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Equation

Hans Hersbach
Instit ute for Theoretical Physics, University of Utrecht,

P.O. Box 80006, 3508 TA UtrecM, The Netherlan ds

Abst r act . A probabilistic cellular automaton as an approximation of
a solvable Boltzmann equation in one space and one time dimension
is presented . First the model that was introduced by Ruijgrok and
Wu [6,7] is revised in a Lorentz covariant form. Next, an appropri­
ate cellular automaton is defined. By analogy with the Boltzmann
approach, equations for the t ime dependence of ensemble averages of
single-particle quantities are obtained by making the StoBzahlansatz .
The require d nonlinearity is a consequence of the exclusion principle .
In accor dance wit h the Boltzmann equation, homogeneo us as well as
inhomogeneous equilibria are derived exactly. On the basis of intuition
and symmetry considerations, a relationship between the two systems
is found . By means of this relationship it is demonstrated that the
ensemble averaged automaton approximates the Ruijgrok-Wu model
up to first order of the lat tice spacing, for all time scales. Simulations
show that th e StoBzahlansatz is justified.

1. Introduction

In t he last few years people have become increasingly interest ed in using cel­
lul ar automata as di screte microscopic analogues of continuous many-particle
systems (see for inst an ce [1-4]).

F irst , cellula r automata have a very simple structure [5]. Space is re­
st r icted to a (us ually regular ) lat t ice. The information avai lable at each site
is very limi t ed , usually amounting to no more t han a few bits. T ime evolu ­
tion is also discrete: at each time step all sites are updated according to the
automaton rule . This rule has two import ant properties: locality (t he state
of t he updated site depends on ly on it s direct envi ronment ) and homogeneity
(the same rule is applied at each site). T hese properties together with the
fact that t he ap plication of the automaton rule invo lves on ly a few elementary
bit operat ions make cellular automata ideal for parallel implementation.

Second, the inter est in cellu lar automata has been st imulated by the
kn owledge that t he form of the macroscopic equations of flu ids is determined
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largely by the microscopic conservat ion laws and symmetries. The refore two
physically quite different fluids can exhibit similar macroscopic b ehavior.

Therefore, cellular automat a that have simi lar mi croscopic conservation
laws and a maximum of symmetry resemblance with flui ds provide a promis­
ing simu lation technique for solving the Navi er-Stokes equations. However,
there ar e a number of discrepancies, one of them being Galilean invariance.

In this paper a probabilistic cellular au tomaton for a one-dimensional
solvable Boltzmann equ at ion is studied ; this automaton is simple eno ugh to
an alyze. T his model, which was introduced by Rui jgrok and Wu in 1981
[6,7], is analyzed in section 2 in rather a comprehensive way, for the present
approach is slightly different from the approach used in [6J. In section 3, an
appropriate cellular automaton is constructed and an alyzed. The relationship
between the two system s is established in section 4. Symmetry consi derations
play an essent ia l role. Simulations are discussed in sect ion 5.

2. The Boltzmann equation

2.1 Definition

The model that Ru ijgrok and Wu introduced (from now on ab breviated
to R.W. ) can be defined as follows. T here is only one space dimension,
and the only allowed velocities with which particles move ar e +1 (or just +)
and - 1 (or just - ).T here are three collision processes described in the table
b elow. Her e p(s -f Sf) is the probability per unit t ime that a single particle
or a pair of neighboring part icles make a transition from the state S t o th e
st ate Sf.

S Sf p(S -f Sf)

+ -----. - a
- -----. + f3

+- -----. ++ 1

(2.1)

T hese collisions cause a violation of detailed balance and of t ime reversal
invari an ce. Here, however, t hese factors will not be regarded as essential
ingredients for kin etic theory.

