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Abstract. A probabilistic cellular automaton as an approximation of
a solvable Boltzmann equation in one space and one time dimension
is presented. First the model that was introduced by Ruijgrok and
Wu [6,7] is revised in a Lorentz covariant form. Next, an appropri-
ate cellular automaton is defined. By analogy with the Boltzmann
approach, equations for the time dependence of ensemble averages of
single-particle quantities are obtained by making the Stofizahlansatz.
The required nonlinearity is a consequence of the exclusion principle.
In accordance with the Boltzmann equation, homogeneous as well as
inhomogeneous equilibria are derived exactly. On the basis of intuition
and symmetry considerations, a relationship between the two systems
is found. By means of this relationship it is demonstrated that the
ensemble averaged automaton approximates the Ruijgrok—Wu model
up to first order of the lattice spacing, for all time scales. Simulations
show that the Stofizahlansatz is justified.

1. Introduction

In the last few years people have become increasingly interested in using cel-
lular automata as discrete microscopic analogues of continuous many-particle
systems (see for instance [1-4]).

First, cellular automata have a very simple structure [5]. Space is re-
stricted to a (usually regular) lattice. The information available at each site
is very limited, usually amounting to no more than a few bits. Time evolu-
tion is also discrete: at each time step all sites are updated according to the
automaton rule. This rule has two important properties: locality (the state
of the updated site depends only on its direct environment) and homogeneity
(the same rule is applied at each site). These properties together with the
fact that the application of the automaton rule involves only a few elementary
bit operations make cellular automata ideal for parallel implementation.

Second, the interest in cellular automata has been stimulated by the
knowledge that the form of the macroscopic equations of fluids is determined
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252 A Cellular Automaton for a Solvable Boltzmann Equation

largely by the microscopic conservation laws and symmetries. Therefore two
physically quite different fluids can exhibit similar macroscopic behavior.

Therefore, cellular automata that have similar microscopic conservation
laws and a maximum of symmetry resemblance with fluids provide a promis-
ing simulation technique for solving the Navier—Stokes equations. However,
there are a number of discrepancies, one of them being Galilean invariance.

In this paper a probabilistic cellular automaton for a one-dimensional
solvable Boltzmann equation is studied; this automaton is simple enough to
analyze. This model, which was introduced by Ruijgrok and Wu in 1981
[6,7], is analyzed in section 2 in rather a comprehensive way, for the present
approach is slightly different from the approach used in [6]. In section 3, an
appropriate cellular automaton is constructed and analyzed. The relationship
between the two systems is established in section 4. Symmetry considerations
play an essential role. Simulations are discussed in section 5.

2. The Boltzmann equation
2.1 Definition

The model that Ruijgrok and Wu introduced (from now on abbreviated
to R.W.) can be defined as follows. There is only one space dimension,
and the only allowed velocities with which particles move are +1 (or just +)
and —1 (or just —).There are three collision processes described in the table
below. Here p(s — §') is the probability per unit time that a single particle
or a pair of neighboring particles make a transition from the state s to the
state s’

E s | p(s — &)
+ — == « 9
2.1
— — + ﬂ ( )
Foe= = fof 1

These collisions cause a violation of detailed balance and of time reversal
invariance. Here, however, these factors will not be regarded as essential
ingredients for kinetic theory.

Let fi and f, be the distribution functions for the + and — particles
respectively; then for each a, 8 > 0 the Boltzmann equation is given by

(5% + a%)f1 = fifo—afi+Bfaz= QUM J2)

Bap (2.2)

(% - 'J%)fZ =—fifo+afi —Bfa=-Qf, f2)

Summing both equations leads to the continuity equation

T+ )+ (h—f) =0 (2.3)

This equation reflects conservation of particle number, which in this case
coincides with energy conservation. It is the only conservation relation, for
there is no conservation of momentum.



