
spaces are pr esented sho uld be irr elevant :

(2 .2) Every g{i } is invariant under permu tat ion of the datum spaces.

T his invari ance , being a simple relabeling, is on surer ground than many
of those which will be descr ibed lat er. A second restrict ion is that the g{i }
mu st form a dat abase:

(2.3) If, for any g{i }, the value of the question is the same as the valu e of
an R m ent ry in one of the datum spaces, the output of the function is
the corresponding R ent ry from that datum space.

For example, g{2 }(x,y,x',y' ,X) = y for all x ,x',y , and y'. One can
investi gat e generaliza tion schemes in which the data in the learni ng set is
suspect and therefore should not necessarily be followed , but they will not
be considered here. For single-valuedness, (2.3) necess itates the following
restricti on on the domains of the 9 {i }:

(2.4) For any g{i} , if any two datum spaces have the same value for their
R'" ent ries, then they must have the same values for their R entries.

6From this pe rspec tive a TM is simp ly a funct ion taking a two-dimens ional inpu t vector
to a two-dimensional outpu t vector which is then fed back into the input. One component
of the output det ermi nes when the process stops , and the other determines the out pu t
value of th e TM as a whole. Insofar as it is ju st such an iterated map, it is interesting
to note that a TM has the potential to exhibit what is in some sens e the richest possible
beh avior , na mely chaos. In the sa me spirit, it is interesting to note that the Halt ing
Pr oblem in comp uter science seems to parallel t he nonlinear science problem of finding
when a chaot ic orbit alights wit hin a certain region of the appropriate state space .
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For example, g{2}(x , y, x, z,w) where z does not equal y is outside the
domain of definit ion for t he generalizer . T his indu ces an odd st ructure on
the domain of definition of any g{i }, turn ing it into R i(m H)+m minus an
uncountably infinite number of holes . Wi th the usual definit ion in R n of
an open set be ing a union of op en hyperspheres , the dom ain of definition is
part open, part closed. For example , if one datum space of a one-dimensional
genera lizer has the values (Xl , yl), t hen another datum space has the following
domain of definition: {x E (- oo, xl), Y E (-oo, +oo)} U {x = xl,y = y/} U
{x E (Xl, + 00), y E (-00, + oo)}. No union of open circles can give this
st ructure around the line x = x' , In gen eral, unless otherwi se indicated, the
domain s of defin it ion of the g{i} will always be considered to be the full
Euclidean space minus the holes caused by (2.4).

In add ition to the restricti ons listed above, it is usually helpful to impose
the following restrict ion on the domain of the g{i}:

(2.5) Unless i , the order of the learn ing set, exceeds m , the dimension of
the generalizer , g{i} is not defined . Even if i > m, g{i} is not defined
if the values of the R m ent ries of t he datum spaces all lie on the same
(m - 1)-dimension al hyperplane.

T he rationale for (2.5) can be seen by taking m = 2. If the input com
ponen ts of the element s of the learning set are colinear (i .e., t here are only
two elements in the learning set ), then the learning set provides no informa
t ion for guess ing the outputs of point s not on the line of the elements of the
learn ing set . It provid es no information to fix genera lization in any direction
perpendicular to t he line containing the learning set. Since in any real-world
scen ar io the data maki ng up the learning set will not be infin itely precise, we
can never be sure that a given question is exactly on that line, and therefore
can never even be sure that our learn ing set pr ovid es any pertinent informa
t ion for gues sing the output to a question which we think is colinea r wit h
the lea rn ing set.

From now on , unless expli cit ly state d otherwise, the term "generalizer"
will be assumed to imply adherence to restrict ions (2.2) through (2.5) . Be
yond th ese simple restrictions, there are several others which help dist inguish
bet ween different types of generalizers and which suggest avenues through
which to attack the pr oblem of find ing a reasonable set of generalization cri
te ria which fixes uniq ue generalization of any learn ing set. The rest of this
first paper consists of an exploration of these restrict ions, their mathematical
form ulation s, and their relations to an d interdependencies with one another.

2. 3 HERBIEs

The first such additional restriction which comes to mind is to assume in
var iance of the g{i} under cer tain coordinate transformations. A number
of the techniques used in classificat ion , image processing, and the like ob ey
such an invari an ce, under certain condit ions. For example, for certain kinds
of const raints on the allowed form of a differential pro babili ty dist rib ut ion
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over a Euclidean space ~ , P ( O" E ~ ) , choosing that probability distribution
which meet s those constraints and which also maximi zes t he entropy [48],
- JP(O")ln[P(O")]dO", will pick out a dist ribution in a manner which is invari
ant under all differentiable tr an sformat ions of the space ~. If the space ~ is
trans formed to a new Euclidean space ~' via a transformat ion operator T,
and if the constraint is re-expressed in terms of the space ~', then the tech
nique of maximizing ent ropy over ~' subject to the transformed constraint
will pro duce a distribution P'(O"' E ~') which is simply the image under T
of the distribution produced by maximizing entropy over the orig inal space
~ subjec t to the origina l cons traint : P' (O"' = TO" )d(T( O" )) = P(O" )d(O"). For
example, this invari anc e will be obeyed if the const raint on the pro bability
dist ributions is fixing the expectation value of th e posit ion in the spaces to
be some const ant.

Of course, it is not true that the technique of maximiz ing ent ropy will
give a probability distribution invari ant under all coordinate transformations
for arbitrary const raints on that distribution . Perhaps the most well-known
example of such an invari an ce-breaking occurs when the constraint is the
microc anonical distribution of classical statis tical mechanics [49]. In this
case the constraint is to fix the energy of the system to be some constant ,
and maximizing entropy over phase space subject to this constraint gives
a uniform distribution over a sur face in phase space. In gen eral, however ,
the re-expression of that dist ributio n in other spaces will no t be uniform,
as maximizing entropy over those spaces would require. W ith a cons traint
of this nature the invari anc e un der arbitrary coordinate t ransformations is
broken . You will make different prediction s using pr obabili ty distributions
constructed by maximizing ent ropy over different spaces.

Similarly, no non const ant g{ i} is invari ant under all coordinate transfor
mations. No g{i} exists for which

for ar bit rary coordinate t ransformations T and T' . However it can be re
quired (for example) that the g{i} obey a scale invariance. More pr ecisely, if,
for any 9 {i}, in each datum space the R coordinate is scaled by a real, nonzero
factor k, the output R of that g{i} is scaled by k, Notationally, if g{i } takes
(R m x R x R'" x R .. .) -4 R, then it also t akes (R m x kRxRm xkR . .. ) ----> kR
in the sam e way. Intuitively, this restriction of sca le invariance says that gen
eraliza tion should not be dependent on the outp ut dimension 's units.

A simi lar restriction is to require that if for any g{i }, for every R m en
t ry (including the quest ion) there is the same scaling transformation of the
all the axes (by a nonzero real number), then again the output valu e is
un chang ed. In the same spirit it can also be req uired that if every R '" en
try undergoes the sam e rot ation , parity, or t ransl ati on transformation, then
the output value is unchanged . If we make the same requirement of the R
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entries, we can summarize this restriction of invariance under these coordi
nat e transformations by saying

(2 .6) Every g{i} is invariant under any rot at ion , pari ty, translation , or
nonzero scaling transformation , applied simultaneously to the all the
Rm

, including the quest ion, or to all the R , including the output.

For example, for the g{ 2} in a one-dimensional generalizer obeying the
input space invari ances,

g{2} (x ,y , x ' ,y' , z) = g{2}(a + kx ,y, a + kx' ,y' ,a + k z) ,

for all x ,x', y, y' ,z, a and nonzero k . Techn ically speaking, for multidimen 
sional input spaces translation invariance refers to translation by any con
stant vector (not simply to translation by a vector proportional to the unit
vector) , and scaling invariance refers to scaling of any set of components of
th e input vect ors (not simp ly to scaling of all components simultaneously) .
In pr actice this extra freedom is not important , however , since almost all of
the cases considered in these papers involves one-dimens ional input spaces.

We are now in a pos ition to define the firs t cat egory of generalizers wit h
which we will work. A HERBIE generalizer is defined to be a generalizer
which obeys the criteria (2.2) through (2.6). (In addition , in practice the
t erm "HERBIE" will often be taken to mean a generalizer for which the
g{i} are straightforward and simple functions of their arg uments .) As in
referring to neural net as generalizers , algor it hms taking learning sets to
question-guess mappings will often be referred to as HERBIEs even if thei r
g{i} are not everywhere cont inuous functions of their arguments , so that they
are not even generalizers , te chni cally speaking. The context should make it
clear when this relaxation of the cont inuity req uirement is taking place. In
addition , sometimes the term "HERBIE" will be taken to mean a particular
kind of HERBIE generalizer. Somet imes the term will just mean the concept
of using HERBIEs to generalize. Again , as always, the context should make
th e precise meaning clear.

Intuitively speaking, a HERBIE is a generalizer which, owing to restric
tion (2.6), makes its guesses based purely on the geometric relationship be
tween the question and the data vectors making up the learn ing set . When
ever you ar e in a sit uation in which you thinks the uni ts used should not
matter, or where your zeroes shou ld not matter, t hen you had better use a
HERBIE (or an ap prox imat ion to one). If you do not , then whether you are
aware of it or not, you are actually introducing preferred scales, preferr ed
origins, an d the like, when you know there are none such in the problem at
han d.

Note that the restricti on of a generalizer that it be a HERBIE is not
powerful enough to force uni que generalizat ion of any learni ng set . For ex
ample, many of the st andard algorithms for sur face-fit t ing used in statistical
data analysis are HERBIEs, wit h fitt ing the lowest order polynomial sur 
face possible to the data vectors and using that sur face to determine the
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question-guess mapping being perhaps the most commonly used example.
Ano ther, complete ly different kind of HERBIE is havin g the output guessed
by t he gene ralizer be th e ou tput compo nent of the data vector closest to th e
question.

Alt hough the individu al restrictions making up being a (continuous) HE R
BIE are all quite weak , t aken together they ar e enough to force the following:

(2.7) For any i , if the values of the R entry of every datum space of a g{i}
of a continuous HERBIE are equal, the output is thi s value, regar dless
of the question.

Proof. Let g{i}(x , y, x', y, . . . , u) = v for an m-dimension al genera lizer (x, x'
and u are m -dimension al vect ors ). T he R valu e of each datum space is y.

It is assumed that u does not equal an y of the x , x', etc . If it did , then
we would have v = y immediately by (2.3) and would be don e. By (2.6),
g{i }(x , ay + b,x',ay + b, ... ,u) = av + b for all nonzero real a and b. In
particular, th e equality holds for b = V. Therefore g{i }(x, y(a + 1), x', y(a +
1), . .. ,u) = av + y. Now take the limi t of both sides as a goes to 0. Since
g{i } is continuous, we get g{i}(x ,y , x', V, . . . ,u) = v.•

There exist a number of other somewhat trivia l properties tha t follow from
a generalizer 's being a HERBIE. An example of such a proper ty applies to
a one-dimensional generalizer 's g{2} when the question is halfway inb et ween
the two elements of th e learn ing set . Let the resulting guessed ou tpu t be z;
g{2}( x ,y,x' ,y ' , (x + x') / 2) = z. Then , using the coordina te transformation
invari an ces we get in order :

g{2}(x, - v,x' , - V', (x + x' )/ 2) = - z ,

g{2}«x - x' )/ 2, - v,(x' - x) /2, -y' ,O) = - z ,

g{2}«x' - x)/2 , -V,(x - x')/ 2,-y',O) = - z ,

g{2}(x', -v ,x, -V' , (x + x' )/ 2) = - z ,

g{2}(x' ,V' , x, y , (x + x')/2) = - z +V+V'.

