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A b st r a ct. The problem of how best to generalize from a given learn­
ing set of input-output examples is cent ral to the fields of neur al nets,
statistics, approximation theory, and artificial intelligence. This series
of pap ers inve stigates this problem from within an abst ract and mod el­
independ ent fr amework and then test s some of the resultant concept s
in real-world situations. In thi s abstrac t framework a generalizer is
comple tely specified by a certain countably infinite set of functions,
so the mathemati cs of generali zati on becomes an investigat ion into
can dida te sets of criteria governing the behavior of that infinite set
of funct ions . In the first pap er of thi s series the found ati ons of this
mathematics are spelled out and some relatively simple generaliza­
tion criteria are investigated . Elsewhere the real-world generalizing of
systems constructed wit h these generalization criteria in mind have
been favorably compared to neural nets for several real gene ralization
problems, including Sejnowski 's problem of reading aloud. Th is leads
to the conclusion that (current) neural nets in fact constitute a poo r
means of general izing . In t he second of this pair of papers other sets of
criteria, more sophisticated than those criteria embo died in this first
series of pap ers, are investigated . Generalizers meeting these more so­
phis tica te d criteria can readil y be app roximated on computers. Some
of these approximations employ network st ructures built via an evo­
lutionary pro cess. A pr elimin ary and favo rable investigation in to the
gener alization beh avior of these approxi mations finishes the second
paper of this series.

Introduction

This series of papers constitutes an investigation of gener ali zation from a
m athematical point of view. The investi gation is behavior-driven as opposed
to m odel-d riven ; the generali zin g b eh avior is set an d the set of m odels wh ich
ex hibit this b eh avi or deduced , as opp osed to having the m odels b e set an d the
generaliz ing behavior of the m odels deduced. In its bein g b eh avior -dri ven ,
t he work in t hese papers is much more ob jective and far less ad hoc than

© 1990 Complex Syste ms Publications , Inc .



202 David H. Wolpert

most of the other work on the issue of generalization, the vast majority of
which is model-driven .

In the first pap er of this ser ies a mathematical framework for dealing
wit h generalization in a mod el-independent manner was prese nted and the
ramificat ions of cer tain generaliza tion criter ia were investiga ted within that
framework. In this second paper of the series more cri teria are invest iga ted ,
and then an invest igation into the real world beh avior of systems meeting
some of these sets of criteria is pr esented .

Although the material in thi s second paper is conceptually distin ct from
that of the firs t, t he terminology an d mathematics of the first pap er is used
in th is second pap er. T herefore, this second paper cannot be read profi t abl y
unless the first paper has already been skimmed (at least). Some of the more
directly relevant definitions and crite ria of the first pap er are rep eated here
for the read er 's convenience.

(0.1) An m-dimensional generalizer is a countabl y infinite set of continuous
functions from a subset of (R'" X R X R m ) to R, from a subset of
(R'" X R X R'" X R X R'") to R , etc., where R denotes the space of
real numbers and R m denotes the Cartesian product of m such spaces.
Notationally, an m-dimensional generalizer is a set of cont inuous func­
tions g{i} along with associated domains of definition, i being a nonzero
natural number, and g{i} being from R i (m+ l )+m to R.

R m is the input space, and R is the output space. The last R'" ent ry in
the argument to a g{i} is the question. The previous i (Rm

X R) ent ries are
the learning set, which has order i. Each of the i (R'" X R) spaces is a datum
space, and a point in a datum space is a datum vector. Although in pr actice
it is not uncommon to weaken (0.1) to allow discontinuous g{i} , unless it is
exp licit ly stated otherwise it will always be assumed that this has not been
done an d that the requirement of cont inuity of the g{i} is in for ce.

(0.2) Every g{i} is invari an t under permutation of the datum spaces.

(0.3) If, for any g{i}, the value of th e question is the same as the value of
an R m entry in one of the datum spaces, the output of the function is
the corresponding R entry from that datum space.

In other words, we are assuming noise-free data; thi s restriction can be
eased in mor e sophisticated versions of the theory.

As a dir ect result of (0.3) we require that

(0.4) For any g{i}, if any two datum spaces have the same value for their
R m entries, then they must have the same values for their R entries.

(0.5) Unless i , the order of th e learn ing set, exceeds m, the dimension of
the generalizer, g{i} is not defined . Even if i > m, g{i} is not defined
if the values of the R m ent ries of the datum spaces all lie on the same
m -dimensional hyp erplan e.
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The next set of restrictions mayor may not apply to a par ticular general­
izer - they are ways of classifying generalizers according to their gener alizing
behavior.

(0.6) Every g{i} is invari ant under any rot ation , parity, translation, or
nonzero scal ing transformation, applied simultaneously to the all the
R'", including the question, or to all the JR, including the output .

Any generalizer ob eying (0.6) is called a HERBIE. A "hyperplanar" HER­
BIE [5] is a HE RBIE which generalizes by fitting the learning set with an
input/output surface consi sting of local hyp erplanes .

(0 .7) Any HERBIE obeys th e following : .IP (0.7) For any i, if the values of
the R ent ry of ever y datum space of a g{i} of a continuous HERBIE
are equal, the output is this valu e, regardless of the question.

A generalizer is "upwardly compatible" if

(0 .8) For all g{i}, i > m + 1, if the values of the ent ries of two datum spaces
are identical, then the output is equal to the output of g{i -I} work ing
on the rest of the learning set and on one of the two identical datum
spaces.

An upwardly compatible HERBIE is a "proper" gen era lizer. A generalizer
necessarily meeting restrictions (0 .1) through (0.8) except for (0 .6) (and its
consequence (0.7)) is known as a "semi-proper" generalizer . Semi -proper
HERBIEs are proper gen eralizers. Other restrictions (e.g. output linearity)
are presented and invest igated in the first pap er of this series. T he ones just
presented are those which are used the most in this, the second paper of the
series.

1. Self-guessing

1.1 Introductory definitions

Just as the requirement th at the generalizer be an output linear HERBIE is
not enough to force un ique generalizat ion of a learning set , properness, by
itself, is not enough to force a unique generalization of any learning set . For
example, in addition to the standard np a generalize r describ ed in appendix
H of th e first paper , an npa generalizer with the upper limit of integration
be ing 31i'Q 1instead of 2 1i~ 1 is proper. Although it might turn out that some
combination of the kinds of criteria pr esented in the first pap er is enough
to force uniqueness, certainly other generalizing criteria bear exp loration as
well. In that all the g{i} ar e somehow supposed to refer to the same means
of generalizing, in searching for th ese other crite ria it is natural to look for
criteria which are similar to the criteria of upw ard compatibility (0.8) in that
they restrict the poss ible relationships between the different g{i} .
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One of the more reasonable such additional criteria is the property of
self-guessing. Intui tively, self-guess ing is the req uirement that, using the
generalizer in question , the learning set mus t be self-consistent . If a sub set
of the learni ng set is fed to the generalizer, the generalizer must correctly
guess the rest of the learning set. The "starfish" example should illust rate
the point : Assume the learning set consists of point s wit h 2 dimensions of
input , and that the parent surface generating the learning set has output
value 0 everywhere in the inpu t plane, except for along the radial rays which
have polar angle an int eger multiple of 10 degrees, where the output value is
1. The parent sur face is a starfish wit h 36 infinitesimally thin legs. Assume
the learning set consists of many po ints all of which have polar angle less
than 350 degrees , and the questi on has polar angle 350 degrees, so that the
learning set is pepp ered amongst t he first 35 legs and the the question is
situated on what should be guessed as the 36th leg. Any of the conventional
generalizers, most HERBIEs included, would not guess an output value of 1
for the question. However a human would likely noti ce that the simple rul e
of output a 1 if you are on a multiple of 7r / 18 radians, 0 otherwise, would
produce the entire learn ing set. The reason the human would have faith in
this generalization is becau se if (s)he used it to genera lize from a subset of
the learni ng set (s)he would correctly guess the rest of the learn ing set . In
ot her words, a hu man would come up with a generalizer - finding an d then
applying the angular periodicity of the learning set - which is self-guess ing
for this particular learning set . To winnow th e set of generalizers down to
one which is in any sense "optimal" for a given learn ing set, it is necessary to
milk as mu ch information from the learning set as possible, and self-guess ing
is designed specifically to perform such milking. T here might be sit uations
where self-guessing would not be the method used by a human, but it is
hard to im agine situat ions where a human would deny the reason abl eness
of applying a generalizer to a particular learning set simp ly because it is
self-guess ing for that learn ing set.

In a crude sense, self-guessing can be viewed as a kind of "meta" version
of the requirement of reprodu cing the learn ing set, i.e. t he requirement of
not contradicting those examples of the mapping which you already know to
be t rue. You ar e given a learning set, and want to decide on a genera lizer to
apply to it. Self-guessing says choose that generalizer which agrees wit h those
examples which you already know to be t rue, i.e. which makes a (learning
set, question) -t guess mapping in agreement with those examples of su ch a
map pin g already given. The examples of such a mapping already given are
nothing less than the set of instances (proper subset of the full learning set,
question from wit hin the rest of the learning set) -t guess of the (known)
ou tput corresponding to that quest ion .

Self-guessing is not a completely new idea. For example, Samuel's predic­
tion equalizing scheme for his checkerp layer program [1] can be viewed as a
crude form of self-guessing. In addit ion, except for the fact that such systems
cannot answer questions not contained in their full "learning set," autoas­
sociaters of st rings of dat a can be viewed as self-guess ing one-dimensional
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generalizers. Finally, st ati sti cians have experimented with simplified vers ions
of (weak) self-guessers under th e name of "cross-validatio n" [2].

To define self-guessing in a rigorous manner, we start by defining any
combination of a set of datum vectors, a question, and an output as a lesson.
The order of the lesson is the number of datum spaces. One lesson is said to
generate another lesson if the second lesson can be produced from the first
by means of any sequence of a predefined set of lesson to lesson mappings .
In particular, one lesson is said to properly generate another lesson if the
second lesson can be produced from the first by means of any sequ ence of:
the invariances of (0.2) and (0 .6) , repl acing the question/output pair by the
input and output valu es of one of the datum vectors as in equat ion (0.3) , or
the procedure outlined in (0.8) (used to generate either high er or lower order
lessons). No lesson is allowed to generate an other lesson if that second lesson
violates equ ation (0.5). If one lesson prop erly generat ed from another lesson
contradicts either equations (0.4) or (0 .7) or by any other mean s results in a
paradox, then either the generalizer is not prop er or the original lesson must
be removed from th e generalizer' s domain of definition. In general , when
just the word "generate" is used , unl ess explicit ly stat ed otherwise onl y the
mappings implied by restrictions (0.2) through (0.5) will be assumed to apply.

A learning set is said to generate an expanded learning set by first pro­
viding the set of lessons called the initial expan sion. The lessons of the
initial expansion consist of all the questions and outputs necessit ated by the
generalizer's reproducing the learning set (see equat ion (0.3)) , using the full
learning set as the values for the datum vect ors. If we are provided a learning
set consisting of n distinct input-output pair s, the initi al expansion consists
of n nth order lessons . The full expansion of the learning set (or ju st expan­
sion for short) is constructed by having each lesson in the initial expansion
generate all the lessons it can , given the lesson-to-lesson mappings at hand.
In particular, the proper exp ansion is the full expansion in which each lesson
in the initial exp ansion properly generate s all the lesson s it can . Intuitively,
ever y lesson in the proper exp ansion of a parti cular learning set is a conse­
qu ence of the input-output pairs of that learning set and the requirements
of properness. Not e that the proper exp ansion of a learning set is not the
same as the set of all lessons consistent wit h the starting learning set and
the requirements of properness. For example, let the learning set have or­
der n and consist of the n pairs (input(i) , output(i)), 0 < i < n + 1. Any
proper generalizer will have 9 {n + I} t ake the learning set along with any
arbitrary pair (input(n + 1) , output(n + 1)) and the question input (n + 1)
to an answer output (n + 1), by requirement (0.3). This is true even if the
pair (input(n +1), output(n +1)) is not in the original learning set. However
provided only with the original learning set, we do not know that the ques­
tion input(n + 1) should result in the answer output(n + 1). So we do not
include this new lesson of order (n + 1) in our expansion of the learning set
- it is not a consequence of the input/output pairs of the original learning
set tog ether with th e requirements of prop erness .
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We are now in a position to rigoro usly define the property of self-guessing:

(1. 1) A self-guessing expansion of a learn ing set is one in which in addition
to the other preset ways in which one lesson can generate another , new
lessons are allowed to be formed from old ones by interchang ing the
ordered product (the question, guessed output to the ques tion) of such
an old lesson with the entries of any datum space in that old lesson . A
parti cular generalizer is said to be self-guessing for a particular learn­
ing set if, for all i , g{i } of that generalizer agrees with all lessons (of
appropr iate order) in the self-guessing expansion of that learni ng set.

Note that a set of lesson to lesson mappings mus t be given (usually im­
plicitly ) to fix the mappings making up the transition from initial expansion
to full expansion and therefore to fix the meaning of "self-guess ing." If all
the 9 {i} in a generalizer G agr ee wit h any lesson in a proper self-guessing
expansion of a learn ing set, then G is said to be properly self-guessing for
that learning set. For a generalizer known to be self-guess ing for a partic ular
learning set, t he defin itions of "generate" and "expansion of a learning set"
are usually assumed to be modified in accordance wit h (1.1).

As an example of all this, taking g{2} as the second function of a general­
izer self-guessing for a particular learning set B, then if (b, B, e, G; a, A) is in
the expansio n of 0, g{2 }(b, B , e, G;a ) = A, an d it is also necessarily t rue that
g{2}( b,B, a , Aj e) = G an d g{2}(a, A , e, Gj b) = B (whether or not the pairs
(a,A) , (b,B) and (e,G) are in B). For self-guessing generalizers, the ordered
pai r of t he question and the output is on the exact same foot ing as any of
the datum spaces. Given datu m space interchange symmetry, we therefore
can (and do) view a lesson as an unordered set of datum spaces. For exam­
ple, the g{2} above guesses the lesson (a, A, b,B, e, G). In cont radis tinction,
functi ons in their full genera lity constit ute ordered sets of datum spaces.

We refer to a generalizer as being properly self-gues sing "for a (particular)
learning set" because no generalizer can, in general, be properly self-guessing
for all learning sets . For example, no one-dimensional generalizer can be
self-guess ing for both t he learn ing set (a,A, b,B,e ,G) and the learni ng set
(a,A, b,B,e,D ) where G t- D. T he first set forces g{3}(a,A ,b, B , e,G;e) =
G due to the init ial expansion of that set , and therefore, using self-guessing
and upward compatibility, the lessons g{3} (a,A,e ,G,e,Gj b) B,
g{2}(a, A ,e, G;b) = B, and g{2 }(a,A,b,B;e) = G. (Note that G had to be
one-dimensional for g{2} to be defined.) Simil arly, the lesson g{2 }(a, A, b, B; e) =
D is in the second set's expansion. Since any generalizer 's g{2} must be
single-valued, no generalizer can be pro perly self-guessing for bo th learning
sets, which proves the supposition. Note that a generalizer properly self­
guessing for a partic ular learn ing set need not be proper in general - it
on ly has to obey (0.6) thro ugh (0.8) for the elements in the expansion of the
learning set.

We can now recast res trict ions (0.2) through (1.1):
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Any lesson in a learn ing set guessable by a generalizer properly self-guessing
for that learning set

(a) generates other lessons with which the generalizer must agr ee by
rotating, translating, parity inverting and rescaling all the R m

values and/or all the R values (0.6), and therefore

(b ) cannot have all the R values identi cal except for one, which I S

different (0.7 in conj unction with 1.1) ,

(c) canno t have unequal R values for any two datum spaces if the
corr espond ing R m values are identical (0.3, 0.4) , an d therefore

(d) generates other lessons by copying over the values for anyone
of the datum space pairs with the values for one of the other
pairs (the lesson g{i }(a, A,b, B , . . . ;z ) = Z gene rates the lesson
g{i }(a,A,b,B, . .. ;a) = A) and therefore

(e) assuming the number of da tum spaces is at least m + 2, gene rates
other lessons with one fewer datum spaces by removing the entries
for any datum space (0.8), and

(f) generates other lessons with one more datum space by dup licating
the entries for any da tum space (0.8) .