Hans Hersbach 253

2.2 Symmetries

The functions f;, are distributions and must therefore be nonnegative
(fiz = 0). In principle f;, have no upper bounds. However, due to
the nonlinearity of the collision term Q in equation (2.2), there is also a
natural upper bound. This can be seen clearly from the transformation

R: (f1, f2) = (f1, f3):

. fiz,t) = (a = B) — fo—2,1) —— -
- fé(w,t)=(a—ﬂ)—f1(—x,t)}=‘R =R; R'=I1 (24)

Because Q' = ) and the advection terms in equation (2.2) interchange, it can
be seen that the system is invariant under this transformation. In [6,7] it is
shown that the system can give rise to interesting inhomogeneous equilibria
when

a>f. (2.5)

On the basis of physical arguments, we know that the evolution of a nonneg-
ative initial distribution will always be nonnegative. Therefore in the region
where o > 3, the symmetry transformation (2.4) shows

fl,z(xao) € [070‘ —,3} Vz € R = fl,Z(mat) € [0,0{ _IB] (26)
Ve e R, Vt >0

So an initial distribution that is completely contained in the interval [0, a« — /]
will never leave this interval. This information is very useful for constructing
an appropriate automaton where, besides the nonnegativity constraint, dis-
tributions are bounded by the completely filled state. To give an example:
in 1987 Boghosian and Levermore (8] constructed a cellular automaton for
Burger’s equation

2
712

a%n + ca%(n - ?—) = Vb%in

A similar transformation R : n — n’ that leaves the system invariant can be
given:

n'(z,t) =2 —n(—z,t)

This symmetry shows that the interval n € [0, 2] is invariant under time evo-
lution, which corresponds exactly to the allowed interval for the distributions
of the automaton.

Information in the system cannot flow faster than the velocity of the
particles. A group of linear coordinate transformations that leaves this con-
cept invariant is the group of Lorentz transformations. Consider two frames
S and S" moving with a relative velocity v, and let events be denoted by
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coordinates X = (z,t) and X’ = (2/,t')’ respectively; the relation between
the two frames is then given by

(¥)-=(1)-(2 7)) °

where
7= L
V1 —v?

Physical quantities must transform such that the physics described by them
is unaltered. Some simple calculations lead to the transformation rules

B o= J;cl o = ka
fp = ks and § =8 (2.8)
where

k=1L (2.9)

It follows that a Lorentz transformation L, maps the Boltzmann equation
Ba s onto the equation B, 5. Note that af is an invariant under this group
E

of transformations.
Not only Lorentz transformations but also the group of scaling transfor-
mations § leave the particle velocity invariant:

& =

Bz v

a>0 (2.10)

Qalg

Again the physical quantities must transform, such that the physics described
by them is unaltered; so

f’(w’)da:'Zf(x)dx — f{ =afi, fé = af (2.11)

Q’I dtl = adt = al = aq, [)" = aﬂ

It follows that S, maps the system B, onto the system Byq,.s. Note that
a/B is an invariant under this group of transformations.

Combining the two transformation groups £ and S, and using the fact
that the two groups commute, it follows that any two systems B, 5 and
Ba, s can be related to each other by a unique transformation S, o L,
(= L, 0 S,). Further, the nonnegativity condition f;, > 0 is conserved
under both groups. Transformation R commutes with &, but it does not
commute with £. Therefore one can derive a number of theorems analogous
to equation (2.6), first by applying a Lorentz transformation, then by us-
ing transformation R to prove (2.6) in the transformed system, and finally
by transforming the information obtained back to the original system. One
should, however, be aware that initial condition problems are not Lorentz
invariant.
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2.3 Explicit solution

Equation (2.2) is to be solved with given f;(z,0) and f,(z,0). From the
observation that the collision term ) can be written as

Qfi, )=+ B)(fa—a)+ap

one obtains more suitable equations by introducing the shifts

f+=B+fi and fo=a-f (2.12)
Let

m = o

which is a scalar, i.e. it has the same value in each Lorentz frame. Then
equation (2.2) transforms into