Comparing this with our starting point, z = y + y' - z , and therefore z
must equal (y +V')/2. This kind of reasoning can be extended in an obvious
manner to show that any g{2} of a one-dimensional HERBIE must have odd
symmetry about t he po int { X~X' , lL:!f}.

Vie can also make some comments about the der ivatives of anyone of
the functions making up any HERBIE generalizer if we assume that that
function , in addition to being continuous throughout its domain of defini
tion and meeting the restrictions of requirement (2.6) , is also analytic. For
example, if our generalizer is one-dimensional and we expand g{i} about a
certain point (i.e., about a certain set of values X l, YI , . . . , q) and then eval
uate th at expansion at points whose difference from the expansion point is
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a vector (a, 0, a, 0, . .. , a), then by translation invariance we kno w that that
expansion's value must be the same for all values a. Writ ing out the Taylor
series expansion for g{i}, this means t hat L~l kiai = 0 for all a, where the
k, are linear combinations of derivatives of g{i} wit h res pect to the variables
Xl, X2 , . . . all the way up to q. Taking derivatives with respect to a of both
sides of this equality an d then setting a equal to 0, we get that all the ki

must equal O. For example ,

k _ Og {2}(XI,Y I,X2'Y2,q) og{2}(-··) og{2}(-' .) _ 00 I - 0
I - 0 + 0 + 0 - 0 a= O - .Xl X2 q a

(In terest ingly enough, it turns out that we can gain no addit ional information
from the equations involving k's of order higher than kl . T his is becau se
the equation kn = 0 follows directly from allowing the expansion point at
which the derivatives are evaluated to vary, taking various derivat ives of
the equation kl = 0 (now, wit h the expansion po int varyi ng, viewed as an
equality of functions rather than as an equality of rea l numbers) , and then
forming linear combinations of these resultant equat ions .)

Vve can similarly make use of the the req uire men t of scaling invariance
along with analyticity of the g{i} to derive restrict ions on the derivat ives of
the g{ i}. If we expand all the {x;} along wit h q by a factor b == 1 + a, where
a =f - 1, then we can again collect powers of a and get, for examp le,

. Og {2}(XI' YI, X2, Y2 , q) og{2}(-") og{2}(- ' .) _ 0
Xl 0 + X2 0 +q 0 - .

Xl X2 q

(Again, we gain no information from t he equations involving higher-order
derivatives since these equations follow directly from this equation involving
first order der ivatives. ) Combining this equation wit h the one above for
translation invariance, we get three equations of the nature

( q -XI )Og{~}( ... ) + (q - X2/g{~}(- · · ) =0.
Xl X2

Only two of these three equations are independent , so we cannot derive
the values of og{2}(- ' ')/ OXI, og{2}(-' ' )/ OX2' and og{2}(-· ·)/oq. How
ever, given q, Xl, and X2, it is sufficient to kn ow one of the thr ee derivat ives
og{2}(-' ' )/OXl, og{2}(-' ' )/ OX2, or og{2}(-' ·)/ oq to get t he other two. So
knowing just one of these three der ivat ives gives all deriva t ives of all powers .
Since we have assumed analyticity, this means that in its dep endence on Xl ,

X2 and q, the function 9{2} is in fact fully specified by anyone of these three
first-order derivat ives. In other words , assuming analytic ity, the two requ ire
ments of translation invari ance and scaling invariance remove 2 degrees of
freedom from g{2} and, in fact, from all the funct ions g{i }, and therefore,
in a sense, from the generalizer as a whole.

If our generalizer is multidimensional, then t he requirement of rot ation
invariance in the input space will also lead to res trict ions on the der ivatives .
Results similar to all these also follow from the requirements of translat ion
and scaling invariance in the out put space.
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As it turns out , these and all the other ramifications of the requirements
of (2.6) can be derived without recourse to this derivative-based framework.
This is done by using the following geometric argument to enumerate all
possible HERBIEs.

First examine the case where there are two elements in the learning
set and the input space is one-dimensional. Assume YI and Y2, the out
put components of the two datum spaces, are fixed . We want to see how
g{2}(Xl,Yl,X2,Y2,q) varies with the input components, XI,X2, and q. Our
restrictions on this varying are those of (2.6), namely that if any vector
(a, a, a) is added to the vector (Xl, X2, q), then the output of the generalizer,
g{2}, is unchanged, and similarly, if the vector (XI,X2,q) is multiplied by
any nonzero constant then again g{2} is unchanged. Whatever the g{2}
value at a point (Xl,X2,q), the g{2} value is the same at all points on the
plane containing the two lines formed by all translations and by all scalings
of this point (Xl, X2, q). (We are implicitly assuming that we do not have
Xl = X2 = q, which is the only case where these two plane-delineating lines
are identical and therefore do not specify a unique plane. This assumption
does not make us lose any generality in the argument, since we already know
what the output must be in the case Xl = X2 = q.) In other words, the func
tion g{2} taking points in the R 3 space of the input components (Xl>X2,q)
to the R space of the generalizer's output is made up of invariant planes.

To calculate the equation of the plane of invariance containing any par
ticular point (Xl>X2,q), we solve for the coefficients a, b, and c in the plane
defining equation aXI + bX2 + Q = C (Xl, X 2 , and Q being the three co
ordinates constituting our R 3 space) . Since the plane has to be invariant
under identical scalings of all three of the coordinates, we know that c must
equal 0. Since the plane has to be invariant under identical translations of all
three of the coordinates, we know that a + b = - 1. Therefore, our plane is
uniquely defined by the single parameter a, which is set by the values Xl, X2,
and q. Any triplet Xl = X2 = q is contained in all of the planes, regardless
of the value of a, so every plane contains the line going through the origin
and the point (1,1,1 ). In addition, translation invariance means that every
plane contains lines parallel to the vector (1,1,1) but which lie off to the side
of the line going from the origin through (1,1,1). Therefore, looking down
the vector (1, 1, 1) toward the origin, we see all of our planes of invariance
edge-on, and anyone of these planes can be generated from any other one
simp ly by rotating it about this line going from the origin out to (1,1,1).
We could parameterize the planes by this angle of rotation instead of by the
value a if we wished.

Define G(a) to be the function mapping any value of a (i.e., any set
of values Xl> X2, and q) to the output of the function g{2}(XI,1,X2,0,q).
By translation and scaling invariance in the output components of the da
tum spaces we know that g{2 }(XI,YI,X2,Y2,q) for arbitrary YI and Y2 =
g{2}(XI' 1, X2, 0, q)[YI - Y2]+Y2. In other words, now allowing all arguments of
g{2} to take on arbitrary values, g{2}(xl, YI,X2, Y2, q) = G(a )Yl+[l - G(a)]Y2,
where a is set by Xl, X2, and q, and G(a) is the dependence of g{2} on a
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for the case where Yl = 1 and Y2 = O. This is a complete enumerat ion of
all possible g{2}'s for one-dimensional HERBIEs; g{2} for one-dimensional
HERBIEs is fully specified by a one-dimensional function, G(a), in agreement
with our discussion of the derivatives of g{i}'s of HERBIEs.

A similar analysis can be carr ied out for arbitrary g{i} for HERBIE
genera lizers of arbitrary dimension . If th e dimension of the generaliz er is
greater than 1, then rotation invariance and the like in the input space can
serve to rest rict t he possible form of th e g{i}' s more than would otherwise
be the case . Note that this kind of geometric reasoning does not require any
assumptions about analyticity, or even about continuity. Such considerations
come in, for example, as rest rict ions to be made of G(a); they do not come
in in our concluding that g{2}(Xl ,YllX2,Y2,Q) = G(a)Yl + [1 - G(a)JY2 for
some G(a). Similarly, the rest riction of datum-space interchange symmetry
is also simply a rest rict ion on the possible forms of G(a).

2.4 LMMGs and upward compatibility

Note that th e HERBIE of guessing the closest element of th e learning set is
not continuous, even when the learning set is fixed so that only the question
is allowed to vary. Such a lack of being everywhere continuous is a problem
wit h many real-world HERBIEs. One interesting situation in which such loss
of cont inuity is common is when two points in the learning set approach one
another. As an example, consider the "fit the lowest possible order polyno
mial to the learn ing set" generalizer . This generalizer is a HERBIE (with the
proviso that the definition of a generalizer is here being extended to allow
noncontinuity) . Yet as we take the limit of one point in the learning set
approaching another, the shape of the question-output function will, in gen
eral, depend on the direction in input-output space along which that second
point in the learning set is approaching the first . Unfortunately, this prop
erty violates th e requirement of continuity together with single-valuedness
of the g{i} . The same problem occurs for generalizers which try to fit a
Four ier series to the learning set, and for the hyp erplanar HERBIE gener 
alizer described in [1], even when the surface such a hyperplanar HERBIE
creates from the learning set is "smoothed out" to be continuous with finite
derivative everywhere in the domain of definition.

Indeed, any so-called "linear mathematical mod el" generalizer (LMMG)
which generalizes by fit ting the (lowest order possible) elements of a set of
bas is fun ctions to the element s of the learning set will have this problem with
discontinuit ies, whether or not it happens to be a HERBIE. The proof of this
is ap pendices E and F (Appendix E being a detailed definition of LMMGs) .
On the other hand, LMMGs have the nice property that if two of the points
in t he learning set are identical, the generalizer makes the same guess as it
would if it had simply been fed the sam e learning set but without one of the
duplica ted datum spaces. (This property is formally defined in restriction
(2.8) below). Finally, while on the subject of LMMGs, it is interesting to
note that there is only one LMMG which obeys the invariances required of
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HERBIEs (requirement (2.6)). This is the LMMG which works by fitting the
learning set with polynomials. No other basis set offunctions gives an LMMG
which obeys scaling and translation invariance in both input and output.
And even polynomial LMMGs, strictly speaking, do not meet input space
rotation invariance. (The proof of all of this is in appendix G.) What this
means is that whenever someone uses a non-polynomial LMMG to generalize,
whether they mean to or not they have an implicit preferred origin, preferred
scaling dimension, preferred orientation, or perhaps even a combination of
all three. Conversely, if you think the system you are modeling with your
generalizer does not have such preferred spatial characteristics, then under
no circumstances should you use an LMMG as the generalizer.

There are other restrictions besides the various coordinate transformation
invariances of (2.6) and besides the restrictions implicit in the definition
of LMMGs which can be added to the core definition of restrictions (2.1)
through (2.5). For example, along the same lines as requirement (2.3), we
can require upward compatibility of the g{i}:

(2.8) For all g{i},i > m + 1, if the values of the entries of 2 datum spaces
are identical, then the output is equal to the output of g{i-I} working
on the rest of the learning set and on one of the two identical datum
spaces.

For example, g{3}(x,y,x,y,x',y',z) = g{2}(x,y,x',y', z). Intuitively,
(2.8) is expressing the idea that if we add a new point to the learning set
which tells us nothing new, our guessing should be unchanged. As an ex
ample, the generalizer which works by fitting the lowest-possible-order poly
nomial surface to the points of the learning set is upwardly compatible, as
are all LMMGs, for that matter. Sometimes a generalizer meeting restric
tion (2.8) (along with (2.1) through (2.5) but not necessarily (2.6)) will be
called "semi-proper," whereas a generalizer meeting all of (2.1) through (2.8),
including restriction (2.6), will be referred to as "proper." The reason for
such definitions will become clear below when we discuss self-guessing. Any
proper generalizer is necessarily a HERBIE, though of course not vice versa.