Let fI and 12 be the distribut ion functions for the + and - particles
resp ecti vely; then for each a , f3 > 0 the Boltzmann equation is given by

B('( ,(3 :
(1ft + Ix) il = i d2 - ail + f312 == nUl, h )

(Bt -1x)12 = -fI12 + ail - f312 == - n(fI '!2)

Summing both equations lead s to the continuity equation

(2.2)

(2.3)

T his equati on reflects conservation of particle number, which in this case
coinc ides with energy conservation. It is the only cons ervation relation , for
there is no conservation of momentum.
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R :

2.2 Symmetries

The functions f 1,2 are distributions an d mus t therefore be nonnegative
(f1,2 ::::: 0). In princip le f1,2 have no upper bounds. However, due to
the non linearity of the collision term .11 in equat ion (2.2), there is also a
natural upper bound. This can be seen clear ly from the tr ansformation
R : (h,h)~ (ff,f~):

f{( x , t) = (a - (3) - f 2(-x, t ) } =} R-1 _ R . R 2 = I (2.4)
f~(x , t) = (a - (3) - f 1(- x , t) - ,

Becau se .11' = .11 and the advection te rms in equation (2.2) interchange, it can
be seen that the system is invariant under thi s transformation. In [6,7J it is
shown that the system can give rise to interesting inhomogeneous equilibria
when

0: > (3. (2.5)

On the basis of physical arguments, we know that the evolut ion of a nonneg­
at ive initial distribution will always be nonnegative. Therefore in the region
whe re a > (3, the symmet ry t ransformation (2.4) shows

f 1,2(X, 0) E [0, a - (3JVx E lR {=? fl,2( X,t) E [0 , a - (3] (2.6)
Vx E lR, Vt::::: a

So an initi al dis tr ibution that is completely contained in the int er val [0, a - (3]
will never leave this interval. This information is very useful for cons truct ing
an approp riate automaton where, besides the nonnegativity constraint , dis­
tributions are bo unded by the comp letely filled state. To give an example:
in 1987 Boghosian and Levermore [8] constructed a cellular automaton for
Burger 's equation

A similar transformation R : n ~ n' that leaves the system invarian t can be
given:

n'( x, t) = 2 - n( - x , t )

Thi s symmet ry shows that the interval n E [0,2] is invariant under time evo­
lution , which corresponds exact ly to the allowed int erval for the distributions
of the automaton.

Information in the system cannot flow fas te r th an the velocity of the
par ticles. A group of linear coordinate transformations that leaves th is con­
cept invariant is the group of Lorentz transformations. Con sider two frames
5 an d 5 ' moving with a, relati ve velocity v , and let events be denot ed by
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coordinate s X == (x , t) and X' == (x' , tT respe ctively ; the relation bet ween
the two frames is then given by

(2.7)

where

_ 1, - Vf=V"2

Physical qu antities must tran sform such that the physics describ ed by them
is unalt ered. Some simple calculations lead to the tran sformation rules

f{ f cl ka

f~ kh and f3' ~ (2.8)

where

k =Jt~ · (2.9)

It follows that a Lorentz transformation L; maps the Boltzmann equation
3 ",,(3 onto the equation 3k "' , ~ . Note that af3 is an invari ant under this group
of tr ans formations.

Not only Lorentz t ransformations but also the group of scaling tr ansfor­
mations 5 leave th e part icle velocity invari ant :

x' = .:I

t'- f- a
a> O (2 .10)

Again the ph ysical quantities must tr an sform, such that the physics describ ed
by them is un altered ; so

f'( x')dx' = f( x)dx
odt' = a dt

f{ = afl,
a ' = aa,

f~ = ah
f3' = af3 (2.11)

It follows t ha t Sa maps th e system 3 ",,(3 onto th e system 3 a"" a(3 . Note that
a/ f3 is an invari ant under thi s group of tran sformati ons .