(f+2) s =m = sus-

(Z-&)sr-=m*- 1t

The equation of continuity (2.3) allows us to introduce a function H(z,t) > 0,
such that

o= (2% — 1(%) logH and f_= (gf"' g%) log H (2.14)

(2.13)

From the transformation rules (2.7) and (2.8), it is seen that H is also a
scalar. Substitution of equation (2.14) into (2.13) and using the identity

2 2

() (vt = (- ) e
_(%4.6%) logH(%——a%) log H

leads to a single equation for H:

(B*—m»)H =0 (2.15)
where
2 2
r=Lr-2 (2.16)

is also a scalar. So redefinition (2.14) maps the nonlinear Boltzmann equa-
tion (2.2) onto the linear partial differential equation (2.15), which is manifest
Lorentz covariant. In combination with initial conditions

H(z,0)=A(z) and L H(z,1) = B(a,1) (2.17)
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the solution of (2.2) is given by

H(w,) = YA(s+1)+ Az —1)

+1 Vi g2
/ Ilgmt xl!A:c—l—acd

DO

+ 3 /t Io(mVt? — 2?)B(z + 2') dz’ (2.18)
Iy and I; denote modified Bessel functions. The functions A and B in (2.17)
are determined by initial conditions fi(z,0) and fi(z,0). Define new vari-

ables f and ¢

f= %(f+ -f)= %(fl‘i‘fZ -%(a—ﬂ)

' (2.19)
g=3fs +f-)=3(fi = fo) = 3(a+ )
then using equation (2.14), the relation between f, g, and H is
f=-2logH
(2.20)
g= +?% log H
In particular for ¢ = 0 it is found that
Ag) = e~ [0 4nd B(a) = g(a,0)e= [0 (2:21)

Let

=(f,9)

then F' is a vector, i.e. it transforms in the same way as the coordinates X,
so ' = L,F. This can be proved by combining equations (2.8) and (2.19).
Another example of a vector is the differential operator

0= %

which can be derived from equation (2.7). The dot product of two vectors

X = (z,20) and Y = (y,yo) is defined by
XY = zoyo — 2y

which is also a scalar. Equation (2.20) can now be written in the manifest
Lorentz covariant form

F=-0logH (2.22)
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2.4 Special solutions

In principle the Boltzmann equation (2.2) has been solved for any initial
distribution, i.e. we have written its solution (2.18) in terms of known tran-
scendental functions. However, solution (2.18) in combination with equa-
tions (2.12) and (2.14) has a very complex form. To unravel its complexity,
in this section we will consider some important special cases: relaxation to
equilibrium and shock waves.

Consider the system to be well mixed, so that there is no spatial depen-
dence left. The evolution of the distribution (f(2,0),9(z,0)) = (fo,90) is
found to be (by omitting the spatial dependence of equation (2.13))

—2g°t

f)=fo and  g(t) =g 15 % (2.23)

where

e __ 2 2 - e_‘O
g =+/m?+ f¢ and a—ﬁ

The conservation of f is a direct consequence of particle number conservation.
Each homogeneous initial distribution (fo,go) relaxes exponentially toward
a homogeneous equilibrium

Feo (f459°) = (fo,ym? + f3) (2.24)

on a time scale T = O(1/¢°) = O[1/(v/aB)], i.e. of the order of a few colli-
sions, which is a characteristic of the Boltzmann approach. All homogeneous
equilibria lie on the hyperbola

g2 —f2=m? (or fif° =m? (2.25)

which can also be directly found by taking =52 afl 2 = a_g;_g =01in (2.2). From

equations (2.19) and (2.25) it can be derived that the range of physical solu-
tions, i.e., solutions for which f;, > 0, is given by

o> ~Ha=p) (2.26)
The H¢ corresponding to equilibrium F* is found from (2.22)