Although LMMGs (for example), while upwardly compatible are not ev
erywhere continuous, with care it is possible to create fully proper generaliz
ers; that is, there are HERBIEs which are continuous throughout the whole
domain and which meet restriction (2.8). One example of such a proper
generalizer is the nearest-point-averaged (npa) generalizer, described in ap
pendix H. In any case, due to their simple and overt generalizing behavior,
HERBIEs are, in general, well-suited to serving as benchmarks for gener
alization, irrespective of the question of upward compatibility or continuity
when elements of the learning set approach one another. Indeed, the hyper
planar HERBIE discussed in [1], although overtly nonupwardly compatible
and noncontinuous, was explicitly created to serve as a benchmark for gen
eralization.
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2.5 Output linearity

In addition to restrictions (2.6) and (2.8), yet another possible restriction on
generalization which can be added to requirements (2.2) through (2.5) is to
require that the generalizer be output linear.

(2.9) A generalizer is said to be output linear iff for all of the g{i}, if
g{i}(x, y, x', y', u) = v and g{i}(x, z, x', z', ...u) = w, then g{i}(x, ay+
bz,x', ay' + bz', u) = av + bw, for all a, b,x,y,z,x' ,y',z', . . . u.

Examples:

1. g{2} for one-d imensional HERBIEs, shown above to be of the form
g{2}(X1'Y1,X2,Y2,q) = G(a)Y1 + [1 - G(a)]Y2 ' is output linear by in
spection. All LMMGs (that is, all generalizers which work by summing
functions taken from a basis set in such a way as to reproduce the
learning set) are output linear for all cardinalities of the learning set,
as is shown in appendix I. For example, the HERBIE generalizer "fit
the lowest-possible-order polynomial to the learning set" is output lin
ear. Of course, as is discussed in appendix F, such generalizers are not
everywhere continuous in the domain of definition delineated in (2.4) ,
and are not even HERBIEs, strictly speaking, if the dimension of the
input space is > 1 (see appendix G).

2. The analytic continuation of the generalizer defined by

a variation of the surface-fitter used in [2], is an everywhere (in the
domain of definition) continuous generalizer meeting all the restrictions
of being a HERBIE in full, which is also output linear. This HERBIE,
along with its variations, like

n Yi n 1
g{n}(XI,Y1, .. . ,q) ={L-d( .) } / {L -;r-( .)},

i=l q,z, i=l q, x,

(where d(.,.) is a metric such that for any real constant k, d(kx, ky)
is proportional to d(x,y)), all of which are output linear, continuous
throughout the domain delineated in (2.4), and intimately related to
radial bas is functions and kernel-density estimators, will generically
be referred to as "metric-based HERBIEs." Note that metric-based
HERBIEs, like npa generalizers, can never guess an answer which either
exceeds the maximum of the learning set or is less than the min imum
of that learning set . This shortcoming is the primary reason for caution
in making use of such generalizers. (To see why this shortcoming holds,
simply rewrite the output of the generalizer as {L:i=l aiYi }/ {L:i=l ai},
where all the a, are positive. It is clear that if you take any but the
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largest of the Yi and increase its value, the value of the output must
increase, going to the value of that maximal Yi when all the other Yi
have been increased to the value of that ma ximal Yi. In other words, the
output is bounded above by max(Yi)' For similar reasons, the output
is also bounded below by min (Yi), which concludes the proof.)

3. All HERBIEs are close to being output linear, in that if

g{i}(x , z , x', Z', . . .u ) = w,

then g{i }(x,az,x',az',q) = aw. It is the restriction concerning addi
t ion of output components of the learning set that HERBIEs are capa
ble of viola ting. (One currently open question is whether an analytic
HERBIE can avoid being output linear .)

4. The npa generalizer of appendix H, which is both a HERBIE and up
wardly compatible (i.e., is proper), is not output linear.

The restriction of output linearity can be viewed in a number of ways.
On one hand, it can be viewed as a combinat ion of output scaling invariance
together with an outp ut-summing property. Viewed another way, in a loose
sense, every g{i} of an output linear generalizer is like a tensor field defined
over the (m X i) -dimensional manifold of all (x, x', . . . u), with the tensor at
any point on the mani fold being a linear mapping from the i-fold Cartesian
product (R x R x . .. ) to R. 7 Alternatively, if the Cartesian product of all the
outp ut components of the datum spaces is taken to itself be a vector space
V, then any g{i} is a dual vector field V* . See [50] and [51] for a general
discussion of linear operators.

Note that restriction (2.9) is completely compatible with restriction (2.6).
If b and z are constants, (2.6) says that g{i}(x, ay + bz, x', ay' + bz, . . . ,u) =
a(g{i }(x , y, x' , y', ... ,u)) + bz for all x,x',y,y', .. . ,u. Plugging into (2.9)
implies t hat g{i}(x, z , x' , z, .., u) = z. This, of course, is exactly (2.7), the
restrict ion we derived earlier from (2.6) .

There are a number of properties which must be obeyed by any generalizer
which is output linear. The first of these is that

(2. 10) Any output linear g{i } can be written as

guess = ho(x ,x' , x", . . . , q)y + h1 (x, x', x", . . . , q)y' +...
To prove (2.10) it suffices to note that by (2.9) any output linear gener 

alizer can be writ ten as

{ ' } ( I I II II )g z X,Y,X,Y,x,y, .. . ,q = g{i }( x, 1, x' , 0, x" , 0, , q)y
+g{i}(x ,O, x' , I , x" ,O, ,q )y' +...

7Rjgorously speaking, tho ugh, g{i} is not really a tensor field unless mxi, the dimension
of th e manifold, equals 1, the dimension of the spaces whose Cartesian product makes up
th e space on which the tensors work. There is also the prob lem, of course, that the mapp ing
is only linea r from (R x R x R x ...) to R, and not multilinear (see reference [51]).
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{O}( """ )gz x, y,x , y ,x ,y, . .. U =

assuming the individual g{i} terms on the right hand side exist. Therefore
ho(x, x' , x" , . . . ,q) = g{i}(x, 1, x', 0, x", 0, . . . ,q), for example. Unless explic
it ly noted otherwise, it will always be assumed that the cardinality of the
learning set exceeds the dimension of the input space and that all the inp ut
space components of the datum space s, x , x', x", etc., are different from one
another. These two conditions ensure that those g{i} te rms all exist, so that
we can indeed set ho(x,x', x", .. . ,q) = g{i}(x,l ,x',O,x",O, . .. ,q) ,etc . (see
rest riction 2.5).

If we assume, as we often do, that the g{i} are everywhere differentiable,
then there is a weaker condit ion than (2.9) which results in (2.10) and there
fore in (2.9). Namely, if all of the g{i} of a generalizer are differentiable
and obey the prop erty that g{i}(x, y, x' , y', .. . u) + g{i}(x, z, x' , z' , . .. u) =
g{i}(x, y+z, x', y'+z' , .. .u) for all x , y, z, x', y', z', . . . u, then in fact the gen
eralizer is output linear. To see this simply note that th is property implies
that

lim g{i}(x,y + z,x', O, x" ,O, .. .u) - g{i}(x,y,x',O,x",O, .. . u)
z -+ o Z

1
. g{i}(x , z , x' ,0, x", 0, ... u)= 1m ::...o.~-,--,--,--,--,--,-_---,-

z -+ o Z

The right-hand side is simply some constant, independent of y, so we can
write g{i}(x, y, x', 0, x",0, . . . u) = yk + k', where k and k' are independent
of y. Since this prope rty also implies that

2g{i}(x, y, x', 0, x", 0, . . . u) = g{i}(x, 2y, x', 0, x", 0, . . . u),

we know th at k' must equa l 0. This allows us to write

k = g{i}(x, 1, x', 0, x", 0, . .. u).

In a similar manner we see that (for example) g{i}(x,O,x',y',x", O, .. .u) =
y'g{i}(x, 0, x', 1, x", 0, . .. u) . Therefore, pu lling th is all together,

yg{i}(x, 1, x', 0, x", 0, ... u)
+ y'g{ i}( x,0, x', 1, x", 0 .. . u) +...

which is exactly of the form given in (2.10).•
As a result of (2.10) , we see overtly that the guess to any question is °

if the output values of all the datum spaces are 0. Requirement (2.2) of in
var iance under permutation of the datum spaces mean s that ho(x , x ', .. .)y +
h1 (x , x' , . . .)y' + ... = ho(x' , x , . .. )y' + h1(x',x, .. .)y + .. .. Since thi s must
be true for all y, y', y" ,etc. (up to the rest rict ions of 2.5), we can conclude th at
ho(x , x' , x" , . . .) = hI(x', x, x", . . .), and that hj(x, x', x", . . .) = hj(x' , x , x", .. .)
for all j > 1. In general then, if we define Tij(hn)(x,x',x", ... ) as the func
tion created by interchanging the variables in the ith and jth slots of the
argument list before acting on it with hn (the first slot being defined to be
slot 0),
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(2.11) Tij = r.; (Tij)2 = 1, t; = 1, Tij(hk) = hk if i =f k and j =f k, and
Tik(hk) = hi.

A number of equalities follow directly from (2.11). For example,

ho(x, x', x") + hO(X",XI,X) = hO(x",x,X/) + hO(X,X",X/)

results from (2.11) . Also (2.11) means that hj = Tjo(ho) and therefore the
output of any output linear generalizer can be written as L:i';;-ol TiO(ho)Yi , or
L:i~l Ti(h)Yi for short (n is the order of the learning set). So the output of
the generalizer is

yh(x, z', x", . . . , q) + ylh(x l, x, x", . . . ,q) + y"h(x", x', x, . . . , q) +...
To ensure that the equalities of (2.11) cannot place us in a situation where
we have two expressions which appear to be different but in fact are ident i
cal, we must fix a protocol for standardizing the order of the argument list
of h. The protocol used here is to rearrange the variables occurring in the
slots beyond the first in increasing order. So, for example, instead of writing
h(x"', x", z , x', q), we would write the equivalent expression h(x lll, x, x', x", q).
Therefore, we standardize how we write the output of an output-linear gen
eralizer as

h( '" "' )y x,x,x ,x , ... ,q + y'h(x', x, x", XIII, . . . ,q)
"h( II 'III )+ y x ,x,x,x , . . . ,q +...

As was mentioned, there is a slight caveat to the equality

hex, x' , x", . . . , q) = g{i}(x, 1, x', 0, x", 0, . .. ,q)

presented just below equation (2.10), which comes from the fact that the g{i}
on the right-hand side of the equality must exist: the equality holds only so
long as x does not equal any of the variables x', x", . .. etc., since 9{i} is not
defined for such a set of argument values, given that y does not equal any
of the variables y',y", . . . etc. This does not mean that h(x,x,x", .. . ,q ) is
necessarily undefined, simply th at it does not equal 9{i}( x, 1, x, 0, x",°...,q)
(which is undefined) . Indeed, h(x,x,x" , . . . ,q ) can be consistently defined
without any difficulty, assuming that

g{i}(x, 1,x, 1,x",0, ... ,q )

is defined (see 2.5). To do thi s, write the output-linear generalizer

{O}( " II II I III )9 z x, y,x,y,x , y ,x ,y , .. . ,q

as

yg{ i}( x , 1, x, 1, x", 0, XIII ,0, . . . , q) + y"g{i}(x , 0, x, 0, x" , 1, XIII, 0, ,q )
+ ylllg{i}(x, 0, x, 0, x", 0, XIII, 1, , q)

+
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Exploiting datum space interchange symmetry between the unprimed and
doubly primed variables , we can also write this expression as

" {'}( "1 "1 ° III ° )Y 9 z x , ,x , , x, ,x , , .. . , q + yg{i}(x",O,x",O,x,l,x''',O, ,q)
+ ylllg{i}(x", 0, x", 0, x ,0, XIII, 1, , q)

+
Therefore, equating the coefficients of y, 9 {i}( x , 1, x, 1, x" ,0, XIII, 0, .. . , q)

must = g{i}(x", 0, x", 0, x , 1, XIII, 0, .. . , q). Similarly, equating the coefficients
of ylll ,

g{i}(x, 0, x, 0, x", 0, X III , 1, .. . , q) = g{i}(x", 0, x", 0, x, 0, XIII, 1, .. . ,q).