In addit ion, since the g{i} are single-valued, no expanded learning set
can have two lessons ident ical in all values except for the output (R) value
of one of the dat um spaces . Semi-proper self-guessing only necessitates (c)
through (£).1

As an examp le of a generalizer semi-properly self-guessing for a partic ular
lea rni ng set, consider the following one-dimensional generalizer working on
a three point learn ing set B. Without loss of generality, we assume that
the three points are arranged in the order of increasing input component.
Working in the input-output plane, let the po lar ang le (with respect to the
pos it ive direction along the input axis) of the line connecting the firs t two
points in B be CY, and let the polar angle of the second two points be {3. One
generalizer, which is self-guessing for B, operates by using one pr ocedure to
guess beyond the right -most element of a learn ing set, another procedure

1As an aside , note that if the definit ion of proper expansion of a learn ing set were
modi fied to allow every lesson that is true for all proper generalizers cons istent with the
ini tial expansion , then it would always be poss ible to arr ive at a contradict ion wit hin the
definiti on of self-guessing . Th is is done by mak ing a lesson which is two orders higher
than th e learning set and which contains the learn ing set as a proper subset, with the two
ext ra datum vectors be ing ident ical with each ot her . Another lesson is t hen made in the
same way, except that in its two extra identical datum vecto rs , the output comp onents
(bu t not th e inpu t compone nts) differ from those in the first lesson. For all generalizers,
both of the two new lessons are guessed by th e generalizer due to requi reme nt (0.3) , and
both are consistent with the origina l learni ng set . However if they were both included
in th e exp ansion of the learn ing set , it would now be possible to use (e) to ar rive at a
cont ra dict ion - no generalizer would be self-guessing for our (arbitrary) original learnin g
set , since (e) would allow us to come to two equally valid bu t incomp atib le conclusions
about how the generalizer guesses .
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to guess beyond the left -most element, and a third procedure to guess the
answers to questions in between. The line giving the guesses beyond the
righ t-most edge of any learning set (whether or not it is 0) goes through
that right-most point and exten ds to th e right at a polar angle of (3 , the
polar angle implicit in th e rightmo st pair of points in 0. To guess answers
to questions to the left of that arbitra ry learning set, extend a line leftward
from the left-most point of the learn ing set at a pol ar angle of a, the polar
angle implicit in th e leftmost pairs of points in 0. It should be clear that
fed the first two points of 0, this generalizer would guess the third, and fed
the second two points it would guess the first . The generalizer 's guessing for
questions within the bounds of the learning set is construct ed so that the
first and third points of 0 will guess the second point of 0. For a question
falling within the bounds of any learning set (again, whether or not it is 0),
let th e point in the learn ing set immediat ely to the question's left be (a, A)
and let the point immediately to its right be (b,B). Take the curve formed
by linearly connect ing the three dots of 0, translate it so that its left tip is
coincident with (a, A) and th en scale its input extent so that its right tip has
inp ut value b. Let the coordinat es of the resultant right-hand t ip be (b,C).
Then add (B - C) (x - a)/ (b- a) to all points along th is dot-connecting curve,
where x is the input coordinate of th e point in question. (T his ensures that
the right hand coordinates of this final version of the curve are (b ,B ) wherea s
th e left -hand coordinates are still (a,A).) The answer to the question if found
by reading off of this resultant curve. If fed the first and third points of 0
this generalizer will guess th e second . The generalizer is now defined for the
whole of the input space, for any learning set of any cardinality. Taking any
two points in 0 as a learn ing set, thi s generalizer will guess the third point .
Therefore it is properly self-guessing , for 0.

It is not true that for every learning set there exist a properly self-guessing
generalizer; proper self-guessing is an over-restrictive criterion for generaliz­
ing. For example, anyone-dimensional generalizer which is properly self­
guessing for the expansion of the learning set ((0 ,0), (1,1) , (2,2) , (4,5))
contains the lesson ((0 ,0) , (1,1) , (2,2)). By means of the invari ances of (a),
this generates the lesson ((0,0), (2,1) , (4,2)) and then ((0,0) , (2,2), (4,4)).
But from th e original learning set we can generate th e lesson ((0 ,0) , (2,2),
(4, 5)) , resulting in a contradiction. In addition, no learn ing set of dimension
m with a subset of m or mor e datum vectors all having the same output (R)
value and also hav ing other datum vectors wit h differing output values gen­
erates an expansion guessable by a properly self-guessing generalizer. T his
is t rue due to rest rictions (b) and (e) .

Neit her of these two cases poses any difficulty for generalizers which are
either proper but not self-guessing, or are self-guessing but no t boun d by t he
invariances of (0.6). In addition, an npa generalizer, a proper genera lizer, is
most definite ly not self-guessing for (almost) all learni ng sets . It seems th at
the invar iances of (0.6) and th e property of self-guessing are at best not very
comp atible restrictions.
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This incompatibil ity between self-guessing and the invariances of (0.6) is
further borne out by considering some of the natural extensions to the invari­
ances defining proper generalizers. For example, one natural and important
extension is to require that

(1.2) If any g{i}, operating over a given learning set, gues ses any two dis­
tinct question-output pairs, A and B, then g{i + I} operating over a
learning set made up of the original learn ing set plus either A or B will
guess the other question-output pair , either B or A respectively.

Consider the situation where g{2}(x ,y,x',y',x") = y" and g{2}(x,y,x',
y',x"') = y"'. Requirement (1.2) is based on the idea that adding the da­
tum point (x" gives y") adds nothi ng new to the second lesson , since that is
what would be predicted from the two datum points (x, y) and (x' , y') any­
way: g{3}(x , y, x', y', x", y", x"') = y"'. Req uirement (1.2) can be viewed as
a stronger vers ion of upward compatibility - any generalizer obeying (1.2)
is automat ically upwardly compat ible , but not vice versa. When combined
with proper self-guessing however , by use of pro pe rt ies (a) through (f) , and
in particul ar through use of of the scaling and tr ans lat ing invarian ces , prop­
erty (1.2) would generate a sequence of lessons which in gene ral cons t it ute
ar bitrarily wildly oscillati ng on the generalizer's part - certainly not very
desirable behavior for a generalizer.? (As an aside, note also that local gen­
eralizers like the hyperplanar HERBIE of reference [5] will not obey (1.2), in
general.)

Due to this lack of total compatibility, it is useful to shift tactics slightly
and restrict our attention to semi-proper self-guess ing. To keep the crite­
rion of self-guess ing, we are sacrificing some of the requirements going into
the crite rion of properness. The definitions of "generate" and "expansion of
a learni ng set" are modified appropriately when talking about semi-proper

2For example, examine the inp ut/output curve constructed by a one- dimensional gen­
eral izer start ing from g{2}(x,y ,x',y',q) = z, where x' > x,y' > y, and (q,z) lies on
the perpend icula r bisector of the line connecting (x, y) with (x', y'), and below that line
connecting (x, y) and (x', V' ). Mak ing liberal use of (a) through (f) as well as (1.2), it is
easy to show that g{2}(x, y, x' ,v.Q), where Q lies in bet ween x and x', is wildly oscil­
latory. Do this by first using sca ling and translating invariances to pull the po int (x, y)
to on top of the point (q, z), keeping the point (x', y') fixed . T his gives g{2}(q,z,x',y',
(!2'x )(x' - q) + q) = y' - [(~ )(Y' - z)], which with g{2}(q,z,x', y',x) = y means

(assu ming (1.2)) g{3}(q, z , x , y, x' , y' , (!2'x )(x' - q) + q) = y' - [( }::f )(y' - z)]. T his

in turn means g{2}(x,y, x',y', (~)(x' - q) + q) = y' - [( }::f )(Y' - z)]. Repeat this
proc edure of scaling the outer points in so th ey are coincident with the inn er points, and
make liberal use of (1.2). In this way we can deduce the guessin g of g{2}( x,y, x',y',Q ),
Q being arb it rar ily close to any point be tween x and x' by "zeroing in" on a . All of these
guesses will lie below the line conn ectin g (x, y) and (x', V'). However not e th at sca ling
an d translati ng invari ance means th at g{2}(x , y,x', VI, q) = z implies th at g{2}(x , y, x', V' ,

~ - [q- ~]) = 1L:!f- + [1L:!f- - z]. Again playing the game of scaling the oute r po ints
so tha t they are coincident wit h th e inner po ints, we can again const ruct t he guessing of
g{2}(z , y, x', s',Q), wit h Q being arbitrarily close to any point between x and x', However
all of th ese guesses will lie above the line connecting (x, y) and (x' ,y ' ), not be low it . As
promised, wildly oscillating behavior for g{2}(x , y, x', s' ,Q).
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self-guessing. The full exp ansion of a learn ing set made with semi-proper self­
gues sing ob eys properties (c) through (f) , but not necessarily (a) or (b) . We
now restrict our attention to semi-properly self-guessing generalizers rather
than (fully) properly self-guessing generalizers when generating the expan­
sions of learning sets .

1. 2 Strong self-gues sin g

For generalizers semi-properly self-guessing for a particular learn ing set, t here
is a natural extension of the definition of "generate" which is helpful at
fixing th e relationships between the g{i} of a given generalizer. T he idea
behind this extension is to replace the question-output pair of a given les­
son with a new que stion-output pair where the question is arbitrary and
where the output is the output the generalizer would gues s for that (ar ­
bi trary) question. More pr ecisely, this extension modifies the definition of
"generate" to encompass, for a particular generalizer, taking a lesson , feed­
ing all but one of its dat um spaces into the gene ralizer as a learning set, and
formi ng ALL the new lessons given by the resultant predictions of the gen­
eralizer . For example, if (a, A, b, B, c, C) is a lesson an d we have a fixed (if
unknown) generalizer, then we say that (a,A, b, B, c, C) generates the lessons
(a,A,b,B,x,g{2}(a,A,b,B)) for all x. For this extension of the definit ion
of "generate," the definition of "expansion of a learni ng set " is assumed to
be mo dified accordingly. When it is desirable to draw at tent ion to the fact
that th ese new defin itions are being used, such generation is said to be strong
gene ration, and such an expansion is said to be a strong expansion. (When
it is desired to draw attention to the fact that the old definitions are be ing
used, the ad jective weak will be employed .) A strong self-guessing expan­
sion of a learning set 0, given a set of lesson to lesson mappings I', is the
expansio n formed by st rongly generating lessons from 0 by using I' together
with the operator of interchang ing the ordered product (the question, guessed
output to the ques tio n) wit h the entries of any datum space. The weak self­
guessing expansion of a learning set is always a prop er subse t of the strong
self-guessing expansion .

The generalizer being used is always imp licit when talking about st rong
generation and/or expansion, of course. Without kno wing that particular
gene ralizer, we do not know the strong expansion of an associated learn ing
set. Nonetheless, we can still set restrictions on that expansion, regardl ess of
the particular generalizer that goes wit h it . To do this we first need to make
a definiti on :

(1.3) Take any generalizer G along with a learn ing set, 0, and a set of lesson
to lesson mappings f . Use the elemen ts of I' together wit h G to form
the strong self-guess ing expansion of O. For this fixed (if un known)
generalizer G, if no lesson in the st rong self-guessing expansion of 0
disagrees with G, then we say that G is st rongly self-guessing for O.
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For the rest of this paper, un less exp licitly state d otherwise, whenever
t alking abo ut about a generalizer G strongly self-gu essing for a learning set
8, we'll assume that G is semi-proper. We' ll also assume that the implici t set
of lesson to lesson mappings , I' , includes all the lesson s of semi -properness
(i.e. we'll assume that G is semi-properly strongly self-guessing for 8). In
ot her words, we' ll be assuming that the lesson-to-lesson mappings used to
generate the expansion are those of proper ties (c) through (f) , (1. 1), and the
strong generation of one lesson from another .

Assume G is a (semi-proper) generalizer , strongly (semi- pr operly) self­
guessing for a learning set 8. Take any lesson (3 in the expansion (b e it weak
or strong) of 8, cons isting of a learn ing set B along wit h the question-ou tput
pair (x , y). Assume another lesson (3' in the expansion of 8 consist s of B along
wit h the pair (x', y') (for strong self-guessing, all such lessons , for any x', will
exist in the expansion of 8) . From semi-proper self-guessing , (B , x, y, x, y) is
in t he expansion . Therefore, using the new defini tion of generate , the lesson
((B , x ,y), x', z) is also in the expansion , where the unknown z is the answer
to the question x' . But by simple self-guessing , z = y'. T his mean s that
property (1.2) is obeyed by all lessons in the expansion of O. (It does not
mean that G obeys (1.2) for any learning set .)

In Appendix A it is shown that

(1 .4) If an m-dimens ional semi -proper generalizer G is strongly semi-prope rly
self-guessing for a learn ing set th eta, there exists a cont inuous function
ffrom R'" to R such that the following holds: Every set of datum space
entries in 8 lies on f , and if any g{i} of G is pro vided a set of poi nt s
from f as a learni ng set , it will guess f as the question-output function .
Conversely, if there exists such a function f for a semi -proper general­
izer G an d a learning set 8, G is strongly semi-prope rly self-guess ing
for 8.

Prope rty (1.4) , related to restrict ion (2.12) of the first pap er , is very
interesting mathematically in that it amounts to restrictions on fun ctions
conce rning their behavior when fed their own outputs as inputs. However it
sti ll is not enough to un iquely set the optimal generalization of an arbit rary
learning set. To see this, define the learning set to be generalized as 8. Let
f( x) be any continuous function which passes through all the input-output
pai rs of B. We will demonst rate a pro cedure for const ructi ng a semi -proper
generalizer G such that for G and B, f is the function referred to in (1.4) .
Let w be an order n learn ing set fed to G. Lab el the elements of w by (Xi ,Yi),
where 1 ~ i ~ n for all i. Now make a list of all the pairs (Xi, Yi - f(Xi)) '
The function h(x) is then given by the npa generalizer (see appe nd ix H of
the first paper of this series) taking all the points in this list as a learning set.
g{n}(w;x ) is then given by f(x) + h(x ). If the elements of w all lie on f( x) ,
h(x) identi cally equals 0, and g{n}(w;x) = f( x) , thereby sa t isfying (1.4).
To verify that the resu ltant G is semi -proper, first note that whether or not
t he elements of w lie on f(x) , g{n}(w;x) will reproduce all the pairs in w.
Upward com pat ibility and the rest of semi-properness is ensured by h(x) 's
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being an np a generalizer. In that G's guessing is dependent on f( x) an d
f( x) is no t uniquely defined, we see that the criteria of st rong semi-proper
self-guessing is indeed under-r est rictive.

1.3 C riteria sets

As it turns out , no criteria exist whi ch, when combine d with semi-proper
self-guessing (strong, weak , or otherwise) produces unique generalization of
any learning set. To see this, first define a criteria set as a partitioning
of the set of all generalizer s (meeting restrictions 0.2 through 0.5) into two
classes of generali zers, one of generalizers which "mee t all the criteria" of the
criteria set, and one of generalizers which do not . HERBIEs are a criteria
set , as is the set of all proper generalizers , and as is the set of all semi-proper
gener alizers. The int ersection of the cri teria set of HERBIEs wit h the criteria
set of semi-proper generalizer s is the cri te ria set of proper generalizers .

Semi-proper self-guessing then is not a crite ria set , but rather a mapping
from any allowed learning set (i.e., any learn ing set meeti ng requ irement 0.4)
B to the criteri a set of all generalizers which are semi-properly self-gu essing
for B (i.e., to the criteri a set of all generalizers in agreement with the semi­
proper (st rong , weak, or otherwise) self-guessing expansion of B). Different
(J 's have different sets of generaliz ers which are sem i-properly self-guessing
for them , and th erefore have different criteri a sets .