H(X) = ™% (2.27)
Note that H obeys the linear equation (2.15). Therefore

Hyo(X) = Hy + Hy = exp™ X0t 4 exp™#X—C2 (2.28)
where C; and C; are constants, is again a solution of (2.15). It corresponds

to a shock wave between the equilibria F¥ and F§. Let ff > f§, then for
T — —oo, Hf dominates, corresponding to equilibrium F¥. For v — 400,
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H3 dominates, corresponding to equilibrium F¥. The transition between the
two equilibria occurs when both H’s are comparable, so

(Fs —F7)- X =0, —C; (2.29)
This defines a path X* in the  — ¢ plane moving with a velocity
95— 91
= Te € 2.
v="f—r (2.30)

which is identified with the velocity of the shock wave (2.28). For a shock
wave to be physical, i.e. the corresponding distributions f;, are nonnega-
tive, it is a necessary condition that both asymptotic equilibria are physical.
Consider the special case of a wave with zero velocity, so g¢ = g& = ¢° (see
equation (2.30)) and f} = —ff = f° = /g —m? (see equation (2.25)).
From equations (2.12), (2.20), and (2.28), it is found that

fe(z) = g¢° = f*tanh(f*(z — o))

f-(z) = g°+ ftanh(f*(z — 20)) i

From the fact that tanh(-) € (—1,+1) it follows that the above mentioned
condition is also sufficient for nonmoving shock waves. By transforming an
arbitrary shock wave to its rest frame and using the fact that the physi-
cal region is invariant under such a transformation, one concludes that this
condition is sufficient for all shock waves, so

(2.31)

H = Hi + Hj physical <= H; A H5 physical

From equations (2.26) and (2.30) it is concluded that the range of the velocity
of shock waves is

g—jrg <v<l1 (2.32)

In particular nonmoving waves, which are inhomogeneous equilibria, can only
occur when a > £.

The superposition of more than two H®’s corresponds to solutions that
represent shock wave interaction. For instance, consider

3
Hys =Y %, fi>f5>f; (2.33)
=1

For t <« 0, there are two separate shock waves: Hiyy and Hys. At ¢t & 0 the
two waves interact, resulting in a single shock wave Hyz for ¢ > 0. From
(2.30) and the fact that ¢¢ as a function of f€ is convex (see equation (2.25)),
it follows that two initially separated shock waves always interact eventually.
It is conjectured that the evolution (2.18) of any initial distribution is
as follows: first on a time scale O[1/(y/afB)], the system will relax toward a
number of locally homogeneous equilibria connected by shock waves. Next
these shock waves interact on a time scale that depends on their velocities

and relative spatial separations, which finally results in a single shock wave.
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3. The automaton

3.1 Definition

The automaton is a discrete version of the Boltzmann equation. It consists of
a one-dimensional lattice that is updated at discrete time steps. Each lattice
site can contain only two bits of information. A “right” bit represents the
presence (bit= 1) or absence (bit= 0) of a right-moving (+) particle; a “left”
bit denotes the presence (bit= 1) or absence (bit= 0) of a left-moving (+)
particle. We will denote this right and left bit at lattice site k£ and just after
timestep [ by b1(k, ) and by(k, 1) respectively. Furthermore, at each site two
bits a(k,1) and B(k,l) denote the presence (bit= 1) or absence (bit= 0) of
an « and f scatterer, which are set with a probability @ and B respectively.
In the next section these averages @ and B will be related to « and J of the
Boltzmann equation.

By analogy with the Boltzmann equation, the updating rule can be de-
composed into two substeps: advection and collisions.

The collision substep determines how particles interact. This step must
give rise to nonlinearities, for if it did not, all particles could be regarded
as independent, thus noninteracting. Let the two bits ¥}(k,{) and b4(k,1)
denote the state of site (k,[) just after this substep has been applied. This
state can be a function of the states of adjacent sites and site (k, [) itself, just
prior to the collision substep. In particular we will propose a rule whereby
bi(k,1) and by(k,!) depend only on the state (k,!) itself. The rule must
locally conserve particle number, which requires that the empty state 00 and
the totally occupied state 11 remain invariant. Only in the two cases where
the site contains precisely one particle do we have the freedom to choose
(dependent on the outcome of a and ) whether the particle should flip or
not. Remembering the collisions (2.1), the following rule is proposed by the
truth table:

[ba(k, D) [ ba(k, ) [ 81(E, D) [ B(k, D) |
0 0 0 0
0 1 Bk, 1) | 1Bk, 1)} (3.1)
1 0 la(k, 1) | a(k,)
1 1 1 1

The bit operation “!” denotes bitnegation, so !0 =1 and !1 = 0.