If we define H(x, x", XIII, •• . , q) == g{i}(x, 1, x, 1, x", 0, XIII, 0, .. . ,q), the equal
ity arising from equating the coefficients of y means that we can write the
output of the generalizer as

H( " III ) +y x,x ,x , ... ,q

+
"H ( " III )Y x ,x,x , ... ,q

ylllg{i}(x, 0, x ,0, x"; 0, z '", 1, . .. , q) +...
On the other hand, we want be able to extend (2.10) to our case where

input- space arguments are equal and have the output of the generalizer equal

2 h( "III ) +y x,x ,x ,x , ... ,q

+
"h( ff III )Y X ,x,x,x , .. . ,q
ff'h( III ff ) +y x ,x,x,x , .. . ,q ...

This can be done if we equate h(x, x, x", x"', . . . , q) with

1 {'}( "III )"2g Z x ,l,x,l ,x ,O,x , O, ... ,q.

S· l'd tl h h( ff" '" ) H( "'" )mce we a so evi en y ave x , x ,x ,x , . .. , q = x, x ,x , , q ,
we also see that h(x, x" , x", x"', .. . , q) must equal 1/2h(x, x, x" , x'"; , q).
Wh en investigating upwardly compatible output-linear generalizers it is nec
essary to have at hand all such restrictions on h in the situation where it has
two (or more) of its arguments equal in value.

For output linear HERBIEs y translation symmetry combined with (2.10)
immediately gives L:;~:l Ti(h) = 1. For all the input components of the
learning set different from one another, requirement (2.3) immediately gives
h(q,x',x", ... , q) = 1, and in general hn(x,x', ... ,q, .. . ,q) = 8(n,p), where
p is the number of the slot having the same value (q) as the question. This
is in complete agreement with the other restrictions on h and the hn .

It is important to understand that although g{i} completely specifies h,
and vice versa, all in the rather simple manner described above, h does not
have to satisfy the same restrictions that apply to the g{i} . For example,
for n > 2, we can take x = x' = q, y = y', and reproduction of the learning
set forces h to equal 1/2. However, as was just shown, for x = q = x' + c:,
h must = 1, even if e is infinitesimally small. Since the point x = q = x' is
within the domain of definition even for generalizers satisfying requirement
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(2.4), this means that h cannot be a continuous function of its arguments
if the associated g{i} is to also reproduce the learning set and be output
linear. Note however that this does not mean that the full 9 {i} cannot
both be a continuous function of its arguments throughout the whole domain
delineated in (2.4), reproduce the learning set, and be output linear. As has
been mentioned, metric-based HERBIEs are examples of generalizers which
meet all of these requirements.

Given that such continuous output linear generalizers exist, since (as was
shown before) all LMMGs, although output linear, are somewhere discon
tinuous, we can conclude that LMMGs form a proper subset of the set of
all output linear generalizers. Even ignoring such questions of continuity, we
can still see that not all output linear generalizers are LMMGs since metric
based HERBIEs are full HERBIEs, even being invariant under rotation in
the input space, whereas we know there are no LMMGs which can satisfy
(2.6) in its entirety (see closing arguments in appendix G).

As an aside, it is interesting to note that the kinds of thresholding func 
tions usually used to model neurons in neural nets satisfy all the restrictions
on h for n = 2, output-linear, one-dimensional HERBIEs. In proving this by
enumerating all output linear HERBIEs (see appendix J), it is also shown
how the restriction of output linearity is not enough to force unique gener
alization of HERBIEs. For purely heuristic reasons, it is therefore interest
ing to explore an additional criterion which does force unique generalization
of output linear one-dimensional HERBIEs, at least for the n = 2 case.
This criterion is to require that there exists an analytic function f (x) going
through the two points of the learning set such that if the two points of the
learning set had lain anywhere along f( x), then the output guessed for any
question q would be f (q). This amounts to a sort of self-consistency restric
tion on the guessing" and is automatically satisfied by LMMGs. (As was
mentioned previously, such generalizers usually are not HERBIEs, however.)
More precisely, we require that for any learning set ((a, b),(a', b'», there ex
ists a function f(x) such that f(a) = b, f(a') = b', and in general obeying
h(x, x', q)f(x) + (1 - h(x, x', q»f(x') = f(q), which is equivalent to

(2 12) h( ') - f(q) -f(x'). x,x ,q - fix) fix')'

Note that an f(x) obeying equation (2.12) is only fixed up to an overall
scaling and/or translation (i.e ., if f(x) is a solution to (2.12), so is af(x)+b).
It is shown in appendix K that for n = 2 any f(x) obeying (2.12) is a straight
line or an exponential, with the freedom in fixing the scaling and translation
of f(x) allowing it to be made to go through any two points making up a
learning set. If we require that the generalizer be a full HERBIE, input space
scaling invariance says that h(ax, ax', aq) must equal h(x , x', q) for all nonzero
real numbers a, and as a result the exponential solution must be discarded.

8This restriction is somewhat similar to the restriction of strong self-guessing discussed
in the first section of the second paper. The primary difference is that here we are not
making any assumptions about upward compatibility.
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(The fact that f(x) must be a straight line shouldn't be too surprising, since
we know that in addition to being expressible as it is in (2.12), as is discussed
in app endix J h must be expressible as a function of (q - x')j(x - x'), and
it is hard to think of any way of doing this without having f be linear in
its argument.) Therefore, for any n = 2 learning set, there exists a unique
function f(x) which reproduces the learning set and which obeys (2.12), and
therefore this restriction sets unique generalization of any n = 2 learning
set. Note that this is all markedly similar to the situation encountered when
enumerating all HERBIE LMMGs (see appendix G). In solving for all such
LMMGs we are allowed both exponentials and polynomials as members of
our basis set of functions, unless we require input-space scaling invariance,
in which case the exponential solution must be discarded.

As it turns out , the extension of the restriction (2.12) to n = 3 can't be
met by any generalizer. Ironically, this is because such an extension would
necessitate upward compatibility between the n = 2 and the n = 3 cases .
For n = 3, we write f(q) = h(x, x', x", q)f(x) + h(x',x,x",q)f(x') + (1 
h(x, x', x", q)-h(x', x, x", q))f(x"). For x = x', this becomes 2h(x, x, x", q) =
(f(q) - f(x") j(f(x) - f(x")), and the exact same analysis as in the n = 2
case means that f(x) must be linear. Therefore we have upward compat
ibility between n = 2 and n = 3. Now, however, let x i- x' and the
three points of the learning set not be co-linear. By hypothesis, there is
some smooth curve f(x) going through those three points such that g{3}
(x,f( x),x',f(x'),x",f(x"),q) = f(q) for all x,x', x", and q. Now letting this
x' become infinitesimally close to x, continuity of g{3} and upward com
patibility mean that our f(q) must be a straight line. However, we already
assumed that f(q) goes through three points which are not co-linear, result
ing in a contradiction. Therefore we cannot extend the restriction embodied
in equation (2.12) to the n = 3 case.

It is interesting to note that away from these points where datum spaces
have ident ical input values, fitting a parabola to three points constitutes the
g{3} of an output linear continuous HERBIE obeying (the n = 3 extension
of) equation (2.12). Indeed, fitting with a polynomial constitutes an output
linear, upwardly compatible, (2.12) obeying continuous HERBIE of arbitrary
dimension and order, so long as one stays away from regions where datum
spaces have identical input values . (An interesting and as yet unsolved prob
lem is to determine all solutions to this partial set of restrictions.) The
Achilles' heel of polynomial fitting, of course, just all other LMMGs, is its
inability to satisfy continuity in the situation where upward compatibility
applies (i.e., when elements of the learning set approach one another). Note,
however, that if we are willing to relax the requirement that generalizers be
continuous, we can easily have fully proper output linear generalizers. A
trivial example of such a generalizer is a HERBIE that guesses as the output
to any given question the output component of the datum vector nearest to
that question.
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This ends the first paper of the series. The next paper cont inues the
discussion of generalization, using gener alization criteria of a qua litatively
different nature than thos e present ed here.

Appendix A.

Hopfield's scheme for using neural nets as associative memories

In Hopfield's scheme each neu ron, having a value of + 1 or -1 , is connected
to every other neuron. Evolution of th e net proceeds according to the rule
O"i(t ) = g[L: j JijO"j(t - 1)], O"i(t) being the state of the ith neuron at cycle
number t , and Jij constituting the connect ions between t he neurons and
usually taken to be symmetric. The function 9 is usually taken to be the
sgn function. In analogy to simple statistical mechanics we can now define a
Hamiltonian H as - L:ij JijO"i(t -l)O"j(t -1). Let 6.O"i represent th e change
in a, over one cycle. If it is nonzero, then by the definit ion of the evolution
operator 9 the sign of 6.O"i is the same as th e sign of L:j JijO"j evaluated at th e
previous cycle. Therefore 6.O"i L: j JijO"j is positive definit e, 6.H is negati ve
definite under evolut ion of the system, and H descends monotonically to a
local minimum. To see how this can serve as an associative memory, view the
state of all the neurons in the net as a (po tenti al) memory. We then want to
pick the Jij in such a way that if we start with the system in a state close to a
memory we want stored in the system, then the evolution takes the neurons
to that stored memory. This behavior can be achieved by using the Hebbian
rule to set th e Jij as L:mxr Xjm, where xr is the ith compo nent of the mth
memory to be "stored." With this Jij> H = - L:m(xm · (f) 2

, (f being th e state
of all the neurons at a given time. For rather reason able assumptions on the
distribution of the xm H will be minimized for (f parallel to X'" for some n.
In other words, the if'" serve as stable points of the evolution of th e system,
as desired.

Appendix B.

Boltzmann machines and backpropagation

To understand how neural nets generalizers behave, it is helpful to examine
th e details of their operation . As a first example, consider Boltzmann ma
chines, which constitute a sort of stochast ic generalization of Hopfield nets .
Instead of viewing the state of the whole net as being the input and output ,
in Boltzmann machines certain neurons are declared to be input and certain
other neurons are declared to be output . Input neurons have th eir st ate set
by the outside world exclusively and output neurons have their state fed to
the outside world exclusi vely. Therefore connect ivit ies are , in a cert ain sense,
explicitly nons ymmetric. Take the possible states of any given neuron to be
{O, I}. Evolution of the net proceeds according to the probabilistic rule that
O"i(t) = 1 with probability j(6.Ei) , j bein g the fermi function and 6.Ei, a
function solely of the other spins in the net , being the difference between
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the energy the net would have at cycle t - 1 if neuron i were fixed as a 0
and the energy it would have if neuron i were fixed as a 1. (The Hopfield
net 's evolution is akin to the temperature = 0 case.) This, of course, is just
conventional statistical mechanics. The probability of a particular state iJ
for the whole net is [fii30';=1 P(O"i(t))][fij30'j=o(1 - P(O"j(t)))J, P(O"i(t)) being
the probability of neuron i of the state iJ being a 1 (i.e. !(tlEi ) ) . Taking a
particular neuron k which is off in state a and turning it on to make state
if, we see that Pc;/PiJ = e-(Ea-EfJ)/kT, just as in Boltzmann statistical me
chanics (hence the name "Boltzmann machine"). Therefore, as in a Hopfield
net, letting a Boltzmann machine evolve will (likely) cause it to end up in
a local minimum of its energy function. Simulated annealing [25J is often
used in practice to try to "freeze in" that minimum by gradually lowering
the temperature in the fermi function.