In this context the goal of finding criteri a which when combined with
semi-proper self-guessing produce unique generalization is to find a criteria
set 0 narrow enough such that 0 n sg(B) is a single unique generalizer for
any learning set B (sg(B) is the set of generalizers which ar e semi-properly
self-guessing for B) . For any B, thi s would give us a unique generalizer which
is semi-properly self-guessing for (J. Unfor tunately, as was mentioned, there
is no such crit eri a set 0. Loosely speaking, this is because if there were a
criteria set 0 such that 0 nsg((J) existed for all learning sets (J and , for a given
B, was unique, then the ru le of generalizing from any provided learn ing set
B' with 0 n sg((J') would it self constitute a generalizer, and this gen eralizer
would be self-guessing for all learn ing sets. However, as was shown earlier in
this chapter , no generalizer can be self-guessing for any and all learning sets .
Therefore no such unique intersection can exist .

To prove this statement more rigorous ly, first construct any allowed learn­
ing set (J' ::) (J . It is easy to see that sg(B') c sg((J), since the semi-proper
self-guessing expansion of B c the semi-proper self-gu essing expansion of B'.
T herefore O nsg(B') ~ Onsg(B). Since by hypothesis Onsg(B') is nonempty
(containing exact ly one generalizer), and since 0 n sg(B) has only one ele­
ment, in fact we must have that 0 n sg((J') = 0 n sg(B) for all B' ::) B. But by
definition of semi-proper self-guessing , all generalizers in sg(B' ) reproduce B' ,
and therefore 0 n sg(B') reproduces (J'. In particular, if (x ,y) is an element
of B' but not of B, {O n-sg(O')}(B;x ) = y. Since the value of y is completely
free we can choose it to not equal the guess for question x {O n sg((J)}( (J; x),
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whateve r this guess happens to be . Therefore we can pick ()' :J () such that
n n sg(()' ) =I- nn sg(()), arriving at a contradict ion .•

T here are bas ically three other kin ds of goa ls involving semi-proper self­
guessing which can be used in place of the one just shown to admit of no
solut ions . The first of these is to not demand perfect self-guessing and have
n narrow eno ugh so that n n sg(() ) = 0, the empty set, in general. In this
case we would search for the generalizer obeying n which is closest to sg(())
(i.e. which has the smallest self-guess ing error for (), for some appropriate
definition of "error"). In fact, this is the goal that is usually strived for
when self-guessing is used in practice. For example, one way to make use of
the concept of self-guessing, which is used in chapter 3, is to pick a subset
of the set of all genera lizers , this subset being parameterized somehow, and
then search for the par ameter value(s) which minimize self-guessing err or for
the learning set in ques t ion. The subset of all generalizers could be a set
of (parameterized) learning rules for teaching neural nets, for instance, and
our goa l would to find the particular learn ing rule for producing neural nets
which is closest to self-guess ing for a given learning set. The criteria set n
in this case is simply the restriction to generalizers which are neural nets
produced by one of the provided learn ing rules. The statistics technique of
cross -validation [2], mentioned in chapter 1, is an unsophist icated vers ion of
this first goa l.

As another example of a scheme based on th is first goal, suppose that we
have reason to believe that the input-output surface should be constructed
from some set of basis functions. For example, we might know that that
surface is periodic, and therefore we are interested in creating a guessing
surface using a Fourie r series. T he simple-minded approach would be to fit
t he lowest n terms of the Fourier series to the n points of the learning set
and use these n te rms for the guessing. However there is no a priori reason to
use the lowest te rms of the bas is set, especially since using other terms might
give bet ter self-guess ing . Accordingly, an alternative scheme, which will be
investigated in more det ail in the future, chooses elements of the basis set
so as to minimize the self-guessing error for guessing any sing le point in the
lea rni ng set based on the predictions of g{n - I } ope rating on the rest of the
lea rni ng set. If t he learni ng set is given by () , then this scheme tries to find
the n - 1 basis functions Ji(x ) such that L:~ l [g {n - 1}(() - (Xi,Vi ), Xi) - Yij2
is minimized, where g{n -I} is constructed by fitt ing the optimal n -1 fj(x)
to the n - 1 elemen ts of the set () - (Xi,Vi)' The minimization can be done via
steepest descent or any other scheme which is convenient . With self-guessing
minimized this way, g{n} can be fitt ing to the n - 1fj(x) along with the
constant function, for example. If one does not have any a prior reason for
picking a particular basis set, then the same idea can sti ll be used, except
t hat now th e minimization is over a set of preselected candidate basis sets as
well as over the n - 1 jj (x) from each such set. A simple-minded version of
thi s approach is elucidated at the beginning of chapter 3.

Note that it is possible to use generalization it self to search for a gener­
alizer wit h minimal self-guessing error. Just bu ild a generalizer which has as
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its input space the specifications of a series of generalizers, and as its output
space the associated self-guessing error for the learning set in question. For
example, for a given learning set and set of basis funct ions, if we have a gen­
eralizer which we think guesses well the input / output surface taking (a set
of indices deline ating) n - 1 functions from the set of the basis functions to
th e self-guessing err or for those n - 1 functions (for th e given learn ing set),
th en by searching for input values for which this generalizer guesses a small
output (i.e. by "invert ing" this generalizer), we might be ab le to improve
upon ste epest descent schemes for finding the n - 1 functions from the ba ­
sis set which minimize the self-guessing error. (Steepest descent amounts to
assuming that a local hyp erp lan e fitt er is a good generalizer for the problem .)

Alt ernatively, if we assume that we are in a region in which the n - 1
(indexed) basis functions which minimize the self-guessing error are approxi­
mately linear functions of their index, th en (if we make the admitte dly gross
assumption that the coefficients fitting the !J (x) to the subs ets of the learn ­
ing set are th e same for all set s of fj (x)) the self-guessing error is quadrati c in
those inde x values and we can use the opt imizat ion scheme of Hopfield and
Tank [3] to find the n - 1 basis functions which minimize th e self-guessing
error . For example, if the basis set is the set of monomials of order rn, x m

, m
ind exes the basis set, and if we assume that m is small and x near 1 we can
replace x m with 1+Tn(x - 1) so th at (under the mentioned assumption) the
self-guessing err or is quadratic in Tn, and therefore we can build a Hopfield
net to find the m which minimizes the self-guessing erro r. In the more re­
alistic case where we make no assumptions about the coefficients fitt ing th e
fj (x) to the subsets of the learn ing set , we can still min imize the error as a
fun ction of the indices of the functions making up the basis set, but now we
cannot use the scheme of Hopfield to accomplish this minimization.

A simi lar idea to generalizing a new generalizer using the too l of self­
guessing is to use self-guessing itself to set the measure used for self-guessing
error. We could take a subs et of our full learning set and , using various
measures of self-guessing err or , build generalizers from that subset which we
could then test on th e rest of the learning set. In this way we could determine
the "best" measure of self-guessing error. To generalize from the full learni ng
set we would build a generalizer which has minimal self-guessing "error,"
where th e measure used for determining that error is the one which, when
used to build generalizers from the subset of th e full learning set, guessed
best th e remainder of the learn ing set. Although it is probably easiest to
just fix some st andard measure of self-guessing error (like min imizing the
sum of th e squares of the erro rs) for the testing, the testing its elf could be
done according to the same measure of self-guessing error as was used to
const ruct the generalizer, thereby imp arting a sort of self-consistency to the
whole process.

The second possible goal , similar to the first, is searching for the gener­
alizer E sg(B) which lies closest to 0, or, alternatively, finding a generalizer
for whom th e sum of the dist ances (suitably defined) to sg(B ) and to 0 is
min imized . The third possible goal replaces 0 with a mapping from learning
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sets to criteria sets, 0 (11), such that 0(11) n 39(11) contains a single element.
So long as 11' :::) B does not necessarily imply that 0(11') ~ 0(0), we do not
get the contradiction we did above. As yet this second poss ible goa l has not
been ex ten sively exp lore d. One example of a system which meets this second
goal (though in a not particularly useful or interesting way) is provided by
modi fying the example given above of how to bui ld a strongly self-guessing
generalizer for any learn ing set. If we come up with a ru le for constructing
the funct ion f (x) from the learning set (e.g. use po lynomial fitting), then
f (x) and therefore the whole generalizer is uniquely fixed by the learning
set, even though the generalizer is strongly self-guessi ng for the learning set
in question .

At this stage of these papers, in addition to laying out a preliminary
scheme for categorizing generalizers, we have partially accomplished t he goa l
of creating criteria for optimal generalization . One such set of criteria is
any of the various permutations of the criteria in the previous paper. An­
other is to find generalizers (from a criteria set) which are semi-proper and
as close to (strongly) self-guessing as is poss ible, for t he learning set in ques ­
ti on. We have answers to the question, "if you are presented with a learning
set and have several generalizers to choose from to generalize from the set,
and all fac to rs like guessing speed an d system over head are equal, which
gene ralizer do you use?" If we use thi s second choice of the criteria of semi ­
pro perness and (strong) self-guessing, then the task involved in optimally
gene ralizing from a learning set is to find a mapping from the learni ng set,
0, to an equ ivalence class of generalizer s, G, such that G is semi-proper and
(almo st) strongly self-guess ing for B. G is otherwise unrestricted, being set
by a criteria set of ex ternal consi derations (e.g. a desire to invest igate learn­
ing algorithms for neural net s) , except that every member of G agrees on the
fun ction g {order of O} , acting wit h B as a learn ing set , taking ques tions to
outputs. In other words, the only thing that concerns us about the elements
of G is that they all be semi-proper , as close as possible to self-guessing, and
unique in how they tell us to make guesses for novel in puts, given our learn ­
ing set 11 . In chapter 3 of this paper some problems that indicate tha t such
concepts of approximate self-guessing are quite usefu l in real-worl d situations
are explored.

Unfortunately, whereas the requirements of (semi-) properness, output
lineari ty, and the like can usually be used to choose between competing gen­
eralizers, they do no t seem to be sufficient to determine t he un ique optimal
equiva lence set of generalizers for any given learning set. They either under­
or over -res t rict that equiva lence set. Self-guess ing does not change this, and
indeed , for exact self-guessing, we proved just above that any criteria set
has to be either over- or un der- restrictive. In t ry ing to find a way out of
t his imp asse, criteria in add ition to (or perhaps inst ead of) t hose studied so
far bear invest igat ing. One such criterion, quite different from any of the
restr ict ions discussed so far, is information compactification .
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2. Information co m pact ifica tion

T he criterion of information compactificat ion is mot ivated by examining the
criteria hu man s use in deciding bet ween compe t ing theories to explain a
given body of data. T he most obvious criterion , that the theory not disagree
wit h any of the availab le dat a, is, of course, the same as t he rest ricti on on
an generalizer that it rep roduce the learn ing set. Ano ther criterion used by
hu man s is that t he theory be self-consis te nt an d able to expl ain certain proper
subsets of t he da ta as ramificatio ns of the rest of the dat a . T his essent ially
amo unts to the criterion of self-guessing. Yet another criterion human s use
is Occam's razor: of two competing theories, everything else being equal,
pick the "simplest" theory, the one which is made up of the least amount of
informat ion . In other words, try to compact ify the information of the body
of facts as much as poss ible when recasting it as a physical theory."

To investi gate informat ion compact ificat ion from the point of view of
gene ralizers , first note that for a st rongly self-guessing generalizer , all we are
interested in is the mapping performed between the question and the output
(J (x) in equation (1.4)). T his mapping will be the sam e for all elements of
any expanded learning set. Define this mappi ng as consist ing of two parts: a
set of numbers called the defining set, an d a method which map s the defining
set to functions be tween questions and outp uts. Via the method , the defining
set un iquely specifies the quest ion-output funct ion (which is usually assumed
to be from a subset of R'" to a subse t of R). The amount of information in
this function is some appropr iate measure of the size of the defining set . With
M being a method and ¢ being a defining set, (AI, ¢) is taken to be the set
of all pai rs (question , ou tp ut to the question guessed using A1 and ¢). The
goal of informatio n compact ificat ion is to , from the collection of all (method,
defining set) pai rs meeting some set of crite ria (like reproducing a learning
set), find that pair which has the smallest possible information measure of
the defining set. We assume that the allowable form(s) and elements of ¢
are implicit in 1\1. Since a definin g set will, in general , be an ordered set ,
(AI, (¢1 U ¢2))' for examp le, is no t defined for ¢1 i- ¢2.

A prior i, it is not clear precisely what form the defining set should take and
what kinds of numbe rs it s eleme nts should be. In the attempt to approximate
informatio n compactificat ion an d self-guessing via ne tworks of HERBIEs dis­
cusse d below, the defining set consists of a finit e but vari abl e number of real
numbers (See reference [4J for discussion of a simil ar idea) . T he same is true
for most ne ural ne t schemes. In that th ese real nu mb ers, being approximate d
in a computer program, have limited pr ecision , the defining set essentially
cons isted of a variable nu mb er of integers , an d therefo re the defining set
could be fur ther compressed into being a single int eger."

3Note th at "information" here does not necessarily have any relationship with Shannon
inform ation, - Li Pi1n(Pi) ' as described in reference [9], for example. A closer analogue
can be found in the definition of inform ation used by Cha it in, described in reference [7].

4e.g., the (un ique) produc t of th e lowest prime numb ers, each raised to th e power of
an element of the defining set . Insofar as the defining set in this example of HERBIE nets
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To ensure that no information from a learning set is hidden in a method,
thereby allowing us to reproduce the learning set using defining sets with
arbitrarily (and meaninglessly) small amounts of information , it is requ ired
that for all methods, M, given any (finit e) learning set 0, there exist s a
defining set ¢i such that the question-output func tion made from AI and ¢i
reproduces O. In other words , any method must be able to reproduce any
learning set , and therefore cannot have any dat a "hidden" in it per tinent to
some particular learning set. Therefore we can write

(2 .1) For all methods M , and for all finit e learning set s 0, there exists a
defining set ¢i such that 0 C (M, ¢i).

For (2.1) to be meaningfu l, it is assumed th at there is some notion of the
allowed learning sets whi ch is independent of the method (e.g. "all elements
of the learning set lie in the interval [0.0, 1.0]" ). If this is not the case, then
(2.1) is essent ially a tautology.

Given any learni ng set 0, pick any method M ' and then the associate d
defining set ¢i' such that 0 C (M ', ¢i' ). A method is any mapping which
takes a defining set to a function from R m to R such that (2 .1) is obeyed.
Therefore we can construct a new method 111[ which first performs a mapping
on it s defining set and then runs 111[' on that new defining set, so long as the
pr e-mapping is bijecti ve. In particular, let the pr e-mapping be the identity
mapping, except that it sends a predet ermined defining set ¢i to our set
¢i' and vice versa . Clearly, sinc e M ' satisfies (2.1) , so does 111[ . It is also
immediate that (M, ¢i) = (M' , ¢i') . We were given 0 and ¢i and const ructed
the associated M whi ch reproduces O. We can therefore say that for all ¢i ,
and for all learn ing sets 0, there exists a method allowing ¢i's form such that
o is contained in (M, ¢i) . The third var iation of (2.1) , "for all me tho ds M
and all defining set s ¢i allowed by M , there exists a learning set 0 such that
ois contained in (M, ¢i) " is t ru e by construction.

Sometimes the rul es in (2.1) have to be amended so as to not ru n astray
of cardinality arguments. For example, a defining set consist ing of a finite
number of integers can not obey (2.1) exactly for learn ing sets consist ing of
finit e numbers of reals . In such cases the first ru le in (2.1) is assumed to
be modified to read "Over an arbitrarily large region , for all methods 111[ ,
and for all learning set s 0, there exists a defining set ¢i such that a set of
numbers which constit ute an arbitrarily good (but not necessari ly perfect)
approximat ion to the elements of 0, is contained in (111[, ¢i )." For these cases
the second vari ation of (2.1) is modified in a simi lar way.

In general we say that

(2.2) The method M 1 = the method M 2 iff, for all ¢i , either (M] , ¢i )
(M2 , ¢i), or both (M] , ¢i) and (M2 , ¢i ) are not defined .

turns out to be an ordered set, the sizes of the prime numbers would have to be orde red
in the same way as their powers , the elements of the defining set , are ordered .
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Arithmeti c operations over methods can now be defined quite easily, if
desired. For example, we can say that M' = M I + M2 iff, viewing (M , <p ) as
a funct ion from R m to R, for all <P , either (M ' , <p ) = (M I , <p) + (M2, <p), or all
three (M', <p), (MI , <p) , and (M 2 , <p) are not defined.