The advection substep determines the particle flow: + particles are shifted
one site to the right, — particles are shifted one site to the left. This leads
to the rule

bi(k+1,141)
by(k —1.1+1)

by (k, 1)
by(k, 1)

1

(3.2)
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The complete automaton rule is found by composing both substeps. Ta-
ble 3.1 written as a Boolean expression gives:

bi(k+1,14+1)= (BA(b) Aby) V((la) Aby A(18)) V (b Aby)
bo(k —1,04+1) = ((!18) A(1b1) Ab2) V(aAby A(182)) V (b Aby) (3.3)
at site (k,1)

where V denotes the inclusive or and A the and operation on a pair of bits.
This expression can be converted into an algebraic expression by the use of
the conversions cVy =2 +y — 2y, z Ay = zy, and !z = 1 — z, which leads
to

bi(k+1,04+1) = (1 —a)bs + By + (o — B)biby
b2(k Sl 1,l + ].) = Clbl + (1 - ,B)bz — (a — ,B)blbg (34)
at site (k,1) ;

The nonlinear term b;by is induced by the exclusion principle, i.e. no more
than one particle can occupy the same state.

3.2 The ensemble average

To establish a relation with R.W. we must describe the dynamics of the au-
tomaton in terms of ensemble averages. A large set (ensemble) of systems is
considered, each with initial conditions randomly chosen from a given distri-
bution. Then the ensemble averages (or occupation numbers) b o(k, [) denote
the value of the bits by 2(k,[) averaged over all systems. Updating equations
for these averages can be obtained by averaging the automaton rule (3.4).
Several averaged products appear in this expression. The Booleans a(k,[)
and B(k,[) are assumed to be generated by a “perfect” random generator,
with averages @ and f respectively that are independent of k and I:

alk,)=a and PBk1)=8

Therefore averages like a(k, 1)by(k, 1) can be written as @by (k, ). However the
averaged product by (k, 1)ba(k, 1) cannot be replaced a priori by by (k, 1)by(k, 1),
for both quantities may be correlated. Therefore the updating equations
for byand b, will contain byb,, which leads to a BBGKY hierarchy [9]. By
analogy with the Boltzmann approach, we break this hierarchy by making
the StoBzahlansatz: particles that are just about to collide are considered to
be uncorrelated, so

ek, 1) = ((br — ) (b2 — B2y = (BaBz = Baba) ey = 0 (3.5)

This ansatz (which will be tested by simulations) leads to the closed equations

for b; and b,:

bk +1,1+1) = by (k, 1)
Dok — 1,14+ 1) = by(k, 1)

% (3.6)

T+ B+ (@~ B
+ab — by — (@~ B)b
at site (k,1)

Il
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3.3 Symmetries

The variables b; and b, are bits. Therefore their averages must be contained
in the interval [0, 1]. This can also be seen from the transformation:

B, (k, 1) =lby(—Fk, 1)

P (k1) =ty (—k, 1)

} SPi=p, PP =T (3.7)
The reader can check that the automaton rule (3.3) or (3.4) is invariant
under this transformation. Using an argument similar to that in section 2.2
it follows that an initial distribution that is contained in the unit interval
[0, 1] will evolve completely within this interval.

Besides the symmetry P a second discrete transformation that leaves the
system invariant can be defined:

by (k, 1) = by(k,1), o'(k,1) = p(k,l i i
A:%&ﬁ=h&ﬁ,ﬁ&£=ﬁhg}$A =d, #=1 (38

This symmetry allows us to choose @ always larger than f; from now on this
will be always the case.