Again, just as in the Hopfield net, "teaching" the net in a Boltzmann
machine consists of choosing the energy function to assure certain dynamic
behavior in certain situations. Unlike the Hopfield net, however, here the
behavior to be taught only entails fixing the values of a subset of the neurons,
those which serve as the inputs and the outputs. Along with the fact that
the input neurons do not evolve but remain constant throughout the running
of the machine, this is what allows the Boltzmann machine to be viewed as
a generalizer and respond with outputs completely different from any with
which it was taught. As with Hopfield nets, a magnetic energy function is
usually chosen: Ec; = - Li<j JijO"fO"y + Li OiO"1- Jij is usually taken to be
symmetric. For the Boltzmann machine the determination of the Jij from the
learning set is more complicated than in the Hopfield case. Define a cross
entropy error function G = Lc; Pt In [Pj)Pi], where a runs over the set of
input and output states with a given input vector fixed on the input units,
pt is the desired probability of state a, and Pi is the actual (equilibrium)
probability of state a when the machine is running. By inspection, when G
is minimized (to 0), pt = Pi and the system will definitely evolve to a state
which has the desired output units when the input units are held fixed at
the corresponding values. A number of techniques can be used to minimize
G, gradient descent being perhaps the most common. When it is desired to
have the learning set taught to the net consist of more than just one input
vector/output vector pair, the G to be minimized is modified by summing
over all elements of the learning set.

Another neural net generalizer which is perhaps the simplest (and cer
tainly the most widely researched) is the technique of backpropagation. Like
the Boltzmann machine, this net has a subset of the neurons designated in
put neurons and another subset designated output neurons. Also like the
Boltzmann machine, a fermi function (or, in general, any sigmoidal function)
is used to do the evolving. However, here the neurons do not only take on
discrete values and the evolving is not stochastic: O"i(t) = !(Lj JijO"j(t - 1))
is the updating rule. Usually the Jij are chosen so that the connectivity is
that of layers of neurons feeding forward into one another, starting from the
input layer and proceeding all the way to the output layer. As in the previ -
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ously described neural nets, output is when the system reaches a steady state,
which in this case means after n cycles, n being the number of neuron layers.
"Backpropagation" refers to the teaching technique of this scheme. The Jij

are found by minimizing an energy (i.e., error) function via gradient descent .
The energy funct ion is usually chosen to be the sum of the squares of the
differences between desired and actual output states for a given input st ate.
Any Ji j which constitute a zero of the energy function will give the desired
out put for any input chosen from the set of input /output pairs making up
the provided learning set . Since the net is feedforward, it is a simple matter
to wri te down the function relating the Ji j and the output of the net, given
any input . Therefore, although such a function is not directly invertible, it is
t rivially easy to run an iterat ive procedure to approximate the Jij which give
zeros of the energy function by analytically calculating the functional form
of the gradient of the function energy(Ji j ) and then using a steepest descent
proced ure . Again as with the Boltzmann machines, since a backpropagated
net can respond in a novel way to a novel input, it constitutes a generalizer.

A pp endix C.

A precise defini tion of int elligence

If desired, the definit ion of general intelligence in section 1.2 can be made
mor e precise (and, accord ingly, more narrow) . An intelligence task can be
defined in terms of the quintuple of a set of possible decisions, 6., a set of
possible resul ts, 0 , one of which is delineated as being the desired result, a set
of provided informat ion , I p r ov , a set of nonprovided information, l reUs., and a
function f taking l reUs., I p rov , and a single element b E 6. to an element w EO.
The intelligence task for the system is to pick the b which, when fed to f along
wit h I p rov and l reU s., produces the desired element of O. The system's decision
is required to be based only on f and I p r ov ' The system is not provided with
l reUss ' (In the langu age of sect ion 2 of t he second paper, the mapping taking
l reUss an d I pr ov to the (induced) pro ject ion of f taking 6. to 0 is a "method."
This method is found from f , with l reUss and I p r ov forming the defining set .)
On the one extreme, f could be relatively independent of the contents of
l reUss ' in which case the intelligence task essentially reduces to the problem
of inverting f. On the other extreme, f could be a fairly straightforward
fun ction , easy to invert , but highly dependent on the contents of l reUss ' In
this case, the intelligence task is essentially the problem of making a best
guess for l reUss based on I prov an d f . Given the concept of an intelligence
task , a syst em's general intelligence can be defined as a measure of how well
the syst em perfor ms at arbi trary intelligence tasks. Many different measures
of that performance can be used, of course. Perhaps the simplest is to tally
the percentage of intelligence tasks at which the system succeeds. Another
possible measure requires a metric giving how close any element in the result
set is to the desired result. Then a measure of a system 's general intelligence
could be the average distance of the system's guess from the desired result.
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Appendix D .

David N. Wolpert

Discussion of inner products among gen era liz er s

Some interesting mathematics result from trying to define a vector space in
which generalizers live and then defining a mapping meeting all of the criteria
usually required of an inner product and which takes pairs of vectors from
that vector space to elements of an appropriate field (see reference [50]). One
way to go about this is to have the infinite set of numbers making up the
"pseudo" inner product serve as the inner product in the vector space of
generalizers. To do this, define the field F to consist of all countably infinite
sets of real numbers: if a E F , then a = {aI, a2, . . .} where all a; E R. For a
and b both E F, we say that a = b iff ai = b, for all i. Similarly, we say that
a > or < b iff a, > or < b, for all i. (Note that with these definitions, it is
no longer true that either a > b, a = b, or a < b for all a and b - the field is
only partially, not totally, ordered.) Addition in F in performed component
by component: a+ b= {al + b1, a2 + ~, .. .}. The addit ive ident ity is simp ly
{O, 0, . . .}. F differs from the standard L 2 Hilbert space in that, being a
field, multiplication of elements in F is defined. As wit h addition , elements
in F multiply by component: a X b = {a1b1,a2 b2 " .. }. The mult iplicative
identity therefore is {I, 1, . ..}. (Note that if F were to be viewed as an
infinite vector space over R, this definition of multiplicat ion would not be a
proper tensor operation, since after appropriate rotations a X b could always
be made to be either parallel to a or parallel to b.) Closure, the existe nce
of multiplicative inverses (for elements of F with no components equal to
0), commutativity, and the distributive law all follow, confirming that F is
indeed a field. Intuit ively, F is simp ly an infinite set of R fields all acting in
parallel- there is no interaction between components of an element of F .

Now that we have an appropriate field, we can define the vector space
in which generalizers live. Simply put, generalizers live in the same space
as the elements of F, except that their components are functions from R"
to R, rather than just elements of R. This space is a vector space over F ,
just as the set of all well-behaved (i.e., D') functions from R" to R is a
vector space over R. a E F multiplied by the generalizer {g{1} ,g{2}, . . .} =
{alg{l} , a2g{2}, .. .}. Addition of generalizers goes exactly as addition of
element s of F. All the usual restrictions on legal vector spaces follow from
these definitions (see reference [50] again) .

Using Dirac notation, we can now define the inner product between two
generalizers IG> and IH > to be the element of F {(g{l }lh{l} ), (g{2}lh{2}),
. . .}. Except for the fact that the inner product as defined th is way does not
live in R, it obeys all the usual restrictions on inner products . As a result ,
both the t riangle inequality and Schwar tz 's inequality hold. An orthogonal
basis for the space of generalizers consist s of th e generalizers {Bib 0, 0, . . .}
for all i, {O, Bi2 , 0, ...} for all i, etc., where "0" denotes the °function, and
B i j denotes a complete orthonormal set of basi s functions for the mappings
from Rj(m+l)+m to R. The elements of this basis will be generically denoted
as IBi j ». If the i are discrete, we can expand any generalizer IH > as
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IH >= Eij IBij > (Bij IH) . A similar expression holds for cont inuous i.
Although easy to work with, it should be noted that these IBij > are not
normalized. Nor can they be normalized simply by multiplying them by
the appropriate constant , since the multiplicative ident ity is {I , 1, . . .}, and
therefore the 0 components in the IBij > make their multiplicative inverses
undefined. To construct an orthonormal basis, we would have to take the
(nonorthogonal) basis {B il, Bi2, . . .} and apply Graham-Schmidt.

As opposed to this formalism using an infinite number of components, it
is possible to view generalizers as a vector space over the reals rather than
over F. IG > + IH > still = {g{l} + h{I},g{2} + h{2} , .. .}, but now
alG >= {ag{I},ag{2 }, .. .}. The difficulty with this new formalism is in
trying to define an inner product mapping two generalizers to an element of
the reals in such a way that the magnitude of a generalizer IG> is finite even
if all of its component functions g{i } have nonze ro magnitude. One way to
do this is to define

(GIH ) = lim E?-l (g(i )lh(i )) .
n-+oo n

The usual required properties of inner products follow, assuming that the
limit defining the inner product exist s for the generalizers in question. Un
fortunately, the magnit ude of the inner product of anyone of the basis vec
tor s IBij > with another generalizer is O. We can no longer write IH >=
E ij IBij > (Bij IH). Graham-Schmidt (for example run over the set of ele
ments from {B il, Bi2, .. .} which have well-defined inner products with one
another) has to be used just to form a basis allowing us to write this kind of
expansion, rega rdless of any questions of overall normalization.

App endix E.

Basic p roperties of LMMGs

In this appendix a rigoro us definition of LMMGs is given and a property of
them which is used in appendices G and F is proven.

Make the rigorous definit ion that an LMMG is a generalizer which works
by taking an orde red basis set of infinitely differentiable nonzero functions,
<PI (T), <P2 (T), . .. E q>, and for the given learning set B forms the linear com
bination of bas is funct ions, Ef: l ai<Pi(T), aN =f 0, which has as small N as
possible and yet still goes through every element of the B. T he guessed output
of th e generalizer for a quest ion q is given by Ef:l ai<Pi (if). Any generalizer
like "fit the learning set with a power series" or "fit the learning set wit h a
sum of Bessel functions" or the like is an LMMG .

First note that aN mus t be unique. To see this, first note that if Ef: l
ai<Pi(T) reproduces a learn ing set of pairs {(i'j,Yjn,then the matrix equation
<p}ai = Yj must hold, where implied sum notation is being used and where
the matrix <p} is defined to have as elements the values <Pi (i'j). Now if the
set of {a d which repro duce the learning set is not unique, we have that
<p} (ai - a D = 0 where at least one of the ai differs from the corresponding ai ·
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Therefore, indexed by i, the vectors rP) are linearly dependent. This means
that there exist s some value I such that rPj can be written as (3irP) where
(3, = O. Therefore we can write

If in particular aN =1= aN, we can t ake I = N, and therefore have just
derived a formula for a linear combination of the first N - 1 rP;('r') which
reproduces the learning set. Since by hypothesis N is as small as possible,
this is impossible, so aN indeed must equal aN. If the remaining coefficients
are not unique, then we can choose between any two candidate sets {ad
and {a' i} according to any arbitrary method, so long as we are consistent in
ap plying it . Here we will require that we choose the set which has the lowest
abs olute value for the highest i in which they differ. For example, choose
{6, 6, - 3, 7, 2} over {8, 9,4, 7, 2}, since 1- 31 < 141. (Rigorously speaking, it
is only once we have set such a rule for choosing between two candidate sets
that we have complete ly defined the LMMG .)

(E.!) For all N and {ad where aN =1= 0 there exists an N-point learn ing set
such that the LMMG chooses those {ad to fit the learning set.