In analogy to (2.2) it turns out that

(2 .3) If <PI and <P2 are both finite sets of ordered reals, <PI = <P2 iff, for all
meth ods M which allow defining sets of the form of <PI and <P2, either
(M, <PI) = (M, <P2) or both (M, <PI) and (M, <P2 ) are not defined .

P roof: Trivially, if <PI = <P2' then either (M , <PI) = (M , <P2 ) or both are not
defined , for all methods M . Now define M ' to be the set of methods which
prepro cess a defining set <Pi into a new defining set <P; and th en map the
elements of <P; to a curve in R x R made up of straight lines which connect
the points (1.0, first element of <p;), (2.0, second element of <p;) , etc. The line
is taken to have the value of the first element of <P; for all points to the left of
1.0, and the value of th e last element of <P; for all elements to the right of n .O,
n being th e number of elements in <p;. Varying through M' is adding new and
different points to th e right of th e elements of <Pi in the preprocessing , thereby
creating <p; . M ' is in agreement with (2.1) , where B consists of elements in
R x R . Furthermore, is contained within the set of all method s which allow
defining sets of the form of <Pi . Now note tha t if <PI and <P2 have the same
numb er of elements, then iffor any one of the m' E M ' (m' , <PI) = (m' , <P2) , <PI
mu st equal <P2 . If they have different numbers of elements, then it is possible
th at for a particular m' E M ' (m' , <PI) = (m' , <P2 ) (have <P2 be <PI with its
right most element repeated, for example). However, it is clearly not possible
that this is t he case for all m' EM'. Therefore if (m' , <PI) = (m' , <P2) for
all m' E M" , <PI and <P2 must have th e same number of elements and must
actually be ident ical. Since (M , <PI) = (M, <P2 ) (or both are not defined) for
all M implies the same for all M E M', the proposition is proven. •

A ru le similar to (2.3) holds if both <PI and <P2 are unordered.
Along with the defining set an d the method a measure is needed of the

information contained in the defining set. For a defining set <P , such a measure
is writ ten I(<p). (Sometimes I( <p) is called the simplicity measure although
in this pap er we'll usually use the term information measure.) Since it is not
in general clear what form th e defining set should t ake, it is not clear what
th e information measu re should be . As an example, one means of measuring
information would be to have the method be a universal Turing machine
used to bui ld mult itape Turning ma chines which calculate funct ions t aking
a st ring on one of t he tapes as input with the final string lying on another
of the tapes being int erp ret ed as output . To allow these funct ions to be
from reals to reals, it is sufficient to have the period be a symbol on both
th e inp ut and out put tapes and t o add a delineated precision number to the
beginn ing of the input tape such tha t when the answer on th e outpu t tape
has precision exceeding this number, th e Turing machine halts . With this
system , any (halting) funct ion from the reals to the rea ls can be calculated
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by taking the limit as the precision number goes to infinity of the input tape
/ output tape function calculated by the Turing machine. The defining set
in this system is the code read by the universal Turing machine, and the
informat ion measure is the number of states in the resultant Turing machine
(see reference [32] of the first paper for investigation of a similar idea).

As another example, in the hyperplanar HERBIE networks discussed be­
low, the defining set is a set of numbers specifying both the architecture of
the network and the learn ing sets defining the individual hyperplanar HER­
BIEs (t hese learning sets not to be confused with that learn ing set () used to
teach the entire net). A hyperplanar HERBIE is a particular kind of HER­
BIE based on locally fit ti ng subsets of the learni ng set with hyp erp lanes. For
brevity, we will often use the te rm "HERBIE" when what is really meant is
this part icular kin d of hyperplanar HERBIE. The context should make the
meaning clear. (See reference [5].) Here the information of a defining set can
be t aken to be the number of elements in it. In this particular instance the
same measur e can be applied to the learn ing set fed to the net as a whole (we
require that the entire network rep roduces this learni ng set) . Now examine
the trivial case of a net consist ing of a single HERBIE, so that the question­
output function for the whole net is just the single HERBIE "generated"
by the learning set used to teach the full net. Since the learn ing set of this
HERBIE is t he defin ing set, the information in the defining set equals the
information in the learning set fed to the entire net. \Ve can therefore state
that for this information measure, in general min(I(rjJ)) :::; I(()), where rjJ is a
defin ing set and () is the learning set. The minimum is taken over all defining
sets which reproduce (). As a trivial example of information compactification,
if () consists of n ~ m elements all lying on a single m-dimensional hyper­
plane, the criterion of information compactification would (probably) pick a
sing le HERBIE defined by a learning set consisting of m + 1 of the elements
of () to generalize from () . This is because in this case such a single m + 1
element HERBIE is (probably) the HERBIE net with the lowest I( rjJ) which
reprodu ces (). (For all the elements of () not lying on the same hyperplane,
no m + 1 element HE RB IE would reproduce () .)

Since the information measure is supposed to mes h smoothly with Oc­
cam's razor , it is usually assumed that the higher the value of I(rjJ) , the
greater the number of defining sets with information measure equal to I( rjJ),
and therefore, given a method M, the higher the number of functions in
(M , <I», where <I> is the set of all defining sets with the same informat ion
measure as rjJ . In other words, given a fixed method M, the lower the infor­
mati on measure I, th e more cons trained the set of all functions producible
from M by using M in conjunction with defining set s of informat ion measure
1. More fun ctions can be created from a set of definings sets of high infor­
matio n measure than from a set of defining sets of low information measure
(see referen ce [6]). Most, if not all, information meas ures considered in prac­
t ice obey this restriction. Stating this restrict ion more rigorous ly, I (rjJ) is
a monotonically increasing function of the number of defining sets with the
same information measure as rjJ.
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Formally speaking, a generalizer is a continuous map from learni ng sets e
to guessers, (M , 1» . Since the guesser (M , 1» is required to obey (0.1) through
(0.5) (and in particular (0.3)), the method M necessarily obeys (2 .1) and its
ramifications ((2.3) for example) . Self-guessing is a further restriction on this
map to ensur e certain properties when it is run on subsets of e. For strongly
self-guessing maps, this restriction is particularly simple: any (lar ge enough)
subset of egets mapped to the same guesser , (M, 1» . Given a learn ing set e,
the t ask for finding the optimal generaliza tion is now amended to be finding
the equivalence set of generalizers whi ch is (semi -) proper and app roximately
(strongly) self-guessing for e,uniquely defined for g{order of e} ,and for which
the guesser (M,1» induced by the learning set on the fun ction g{order of e}
has minimal 1(1)).5

In point of fact, a generalizer its elf is a kind of method ; it takes defin­
ing sets (i.e., learning sets) to mappers from questions to outputs. As such
one can view the search for a minimal defin ing set 1> which will reproduce
a learn ing set e as being equivalent to t rying to find a minimal learn ing set
(1)) which, when fed t hro ugh the generalizer, will guess the orig inal learning
set O. T his, of course , is quite similar to the task of self-guessing in it s various
forms. Note , however, that this relationship bet ween self-guessing an d infor­
mation compactificat ion also means that all the limi tat ions on self-guessing
discussed in the last chapter, an d in particular the limitati ons pr esente d in
th e discussion of crite ria sets, have applicability to schemes involving infor ­
mation compactificat ion as well.

Finally, another way to exploit inform ati on compactification is to view a
generalizer itself as being a method along wit h a definin g set (rather than
just a method), and thereby cast the task of optimally generalizing e as
that of find ing the generalizer , (M,1» which has minimal 1(1)) and which is
(sem i-)proper and ap proxim at ely (strongly) self-guessing for O.

The difficulty in all these uses of information compactification lies in spec­
ifying an a priori most reasonable information measure. Unfortunately, we
seem to need to specify an a priori most reaso nable method to go along with
thi s a priori most reasonable information measure. Consider, for examp le,
the case whe re only the information measure is fixed and given an d we are
trying to mini mize the information measure of a defining set which , in con­
junction with a method , constitutes the guessi ng surface going through the

5Note th at the re is a natural meshing between the concepts of self-guessing and infor­
mation compactificat ion in that self-guessing means that a subset of () might be able to
replace the full (), an d this in turn might result in a lower I (,p ). After all, if you can guess
a full learn ing set from a subset of it , then you have effect ively compacted the inform ation
needed to reproduce th e full learning set, assuming your inform ati on meas ure of a set is
simply the cardinality of th at set . For example, if the input space were m-dimensional all
the point s in th e learning set lay on a hyperpl ane, and if M were a hyperpl anar HERBIE
(see two paragraphs ago) working on points provided by ,p, with I( ,p) being th e number
of such points, the ,p with the min imal inform at ion would consist of only m points , and
linear fitti ng to those points would suffice to reproduce the ent ire learn ing set hyperplane.
T his correspo nds exactly with the fact that linear fit ting is self-guessing for this learning
set of points on a hyp erplane, since this means that a subset of that learning set can be
used to generate the ent ire input / output surface .
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points of the learning set. In this scenario, very slight modifica ti ons to the
method can result in completely different pr edictions. Using method 111, if
(M,¢) and (M , ¢/) both reproduce the learning set and I( ¢) < I( ¢/), then
we would be led to fit the points of the learning set wit h the fun ction (M ,¢).
Now let M' be a new method identical wit h 111 except t hat if the defining
set is ¢, M' first replaces it wit h ¢/ and then performs t he same map ping
M does, and if the defining set is ¢', 111' first repl aces it with ¢ and then
performs the same mapping 111 does. T he information measure has not been
changed , but now we'd be led to generalize with (M' , ¢) = (M, ¢'), getting
the exac t opposite results from before . If we had some way to pick between
111 and M ' we would not have this difficulty; barring such a way to choose,
we can not derive unique generalization of our learning set using onl y the
criterion of information compactification .

Things are a bit better if it is the method which is fixed and given ,
since then it is fairl y reasonable to take th e card inality of the defining set
as it s information measure. However note that in no sense is one ju stified in
ass um ing such a choice of measur e is a priori "most" reasonable . For example,
it is trivial to modify any method M very slightly into a new method M ' which
takes on ly cardin ality 1 defining set s and operates by mapping any such single
number into a set of numbers on which it then run s the method 111 . In this
wayan information measure based on the cardinality of the defining set loses
all ab ilit y to distinguish amongst the various defining sets . Note also that
whatever the method, it is always possible to modify the information measure
slightly by interchanging the information values associa ted with any two
defining sets (this modification does not run ast ray of the requirement that
information measure scales with the number of defining sets having such a
measure) . Such a modification, slight as it is , can be used to justify the choice
of any of the defining sets which (along with the fixed method) repro duce
the learn ing set. In general then , it seems that unless both the method
and informat ion measure are engraved in stone, the criteria of information
compactification simply is not capable (either by its elf or in con cer t with some
of the other criteria of generaliza t ion theory) of det ermining how to generalize
from a learning set. Yet if one is to fix a method and information measure,
it should be clear why such a cho ice is definitely the best one to make.
Otherwise, there is no reason at all to expect the resultant generalization to
be optimal.

It is interesting to note that despite these pr oblems in ju stifying the choice
of method and information measure, most of the generalizers (whi ch ar en't
neural nets) that have been explored to dat e have tried to use informat ion
compactification rather than any of th e crite ria in chapte r 1 of the last paper
for choosing between different generalizing schemes . For example, one kind
of information measure that has come under investigation is the number of
high-l evel language st at ements necessary to reproduce the learning set (see
reference [49] of the first paper of thi s ser ies). Similarl y the work at min­
imizing the algorithmic information complexity of a T M t hat repro duces a
given learning set [7] uses essenti ally the same information measure as in th e
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TM example given above. As a final example, even Rissan en 's "minimum
descr iption length principle" [8] can be viewed as an attempt to exploit the
concept of information compactification . (Rissanen's scheme can also (per­
haps more naturally) be viewed as a crude attempt to min imize a kind of
self-guessing error").

Unfortunately, none of the information measures associated with these
schemes is clearly "a priori most reasonable." As a result , as indicated
above, all of these schemes are essentially ad hoc, despite their apparent
reason ableness .

Many attempts have been mad e to formulate a comprehensive analysis of
the mathematics of self-guessing and information compact ification . Usually
they have entailed modeling these concepts as something better understood:

1. Information theory and statist ical mechanics have been explored with
an eye to better understanding how to measure information and how
to then minimize it.

2. Infor mation compactification has also been explored thro ugh express ing
a guesser as a pol ynomial of po lynomials, and then try ing to minimize
the tot al number of coefficients necessary to guess a given learning set .

3. For self-guessing, one approach that has been investigat ed views gener­
alizers as surfaces in R" evolving in t ime accord ing to functions which
give the height of the surface at a given point at a given moment of
t ime as a functional of the heights everyw here else at the preceding
moment. This is essentially a gene ra lized network st ructure; neural
nets are such st ructures which confirm to a rather narrow ly proscribe d
set of allowed evolving functions . In the discre te limi t, this approach
has led to the investigation of Markov chains as models of generalizers.

6T ha t information compactification should be somewhat equivalent to self-gu essing
should be no surprise, given that , as discuss ed previous ly, th e reverse is tr ue. In Rissanen's
scheme the learning set is assumed to be one-dimensional , and th e output components of
the learni ng set are ca lled "observations," with the (one-d imens ional) inputs being viewed
as the successive "times" of the observations. Rissanen's scheme for picking a (conditiona l,
probabilist ic) est imator to predict the next element of a series of observations from a set
of pr evious observations can be viewed , roug hly, as simp ly picking th e generalizer with t he
smallest self-guessing erro r for the learn ing set of th ose previous observations . For Rissanen
the "self-guessing error" for a par ticular element of t he learn ing set, given a (d ist inct)
subset of the learning set from which to generalize, is essent ially just th e negative of the
logari thm of the condit iona l est imate of that part icular eleme nt of the learn ing set , given
all previous element s of the learnin g set from which to build the conditional est imate. In
t rying t o find th e est ima tor which minimizes the sum of these negative logarithms (up to
an additive penalty term measuring the numb er of par amet ers of the est imator) Rissanen
is simp ly tr ying to find th e generalizer which minimizes thi s measure of self-guessing error .
In the terminology of th e section of the self-guessing chapter in this pap er which dealt with
criteria sets, Rissanen is simpl y following the first of the three poss ible goals involving self­
guessing, namely rest ricting himself to a criteria set n and then find ing the element of n
which lies closest to sg(</», where </> is the learning set in question. Fina lly, note tha t since,
in pr acti ce, n is set by restri ctin g oneself to some arb it rary (an d small) set of est imators,
Rissanen 's scheme is, essentially, ad hoc. It is mode l-driven, and not purely generalizat ion
criter ia-dr iven , despite appearances to the contrary.
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In the continuous limit, it has led to the investigat ion of certain kin ds
of integral equations and of field theoretic path integral formalisms as
models of generalizers .

4. Another approach investigated was to expand each g{i}, perhaps in a
Taylor series, and then try to relate the expansion coefficients of the
g{i}'s making up an generalizer.

5. Other approaches are assorted variational principles, like those which
determine the shape of a sheet of stiff material forced to go through
certain points in space," or maximization of (Shannon) missing infor­
mation [9] subject to various constraints (the probability dist ributio n
Pi in the - I:i p;ln(pi) being over poss ible input-output functions ).

6. Others are taking t he input s and outputs to be from spaces with higher
cardinality than the real numbers (i.e. taking them to be fun ct ions) an d
then perhaps applying distribution theory [10] or perhaps finding the
(funct ion-valued) coefficients of a Taylor expansion which reproduces
the learn ing set.

7. Ot her lines of attack have been investigating input-output curves cre­
ated by having both the input and the output determined by low-order
differenti al equations in a common parameter, and viewing the learn­
ing set as a probability distribution over an input- ou tput space, rather
than as a set of vectors, thereby obviating the need for an infinite num­
be r of 9 {i} (in this scheme all questions are answered acco rding to a
single diffeomorp hism mapping the learning set probability distribution
surface to a new pro bability distribution surface which gives the output
guessed for any given inp ut).