The space-time lattice can be divided into two types of sites: even sites,
for which k + [ is even, and odd sites, for which k& + [ is odd. The collection
of each type constitutes a sublattice; the two in combination have a checker-
board structure (see figure 1). From (3.4) it is easily seen that quantities at
sites are only affected by quantities at sites of the same kind. Therefore the
automaton consists of two completely independent subsystems, each again
defined by the rule (3.4), but restricted to one of the two sublattices. The
cellular automaton for Burger’s equation [8] has precisely the same structure.

Figure 1: The spatial-temporal lattice divided into two sublattices.
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+1
l /WW k + 1 even

k-2 k k42

Figure 2: Structure of the sites (k) for the time-independent case.

3.4 Special solutions

More convenient equations are obtained by introducing the binary shifts

by = (aAbi) V(BAlD) (=P + 8 (3.9)
bo = (B Ab)V (aAlby) (B8—a)b, +a ‘

i

so by € {0,1}. Updating rule (3.4) in terms of these new variables reads

be(k+1,+1) = by (k1) = (af — byb_)
b_(k—1,141)=b_(k,]) = (af —bsb_) (3.10)
at site (k,1)

The ensemble averages by and b_ of b, and b_ are given by

ﬁiﬁ%igi—iig = bx € [B,3] (3.11)

Again, closed equations for these averages are obtained by making the Stof3-
zahlansatz.

Consider the time-independent case. For the subsystem defined on even
sites, introduce the notation

oy ) (kD) for k + [ even
()= { (k,{+1) for k+1odd (3.12)

This corresponds to a structure as shown in figure 2. Introduce the variables

F(k) = 3(by(k+1) — by (k)
g(k) = %(bi(k +1) +b_(k)) (3.13)

then their averages f(k) and g(k) obey the difference equations
gk)=g(k-1) = gk) =% (3.14)

and

Tk +1) = 7)) = 7=k + 1F() - & + 5P) (3.15)
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which can be found from equations (3.10) and (3.13). These equations have
homogeneous equilibria:

F(k) =To with 55° ~ Fo” = aB (3.16)
which correspond to nonnegative averages b; and b, for the range
[fol < 3(@—5) (3.17)

There are also inhomogeneous equilibria. Let

fo=vVa:—aB and z(k):—@

then z(k) obeys the explicit difference equation

2(k+1) = MZ_"— (3.18)
14+ —@_—_z(k)

1-g0

Further let
T ¢ -1 f 0
fo = tanh ( 1_ _go)

then using the addition formula

tanh z; + tanh @,

tanh(zq + z,) = 1+ tanh z; tanh z,

the solution for (3.18) is given by

2(k) = tanh(f3(k — ko)), where ky € R (3.19)
For b, and b_ these equilibria read:
(k) g_‘E —Etanh(f—_é(k — ko — %)) (3.20)
(k) = go+ fotanh(fo(k —ko+ 3))

Next consider a transition (or shock wave) between two homogeneous
equilibria, (fo,%) = (f1,7,) for & — co and (f,,g,) for k — —co, moving
with a rational velocity v = p/q. Assume that this transition relaxes to some
stable shape, so

Il

L3
b

bia(k, 1+ q) = bia(k —p,1) (3.21)
Define
ghl) = L (k+1,0)+ (kD) (3:22)

then by subtracting the equations of (3.10) one finds the continuity equation

{Fk,1+1) =Tk, D} + {g(k, 14+ 1) —g(k — 1,1+ 1)} = 0 (3.23)
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Note that for homogeneous equilibria definitions (3.13) and (3.22) coincide.
Using relation (3.21) summation of equation (3.21) over k and [ yields

{ ooy }7<k,o>+i@(np,z>—a(—np,m:o (3.24)
k=—(n+1)p+1 k=(n—1)p+1 =1

In the limit » — oo the remaining summations are over regions where the
limiting equilibria dominate. This leads to the velocity of the shock wave:

P-J?l _P72 +49,—q7, =0=v= ‘3%2:_%1' (3-25)
2 1

4. Relationship between the Boltzmann equation and the cellular
automaton

Now that the properties of both the Boltzmann equation and the automaton
have been studied we can relate the two systems.