Proof. Since the rPi(rj are linearly independent, for any N of the rPi (rj there
does not exist a nonzero N -component vector if such that

for all vectors [rPl (rj, rP2(rj, ... , rPN(rj ] ~.e., for all rj. In other words, the
vect ors [rPl(rj , rP2(rj, ... , rPN (rj ] span R . Therefore, there exist N vectors
[rPl (rj , rP2(rj , .. . , rPN(rj ] which are linearly independent, i.e. for any N there
exists a set of N input values {fi ll:::; j :::; N} such that the N vectors

are linearly independent . Now for any N and any associated set {ad the
N -element learning set

N N

{ (r l' L airPi (r l )), . . . , (rN,L airPi(fN))
i=l i=l

is such that it lies on th e surface I:~1 airP(rj. If aN =1= 0, then it is poss ible
that th e LMMG will fit the learning set using those {ad and therefore th is
surface I:~1 airP(rj . To ensure th at this surface is the actual one which the
LMMG will use to fit the learning set, it suffices to note that since all the
rows of our matrix rP) are linearly independent, there does not exist any
set of values {an different from the set {ai} such that the learning set can
be reproduced by the surface I:~1 a;rPi(rj. This comp letes the proof of the
lemma. •
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Appendix F.

Proof that no LMMG is continuous

See appendix E for a rigorous definition of LMMGs and a proof of the fact
that for any N and any set {ad where aN =f 0, we can always build an
N-element learning set () such that the LMMG fits it with a surface of the
form I:f:l ai¢Ji(i) , where the ¢Ji(i) are taken from the basis set of functions
of the LMMG. Build such a learning set , and indicate its elements by (rj, Yj),
where j ranges from 1 to N . Indicate the surface the LMMG fits to () by
f(i) ·

To proceed in the proof, it is first necessary to establish the following
lemma:

(F.l) Let ¢J~ indicate N - 1 linearly independent vectors of dimension N,
1 :::; i :::; N - 1, 1 :::; j :::; N . Then there exist two indices a and b such
that if ¢J~ is modified by having all N - 1 element s ¢J~ set equal to the
corresponding N - 1 elements ¢J~, then the new set of vectors ¢J~ is still
linearly independent .

To prove (F.l) make an N x N matrix <Il whose first N - 1 rows are
the vectors ¢J~ and whose last row is a vector linearly independent with all
N - 1 of the ¢J~. We know that det(<Il) can not equal O. However, we can
evaluate that determinant by cofactors of the entries in the Nth row. At
least one of these cofactors cannot equal 0, since the full determinant does
not equal O. This means that there is a column index c such that if we make
an (N - 1) x (N - 1) matrix <Il' from the first N - 1 rows of <Il by removing the
cth column from those rows, then det( <Il') =f O. This means that the vectors
making up the rows of <Il' are linearly independent. Now make a new matrix
of N - 1 rows and N columns by taking <Il', duplicating one of its columns,
and appending this column to the right-hand side of <Il'. The vectors formed
by the rows of this new matrix are still linearly independent. However, this
matrix is exactly the one made by modifying ¢J~, as referred to in (F.l) . •

Take our original learning set () and modify it continuously by sliding
point a of the learning set (i.e., the point (rj=a' Yj=a)) toward point b (i.e.,
toward the point (rj=b,Yj=b)) along the surface f(i). At any point during
this sliding the LMMG can fit the (modified) learning set with the first N
¢Ji(rj), just by fitting it with f(i) . Therefore we know that at any point in
the sliding the LMMG will fit the learning set with the first m :::; N of the
¢Ji(rj).

Now by (F.l), we can choose a and b so that when the two points have
been slid on top of one another, the N - 1 vectors ¢Ji(rj) formed by taking
the first N - 1 ¢J;'s of the LMMG and evaluating them at the N points
of the learning set are still linearly independent. However, we know that
when the two points are on top of one another the first N vectors ¢Ji(rj)
must be linearly dependent, since now the determinant of ¢Ji(rj) = O. The
only way this is possible is if the vector ¢IN(rj) is expressible as a linear
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combination of the first N - 1 r/>i(fj ). Since we know that the LMMG can
fit the modified learning set with (at most) N of the first r/>i(fj ), this linear
dependence tells us that the LMMG will in fact fit the modified learning set
with only m :::; (N - 1) of the first r/>i( fj ), when point b has been moved on
top of point a.

So we know that there must be a point during this sliding at which the
LMMG suddenly stops fitting the learning set with the first N of the r/>i (fj )
and instead fits it with the first N - 1 of them. However, all of the r/>;('rj are
linearly independent of one another. This means that any linear combination
of the first N - 1 of the r/>i (fj) must differ from all linear combinations of the
first N of the r/>i (fj) by a nonzero amount for some value of f . This means
th at the LMMG's g{N} mus t be a discontinuous function of its argument s
when the arguments are at this point of transition from N funct ion fitting
to N - 1 function fitting . This concludes the proof of the prop osition.

Appendix G .

Proof that only polynomial LMMGs obey (2.6)

See appendix E for a precise definition of LMMGs. To begin our proof that
only polynomial LMMGs obey (2.6), it is easy to show that output translation
invar iance forces r/>1 (f') to = 1. Let D indicate t he support of r/>1 (f'). By
definition of LMMGs, D is nonempty. Now consider any point fE D . Let
our learning set be {f, r/>1 (f') =f O} . Output-translating our learning set by .A
we get the new learning set {f, r/>1 (f') + .A }. By output-translation invariance,
g{l}(f,r/>l(f'),q) = g{l}(f,r/>l (f') + .A ,q) - .A for all if. However, since g{l} is
part of an LMMG, g{l}( f ,r/>l (f'),q) = r/>1 (q). Moreover, outpu t space scaling
invariance requires that

In other words, r/>1 (q) is a nonzero constant, k, independent of if, and without
loss of generality we can set k = 1. •

Now let T>. indicate anyone of the (parameterized) transformations of
requirement (2.6). For example, we indicate the operation of out put space
tr anslation invariance by the (nonlinear) operator T>. where T>. [f( f') ] = .A +
f (f') . Then it follows that

(G.1) For a given bas is set of functions r/>i(f') E qi, if the LMMG ba sed on qi

obeys invariance under T>. then for all sets of real numbers {ad and all
N (where aN =f 0) there exists a set {aD and an N' (where a N' =f 0)
such that T>. [L:~l air/>i (f')]= L:f::l a:r/>i (f').
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To see (G. l) first recall from appendix E that since the ¢i(r') are lin
early independent of one another, for all Nand {ad there exists an N-point
learning set such that the LMMG chooses those {a;} to fit the learning set .
Next note that by the hypot hesis of meeting (2.6), th e curve T>. [L:~l ai¢i(r')]
rep roduces the transformation of this learni ng set and also makes t he t rans
formed quest ion-guess mapping. It is unique in doing this, and therefore
invariance of the LMMG under T>. means that it must be the same as the
curve generated by running the LMMG off of the transformed learning set.
This LMMG-generated curve can always be written as L:;::1 a:¢i(r'), however,
which proves the supposition.

Note that ¢1(r') = 1 is comp letely in accord with (G.l) . Also note that if
a learning set {rj,Yj} is fit by an LMMG with the curve L~l ai¢i(r'), then
the learning set {rj,>'Yj} will be fit with L:~l>.ai¢i(r') = >'L~lai¢i(r') .
Therefore LMMGs au tomat ically obey output scaling invariance.

The proof that there is only one set <P whose LMMG obey the invariances
of (2.6) and that that set is the set of all polynomia ls works by showing
that there is only one set <P which meet (G.l ) for input space invariances.
Note, however, that (G.1) is only a necessary cond ition for the invariance
of an LMMG un der T>. . Fortunately, in what follows the sufficient condi
tio n (namely, that the given basis set <P , which obeys T>' [L~l ai¢i(r')] =
L:;::1 a:¢i(r; for all transformations T>., is such that the associated LMMG
obeys invariance under all the T>.) will be obvious. Therefore, in the exposi
tion below sufficiency will not be explicitly illustrated.

Withou t loss of generality we can take N' :::; N in (G.1) when we are
dealing with a single >. - if N' > N, then T;l [L:;::l a:¢i(r')] = L:~1 ai¢i(r'),
and since our (paramet erized) transformations are groups, T;l = TN for
some ).' (in practice we usually parameterize the group so that >" = ->.
so that our groups are explicitly Lie groups). Therefore by simply flipping
which we call the t ransformed space and which we call the untransformed
space we can have N' :::; N .

In the analysis below, however, we are going to need to make use of
an even stronger condition on the N ' . Instead of just choosing between
T>. and T_>. to ensure N' :::; N for a single x, we will require N' :::; N for all
>. E [- bo>' ,bo>']' with bo>' > o. In other words, as we move through [-bo>' , bo>']
our choice of T>. or T_>. (to ensu re N ' :::; N) must not change.

This stronger condit ion is not difficult to meet, fortunately. Since the
¢i(r') are all linearly independent, as before there exists a learning set () with
input coordinates r~ , r-;, . . . , rN such that the LMMG working from this ()
will create a curve L:~1 ai¢i(r') where (in particular) aN is nonzero. Now
assume there exit s an open ball of nonzero radius living in R m N (the vector
space delineati ng all datum space inputs components for the m-dimensional
LMMG's g{N}) and centered on the input components of (), such that the
matrix ¢i(i'j)(l :::; i,j :::; N) has nonzero determinant for all sets {i'j} con
tained within that ball . Then any T>. moving () to any point within that
ball will have N' :::; N. (aN might = 0, for example, which is why N' is al
lowed to be < N. T he import ant point is that there is no linear dependence
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among the transformed ¢i(i'j) which might force N' to be > N.) Therefore
our "stronger condition" will be met if this assumption holds. To prove this
assumption it is sufficient to disprove its negation. To do this, note that if
there does not exist any such ball of nonzero det(¢i(i'j)), then since we know
that det(¢i(i'j)) is nonzero at (), there must exist an axis in R m N such that
the set of points along that axis with 0 det(¢i(i'j)) contains the intervals [x , (})
and (() , y], where x is () shifted a nonzero amount in one direction and y is
() shifted a nonzero amount in the opposite direction. (At first it might be
thought that the statement that no such open ball of nonzero radius encloses
() could be satisfied if, for example, the set of points with 0 det(¢i(i'j)) in the
vicinity of () were [x, (} ) and either (z,y ] or [z,y], where z is () shifted by a
nonzero amount in the y direction. Note, however, that if this were the case
then any learning set lying between () and z would lie wholly within a ball
of nonzero det(¢i(i'j)). (I am assuming here that it is only this one axis in
R m n which has the property that det(¢i(i'j) ) flips from being 0 to nonzero
as you move along it at the point (). The argument if there is more than one
such axis goes similarly.) So for our purposes of finding any such ball we can
safely remove all such situations from consideration .) Now note however that
det (¢i (i'j)) is a continuous function of the i'j. Therefore it is impossible for it
to be 0 in [x, ()) and (8, y] but nonzero at 8. Therefore our assumption of the
existence of such a ball of nonzero det(¢i(i'j)) is justified, and our "stronger
cond ition" can be satisfied. In what follows we will always take our learning
set to be in the center of such a ball of nonzero det (¢i (i'j)), and all T>. will
keep us within that ball. (Note that we make no restrictions on the value of
q, however.) Therefore we will always be able to take N' ~ N .

Now examine the invariance of scaling and translation in the input space.
Rearranging (G.1), and assuming our learning set is in the center of a ball of
nonzero det(¢i(i'j)), we immediately get

(G .2) For a given basis set of functions <1>, if the LMMG based on <1> obey s
(2.6) then there exist s a function K(a, b, n, i) such that ¢n(ar + b) =
L:i=l K (a, b,n, i )¢i(T) for all r. a and b are assumed close enough to 1
and IT respecti vely to ensure that we are within the ball mentioned in
the previous paragraph.