8. Yet another approach that has been investigated has been trying to
find an (appropriate) continuous model of comp utation, the hope being
that solving extremal pro blems with such a model would be eas ier than
solving them wit h (discrete) Turing Machines.

9. Along the same lines, various attempts were made to construc t a mean­
ingful notion of a function with a fract ional number of arg uments, so
that the criterion of upward compatibility could in some sense be made
continuous rather than referring to g{i} wit h i's differing by an integer
amount.

10. Finally, a preliminary invest igation has been made into a scheme in­
volving having a point move through an appropria te space, perh ap s
chaotically, until it alights within a predetermined boundary in that
space. The starting position of the point's journ ey is the input to the
generalizer, and the ending position within the boundar y is the out­
put. T he scheme for turning this into a generalizer would be to alter

7This is essentia lly the same approach as regular izat ion theory (see refere nce [32] of
the first paper) .
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the parameters controlling the jumping of the po int so that it can both
reproduce a given learn ing set and approximate self-guess ing for that
learning set.

So far, none of these purely analyt ical approaches to the problem of spec ­
ifying unique generalization has been entirely successful. As a result , a fair
amount of work has been done outside of such an analytic context by exp lor­
ing the reasonableness of the criteria and concepts of generalization theory as
solvers of rea l generalization problems. This work consists of computer ru ns
of structures which approximate solutions to various of the criteria of gener­
alization theory. In particular, the criteria of semi-proper self-guessi ng an d
information compactification have been approximated. Alt hough research
continues at trying to find analytical solutions to generaliza tion theory, these
computer runs have exhibited some quite encouraging generaliza t ion beh av­
ior, and are therefore interesting in their own right.

3. Processors, nets, and applied generalization t h eor y

3.1 Applications of generalization theory which do not use net-
works

T he first structures based on gene ral ization theory which were investigated
in real world situations were hyperplanar HERBIEs (see reference [5]). T he
hyperplanar HERBIE, unli ke backpropagated neural nets, is very close to
being a pro per generalizer (discontinuities be ing how it falls short of full
pro perness). As exp lained in reference [5] there are many other adva ntages t o
this HERBIE as well. Accordingly, better generaliza ti on would be expected of
such a HERBIE, and in all the tests reported in reference [5] of the guess-the­
funct ion- I'm- thinking-of type, t he hyperp lanar HERBIE has indeed beaten
neural nets, someti mes by a wide margin. A simple hyp erplan ar HERBIE,
however , employs neither self-guessing nor informat ion compactification .

One could, for an arbitrary learni ng set , take all generalizers, includ­
ing HERBIEs and neural nets, see which one achieves greatest informat ion
compactification and is most closely self-guessing for the learn ing set, and
use t hat generalizer to generalize . T his is essent ially the tack taken in ref­
erence [11] in which the task of reading English text aloud is attacked by
bu ilding generalizers via the techn ique of self-guessing. T he reasonableness
of this approach is evident in the ease wit h which it leads to generalizers far
superior to NETtalk, the generalizer Sejnowski and Rosenberg constructe d
for the same task via the technique of backpropagation [12J. Not only did
this approach beat NETtalk in terms of ease of use, speed of const ruct ion,
error rat e for reproducing the learni ng set, and simp licity and manipulabi lity
of operation , it far outperformed NETtalk in terms of generalization error
on tes ting sets .

Another example of the efficacy of this self-guessing approach is pr ovided
by the the following toy pr oblem . Take the first eight frequ encies 21r, 1r ,
21r /2, 21r /4, etc. You are told that a (random) linear combinat ion of one-
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dimensional sine waves with these frequencies has been used to construct a
parent surface . Five points are randomly chosen from this parent surface
an d presented to you as a learning set. You are then given novel inputs as
questions an d are asked to predict what the corresponding output on the
parent surface is for these questi ons. Since five is less than eight, you cannot
ju st fit t he eight frequencies to the points of the learning set . How can you
generalize in an int elligent manner?

One way to gene ralize intelligently is to exploit self-guess ing to decide
which five out of the eight total frequencies to fit to the points of the learning
set. (See the discussion of criteria sets in the last chapter - what is being
done here is a form of the first of the three realizabl e self-guess ing goa ls
mentioned in t hat d iscussion.) Choose all poss ible sets of four po ints from
the five of the learn ing set . For each such qu adruplet fit a set of four of
the eight (known) freq uencies to those points, and measure the square of the
error of the resultant four -t erm linear combination in guessing the remaini ng
fift h point. T hen sum up these errors over all the quadrup lets . This gives us
a tot al guessing err or for those four frequencies, for the learn ing set provid ed.
Follow this procedure for all sets of four of the eight frequ encies. Then rank
all these sets of four frequencies according to this total self-guessing erro r.
Set aside the four frequencies in the best performing set. Then find the
remaining frequency which has the smallest average self-guessing err or, where
the average is over all four-frequency sets in which that frequency appears.
This gives us a total of five frequencies which are in some sense best at self­
guessing. Using them we can fit all five po ints of the learni ng set. It is this
resu ltant five-term linear combination which is then used to make guesses for
new point s. In effect, thi s procedure is a way of constructing an LMM G (see
the first pap er in this series) which is approxim at ely self-guessing.

In figur es 1 and 2 the generalizing efficacy of choosing the 5 frequencies
in this manner is compared to the efficacy of choosing the 5 frequencies in
a random manner. 10,000 trials (approximately) were conducted in each
of which eight amplit udes for the eight frequencies were randomly chosen
(from between - 1 an d +1) , a 5-po int learn ing set and a 20-po int test ing
set were randomly chosen, and then the self-guess ing scheme eluc idated in
the previous paragraph was used to construct a generalizer from the 5-po int
learning set .

Figures 1 and 2 are made up of two histogram s. In figure 1, each bin
represents the number of 5-frequency sets (out of a to t al of 56) that generalize
bet ter than the set chosen by self-guessing for a given trial. If self-guessing
chose what were effectively random frequencies, then the histogram would
be symmetric ab out bin 27. The mor e biased toward the lower bins the
histogram is, the better self-guess ing is performi ng as a technique for cho osing
a generalizer of t he 5-point learning set . In figure 2, the bins represent
ranges for the difference between th e generalizing error for the frequ ency
set picked out by self-guess ing and the average such error over all frequ ency
sets . Only the central par t of the hist ogram is given in this figure, becau se
the full his togram has exce ptionally long tails. (In deed, the average across



226 David H. Wolpert

No. of Occurences

1200

o 8 16 2 4 32 4 0 48 5 6

No. of generalizers belter than the self-guessing one

Figure 1: This histogram has as its bins the number of 5-frequency
generalizers (out of 56 altogether ) which had smaller guessing error
th an the 5-frequency generali zer chosen via self-guessing. 8948 trials
went into making up thi s histogram. The binning is done in groups
of four . For example, having two generalizers better than the self­
guessing one and having three generali zers better would both con­
tribute to the left-most, 0-3 bin . The guessing errors were determined
via random 20-element testing sets. The advantage of choosing t he
(app roximately) self-guessing general izer is reflected in the fact th at
this histogram is centered about a value smaller than 56/ 2.

t he histogram (i.e. , the average over the 10,000 trials) of the error difference
is on the order of 1016 , 1011 times the range of the histogram beyond t he
right edge of that portion of the histogram reproduced in figure 2.)

The resu lts of figures 1 and 2 are fairly unambiguo us . Self-guessing has
help ed substantially in finding which of t he five frequ encies to use for gener ­
alizing . For t his problem, self-guessing is clearly a technique help fu l in t rying
to pass the guess -what-function-I'm-t hinking-of test .

Nonetheless , there are tasks for which all the usu al generalizers, including
HERBIEs, approxim ate self-gu essers , and all t he rest, fai l miserably t his
gu ess-what-function-I'm-thinking-of test, and in deed , it is not too difficu lt
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Figu re 2: This histogram has as its bins the average guessing error
of all 56 5-frequency generalizers, minus the guessing error of the 5­
frequency generalizer built via self-guessing. The guessing error is
determined by means of a random 20-element testing set. 8948 sep­
arat e tri als went into making this histogram. Here t he advan tage of
choosing the (ap proximately) self-guessing generalizer is reflected in
the fact that this histogram is weighted toward the positive bins.

to construct such tasks. By analyzing such tasks with an eye to a more
systematic exploitation of self-guess ing and information compactification, it
has p roven possible to create structures which exhibit ric her generalization
behavior t han the st ructures inves tigated in [5J and [11], and which also
provide insi ghts into how to further exp loit generaliza t ion theor y in the real
wor ld .

T his chapter provides an in iti al exp loration of some suc h structures. Note
that in investigating these structures, and indeed in investigati ng any real­
world generalizers, t he goal of model-independence is of necessity being com ­
promised somewhat . We are no longer conducting the research in a purely
generalization behavior driven manner. However, in that the structures
presented in this chapter are at least based on t he concepts of a model­
indep endent conceptualization of generalization, they are cert ainly less ad
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hoc (and t herefore better tools for research) than the alternative generaliz­
ing st ruc tures (like neural nets) which are often encoun tered in the lit erature.

3.2 Processors vs . mappers

One problem which gives both HERBIEs and neural nets difficul ties is the
scanning problem. This pro blem has as its parent function the map ping
whi ch takes both a sequence of numbers and an offset into that sequence as
input, and outputs the first nonzero ent ry in the sequ ence which is to the
right of the offset. For example, wit h the first slot being the value of the off­
set , the inpu t (1, 0, 0,5, 0, 0,6) gives 5 as output and (4, 0, 0,5, 0, 0,6) gives
6 as output. Anot he r simil arly difficult problem is the switching problem:
acco rd ing to the value of the first dimension of the input , take the value of
one or the other of the rem ainin g dimensions for the output . For example,
(1, 3, 4,5) gives 3 and (2, 3, 4, 5) gives 4.8 A fina l example is the find -the-O
prob lem: given n input coordinates, one of which is a 0, output the number
of the input coordinate containing the 0. For example , (6,7 ,0 , 2,9) gives
an output of 3. The hyperplan ar HERBIE actually does sur prisingly well ,
with the switching problem at least (see reference [5]) , but will always be
hampered by cer tain properties of these types of pro blems. The hyp erplanar
HERBIE is a purely local generalizer - a parent surface whi ch cannot be
pr edi ct ed without looking at all of the learning set will give thi s HERBIE
problems." Difficulties will occur whenever a Euclidean metric does not cor­
rectl y br eak up the space into sect ions of simi lar input-output mapping (as
when there is an ordinal relationship between successive input components),
giving the sur face a discon tinuous nature. Simple interpolat ions, or in gen­
eral any scheme which tries to create nonvolatile sur faces, just is not going
to key in on the t ricks defining these kinds of surfaces.

One alte rnative generalizer which is better suited to these problems is a
feedb ack network of hyp erplan ar HERBIEs (or ju st "HERBIEs" for short )
whi ch uses output flagging.lO By having the number of iter ations of th e
genera.lizing structure var y with the input , and by having data fed back
through the struct ure, such a net amo un ts to many differen t convent ional
gene ralizers (i.e. , many different feedforward nets), ea.ch run on a different

sAs an aside, note th at the technique of dividing up the input spac e into sub sets each
of which are self-guessing for hyp erpl an ar HERBIEs (see end of reference [5]) would solve
this problem perfectly. The elements of each subs et would be tho se points of the learn ing
set which all share the same value for th e first dimension of the input. The resultant
surface generated by any of th ese sub sets would be a single hyp erplane. For example, the
subset with first input dimension = 1 would output the value of dimension 2, regard less
of all other dimensions . This is a hyp erp lane , and, it so happens, the "correct" surface
according to the guess-t he-function-I 'm-thinking-of crite rion .

9It is prec isely this global information that self-guessing is designed to exploit.
10 "Output flagging" means that the output of the net is the value on a certain output

line at the iteration for which the value of an out put -flagging line meets some pre-set
crit er ion . The number of iteratio ns for which an output-flagged net runs before giving its
answer will, in general, vary with th e input . In practice, the output-flagging line is ofte n
the same as th e output line, and th e output criterion is that the value on this line exceed
a pre-set threshold.



A Mat hematical Theory of Generalization: Part II 229

section of the input space. If the output flagging is don e prope rly, one would
expe ct a high degree of informat ion compactification in such a network. This
kind of structure will be generically referr ed to as a processor, as opposed to
a mapper, which uses a fixed number of it erations to perform it s calculati ons.
An array matching all pos sible inputs to the asso ciat ed outputs is an example
of a mapper , whereas any computer program whi ch polls condit ionals and
then branches accordingly , perhap s to an earlier part of the pro gr am (e.g., a
Turing Machine), is a processor. It is always possible to cast a (t erminating)
processor as a mapper , and vice versa (i.e. , the to t al recursive functions can
be generated by Turing Machines). However, it is usually easier and more
(information ally) compact to do any computat ion with a pro cessor rather
than a mapper. Indeed, close to 100% of all computer programs ever writ te n
have been processors rather than mappers .

An example of a a feedback, output-flagged net which solves the scan­
ning pro blem, yet consists of only three (hyperplanar ) HERBIEs, is shown
in figure 3. On ly the first dimension of the input , the offset value , is fed in
to the bot tom of the net. The rest of the input , the sequence of numbers to
be sca nned, is entered via an environmental HERBIE.H The value coming
out of the count er HERBIE increases by 1 from one it eration to the next .
T his then gets ad ded to the input in the summing HERBIE to feed points
successively 1 mor e to the right of the starting offset into the env iron ment
HERBIE. For the whole net, output is flagged when the last HERBIE gives a
nonzero out put . T her efore, t he whole net is only flagged after the summing
HERBIE has scanned up to an input which causes the environment HERBIE
to output a nonzero .P T he last HERBIE is actually sup erfluous for this per­
fect solution, but will be usef ul later in approximating self-guessing solutions
to the scanning problem .

Note the pronounced similarity between the net in figur e 3 and the
flowchart a human would use to solve the scanning problem. Indeed, the

UThe "environme nt HERBIE" is simply a compact way of introducing the sequence
of numbers into the network. It is a pre-set one-dimensional HERBIE with data vectors
constructed so that if an integer is fed to it as input , it gives the value in the corr esponding
slot in the number sequence as output . For example, if th e number sequence to be scanned
is (0,0, 4,0,0 ,6) , then the numbers 1, 2, 4, or 5 fed into the environment HERBIE will
produce an output of 0, whereas feeding in 3 will give a 4 and feeding in 6 will give
a 6. Given that in rea lity a HERBIE takes rea l numbers as inp uts , not int egers , th e
environment HERBIE is buil t so that for examp le any real between 3.0 and 3.99 will give
an output of 4.0 and any rea l between 6.0 and 6.99 will give an output of 6.0. In general ,
the env ironme nt HERBIE should not be viewed as on the same footing as the rest of th e
net. If a new num ber sequence is desired, the old environment is pulled out, and a new
one representing the new sequence is slotted in. The rest of the net remains unch anged.

12Note that use of a environment HERBIE to input a sequence of numb ers allows for
ext reme compact ification of t he number of inpu t dim ensions to the net . It also renders
the size of the environme nt (the number of elements in the number sequ ence) arbitrary
and irr elevan t . In contrast , feedin g th e numb er sequence in to the net via a set of input
nodes hard- wires in the size of the environment . As a resu lt, any such net which solves the
scann ing problem for an environ ment of one size is essentially useless when trying to solve
the pro blem for an environ ment of a different size, in marked contrast to th e situat ion
here.
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All Herbie outputs initially set • O.