Pirst the lattice is fixed in space-time: site (k,[) is associated with the
event

(z,1) = (kA,IA)

A is the spatial and temporal lattice spacing.

Next the averaged quantities of the automaton are related to the physical
quantities of the Boltzmann equation. In R.W. the probability during a time
interval A, a + particle flips is Aa + O(A?). Therefore we choose:

@=aA and B=pA (4.1)

When a > f it was found in section 2.2 that for R.W., as a consequence
of nonlinearity, the interval [0, — J] is an invariant of evolution. For the
automaton it was found in section 3.2 that, as a consequence of the exclusion
principle, the averages b; , are restricted to [0, 1]. Bearing this in mind define

Fro(e = kAt =1A) = (a — B)byo(k, 1) (4.2)
From equation (3.4) it is found that these f;  obey the relations

(g +gph(et) = (A0, fle 1)+ O()
(6z = a—w—)fg(a:,t) = —Q(fl(wvt)va(zvt)) + O(A)

which differs by O(A) from the Boltzmann equation (2.2) for the distribu-
tions f1 and f;. Therefore an initial difference of O(A) between ]2:1,2 and fio
will remain O(A) on a time scale of at least O(1).

One can test this result by comparing special solutions of both systems,
where R.W. is restricted to @ > B, fi2 € [0,a — f]. The homogeneous
equilibria (2.25) and (3.16) coincide by the identification

To = Ag® and fo = Af® |f6|§%(a—ﬂ) (4.4)

(4.3)
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Inhomogeneous equilibria (2.31) and (3.20) both have the shape of a tanh.
Their difference of O(A) is completely accounted for by a shift of half a
lattice site, and a contraction

fi=TFo(l+ Ag®) + O(A?) (4.5)

in the space variable z. Shock wave velocities (2.30) and (3.25) coincide and
are bounded by

a—p0p _  a-— Q’
ol < 5 = a (4.6)
Assuming that the conjecture made at the end of section 2.4 is correct,

it is concluded that differences between flyz and fi1,2 remain O(A) for all
solutions for all time scales.

5. Simulations

The automaton constructed in section 3 was simulated by a Turbo C program
on an Atari 1040ST computer. Two lines of 16 bit-words, each corresponding
to an array of + or — particles, were used to represent the microscopic
configuration of the system. To represent the state of scatterers, the bits of
two additional words were randomly set with a probability @ or B. Thanks
to the homogeneity and locality property, all bits of a word could be updated
simultaneously.

A straightforward method of deciding which bits of a word should be set
is to apply a (quasi) random number generator to each bit individually. In
this way the probability ¢(n) that n bits within a word will be set is given
by the binomial distribution

e(n) = ( 10 )1)"(1 -p*™"), p=aof

n

Now recall that @ and f are of order A, so very small when A < 1. Therefore
the probability that more than two bits will be set is neglected by truncating
all powers of p higher than two in the binomial distribution:

d0) =1 — 16p + 120p?

d(1) = 16p — 240p?
c2) = 120p (5.1)
dk) = 0 2<k<16

For p € [0, &] equation (5.1) again defines a distribution, i.e. it is normalized
and positive definite. Further single bits are set with a probability p and the
products of two bits are uncérrelated, i.e. b;b; = p? for ¢ # j. Products of
more than two different bits are zero, so they are completely anticorrelated.
This truncation leads to the following procedure. A random number a; is
generated in order to decide whether zero, one, or two bits are to be set. In

the case where one bit is to be set, its place (16 alternatives) is determined by
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Figure 3: Simulation of relaxation toward equilibrium using homo-
geneous initial distributions and periodic boundary conditions. The
averages b] and b3 were taken over the entire spatial lattice (N sites).
The horizontal solid lines correspond to the appropriate homogeneous
equilibria. Error bars at the right margins indicate the expected fluc-
tuations.

using information from the same random number z;. When two bits are to be
set, a second random number ;4; is generated to determine their places (120
alternatives). In this way no more than two random numbers are needed to
fill a word, which is about a factor 10 less than in the straightforward method.