Combining th e two transformation group s £ and 5 , and using the fact
that t he two groups commute, it follows that any two systems 3 "' 1,(31 and
3 "'2 ,(32 can be re lated to each other by a uniq ue t ra nsformat ion Sa 0 L;
(= L; 0 Sa)' Further, the non negativity condition fl ,2 ~ 0 is conserved
under both groups . Transformat ion R commutes with 5 , b ut it does not
commute with 12. T herefore one can derive a number of theorems analogous
to equation (2.6) , first by app lying a Lorentz transform ation, then by us­
ing tr an sformati on R to pro ve (2.6) in the t ransforme d system, and finally
by tr an sformi ng the information obtained back to th e original system . One
should, however , be aware that initial condition problems are not Lorentz
invariant.
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2.3 Explicit solution

Equation (2.2) is to be solved wit h given f I(X, O) and h(x, O) . From the
observation t hat the collision term n can be written as

n (fI ,h) = (fl + (3)(f2 - a) + a{3

one obtains more suitable equat ions by introducing the shifts

f + = (3 +fr and f - = a - h

Let

m=#

(2.12)

which is a scalar, i.e. it has the same value in each Lorent z fra me. T hen
equa t ion (2.2) transforms into

(2.13)

T he equation of cont inuity (2.3) allows us to introduce a function H(x ,t) > 0,
such that

(2.14)

From the transformation rules (2.7) and (2.8) , it is seen that H is also a
scalar . Substi tution of equation (2.14) into (2.13) and using the identi ty

(8 8) (8 8) _at + OX at - OX log H -

leads to a single equa tion for H:

where

1 ( f)2 f)2 )H 7fi2 - ff? log H

- ( it + Ix)log H (it - Ix)log H

(2.15)

(2.16)

is also a scalar. So redefinition (2.14) maps the nonlinear Bolt zmann equa­
t ion (2.2) onto the linear part ial differential equation (2.15) , which is manifest
Lorentz covariant. In combination with initi al cond it ions

H(x ,O) == A(x) and itH(x ,t) == B (x ,t) (2.17)



256 A Cellular A utomaton for a Solvable Boltzmann Equation

t he solut ion of (2.2) is given by

H(x, t) = ~ (A ( x + t ) + A(x - t))

+ ! mt [:tIl(~)A(X + x')dx'

+ ~ [:t Io(mJt2 _ x'2 )B (x + x' )dx' (2.18)

10 and II denote modified Bessel funct ions. T he functions A and B in (2.17)
are dete rmined by ini t ial cond itions f l(X,O) and f2(X,0). Define new vari­
ables f and 9

f = Hf+ - f -) = Hh +h ) - !(a - (3)

9 = H f+ + f-) = Hh - h) - Ha + (3 )

then using equa t ion (2.14 ), the relation between l, g, and H is

f = -ix log H

9 = +-9t log H

In particular for t = 0 it is found that

A(x ) = e" r j(x' ,O)dx' and B (x ) = g(x, O)e- r j(x ',O) dx'

Let

F = (J ,g)

(2.19)

(2.20)

(2.21)

then F is a vector, i.e. it t ransform s in the same way as the coor dinates X,
so F' = LvF . T his can be proved by combining equations (2.8) and (2.19) .
Another example of a vector is t he different ial ope ra tor

which can be der ived from equation (2.7). T he dot product of two vectors
X = (x , xo) an d Y = (Y,Yo) is defined by

X . Y = XoYo - xy

which is also a scalar. Equa t ion (2.20) can now be written in the ma nifest
Lorentz covar ian t form

F = -Olog H (2.22)
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2.4 Special solutions

In principle the Boltzmann equat ion (2.2) has been solved for any initi al
dist ribution, i.e. we have writ ten its solution (2.18) in te rm s of known t ran­
scendental functions . However, solution (2.18) in combination with equa­
tions (2.12) and (2.14) has a very comp lex form. To unravel its complex ity,
in this section we will consider some impor tan t special cases : relaxation to
equilib rium and shock waves .

Consider the system to be well mixed, so that there is no spati al depen­
den ce left. T he evolution of the distribution (f( x , O) ,g(x , 0)) = (fo,go) is
found to be (by omitting the spatial dependence of equatio n (2.13))

t _ e1 - ae- 2get

f (t ) = f o and g() - 9 1 + ae 2g't

where

(2.23)

and o" - Clo
a=~9 + go

The conservation of f is a direct consequence of part icle number conse rva t ion.
Each homogeneous ini ti al distribution (fO,go) relaxes exponentially toward
a homogeneous equilibrium