Figure 3: A network of one-dimensional HERBIEs which solves the
scanning problem perfectly. The mapping performed by each HER­
BIE as well as its purpose is indicated along with the communication
lines for the entire network. Note the feedback in the network con­
nectivity.

simplicity of the human's flowchart is directly reflect ed in figure 3. Also note
that it is very difficult (to say the least ) to build a conventional, feedfor­
ward, fixed -number-of-iterations net which solves the scanning problem at
all, never mind one which solves it using a net of only several nodes. T his
is true whether the nodes of the net are HE RB IEs, "neurons," or anything
else. Even if one introduces the number sequence via an enviro nment HER­
BIE (rather than as numbers fed, along wit h the offset , to the input nodes
of the feedforward net ) , there still is not any architecture nearly as simple
as t hat of figur e 3 that solves t he scanning pr oblem for feedforward , fixed
it eration nets. What is more, for neural net s the int egration of the environ­
ment as a HERBIE has a rather sizable dr awb ack: it is not clear that there
exists any fini te feedforward ne ural ne t which can perform the sca nning task
for any an d all environmental HERBIEs. This despi te the fact that any
partial recurs ive funct ion can be calculated by a neural net. (W itho ut feed­
back and output flagging, different environmental HERBIEs require network
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structures feeding into them that perform different mappings of the input .
However , the net has no way of knowing what environment is in there, and
therefore has no way to modify it s map pin g accord ingly.) Note also that
feedback , output-flagged net s are a lot more realistic from a neurobiological
point of view than feedforward nets with a fixed number of it erations. In
addition, features like internal memory and self-mo difying behavior are more
readily modeled with feedback, output-flagged nets (by using st ructures like
the counter HERBIE in figure 3, for example) than wit h conventional neural
nets . Finally, not e that feedb ack, output-flagged nets allow for a lot more
information compactification than feedforward ne ts .

It is important to realize, however , that any single net , feed back an d
output-flagged or not, is not by it self a generalizer. A single net is incap able
of reproducing an arbitrary learning set, an d therefore it is nece ssary to have
some structure whi ch can modify the net to have it reproduce the pr ovided
learn ing set . For convent ional, fixed-number-of-iteration s, feedforward neur al
nets, the additional st ruct ure necessary to have a generalizer can be the
technique of backpro pagation. Given a learn ing set, the backpropagat ion
te chnique produces a net which (approximat ely) reprodu ces that learning
set . In this way, equation (2.1) is satisfied. Unfortunately, backpr opagation
does not work for feedback, output-flagged nets and rarely achieves perfect
reproduction of the learning set anyway. For net work st ructures whi ch are no t
purely feedfo rward, Hopfield 's pro cedure for building associat ive memories
might be used to give us a generalizer , except t hat associative memories are
ill suite d to serving as generalizers due to the res trictions on their possible
ou tputs . (What is more , Hopfield' s proc edure will work onl y so long as the
learning set meet s certain very restrictive crite ria. )

For a feedb ack, out put-flagged net , wit h no restrictio ns on the learn ing
set, a novel technique is needed to pr ovide us with a generalizer. One such
technique is to run the net 's output, when flagged , through a las t , postpro­
cessing HERBIE. The outpu t of that las t HE RBIE one iterat ion afte r ou tput
is flagged is t aken to be the output of th e ent ire processor. Given any learn ­
ing set , the data vectors of the last HE RBIE can be set so that the entire
processor, including that post-processing HERBIE, reproduces the learn ing
set, thereby satisfying requirement (2.1) and giving us a gene ra lizer (which
is also a processor).

Not e th at this new generalizer lacks some of the pract ical advantages of a
sing le HERBIE. This new generalizer will, in general, no t satisfy the crite ria
defining a HERBIE. In additi on, generalization is no longer complet ely overt
and under the resea rcher 's control (though certainly more so than with con­
ventional neural net s, even feedforward ones). On the other hand, it is now
possible to build a self-guessing generalizer. Our generalizer , which already
possesses a fair degree of informat ion compact ificati on , can be modified to
be approximately self-guessing as well . To see this , note that if you vary
the architecture of the HERBIE net feeding into the last HERBIE , you are
effectively altering the generalizer. While rep roduction of the learning set is
always achi eved (and ensured) by setting the last HERBIE, var iat ion of the
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net feeding into that last HERBIE varies the guessing for points not in the
learning set . In this way it is possi ble to vary the architecture unt il we find
one which, for a given learning set, is close to self-guessing (i.e., is such that
if we set the last HERBIE by running a subset of the learn ing set through
the net, the entire resu lting processor guesses well for the remainder of the
learning set) . In an abstract sense, we vary the genera lizer until , if fed in a
subset of the whole learni ng set, the generalizer guesses the remainder of th e
learn ing set . As an example, not e th at the architecture of figure 3 run with
t he last HERBIE det ermined by the learn ing set will, in setting that last
HERBIE to reproduce any subse t of a scanning pro blem learning set, cause
that last HERBIE to be the ident ity mapping, as is indi cat ed in figur e 3.
As a resul t , used with the bottom three HERBIEs of the net in figure 3,
this generalizer is perfectly self-guessing for any scanning problem learn ing
set. In addition, that last HERBIE, being the line y = x, needs only two
data vectors to be completely specified, regardl ess of the size of the learn­
ing set. Therefore, this processor also achieves a high degree of information
compactification.P Ind eed, even wit h a fairly small learning set of solutions
to the scanning problem, it is clear that no other net of any kind will be self­
guess ing and also have the degree of informati on comp actification of the net
in figur e 3. Therefore , using those criteria, to generalize from the learning
set we would be led to pick the net in figur e 3, a net which just happens to
be perfect accord ing to the criterion of guess-the-function-I' m-thinking-of as
well; this net generalizes perfect ly.

3 .3 E volu tion vs. learning

It is one th ing to dea l with problems straight forwa rd enough so that simple
nets like that of figure 3 can solve th em well, but building such a net by hand
for arb itrary learning set s can be a prohibi tively difficult task. As a result, th e
crux of thi s whole pro cedure is how th e "variat ion" findin g an approximately
self-guessing HERBIE net is done . Even just when set t ing the last HERBIE,
bo th th e HERBIE net feeding in to th e last HERBIE and the entire net
including the last HERBI E act as processors, with output flagged only when
a commun ication line achieves a certain condition. The number of iterations
needed to run these processors to get output is not known beforehand and
will change as t he net itself changes . As a result, backpropagation will not
help us to find a net that, fed into another HE RBIE, forms a self-guessing
structure for a particular learning set. 14

13Note that in general, unless the last HERBIE turns out to be describable with fewer
data vectors than are in th e learning set for the ent ire processor, a single HERBIE nec­
essar ily needs less inform ati on to reproduce a given learning set tha n a net of HERBIEs
feeding into a last HERBIE . T he hope is th at for a self-guessing processor net th e last
HERBIE will usually turn out to be particularly simple and therefore require few data
vecto rs . In any case, even if this pro cessor net scheme is worse at information cornpact i­
ficat ion tha n single HER BIEs for a particular learnin g set , un like single HERBIEs it can
app roximate self-guessing for that learn ing set .

14Note, however, t hat if the output is ta ken to occur after a fixed number of iterations
(as opposed to via outp ut flagging) , then we effectively have a pure ly feedforward net (see
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To understand what procedure should be used to direct the varia tion it
is firs t necessary to digress and note that the proper paradigm for all current
ne t research (inclu ding research on conventional neural nets ) is evolution,
NOT "learning ." Learning is when a fixed system responds to external in­
puts by mo difying an information storage structure. The stored information
is eas ily erasable - the learni ng can be done again , quickly, superceding
the orig inal lesson . The system controlling the learn ing cannot be changed ,
however. A computer, for example, is a fixed system which learns by mo d­
ifying its memory. Similarly, short-term learning by t he human brain (i.e .,
sho rt -term memory) is so quick that the physical architecture of the brain
pr esumably remains unchan ged throughout the learn ing process . For long­
term memory, t he fixed system consists of the ru les of neurobiochemistry,
wit h the physical archi tecture of the brain now being the storage device.
Biologically speaking , learni ng refers to the abi lity of an organism to store
and mo dify extra-genetic information in an easy, repeatable, temporally con­
ti nuous manner . In evolution, on the other hand, ther e is no fixed system
in the organism modifying an information storage structure. Rather, it is
th e fixed system itse lf that is mo dified . Evolution deals with changing t he
hard -wired behavior and insti ncts of an organism. In evolution, it is genetic,
not extra-genetic, informati on which is modified, and it is done so in a highly
noncontinuous manner (once per organism , at conception) . In addition , in
evolut ion it is highl y nontrivial to find the modification to the stored informa­
tio n (the genotypic change) which will result in the new desired behavior (the
phenotypic change ). T his is in contrast to learning, wher e the modificat ion
the fixed system applies to the information storage st ructure is practically
ins tan taneou s and highly accurate.

By defini tion , then, a (supervised) network by it self does not learn. It
does not even have a modifiable information storage structure, never mind
the ability to perform such a mo dificat ion . T he best that can be said is that
a net , in conjunction with an associated (fixed ) system whic h mo difies the
net to behave in accord with an externally provided learning session , can be
viewed as a very cumbersome memory. T his is the limited sense in which a
Hopfield net can be said to "learn." T hings become even more forced with
schemes like backpro pagation , in which the the tweaking of the weights is
so involved that the "learn ing" cannot be continuous . W hat is more, such
net -altering schemes clearl y have little if anything to do with how a real
br ain learns . They can make biological sense, but only if they are viewed as
formi ng their nets once and only once, at conception.

reference [23] in the first paper of this ser ies) . If we then choose the surface-fitting of all
the HERBIEs in the net to be analyt ically different iable funct ions of their data vecto rs ,
we could use the technique of error backpropagation to mod ify those data vecto rs unt il
th ey result ed in an app roximat ely self-guessing net . What is more, by judicious choice of
th e sur face-fitt ing fun ctions it should be possible to improve upon convent iona l backprop­
agation by num erically solving the simultaneous nonlin ear equations for the minima of the
erro r sur face as opposed to (as in conventional backpropagati on) using grad ient -descent
to find those mini ma. This line of research has not been act ively pursued since the nets
th ese schemes would build are mappe rs ra ther than processors .



234 David H. Wolpert

It is apparent , therefore, that backpro pagation sho uld be viewed as an
evolut ionary scheme for modifying a hard-wired brain (a net) so that it ex­
hibits certain behavior. It is not a scheme for sto ring information in a crea­
ture's brain . Conse quent ly, although with cur rent net techno logy there is no
st rong reason to be wed to the notions of neurobiology.P there are st rong
reasons to be wed to the notions of evolutionary biology. Once this has been
realized, many new issues based in evolutionary biology are raised:

1. How does evolut ion work so well, and can we exp loit the same tech­
niques?

2. For example, how shou ld you implement a trick of evolution' s (like sex)
amo ngst networks or generalizers'r '"

15In crea ting devices that think , nature was severely handi cap ped in th e range of tools it
could use. It had to use slow, inaccur ate, biological systems evolutiona rily derivable from
the systems already occurring in early, pri mit ive organisms . Modern man does not have
th ese restri cti ons (or , viewed from a different perspective, he does not have this option).
It is quite probab le th at, in addition to the pro cesses employed by th e hum an br ain, th ere
are other , perhaps strongly pr eferab le schemes for empowering machines to think . Perha ps
the st rongest argument against over-reliance on neurobiology, however , lies in th e simple
fact th at we know so lit tle of it. Imag ine taking a super computer , tearing it ap art, an d
doing some investigating so th at you learn that electr ic cur rent run s throug h it , and tha t
it is made prima rily of met als and pain ts , with tr ace qua nt it ies of cert ain other elements
(silicon for example) . Th en , you build a pile of metals and paint s , send some electric
curre nt through it , and hop e to read off somewhere on t he pile 's surface the value of rr ,
calcula ted to the millionth digit. Th e ana logy is obvious. It is hard to defend the view
that cur rent neuronal nets , being such vast ly simplified vers ions of the real thing, will
somehow magically share with real bra ins the ab ility to reason .

160ne way to do it is to simply average th e numb ers defining the network. (The average
of two networks tha t are very different is likely to result in one with poo r perform ance,
bu t thi s is akin to the unviability of ma t ings of animals of different spec ies.) However ,
note t hat par thenogenet ic mutat ional evolut ion essentially amounts to variations ra ndo mly
dist ributed in genotype space abou t the pa rent . If sexu al reproducti on were a simple
averaging of two points in genotype sp ace, it would not seem to h ave much of an advantage
over a parthenogenet ic process as a strategy for producing offspr ing with a genotype
corresponding to a sup erior phenotype. Th ere is no a priori reason why the phenotype
of a crea ture with genotype exact ly midway between two parent s should be any bet ter
than the phenotype of a crea tur e with genotyp e a small random step away from one of
those parents. Nor would a novel beneficial t rait disseminate any quicker thro ugh a species
which uses sexual reproduction. T he disseminat ion rat e is , in general, det ermined by how
advantageous the new tr ait is and how quickly offspring with t hat tr ait can be produced .
T hese facto rs are independ ent of which reprod uction st ra tegy the species uses. As it turns
out, evolut ionary biologists are not really sure precisely why sex works so well (see rev iew
star ting on page 214 of March 17, 1988 N at ure). In a crude sense, the advantage to sex in
nature seems to lie in the fact th at cer tain components of th e position in genotype space
(i.e., certain genes) correspond very pr ecisely to certain associat ed phenot ypic tr aits and
are combined in reproduction not via averag ing, but rather on an either-all-one-or-a ll-the­
other basis. T his is th e fami liar pr ocess of crossover from Mend elian geneti cs. It allows
two an imals, each of which contains one novel favorable trait not sha red by th e other,
to prod uce offspring containing both favorable t raits, in full . Par th enogeneti c mutat ion
could not do this, and in a simple averaging scheme those favorable tr aits would be watered
down as th ey disseminated through the rest of th e population. Unfort unately, it is not
obvious how best to go about implement ing Mendelian sex amongst networks.
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3. Given that there is no developmental stage to networks, are tricks like
neot eny and su icide cells at all helpful in evolving networks?

4. What about the tricks involved in population biology and mating strate­
gies, an d in general all the ways in which distinct animals can affect
one another's pe rformance?

5. Is there any way to enhance the degeneracy effects of multi ple genotypes
coding for the same phenotype (convergent evolution)?

6. Should we develop some sort of embryoge nesis for network s, perhap s as
a mean s of information compactificati on? If the mappi ng from geno­
type to phenotype is smooth, you can use "ite rative focusing" and
evolve a popula tion of net s, focusing in on the desired phenotype by
always evolving off of the genotype of the net exhibiting the pheno­
type closest to the desired one. Ind eed, this is pr ecisely what evolution
does. But if the genotype-phenotype mapping is particularly volatile
and singular so that closeness in phenotype does not indi cat e closeness
in genotyp e, this pro cedur e should not be parti cularly helpful. There­
fore, if we do develop an emb ryogenes is for net s, in that the genoty pe
being vari ed will no longer be the architect ure of the net but rather the
information coding for the construct ion of th at architecture, will not
we just make even more obsc ure the map ping from the genotype to the
phenotype, an d therefore hinder the process of iterati ve focusing?

7. Taking a different slant, for all of evolution's amaz ing ab ility to find
a correct genotype, it is operating un der a number of constraints that
do not apply to computer runs. Can we come up with schemes which
allow us to beat natural evolut ion? For example, nature makes no use
of negati ve pe rformance information. Ca n we?17

8. Is there any way t o get around genet ic evolut ion's massive par allelism
advantage? For that mat ter , just how real is that advantage, given that
the vas t majority of ind ividu als in a generation are not involved in th e
evolutionary growth of their spec ies, and given that we are interested
in large changes, analogous t o punctuat ed equilibria , not small-scale
ph enotypi c find -tuning?

171n nature, if a certain genotype performs particularly badly, th e information th at it
does so will be lost to future generations - the gene will die out. Only information
concerning good genotypes is sent t o succeedin g generations. However , cultural evolution ,
for example, does make use of negativ e perform anc e information. If a society tri es on a
certain form which turns out to be particularly unsuccessful , the memb ers of th at society
(and ot hers) rememb er t his failur e and try to avoid such forms in th e future. Similarly ,
although in th eir naive form they are practically useless due to the highly convoluted
nature of th e genotype-phenotyp e surface, steepest descent and hyperpara boloid fitting
make use of negativ e information in their construction of succeeding generat ions.
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All of these questions are very open-ended. Nonetheless, simp le-mi nded
answers to some of them can and have bee n readily incorpor ated into the
scheme for vary ing the architecture of the net feed ing in to the last HERBIE.
However , instead of criteria concerning t he viabi lity of an organism in its
environment, the goa l directing t he evolut ion was self-guess ing. T he goa l
was to evolve an organism not simply to behave in a certain way in a cer tain
limi ted set of situat ions, but to also behave reas onably in sit uat ions beyond
those whi ch directly forced its evolution. (Interestingly, if by using evolut ion
we could achieve these goals perfectly and the nets so produced were quite
complica te d, we might be in the odd sit uat ion of having built a machine
which thinks wit hout understanding how it does so.)