Note that although the transformation of the learning sets is restricted
to being within the ball, the restrictions on the ¢i(T) given by (G.2) app ly
for all r.

K (a,b, n,i ) is a differentiable function of a and b everywhere that (G.2)
holds. For example, to see differentiability of K with respect to the compo
nents of b, re-express (G.2) in an abbreviated format (for the particular case
where a is fixed and close to 1) as ¢n(r+b) = Ki(b)¢i (T), where implied sum
notation is being used. Then
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for any vector r*. In particular, since the ¢>i(T) are all linearly independent,
as before we can choose Nr*'s so that det(¢>i(r*)) 1- O. This means that there
exists a matrix Ai such that Ai¢>i(r*) = 51. Therefore

oK/(b) I~ __ o[Ai¢>n(r* + b)] 1__
ob

m
b=O - ob

m
b=O'

Since the ¢>i(T) are all differentiable functions , the right-hand side of this
vector equation is well defined. This means that for any I, K(a,b,n,l) is a
different iable function of all the components of b, assuming a and bmeet the
conditions given in (G.2). A similar proof holds for showing that K(a, b, n, i)
is a different iable function of a .

This different iab ility of K is what allows us to delineate the set of all
<I> whose associated LMMG obeys (2.6). To see th is first examine the case
where the input space is one-dimensional. ¢>2(X + b) = K( 1,b,2,2)¢>2(x ) +
K (1, b,2,1 ). Now since the ¢>i(X) are linearly independent, K (l,O, m, n) =
5(m,n), the kronecker delta of m and n. This allows us to subtract terms
like K (1, 0,2, 1) at will, so we can write

lim[ ¢>2(x + b) - ¢>2(X) ]
b--+O b
~ ( )dI{(1,b,2,2) 1 dI{(1,b,2,1),
'+'2 x db b=O + db b=O ·

The two derivatives with respect to b in this equation are arbitrary constants .
If the first of them = 0, we have the solution ¢>2(X) = Ax + B (A and B
being arbitrary constants) . Otherwise ¢>2(X) = AeBx + C (A, B, and C
being arbitrary constants). This second solution can be discarded, however,
since scaling invariance would require that for any real number a, ¢>2(ax) =
AeBax + C be expressib le as a linear combination of AeBx + C and 1, which
is impossible. Therefore anyone-dimensional LMMG obeying (2.6) taking
a two-element learni ng set fits that learning set with a straight line. This
result is in accord wit h (2.7).

These kin ds of arg uments can be iterated to get all the other ¢>i(X) :

d¢>3 (X )--a:;;- = a¢>3(x ) + bx + c.

a = 0 gives ¢>3(X) = Ax 2 + Bx + C. a 1- 0 has the solution ¢>3 (X ) =
eax [Je-ax(bx + c)dx + D] . This solution can not E <I> if D 1- 0, due to th e
requiremen t of input space scaling invariance. However , the remaining terms
in this solut ion are linearly dependent on ¢>2 (x) an d ¢>l (x), and therefore must
be discarded. Therefore ¢>3 (X ) = Ax 2+ Bx + C. Similarly, via induction
¢>n(x ) = Ei=o ai xi, or, without loss of generality, ¢>n(x) = z". Note that if we
were not requiring scaling invariance we would also have as legal <I>'s those
whose individual member functions are polynomials + exponentials.

Now let us consider the case where the input space dimension m is > 1.
¢>1(T) still (can be taken to ) = 1. Now, however, we get p.d.e.'s rather than
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o.d.e.'s for the other <pi(f'). For example, we get a~w') = Ai<P2(f') + Bi, where
i ranges over the coordinates of the input space . If, for i = a, Ai = 0, then

(note there is no implied sum over the repeated a's in this equation) . If all
the Ai = 0, <P2(f') = Biri +C (implied sum over the repeated i) . Let Ai =I- °
for i = a. Then

and as before we cannot meet scaling invariance. So all the Ai must = 0,
and <P2(f') = B · r +C.

Next up we get

where this B is the same as the one in the solution for <P2(f'). Without loss
of generality we can set all E, to O. This is because if Eo< did not equal °for
a particular a, then

<P3(f') = eIEQTQ] [H(rl,r2, . . . ,ro<_bro<+I, "')

+ Je[-EQTQ](Fo<B . r +Go<)dro<]'

Scaling invariance forces H(rl' r2, . . . , ro< _!> ro<+!, " ') to = 0, as usual, so we
would have

which is linearly dependent on <PI (f') and <P2(f'), contrary to the requirement
that ill be a basis.

If in addition to the E; all the F; = 0, then we get <P3(f') = G·r+H. Since
<P3(f') is linearly independent of <P2 (f') and <PI (f'), Gand B cannot be parallel.
We can similarly set all but the last constant to 0 in the next m - 2 sets
of p.d .e.'s (for <P4(f') through <Pm+!(f') ), and then without loss of generality
choose B, Gand all the other constants so that <P2 (f') = rl, <P3 (f') = r2, ... ,
all the way up to <Pm+!(f') = rm.

For the next set of p.d.e.'s (those concerning <Pm+2(f')) we cannot continue
this procedure of setting all but the last constant to 0, since <Pm+2(f') must
be linearly independent of <PI (f') through <Pm+! (f'). Therefore
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where for all i, III i- O. This results in 1>m+2 being a quadratic polynomial
of the components of r.

A priori, we are not justified in setting all those constants to 0 in the
p.d.e.'s for 1>3(r') through 1>m+I (r'). It is entirely possible, for example, that
1>3(r') could have one or more of its F, i- 0 (which would result in 1>3(r') being
a quadratic polynomial) and yet all but the last constant in the p.d.e .'s for
1>4(r') could be 0, so that 1>4 (r') would be one of the remaining linear functions.
In other words, the ordering of the elements of ~ is not necessarily according
to the power of the individual polynomials. It is only in the one-dimensional
case where the requirements of scaling and translation invariance force us to
order the basis set of polynomials according to the power of the polynomials.
Indeed, for the multidimensional case it is even possible that a given linear
function appears nowhere in ~, but can be constructed by forming a linear
combination of polynomials from ~ each of which has power> 1.

However, note that there is an important invariance from (2.6) which we
have not yet taken into account: invariance of the mapping under rotation of
the input space . Indeed, no basis set ~ for an input space having dimension
> 1 can obey this invariance. This is because as was shown above, if we
have a two-element learning set, in general it gets fitted with a linear com
bination of 1>1(r') = 1 and 1>2(r') = jj . r, where jj is an arbitrary constant.
For any such fixed jj though, it is impossible to express the rotation of the
surface fitted to the two-element learning set with a new linear combination
of 1>1(r') = 1 and 1>2(r') = jj . r. Rotation invariance is violated by LMMGs.
However, note that, for example, if the 1>3(r') through 1>m+I (r') are indeed
the linear functions, then for learning sets of cardinality m + 1, we do get
rotation invariance, since such a learning set will be fit with a hyperplane
al +I:~~l airi, and the rotation of such a hyperplane is just another hyper
plane, a; +I:~~l airi' We can therefore make a watered-down version of the
requirement of rotation invariance: if the ')'(i) are the successive values of N
such that the rotation of any linear combination of the first N elements of
~ is expressible as another linear combination of those first N elements of
~, then we require first that ')'(2) -')'(1) be as small as possible, then that
')'(3) - ')'(2) be as small as possible, and so on through all')'U) - ')'U - 1).
Trivially, ')'(1) = 1. Since 1>2(r') is necessarily linear, to meet this "modified
requirement of rotation invariance" for ')'(2) - ')'(1) we do indeed have to
have 1>3(r') through 1>m+I(r') be linear functions of the rio As above this then
forces 1>m+2(r') to be a quadratic, and so we have to have all the other linearly
independent quadratics (there are m(m - 1)/2 of them) coming next in ~.

Iterating this argument, it is clear that

(G.3) The only basis sets offunctions ~ whose associated LMMGs obey the
invariances of (2.6) (with the requirement of rotation invariance in the
input space modified as above) are the sets of functions
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where notationally (x, y, . . . , z) means all possible bases which span the
same space as the functions x, y, . . . , z.

T his concludes the pro of of the proposition . Again, note that if we do
not make any requirements concern ing rotation invariance at all, then all we
can say is that <I> must be a set of polynomials , arranged in any ord er, which
spans t he space. Similarly, if we do not require scaling invari ance in the input
space, the individu al elements of <I> can have exponent ials added to th em .

A ppendix H .

The npa generalizer

The npa generalizer begins its calculation of the output corresponding to
any given question by computing the input space vector ra from the ques
tio n to the point in the learning set nearest the question. (In general, all
vect ors are here assumed to be rela t ive to the question.) Next it forms an
m-dimensional open hypersphere centered on the question with radius 2lfol.
Label the position vectors of the point s from the learning set which fall within
th e hyp ersphere as ri. Assume there are n of them, so 0 ~ i ~ n - 1, where
it is assumed that lril 2 lri-ll for all i. Label the associated outputs by m i '
Let f n be any point 21ra l away from the question. Now define the value of
th e scalar field p(rj to be the median of the mj whose associated positions
obey lfil ~ If I· In other words, at any point f, p(rj is the average of the
smallest and the largest m i which lie inward of f . The output value the
generalizer guesses for th e question is given by [~~~ I p(rjdmr] / [~~~~o l dmr].
If one of the m i changes by an infinitesimal amount Sm, then its greatest
possible effect on the generalizer's guess would be if it's at ra, and is (say)
the largest m i throughout th e whole hyp ersphere. In thi s case, p(rj every
where increases by at mos t 8m / 2 (8m if this point happens to be the only
one in the hyp ersphere) , and therefore the generalizer's output increase by
8m/2. Consequently, this generalizer is continuous in the mi. Furthermore,
although p(rj is in general a discontinuous fun ction of f and th e ri, ~~~I dmr

is a cont inuous function of the ri , as is ~~~ol p(rjdmr, since any infinitesimal
variat ion in ri can make a noninfinitesimal change in p(rj only over an in
finitesimally thin (hyper)shell. As a result, the output of the gene ralizer is
a continuous function of the ri. Similarly, an infinitesimal variation in the
question, being equivalent to an infinitesimal variation in all the ri, can only
result in an infinitesimal vari ation in the output . This verifies requirement
(2.1) of properness . Now note that if we translate all the mi up or down by
some constant k, p(rj is translated by the same k, and therefore the ou t
put as a whole is translated by k. Similarly, if we multiply all the mi by a
scaling factor z, the output gets multiplied by z . Since the output is purely
a function of metric distances, which are tensor scalars, the generalizer is
automat ically invariant under rotation, parity and translation. Invarian ce
under nonzero scaling of all th e inputs and the question follows from how the
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output's normalized. This completes the verification of requirement (2.6) .
Requirement (2.2) is immediate, since no a priori ordering is assumed of the
datum spaces. Requirement (2.4) is a restriction on the learning set, not
the generalizer. Given a learning set, as the question approaches any point
in the learning set lral and therefore 21ra l shrink to 0, by requirement (2.4)
and continuity all points within the hypersphere approach the value mo, p(r')
approaches mo everywhere within the hypersphere, and the output of the
generalizer becomes mo. Therefore reproduction of the learning set is as
sured, and requirement (2.3) is met. As one of the T; becomes arbitrarily
close to T;-l> mi approaches mi-l> and p(r') gets arbitrarily close to what it
would be if the point at ii had never been an element of the learning set.
This verifies requirement (2.8), and therefore properness in general.

Appendix I.