Fe: (fe,ge) = (fo, Vm2 + f(5) (2.24)

on a time scale T = 0 (1/g e ) = 0 [1/(va:B)], i.e. of the order of a few colli­
sions, which is a characterist ic of the Bolt zmann approach . All homogeneous
equilibria lie on the hyperbola

(2 .25)

whi ch can also be dir ectly found by taking a ~,/ = a~X2 = 0 in (2.2). From
equations (2.19) and (2.25) it can be deri ved that the range of phys ical solu­
tions, i.e., solut ions for which f1,2 ?:: 0, is given by

(2.26)

T he H e correspondi ng to equilibrium Fe is found from (2.22)

(2.27)

Note that H obeys the linear equation (2.15). T herefore

(2.28)

where C1 and C2 are constants, is aga in a solution of (2.15) . It corresponds
to a shock wave between the equilibria F{ and F!f. . Let fi > f2, then for
x ~ -00, H{ dominat es, corres ponding to equilibrium Fr For x ~ +00,
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H~ dominat es, corresponding to equilibrium F;. T he transiti on between the
two equilibria occurs when both H's are comparable, so

(2.29)

This defines a path X S in the x - t plane moving with a velocity

V - 72- ,i- e e
2 - 1

(2.30)

which is identifi ed wit h the velocity of the shock wave (2.28) . For a shock
wave to be physical , i.e. the corr esponding distributions fI,2 are nonnega­
tive, it is a necessary condit ion that both asymptotic equilibria are physical.
Consider the special case of a wave with zero velocity, so gi = g~ == ge (see
equa t ion (2.30)) and II = -I; == t: = ,)ge2 - m 2 (see equa t ion (2.25) ).
From equa t ions (2.12), (2.20), and (2.28) , it is found that

ge _ t ' tanh(fe(x - xo))

s' + r tanh(fe(x - xo))
(2.31)

From the fact that tanh(·) E (-1, +1) it follows that the above ment ione d
condit ion is also sufficient for nonmoving shock waves. By t ransforming an
arbitrary shock wave to it s rest fram e and using the fact that the physi­
cal region is invariant under such a t ransformat ion, one concludes that this
condit ion is sufficient for all shock waves, so

H = Hj +H; physical <===} Hj 1\ H; physical

From equa t ions (2.26) and (2.30) it is concluded th at the range of the velocity
of shock waves is

~ + ~< V< l (2.32)

(2.33)N > I; > 13

In particular nonmoving waves, which are inhomogeneous equilibr ia, can only
occur when Q > (3 .

The superposition of mor e than two He's corres ponds to solutions that
repr esent shock wave interaction. For inst an ce, consider

3

H 123 = l: eF;'-X,

;=1

For i <t: 0, there are two separate sho ck waves: H12 and H 23 • At t ~ 0 the
two waves interact , resulting in a single shock wave H13 for t ~ O. From
(2.30) and the fact that ge as a function of I ' is convex (see equation (2.25)) ,
it follows that two ini ti ally separated shock waves always interact eventua lly.

It is conjectured th at the evolut ion (2.18) of any ini ti al dist ribution is
as follows: first on a time scale O[l/(J(.Y7J)J, the syste m will relax toward a
number of locally homogeneous equilibria connected by shock waves. Next
these sho ck waves interact on a time sca le that depends on their velocities
and relative spatial separ ations , which finally results in a single shock wave.



Hans Hersbach

3. The aut omaton

3.1 Definition

259

The automaton is a discret e version of the Boltzmann equatio n . It consists of
a one-dimensional lattice that is updated at discret e time st eps . Each lat ti ce :
sit e can contain only two bits of information. A "right" bit represent s the
presence (bit = 1) or absence (bit= 0) of a right-moving (+) particle; a "left"
bit deno te s the presence (bit = 1) or absence (bit = 0) of a left-moving (+)
particle. We will denote this right and left bit at lat t ice site k and just after
timestep I by bi (k , I) and b2( k, I) respectively. Furthermore, at each site two
bits a (k, I) and (3(k, I) denote the presence (bit = 1) or absence (bit = 0) of
an a and (3 scatterer, which are set with a pro babili ty a and 7J respect ively.
In the next sect ion these averages a and 7J will be related to a and (3 of the
Boltzmann equation.