3.4 Evolving processor nets

Because the scanning problem is so difficult for convent ional genera lizers
to solve, most of the work using evolut ion to var y the architect ure of a
HERBIE net has used it as a test case . The init ial work along these lines
used the connec t ivity of figure 3 with the data vectors specifying the bottom
two HERBIEs of the net being variable. The pro gram was given a fixed
environment and a learning set consist ing of inputs to the whole net (i.e.,
offsets into the environment) along with the correspondin g outputs (i.e., the
first nonzero elements in the environment to the righ t of the offset). T hen,
the data vectors of the first two HERBIEs were varied to t ry to make a ne t
whi ch is self-guess ing for this learning set , i.e. to t ry to make a net which,
when used with a sub set of the total learning set to set the last HERBIE,
sets it in such a way that th e resultant struct ure guesses the other points in
the learning set.

The varying of the data vectors was done in such a way as to try to
make use of iterative focusing, multi-partner sex, and negative performance
information. Specifically, each generation consisted of 24 creatures (net s) .
In the first generat ion, all the creatures were purely random. In succee ding
generations, the first 3 of the 24 were always the best 3 from the pr evious
generation. The next 11 in each generation were parthenogeneti c muta tions
of varying intensity off of these best 3, most of the mutations being off of
the best of the triplet . The next creature was a (rec iprocal) self-guessing
err or weighte d average off of those net s making up the triplet along with the
two best performing of th e following 11, and a little bit of noise. (It was
in manufacturing this creat ure that sex was implemented.) T here was then
another creature made in the same way, except that the worst performing of
the 5 par ents were taken to provid e negative performance information ; the
averaging was performed so as to move the genotyp e specifying the architec­
ture away from them. Finally, th e last 8 creatures of any generation were
purely random . Aft er creat ing all 24 creat ures, the squ ares of their error as



A Math ematical Theory of Generalization : Part II 237

self-guesse rs were measured.P and the 3 creatures with the smallest error
were fed on to the next gene ration . Then the whole process was rep eated .

To refer to this as an "ite rat ive focu sing" evolutio nary st rategy mean s
th at the random mutations will (it is hop ed) first find a cru de approximation
to the desired creature, then the coarse parthenogenetic mutations off of this
cru de approximation will find a bet ter approximation, and finally the fine
parthenogen et ic mu t at ions off of thi s bet ter approximation will find an even
better one. (Sex and the like is an aid to iterative focussing rather than a
par t of it.) If th e genotype/phenotype surface (i.e., t he net/net performance
surface) is comp letely random and discontinuous, t hen attempted iterati ve
focusing should do the same as purely random guessing. If for some reason
th e surface is perverse enough to have bad phenotypes clumped (in genotyp e
space) around good phenot ypes, th en simp le random guess ing would actually
do better th an attempts at iterative focus ing.

It is mor e likely, however , that the surface has good phenotypes clump ed
around good phenotypes, and for such a surface it erati ve focusing will per­
form much better than ra ndom guessing. For example, assume that the
surface is such that the total volume in genotype space wit h correspond ing
fitness of phenotype bet ter than some pos itive real value k (i.e. , with fitness
error < k) is roughly proportional to k. T his amounts to assuming that there
are few points with very good phenotypes. Now take any po int .\ with fitn ess
a factor of m times bet ter than the average fitn ess of po ints , and lab el by A
the geno typ e hypersphere centered on that po int having a volume m t imes
smaller than the entire space. Then it is also assumed that the percentage of
points in A which have ph enotyp e fitness at least a further factor of m bet­
ter than the fitness of the .\ point is approximately lim. (This assumption
amounts to a very crude model of good ph eno typ es clumping in genotype
space.) Aside from these two conditions, the surface is assumed to be ran­
dom. Now assume that we are trying to find a geno typ e corresponding to a
phenotype n times better than the average fitness. The probability of hav­
ing found it through an exclusively ran dom search will exceed x after trying
log(l_l/n)(l - x ) creatures . Using the ident ity In(l - x) = - (x + ~ +...),
thi s number of creatures can be rew ritten as

In(l-x)
l i n + 1/(2n2 ) + ....

For n large, this is app roximately equal to -nln(l - x) . Now assume we
want to find a genotype with phenotype n 2 better than average. With a
random search , we have just seen it will take on the order of n21n(2 ) tries to
find such a creat ure wit h a bet ter than 50% pr obabili ty. In contras t, if we

lS S elf-guessing error was approximated in various ways. As an example, for a learning set
of 100 data vectors, self-guessing error was often approxima ted as th e sum of 4 separate
err or numb ers. Each one of those 4 error numb ers was based on a net taught with a
(di fferent) sub set of 75 of the 100 total data vectors, and was calcu la ted by summing the
squa res of the errors the net had in guessing the output values of the remaining 25 dat a
vectors .
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used iterat ive focusing to first find a creature n times better than avera.ge
and then a creature n times better than that, it would take only on the
order of - 2n ln(1- vf5) tries to find such a creature wit h a better than 50%
prob abili ty, - nln(l - vf5) for ea.ch phase of the search. (x is vf5 so that
the probab ilit y of finding the firs t creature times the probability of finding
the second is 1/ 2.) It is this increase in search speed which is the reason for
using iterative focusing as opposed to a purely random search.l?

There is one major drawback to the evolving scheme as given, shared
with real biological evolution. Typically, if you build a random creature
whose genotype is only coarsely equivalent to that of a creature with very
goo d performan ce, it takes many generat ions of sex an d mutations off of
that ran dom creature before the genotype of it s descendants focuses in on
the genotype of the creature wit h very goo d performance. Even if the random
creature contains some novel feature which is a great advance over the ot her
creatures of its generation, unless it is allowed t ime to evolve to make full use
of that feature and to weed out any other negative features it might have,
in general it will not be ab le to make a contribution to the gene pool of
the species. Its tree of descendants is likely to die off rather quickly, since
it can be expected that the ini tial random creature will have more negative
feat ures than pos itive ones, relati ve t o the current ly best performing memb ers
of its species, desp ite its potential to focus in on a creature wit h very goo d
performance. T his effect amount to getting stuck in a local minimum ­
some starting genotype will be worked into the best form it can have, an d
from then on no revolu tionarily novel genotype can break in to the inner
circle of genotypes which pass from one generat ion to the next. To mit igate
against this effect, in addit ion to passing the three best perfor ming creatures
from one genera t ion to the next , a record was cont inually being updat ed
of which of the purely random creatures had the best performan ce. T hen,
when the pe rformance of the top three started to asymptote, the best of
the purely random creatures to date was used as the seed for a whole new
succession of mutations and sex. When the performance of that new sequence
of generations starts to asymptote, the performance of it s best creature was
compared to the performance of the best creature in the orig inal sequence of
gene rations. T he bet ter performing of these two was then sent on to the next
generation, and the whole process was repeate d. In thi s way it was hoped
that the evolving would not get caught in any local minima .

3 .5 Results

In exploring these st ructures some interesting heuri stic proper ti es were foun d
concern ing the genotype-phenotype surface, the surface taking as input the
dat a vectors of the HE RBIEs making up the net which feeds into the last
HE RBIE, an d giving as output the resulting errors at self-guessing based on
a sing le, preset learni ng set. The first such property was that the ad dition
of elements to a learn ing set, being the addition of restrictions to the gen -

19For an interesting discussion of other evolutionary strategies, see reference [13].
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eralizer, cuts down on the degeneracy of generalizers whi ch are self-guess ing
for the learni ng set. This results in the exclusion of generalizer s whi ch had
pr eviou sly had a small self-guessing error from the set of degenerate general­
izer s, since with the expanded learning set they now have a large self-guessing
err or. Therefore, in many situations, adding new elements to the learn ing
set actually increases the average self-guess ing erro r , even if it resul ts in a
better guesser of the parent surface generati ng the learning set.

Another interesting property, one with further-reaching consequ ences, is
that the genotype-phenotype surface is usually highly convoluted. The sex­
ually produced creatures, being slight modifications of the best performing
creatures, often had very goo d performance, even beating out their parents on
occasion . But since the resulting var iations off of the best pe rforming geno­
types were kept small, t hey rarely resulted in creatures with substantially
superior performa nce to that of their parents. Due to the highly volatile
nat ure of the sur face, whe n the variations were for ced to be larger , they
tended to res ult in creatures with performance essentially the sa me as t hat
of crea tures with random genotyp e. T his behavior was found to be tr ue with
the parthenogenetic mu t ations as well. T he advantages of iterative focusing
(as opposed t o making each new generation cons ist entirely of novel rand om
genotypes) were not nearly as strong in practice as had be en hoped. Indeed,
the genotype-phenotype surface was foun d to be so volatile that hyperpl anar
and hyperparab oloidal fitting and descent schemes were essentially a waste
of computer t ime. As a resu lt, they were not used in any but the initial
exp eriments .

The reasons for this volatility of the genotype-phenotype surface are not
hard to find. T here exists a natural notion of an equ ivalence set over the
genotype-phenotype surface: two nets ar e equ ivalent if it takes the same
number of iterations for each of them to ans wer a question used in evalu­
ating the self-guessing error of the net (including the questions used to set
th e last HERBIE), for ever y question in the given learn ing set . In other
word s, they are equivalent if it takes the same number of it er ati ons to figure
out each one's output value on the genotype-phenotype surface. In general,
one would expect a relatively smooth surface over the domain of such an
equ ivalence set. For example, if each HERBIE in the net cons ist s of ju st a
single hyperpl an e, then over an equivalence set the self-gues sing errors will
just be po lynomial functions of the data vectors of the HERBIEs in the net .
Unfortunate ly, in general the equ ivalence sets are severely disjointed , appear­
ing in pat ches over the domain of the genotype-phenotyp e sur face. At the
boundari es between equivalence set s the surface will be dis conti nu ous , so th e
surface is very convoluted in general, with many discontinui t ies in it . It will
appear like a set of po lynomial surfaces int erl aced together. In gen era l, t he
higher th e number of elements in the learn ing set, t he high er the nu mber of
equivale nce sets, an d the more convoluted the genotype-phenotyp e surface.

Results of a typical run for a net evolved to self-guess the scanning prob ­
lem are indicated in figure 4. To speed things up, the environment HERBIE
was amended so that t he nonzero blocks in the environment had a width of 8
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rather than 1, and so that there was a slight downward slope of the environ­
ment HERBIE's output over all regions where that output is nonzero. This
last was so that the self-guessing erro r could distinguish bet ween an input to
the environment HERBIE of 4.0 an d one of 11.99, for example. It was hop ed
that tog ether these modifications would make the evolution find an d then
focus in on a correct solution more readily. Note that the slight downward
slop e means that a perfect net , i.e. one made up of the HERBIEs shown in
figure 3, will not guess a constant number over any interval of inp uts corre­
sponding to O's in the environment . Because the scanning is done in jump s
of 1.0 (the increment of the counter), the slopes in the environment HERBIE
will be reflected in any such interval, even for a "perfect" guesse r.

Reproduction of the learning set is perfect , of course, but what is t ruly
remarkable is how good the guessing is for po ints outside of the learning set .
Note that strictly speaking , since the input to the generalizer is the input
alone, generalization just refers to how well the net guess es for the environ­
ment with which it was taught . In figure 5, however , the original environment
has been rep laced with a new one. Even here, the guessing is exce llent in
the sense that the behavior is very close to that which the researcher had in
mind when making up the learn ing set . Interesting ly enough, the bottom two
HERBIEs in the evolved nets always differed greatly from those of figure 3.
Convergent evolution had come into play. A point worth emphasizing in all
this is that the learning set consis ts of only 8 input- ou tput pai rs, far less
than the numbe r of pairs that would be needed by backpropagation schemes
to achieve similar performance (ass uming they even could).

In ad dition to these resul ts in which the architecture was preset to that
ind icated in figure 3, ot her runs were done in which the connectivity of the
whole net was varied along wit h the data vectors defin ing the individu al HER­
BIEs (see figure 6). The procedure for varying the connectivity was fairly
complex, especially when mutating off of one net's connectivity to create
another net 's connectivity (as opposed to creating a new net 's connectiv­
ity ran domly, from scratch). Since the nets also now contained 10 individu al
HERBIEs which us ually had up to about half a dozen input dim ensions each,
t he running speed of the evolution was quite a bit slower, so there were fewer
generations in a typical run. Since there are now many more degrees of free­
dom in the creatures, the generaliza t ion, though st ill goo d, is not as good as
that shown in figure 5. Runn ing the evolut ion for a greater nu mb er of gen­
erations might remove this disparity, although consi derations of informat ion
compactification might militate against such a convergence of performance.

In addition to these result s for the scanning problem, several runs have
been made of 100 generations each for the find- the-O problem with 5 input
dimensions. Again , there were 10 HERBIEs in the net , most containing
about 4 or 5 input dimensions, and the learning set cons isted of 20 in pu t­
out put pairs. No environment HERBIE was used in the net s - the nets
had 5 input lines. A single hyperpl anar HERBIE of 5 input dimensions was
also taught wit h the same learning set. T hen a testing set consisting of 20
different pai rs was constructed and ru n through these two st ructures. The
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Figure 4: The line shows the mapping of the environmental HERB IE.
T he dots indicate the guesses of a network (i.e., the input- output
mapping of tha t network), one of whose nodes was this environmental
HERBIE. (The connectivity of the network was th at of figur e 3.) The
network was ma de by evolving networks th rought 1500 generations,
where t he dat a vectors defining the individual (hyperplanar HERB IE)
nodes served as the genoty pe . Self-guessing was the error measure for
the evolution, using an 8 point lea rning set (ind icated by the circles in
the figure) which was derived from t he given environmenta l HERBI E.
A network with perfect generalization would output th e first nonzero
value in the environmental HERBIE lying a positive int eger to th e
right of the input .

rms average err or on thi s test ing set was t hree t imes smaller for the evolve d
net s than for the single HERBIE. This despite the fact that, unlike with
the scanning problem , no perfect hand-craf ted net solution to the swit ching
problem has been found, and there is no reason to believe that one exists
which uses on ly ten HERBIEs.

T he generalization exhib ited in t hese ru ns was qu it e impressive and see ms
to confirm t he real-world applicability of the crite rion of self-guessing. It
should not be surprising t hat these sys tems exhi bi t gener ali zation beh avior
superior to t hat wh ich cou ld be expected from the vast majority of conven-
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Figure 5: The line shows the mapping of an environmental HERBIE,
different from the one in figure 4. Th e dots indicate the guesses of
th e net of figure 4 run through this new environmental HERBIE.
Although this net was evolved using the environmental HERBIE of
figure 4, it still guesses well using the novel environmental HERBIE
indicated here.

tional gen eralizing schemes (e.g. , backpropagation). Afte r all, in t heir using
self-guessing t he systems exp lored here ar e attempting to address the issue of
generalization directly, something conventional schemes do not even pr et end
to do. In addition to their generalization efficacy, however , these systems also
have a number of other adva ntages over convent ional gen eralizing schemes.
Some of the more obvious of these are (1) they reproduce th e learning set
exactly and with ease, (2) they exploit environment al HERBIEs, which al­
lows one to cut down drastically on the number of input coordinates, and
which also allows the construction of systems for which varying the size of
the input environment is a t riv ial ope rat ion (contrast this to the sit uation
with conventional net st ructures in which the environment is fed in through
input lines, so that if the size of the environment were to change the ent ire
net would have to be changed as well), (3) they are relatively well sui ted to
the role of research tools, since it is relatively easy to trace through their
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Figu re 6: Thi s figure represents the exact same position as in figure 4,
except that the guessing shown is of a different net , one in which t here
were ten (hyperplanar) HERBIEs and whose connectivity was allowed
to vary along with th e individual HERBIEs. Th e self-guessing err or
was 4 times worse th an that of the net in figure 4, and since th at net
had so many fewer HERBIEs, th e information compact ification for
the figure 4 net is better as well. Hence, the figure 4 net generalizes
better th an this one .

beh avior (recall the discussion at t he beginn ing of t his section) , and (4) as
has been mentioned , through st ructures like the counter HERBIE they are
well su it ed to modeling internal m emory and "learn ing ," in t he prop er sense
of the term elucidated previously.