Proof that all LMMGs are output linear

Assume we have one learning set, (}l> consisting of the n pairs

and another learning set (}2 consisting of the n pairs (Xl, YD, .. .(xn , y~), where
the vectors X j might be multidimensional, in general. Assume further that
our LMMG fits (}1 with the surface 2:~1 O'.i¢>i(r') and fits (}2 with 2:;::1 O'.:¢>i(r') .
So 2:~1 O'.i¢>i(Xj) = Yj and 2:;::lO'.:¢>i(Xj) = yj for all n Xj. Without loss of
generality we can take N ~ N'. We can then extend the set of 0'.: to those i
between Nand N' (including N) by simply setting 0'.: = °for N ~ i > N '.
So the LMMG fits (}1 with 2:~1 O'.i¢>i(r') and fits (}2 with 2:~1 O'.:¢>i (r'). Now
it is obvious that

N N N
A L O'.i¢>i(r') + B L O'.;¢>i(r') = L(AO'.i + BO'.;)¢>i(r')

i=l i=l i=l

goes through the points {x i» Ay j + By]} for all j ~ N and ~ 1. If we can
prove that the LMMG will actually pick these coefficients AO'.i + BO'.: to fit
the learning set ()' consisting of the points {x j, Ay j +Byj }, then we will have
proven that the LMMG is output linear. Since no particular attributes were
assumed of the LMMG, we will have proven in fact that all LMMGs are
output linear .

So first we must prove that it is not possible for the LMMG to fit the
new learning set without using the function ¢>N(r'). (If the LMMG could fit
the learning set without using ¢>N(r') it would do so, by definition of LMMGs
(see appendix E), and therefore would not generalize from ()' with the surface
2:~l(AO'.i + BO'.;)¢>i(r').) In other words, we need to prove that if (}1 needs
to be fit with ¢>N(r') and (}2 needs to be fit with ¢>N'<N(r'), then ()' = (}1 + (}2

needs to be fit with ¢>N(r'). To prove this assertion it suffices to disprove its
negation. If ()' could be fit using only functions with ordinality < N, after
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rearranging terms we would see that th ere must exist a set of coefficients fJi '
1 :s: i < N, such that

N N-l
I>~ i <Pi (Xj ) = L 13i<Pi (Xj)
i= 1 i=1

for all Xj in 81
• However if this were true, then we could have fit 81 with only

th e first N - 1 of the <Pi(rj. This is contrary to our initial assumption that
th e LMMG act ually fit 81 using the first N of the <Pi(rj , so it is true that the
LMMG cannot fit 81 without using <PN(rj.

It was shown in appendix E that the coefficient the LMMG fits to <PN (rj
is unique, so that coefficient must indeed equal Aow+BaN. So now we must
prove that the LMMG will also choose the values Aai<N + Ba ;<N (as the
coefficient s of the basis functions <Pi<N(rj) to construct a surface which fits
81

• To carry out such a proof we need to assume some means for the LMMG
to choose between two (or more) possible sets of coefficients which both fit a
given learning set and which both have the same N. Here I will assume the
choosing scheme outlined in appendix E.

Examine the (N - l)th coefficient which the LMMG uses to fit A8 +
B81

: 13N-l. (We already know that fJN = AaN + BaN.) In genera l either
the vector {<PN-l (7"1), <PN-l (1"2) , . .. ,<PN-l(r:.n is linea rly independent ofthe
vectors {<Pi(i'i), <Pi (1"2) , ... , <Pi(r:.n, 1 :s: i < N - 1, or it is linearly dependent
on them. If it is linearly dependent on them, then we can set fJN-l equa l
to o. In light of our choosing method, in point of fact we have no choice
but to choose the fJi such that fJN-l = 0 if this linear dependence holds .
Similarly, if we have this linear dependence then both aN- l and aN- 1 must
= o. Therefore, in this situation, 13N- l does indeed = AaN-l +BaN_I .

Now examine the case where the vector

is linearly independent of all the vectors

Hypo thesize that the 13N-l which reprod uces the learning set 81 is not unique ,
and represent the alternative set of coefficients as 13:, 1 :s: i :s: N - 1.
Since by hypothesis of nonuniqueness fJN-l =f 131.-1 and yet z=f:;i1 fJi<Pi(fj ) =
z=f:;i1 13: <Pi (fj) for all fj in the learning set, we can write

as a linear combination of the vectors

Such an equality, however , is in violation of our assumption of linear indepen
dence. Therefore our hypothesis of nonuniqueness must be wrong, and if we
do indeed have linear independence then we can conclude that 13N-l must be
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unique. Since we know that the coefficient AaN_l +Ba~_l is a legal coeffi
cient ofthe 4>N_lTterm, we can in fact conclude that f3N-l = AaN-l+Ba~_l

for this case of linear independence as well as for the previously explored case
of linear dependence.

These same arguments can be used for all the remaining coefficients the
LMMG fits to A8l +B82 • The result is clearly that f3i = Aai +Ba; for all i .
This concludes the proof that LMMGs are output linear.

Appendix J.

Output linear H ERB IEs and n eural nets

To see that neural net neu rons satisfy the restrict ions on h for n = 2, output
linear, one-dimensional HERBIEs, note that for any output linear generaliz
ers,

h( x + b, x' + b, x" + b, . . . , q + b) h(ax, ax ', axil, . . . , aq)

h( x , x', x", . . . q) ,

due to freedom in picking the y, y', . . . and invariance under scaling and trans
lating the input space. Since the equality holds for arbitrary a and b, if the
x, x' , x", . .. are not all the same as one another then the value of h is the
same everywhere on the plane in (x, x', x", . . . q) space formed by allowing a
and b to take on all possible values. (For x = x' = ... = q, varying a and b
only traces out a line, not a plane.) For an n = 2, one-dimensional HERBIE,
restriction (2.5) in fact requires that x i: x', so the generalization is indeed
determined by such iso-h planes. So given any triplet of values X, X' i: X ,
Q in (x, x', q) space, we have a unique iso-h plane. Now any such plane has to
intersect the line x = -1/2, x' = 1/2, as can be seen by solving for a and bin
the pair of equations aX + b = - 1/2, aX'+b = 1/2 (since X i: X ', we always
get such a solution for a and b). Since a and b are therefore uniquely specified
by X and X', Q = aQ +b, the q value of the inte rsection of the plane with the
line x = -1/2, x' = 1/2, is specified uniquely. Because any point on an iso-h
plane completely specifies that plane, we can therefore use (-1 /2,1 /2, Q) to
specify the plane instead of (X,X',Q) - the plane specified by (X,X',Q)
is t he same as the locus of points ( -a' / 2 + b', a' /2 + b', a' Q/2 + b') for all
a' and b'. As a result, the iso-h planes form a one-parameter set, with Q
being the parameter. Now all points (x,x' ,q) on any given iso-h plane will
agree on the value for w = 1/ 2 - (q - x )/ (x ' - x ), and this function speci 
fies a un ique Q value for the intersection of the plane containing t he points
with the line x = -1 /2, x' = 1/2. Therefore w uniquely specifies the iso
h plane. Under interchange of x and x', w becomes - w. Since from before
h( x' , x, q) = 1- h(x, x', q) , for all x, x' i: x, and q, h( - w ) = 1 - h(w). In par
tic ular since h( q, x' ,q) = 1, we can write h(w = 1/2) = 1, and h( -1/2) = o.
Also h(O ) = 1/2. This of course is exactly the behavior exhibited by fermi
fun ct ions (for app ropriate rescaling of the w so that w = 1/2 becomes w = 00

and w = - 1/2 becomes w = - (0), step functions and most of the other
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(K.1)

thres holding funct ions used to model neurons in neu ral nets. Note that since
there exist an infinite number of functions h(w) obeying h(w) = 1 - h(-w)
and h(1j 2) = 1, the rest rict ion of output linearity is not enoug h to force
un ique generaliza t ion of HERBIEs. Also note th at most of this analysis ap
plies equally well to the g{i } of HERBIEs seen as fun ctions only over the
Xl, X2, .. . ,q.

To place the iso-h concept in a larger context, view the direct pr od
uct of the input components of the datum spaces for a given order g{i },
(x, x', x" , . . . , q), as defining a vector space V . Then the invariances of re
striction (2.6), in addition to being viewed as referring to each component of
a vecto r in V undergoing coordinate t ransformations within its own pri vate
Rm space, can also be viewed as referring to coordinat e transformations in
the whole space V . The iso-h planes are planes of invari ance in V. If we now
construct a space V' with element s (y, y', y", .. . ,guess) in exac t ly th e same
way we const ructed V , then da tum space interchange symmetr y is an invari
ance of g{i } under certain simultaneous reflections (those which flip around
the axes ) in both V and V'. Although it has not yet been done (mainly
because it 's hard to see what its physical significance would be) it might be
mathemat ically interesting to explore the consequences of requiring that the
g{i} be invariant under mor e gener al sets of simultaneous reflections in V
and V' . For output lineari ty, wher e th e g{i} can be viewed as a sort of dual
vect or field, such an invarianc e amount s to a symmetry under simultan eous
reflect ions of the underlying manifold across which the field is defined and
the accompanying transformation of the ind ividual vector spaces living on
tha t manifold.

Appendix K.

Proof that for n = 2, the solution to (2.12) is a straight line or an
exponential

Clearly both a linear f( x) and an exp onential one are solu tions to this new
restrictio n. To prove uniqueness of such these solutions, we want to solve for
the set of all f (x ) which obey (2.12) and give an h obeying the coordinate
transformation invariances required by the generalizer's being a HERBIE.
To do this , first exploit the symmetries allowed all HERBIEs to transl ate
an d scale the input space and then translate the output space so that any
origina l triple of points (x,f(x)), (x',f(x')), (q,J(q)) becomes (0,0), (a, b),
(c, d), respectively, where the original x, x', and q are assumed chosen such
that c> a > 0. Due to the fact that th e value of h is unchanged if its three
arguments are all translated by th e same amount, if q now refers to a point
a little to the right of c,

f(q) -f(q -(c -a)) = d -b = f(c) _l.
f(q-(c-a)) -f(q- c) b f(a)

We can ignore th e case wher e both d and b = 0, since by (2.12) this means
f( q) is the straight line f(q) = 0. By cont inuity, f(x) is nonzero everywhere
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in a noninfinitesimal neighborhood of whichever point a or c obeys f (x) -=I- O.
Without loss of generality, we will from now on assume that both a and c
have been chos en to be from this region of f (x ) -=I- O. Defining 8 to be q - c,
t he amount by whi ch the input space was t rans la ted in m aki ng (K.1), we can
solve (K.1) for f (q), getting

f(q) = [J(8 + a) - f( 8)]J(c)/ f(a ) + f(8) .

Now change a -+ a + E, with Esmall enough so that f (a + E) still does not
= O. This results in

f(q) = [J(8 + a + E) - f(8) ]f(~(~E) + f (8).

Equating the two formulas for f(q),

f(a )[f (8 +a +E) - f (8)] = f(a + E)[J(8+a) - f(8) ]. (K.2)

This must be true for all 8 and (small enough) E. Let 8 and E both be
small and expand both sides of (K.2) to second order in 8 and E. We recover
f(O) = 0 (which we knew already) and for t he 8E t erm get f (a)f"(a) =
f '(a)[f'(a) - 1'(0)]. This must be true for a whole range of a, so setting 1'(0)
equal to a const ant , a, and let t ing a var y, we get a second-order nonli near
differential equation :

f(x)j"( x) - (f'( x)? +af'(x) = O.

Now change variables to u(y) == y'(x)/y( x) . This transforms our differenti al
equat ion to dd" = -~ . This has t he solution u == i. = !! + {3, {3 being an

y y y y

arbitrary real constant . If (3 = 0, t he solu ti on for y(x) is a straight line. If
{3 do esn 't equal 0, the solution is ie{Jx - a/{3, wh ere plugging in to equation
(K.2) yie lds i = a/{3. •
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