By analogy with the Boltzmann equat ion, the updat ing ru le can be de­
composed into two substeps : adv ection and collisions.

The collision substep det ermines how particles interact . This ste p must
give rise to nonlinearities, for if it did not, all particles could be regarded
as independent, thus noninteracting. Let the two bits b~ (k , I) and b;(k, I)
denote the st ate of sit e (k, I) just after this subst ep has been applied. This .
state can be a function of the states of adjacent sites and sit e (k , I) its elf, just
pr ior to the collision substep. In particular we will pro pose a rul e whereby
b~ (k, I) and b~ (k, I) depend only on the state (k , I) its elf. The ru le must
locally conserve particle number, which req uires that the empty state 00 and
the totally occupied state 11 remain invariant. On ly in t he two cases where
the sit e cont ains precisely one par ticle do we have the freedom to choose
(dependent on the outcome of a and (3) whether the particl e sho uld flip or
not . Remembering th e collisions (2.1) , the following rule is pro posed by the
truth t ab le:

Ibl(k, I) Ib2(k, I) ~ b~(k, I) I b~ ( k , I) I
0 0 0 0
0 1 (3(k, I) !(3(k,I)
1 0 !a(k, I) a(k, I)
1 1 1 1

(3.1)

The bi t operation "!" denotes bitnegation, so !O= 1 and !1 = o.
The advection substep determines the particle flow: + part icles are shifted

one site to the right , - particles are shifted one site to the left. This leads
to the ru le

bl(k +l ,I +I)
b2(k - 1.l +1)

b~(k , I)
b~(k,l)

(3.2)



260 A Cellular A utomaton for a Solvable Boltzmann Equation

The complete automaton rule is found by composing both substeps. Ta ­
ble 3.1 written as a Boo lean expression gives:

bl( k + 1, I + 1) = (fJ /\ (!bl ) /\ b2 ) V ((!a ) /\ bl /\ (!b2 ) ) V (bl /\ b2 )

b2(k - 1, 1+ 1) = ((!fJ ) /\ (!bl) /\ b2 ) V (a /\ bl /\ (!b2 ) ) V (bl /\ b2 ) (3.3)
at site (k, I)

where V denotes the inclusive or and /\ the and operation on a pair of bits.
T his expression can be converted into an algebraic expression by the use of
the conversions x V y = x + y - xy, x /\ Y = xy, and !x = 1 - x, which leads
to

bl(k +1, I+1) = (1 - a)bl + fJb2 + (a - fJ )blb2

b2(k -1 ,1+ 1) = abl + (1 - fJ )b2 - (a - fJ )bl b2

at site (k, I)
(3.4)

T he nonlinear term bl b2 is induced by the exclusion principle, i.e. no more
than one particle can occupy the same st ate.

3 .2 The en semble average

To establish a relation with R.W. we must describe the dynamics of the au­
tomaton in terms of ensemble averages. A large set (ensemble) of systems is
cons idered, each with initial condit ions randomly chosen from a given dist ri ­
bution. Then the ensemble averages (or occupation numbers) bl ,2(k, I) denote
the value of the bi ts bl ,2(k, I) averaged over all systems. Updating equations
for these averages can be obtained by averaging the automaton rule (3.4).
Several averaged products appear in this expression. T he Boo leans o t k; I)
and fJ(k, I) are assumed to be generated by a "perfect" random generato r,
with averages a and 7J respectively that are independent of k and I:

a(k, I) == a and 7J(k, l) == 7J

T herefore averages like a(k, l)bl( k, I) can be written as abl(k, I). However the
averaged pro duct bl(k, l)b2(k, I) can not be rep lace d a priori by bl (k, l) b2(k, I),
for b oth quantities may be correla ted. Therefore the up dat ing equations
for bl and b2 will contain blb2 , which leads to a BBGKY hierarchy [9]. By
analogy with the Boltzmann approach, we break this hierarchy by making
the StofJzahlansatz: particles t hat are just about to collide are cons idered to
be uncorrelated, so

(3.5)