On e dr awback which became apparent in conduct ing these ru ns however
is that the amount of time necessary to do t he evolving was often qu it e large.
With the pro gram writ te n in C , and with no conce rte d effort to optimi ze the
code for speed , the ne t s whose behavior is indicate d in figures 3 t hroug h 5
each took on the ord er of a day of VAX 750 cpu time t o make. Sin ce the
po tential uses of such net evolving lies in generalizing from a prede termine d
learning set , su ch time requirements ar e not so disappointing as t hey would
be if, for example , we were trying to bui ld a structure for real-t ime learning.
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Also note that the reason so much CPU time is requir ed is becau se we are
trying to approximate self-guessing. Each individu al creature in the evolut ion
rep roduces the learn ing set perfectly and t akes only fractions of a CP U second
to build. This sho uld be compared to backpropagate d neural net s, which
often take tens of CPU minutes to build (if not longer) an d which do not
even achieve reproduction of the learning set, never mind any broad er kind
of generalization criterion like self-guessi ng.

Another caut ion which must be ra ised is that for any pro blem for which
surface-fitting with a single HERBIE would be expected to generalize partic­
ularly well, using self-guessing with a full output-flagged network structure
(and then evolving for only a finite number of generations ) might pr ovide
lit t le if any increase in performance. An example of such a problem is the
hill-cl imbing task of finding the minimal dist an ce over a series of Gauss ian
hill s. T he input to this problem is the y coord inates of two end-p oints wit h
fixed and preset x coor dinates symmet ric about the origin . T he outpu t is the
y coordinate of the mid-point of the path with minimal dist ance connect ing
the two end-po ints . A Gaussian hill lives in between the two end-po ints at
(0,0) . Several nets of metric-based HERBIEs were evolved so as to minimize
self-guessing error for a learni ng set built for this task. T he self-guess ing
and generalization errors are compared in figure 7, and are clearl y not at all
well correlated. (It is instructive t o compare this figure to t he figure in ref­
erence [11] where self-guess ing is use d for the reading aloud problem. T here
the samples of gene ra liza tio n error vs. self-guess ing erro r are, for all intents
and purposes, perfect ly colinear.) The difficulty exhib ited in figure 7 ar ises
from the fact that t he generalization using purely local infor ma t ion is par­
ticularly good in this case, since the task is not really dependent on global
characteristics of the parent surface and since that parent sur face is part ic­
ularly smooth. Indeed, the right -most poi nt in figure 7 was the performan ce
of a sing le metric-based HERBIE (see the first paper) wit h no evolving at
all . Althoug h self-guess ing should be helpful at this problem if use d to vary
amongst single HERBIEs with different kind s of surface -fit t ing, when t he
varying is amongst output-flagged network s of metric-based HERBIEs the
discontinu ities in herent in such nets make the criterion of self-guess ing, for
this type of problem, essent ially useless. It is ex tremely difficulty to get gen­
eralization behavior bet ter than that of a single, non evolved , metric-based
HERBIE by evolving networks of such HERBIEs so as to minim ize their
self-guess ing error. Interes ting enough, however , an individual hyp erplanar
HERBIE has a guessing error on the test ing set of 7,550,000, whereas a net
of hyperplanar HERBIEs evolved so as to minimize self-guess ing erro r has
a guess ing error on the testing set of only 25! For hyp erplan ar HERBI Es ,
which due to their volatile and discontinuous nature are not well suite d to
this path-fin ding task, evolving self-guessing nets provides an astronomical
improvement in guessing ability.

In general, these resu lts, like t hose from earl ier in this chapter, should
not be viewed as a conclusive meas ure of the efficacy of the concepts of
generaliza t ion theory, evolving network st ruct ures, and the like. Rather , they
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Figure 7: This figure shows that there is li t tl e if any correlation be­
tween self-guessing and testing set error for the problem of guess ing
the mid-point of the shortest path across a gaussian hill . The hor­
izontal axis gives the error in ar bitrary units on the second half of
a 100 element t raining set for seven different generalizers all taught
with the first hal f of the t raining set . The vertical axis gives the err or
in (differe nt) arb itrary uni ts for gues sing the 100 elements of a testing
set when taught wit h the full training set.

sho uld be viewed as an ini ti al exp loration of these concepts. Much more
testing remain s to be done befo re any definite conclusions can be reached
about where, when and how much these concepts can be expected to prove
useful. Nonetheless it can be concluded that there are situat ions where they
are ext remely useful, the NETtalk case of referen ce [11] being perh ap s the
most clear example.

4. Concluding remarks on neural nets and generalization

Of the usual reasons for neural net research , perhaps the most compelling
is that neural nets generalize eas ily and naturally. However , no work has
been done up to now which rigorously investigates whether or not neural
nets generalize well, and if so what propert ies of them cause such adept
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generaliza tion . Clearly, if neural net s are to meet their promise such work is
critically important.

The hyperplanar HERBIE was actually develop ed before the gener aliza­
t ion theory of these papers , an d was meant to serve as a simple benchmark
of generalization. When used to measure the generalizat ion efficacy of neural
nets [5], the most obvious interpret ation of the results is that the performance
of t his HERBIE actually indicates that neural nets as pr esently const it uted
perform quite poorly. One could , of course, interpre t the res ults of [5] (along
with [11] and [12]) different ly, saying that neural net s generalize well, an d
therefore that the hyp erplan ar HERBIE, self-guesser s, and the like generalize
except ionally well . However there is lit t le justification for such an inte rpre­
t ation , given that the hyperp lan ar HERBIE, for example, make no attempt
to view the problem of generalizati on from an abs tract point of view, and
given that all of these systems are far from being fully model-independent .
When sayi ng that these systems are good generalizers all that is really meant
is that they have tested well when pr esented with pr oblems whose "correc t"
generalizations are known beforeh and to the researcher. Clearly, thi s is an
unsat isfactorally ad ho c way of dealing with the high ly comp lex and vital
issue of generalization. Of course, it may turn out that there is no (cons is­
tent) abstract way of dea ling wit h gene ralizat ion , and that there is no way t o
measure generalizat ion mor e rigorously than via test pro blems. In this case
the interpretation that hyperp lanar HERBIE and the var ious techn iques in­
vest igated in the previous chapters constit ute particularl y goo d generalizers
would be eas ier to accept. However , even if it turns out that no consistent
mathemati cs of generalizati on can be creat ed, neur al nets would st ill be left
in the lurch - they have to beat or at least equal the techniques and systems
pr esen ted in this series of papers and in references [5] and [11] if they are to
ever serve as the generalizers of choice.

To try to address the problem of whet her the systems presented here
really are except ional generalizers, it is natural to t ry to examine things
in light of an ab stract mathemat ics of generalization. Unfortunat ely, the
problem of find ing sat isfacot ry abstract criteri a for the gene ralization from
a learn ing set is a very difficult one, and one which has not previously been
fully addressed . Section 2 of the first pap er of thi s series an d sections 1 and 2
of this pap er cons t it ute only a very preliminary venture into the mathematics
of generalization. Non etheless, this is a vitally important problem, not just
for network research and tests bet ween generalizers, bu t for AI as a whole. Its
solution would provid e a very flexible and widely app licable inference engine.
Unlike convent ional AI techniques, thi s engine would not be dependent upon
a laborious, overly literal and problem-specific listi ng of the logic needed to
carry out a given app lication. Rather , with appropr iate sup port ing programs,
one engine would fit all applicat ions.

As a first at tempt to attack this prob lem, generalization theory, involv­
ing the conce pts of generalizer s, (semi-) pro perness, (strong) self-guessing ,
information compactifi cation and the like has been explored. Generaliza­
tion theory as presently cons tit ute d does not provide us with a full set of
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generaliza tion crite ria (in the sense of giving us a mapping from learn ing
sets to "optimal" generalizers of those learning sets), but the criteria it does
provide have pr oven very useful , both as classi fiers of generalizers an d as
pointe rs to new type of generalizer s. Computer-run approximations to some
of these cri teria have been carr ied out, quite successfully, for the scanning and
swit ching problems , two pr oblems which are extremely difficult for conven­
tional t echniques like backpropagat ed neural ne ts or hyperplanar HERBIEs.
The zeitgeist of biological evolution ar ises naturally in such a context, provid­
ing an int eresting alte rnative viewpoint to network construction . Although
the results of these runs constitute only a preliminary investigation, it seems
that the criteri a used in the current version of generalization theory ar e quite
powerful , especially in comparison to the convent ional te chni ques for gener­
alizing. At a minimum, these results are promising enough t hat there no
longer seems to be any ju stification whatsoever for conduct ing neural net
research without taking into account the concerns of generalization theory.

Appendix A. P roo f of (1 .4)

We have a learning set 8 and a semi-proper genera lizer G which is (semi­
properly) st rongly self-gu essing for 8. Since we are dealin g with (semi-proper )
self-gu essing exp ans ions, we can view any given lesson in t he strong expansion
of 8 as in the discussion in the paragraph following (1.1) , i.e. as an unordered
collection of datum spaces, with no datum space be ing delineat ed as a special
"quest ion-output" pair . From this viewpoint , t he set of op erators taking any
one lesson in the strong expansion of 8 to another is identical to the set of
all sequences of the operators {remove a datum space from the old lesson to
generate the new one (so long as t his does not violate (O .5))) and append
a new datum space to the old lesson t o get the new one, where the new
datum space is a question-output pair predi ct ed by G, using the old lesson
as a learning set . (Note that these two operators are each other's inverse.)
For example, the lesson-to-lesson mapping of prop ert y (f ) is application to
a lesson of this second operator , where the questi on being used is t he input
component of one of the lesson 's datum spaces. T herefore, in discussing the
relationships of the lessons in the expansion of 8, it is sufficient to treat them
as being related throu gh a sequence of these two ope rators.

Now take any lesson C from thi s expansion of 8. Dist inguish those datum
spaces of C whose ent ries are one of th e original (c. , Ai ) E 8 from those which
are variable (i.e. , dependent on the particular s of G). By the aforementioned
identity of sets of operators , any lesson will split up this way. First, examine
the case where the number of datum space entries in C which are one of
the original (ai, Ai ) exceeds the dimensi on of the generalizer and where those
datum space ent ries do not all lie on the same m-dimensional hyp erplane.
Label the elements not one of t he (ai, Ai ) as (Xl , X l )' (X2' X 2), etc. Generate
a new lesson by removing from C all datum spaces (Xi, Xi) except for a
particular datum space (Xj,Xj). Also generat e (8, xj ,y) . By hypothesis,
there are enough datum spaces in C identi cal to one of th ose in 8 to allow
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self-guessing to force y to equal Xj. This is t rue for any j . The refore, no
lesson (8, u, v) will have u one of datum space inputs in the lesson C unl ess
v is the corresponding datum space output . This is t rue for any lesson C in
the expansion of 8 having enough of it s datum spaces identical to one of the
ones which make up 8.

To take care of the case where C does not have sufficient overlap wit h 8,
list the sequence of lessons formed by the operations which made C by
c(1),c(2), .. . c(n). c(1) = 8, and c(n) = C. Now form the lessons d(1),d(2),
.. .d(n) using the exact same sequence of operations, except that if the oper­
ation taking c(i) ~ c(i +1) does not increase the order of the lesson , rep lace
this operation by the nu ll operation: d(i + 1) = d(i) . In other words, the d(i)
are formed t he same way as the c(i) except for the presence of a filter allowing
on ly order-increasing operations. (Note that for any order-increasing opera­
tion from the kt h step to the k+1th, the inpu t component of the new datum
space is the same for both c(k+1) and d(k+1), bu t since c(k) and d(k) might
be different, the output components of the two new dat um spaces guessed by
G (using c(k) and d(k) respectively as the learning sets) mig ht differ .) Now
the order of any c(i ), O(c(i) ), exceeds m, the elements of any c(i) do not all lie
on the same m-dimensional hyp erplane, and O(d(i)) ~ O(c(i)) for all i . By
definit ion, for i = 1, g{O(c( i))}(c(i) ,q) = g{O(d(i) )}(d(i),q) for any ques­
ti on q. If t his equalit y were to hold for all i < some particular value I , then
c(i ) ~ d(i) for all i ::; l , since for all or der-increasing operations from iterat ion
i < 1 to it erati on i + 1 we would be ad ding the same datum space to both
c(i) and d(i) . Then, since O(c(i)) > m, by the self-guessing arg ument in the
preceding paragraph there would be sufficient overlap b etween c(l ) and d(l)
to force g{O(c(l))}(c( l),q) = g{O(d(l))}(d(l),q) for any q. T his completes
an inductive proof that for any i, g{O(c(i))}(c(i),q) = g{O(d(i))}(d(i),q),
and therefore that any two lessons (d(n), u, v) and (C, u, V i) must have v = V i.

By self-guessing, we then get that any two lessons (8,u, v) and (C, u, Vi) must
have v = V i. Consequently, no two lessons in the expansion of 8 can disagree
on the output, v, corresponding to a given question, u, since they have to
agree with the (sing le-valued) lesson (8,u, v).

Let f(u) be the function taking u to v via the lesson (8,u,v). Clea rly
f(u) reproduces the learn ing set 8. Also, t he lesson C can be composed of
any (sufficiently lar ge) set of pairs (u,f(u)), and as we have just shown G
running off of C must guess the question-output function f. T his con cludes
the proof of the first part of (1.4). T he second part of (1.4) follows directly
from the definition of strong self-guessing .•

Refe rences

[1] Samuel, "Some stu dies in machine learning using the game of checkers," IBM
Journal of Research and Developm ent, 3 (1959) 210-229.

[2] B. Efron, "Computers and the theory of sta tistics: Thinking the unthink­
able," SIAM Review, 21 (1979) 460-48 0.



A Mathematical Theory of Generalization: Part II 249

[3] J.J . Hopfield and D.W. Tank , "Neural computation of decisions in opt imiza­
tion problems ," Biological Cy bernetics, 52 (1985) 141-152.

[4] J. Denker , et al., "Large aut omatic learning, rul e extraction, and generaliza­
tion," Complex Sys tems, 1 (1987) 877-922.

[5] D. Wolpert , "A ben chmark for how well neur al net s generalize," Biological
Cybernetics, 61 (1989) 303-315.

[6] J. Pearl , "On the connecti on between the complexity and credibility of in­
ferr ed models," International Jo urnal of General Sys tems, 4 (1978) 255-264.

[7] G. Chai tin, "Randomness and mathematical proof," Scientific A merican,
232 (1975) 47-52.

[8] J. Rissanen, "Stochastic complexity and mod eling," The Annals of St atistics,
14 (1986) 1080--1100.

[9] C.E. Shannon, The Mat hem atical Th eory of Communication (Univ ersity of
illinois Press, Urbana, 1949) .

[10] A.H. Zemanian, Distribution Th eory and Transform An aly sis: An Introduc­
tion to Generalized Func tions, with Applications (McGr aw-Hill, 1965).

[11] D. Wolpert, "Using a mathemati cal theory of generali zation to build a gen­
eralizer superior to NETt alk," Ne ural Net works, to appear.

[12] T.J. Sejnowski an d C.W . Rosenb erg, NE Ttalk: A Parallel Ne twork that
Learns to Read Aloud, Johns Hopkins University Elect rical Engi neering an d
Computer Science Technical Report JH U/ EECS-86/01 , 1986.

[13] Muhlebein, et al. , "Evolut ion algorithms in combin atori al optimization,"
Parallel Computing , 7(4) (1988) 65- 86.