Spatial averaging of a single evolution was used to estimate ensemble
averages, instead of averaging over a large set of evolutions all subject to a
given initial distribution. Define the spatial average over N sites at site (k, )

by
1 &
bk l) = 77 2 bua(k +4,0) (5.2)
i=1

It can be shown (see for instance [8]) that if correlations between different
by 2’s are of no importance

Bk —grig [ f”(z’l%) & _o < @1;,-) (5.3)

2 —T1 /g, o—

where 2y = kA and z, = (k + N)A. So this spatial average of a single
automaton evolution approximates to the spatial average of the Boltzmann
equation, the typical difference being 1/1/4N.

First the system was subject to periodic boundary conditions. All initial
distributions were found to relax to the homogeneous equilibrium (3.16) be-
longing to the conserved total particle number, with fluctuations of the order
given by (5.3). In figure 3 the evolution of two homogeneous initial distribu-
tions is presented by averaging over all lattice sites. Relaxation times were
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indeed found to be of the order of a few collisions. Correlations between +
and — particles at the same site were estimated by

Q) = <blb.>—<by><b_> (5.4)
V<be> (1= <by>) <bo>(1-<b_>)

where < z >= & Y{=) z(k,1) and N is the number of lattice sites. These

estimates were found to fluctuate around zero, with amplitudes of O(Vlﬁ)

Next fixed boundaries were imposed: at each advection step, a + (—)
particle at the site furthest to the most left (right) was created, with a cer-
tain probability. Figure 4 shows the evolution of homogeneous initial dis-
tributions. The lattice spacing was A = 2719 and the lattice consisted of
N = 6144 sites, so z € [0,6]; @ = 40 and B = 10. Spatial averages were
taken over 400 lattice sites. The observed evolution was in agreement with
theory: after an initial relaxation, three shock waves appeared. At ¢ ~ 10

1 = ———- t= 4,000 _ __ P R 5 3 y
e A=210  N=6144 LT T et e |

o 7 )
0 =40000 3 =9.992 4 , !
3 : §
0 — P o
1= I b ;
i b S - 7 b
L t
; Cok i
0. 3 0-
] 1= 10,088 1: t= 25,008
t Sy o S b e e
: o by '
£l :o §
4 H = \‘.
k ! = \
of e ;
1 — Z 6 1 —Z 6
E b S
il 3
i b
¥ i <
i ] S
o 0- osmacid

Figure 4: Simulation of shock wave interaction as a function of time,
using homogeneous initial distributions and fixed boundaries. The
spatial lattice consisted of N = 6144 sites. Averages were taken over
400 lattice sites.
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both waves interact, resulting in a single wave. The velocities of the waves
were in agreement with (3.25).

6. Conclusions

A cellular automaton for the solvable Ruijgrok—Wu model has been con-
structed, analyzed, and simulated. With the relationship given in section 4
it has been shown that for @ > f the two systems coincide qualitatively.
Quantitatively the automaton is an approximation of R.W. up to the first
order of the lattice spacing A. These deviations could not be found by sim-
ulations for they were obscured by the statistical fluctuations of O(ﬂ) In
addition, simulations show that the Stoffzahlansatz, which had to be made
for both systems in order to derive closed evolution equations for one-particle
distributions, is correct.

Two Boltzmann equations (with different o and ) can be related by a
combination of a Lorentz and scaling transformation. Such exact relations
cannot be obtained for the automaton due to the discreteness of the lattice.
However on the basis of the relations between the two systems as established
in section 4 it is concluded that two automata, (@i, ;) and (@, B,), for
which @, > 31.2’ can be related up to terms of order A for all time scales.
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