This ansatz (which will be tested by simulations) leads to t he closed equations
for bl and b2:

bl (k + 1, I + 1) - bl (k, I) = -a bl +7J b2 + (a - 7J) bl b2

b2 ( k - 1, I + 1) - b2 ( k, I) = +a bl - 7J b2 - (a - 7J)bl b2 (3.6)
at site (k, I)
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3.3 Symmetries

The variables bI and b2 are bits. Therefore their aver ages must be contained
in the interval [0, 1J. This can also be seen from the transformation:

P . b~ (k, I) = !b2(- k, I) } p -I _ p p2 - I
. b' (k I) = 'b (-k I) =} -, -2' . 1 ,

(3.7)

The reader can check that the automaton rule (3.3) or (3.4) is invariant
under this transformation. Using an argument similar to that in section 2.2
it follows that an initial distribution that is contained in the unit int erval
[O,l J will evolve completely within this interval.

Besides the symmetry P a second discrete transformation that leaves the
system invariant can be defined:

A : b}(k,l) = b2(k,1), a;(k, l) = f3(k, 1) } =} A-I = A, A2 = I (3.8)
b2 (k, I) = bI (k, I), f3 (k, I) = a(k, I)

T his symmetry allows us to choose a always larger than 73; from now on this
will be always the case.

The space-time lattice can be divided into two types of sites: even sites,
for which k + I is even, and odd sites, for which k + I is odd. The collection
of each type constitutes a sublattice; the two in combination have a checker­
board structure (see figure 1). From (3.4) it is easily seen that quantities at
sites are only affected by quantities at sites of the same kind. Therefore the
automaton consists of two comp letely independent subsystems, each again
defined by the ru le (3.4), but restricted to one of the two sublattices. T he
cellular automaton for Burger's equation [8] has precisely the same structure.

_ k

Figure 1: The spatial-temporal lattice divided into two sublat tices.
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l+1
l /VVVV

k - 2 k k+ 2
k + l even

Figure 2: Structure of the sites (k) for the time-independent case.

3.4 Special solutions

More convenient equations are obtained by int roducing the binary shifts

b.; = (a /\ bl ) V ({3/\!bl ) = (a - (3 )bl + {3
L = ({3/\ b2 ) V (a/\!b2 ) = ({3 - a )b2 + a (3.9)

so b± E {O, I} . Updat ing rule (3 .4) in te rms of these new var iables read s

b+(k + l ,l +1) - b+(k,l) = (a{3 - b+b_ )
b_(k - 1, l + 1) - L(k, l) = (a{3 - b+b_)

at site (k, l)

The ensemble averages b+ and L of b.; and b: ar e given by

(3.10)

b+ = (a - (1)bl + 71
b_ = (71 - a)b2 + a =} b± E [71,a] (3.11)

Again , closed equations for these averages are obtained by making t he Stefl­
zahlansatz .

Consider the t ime-independent case. For the subsys tem defined on even
sites , introduce the notation

(k) _ { (k, l) for k + l even
- (k ,l +l) fork+ lodd

(3.12)

This corr esponds to a structure as shown in figure 2. Introduce the variables

then their averages ](k) and g(k) obey the difference equations

g(k) = g(k - 1) =} g(k) == go

and

(3.13)

(3.14)

(3.15)
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which can be found from equa tions (3.10) and (3.13). These equations have
homogeneous equi libria:

l (k) = fo with 902
- f0

2 = a/J
which correspond to nonnegative averages b~ and b~ for th e range

There are also inhomogeneous equilibria. Let

(3.16)

(3.17)

z(k ) = _1(k)
fo

th en z(k) obeys the explicit differen ce equation

z(k) + l
z(k + l ) = I -go

1 + f"-z (k)i-ss

Further let

f~ = tanh- 1 ( fo )
1 - 90

t hen using the addition formula

tanh(x + x ) = tanh xh+ tanh X2
1 2 1 + tan Xl tanh X2

the solution for (3.18) is given by

z(k) = tanh(f~(k - ko)), where ko E ~

For b+ and b_ t hese equilibria read:

b+(k) = 90 - fotanh(f6(k - ko - ~))

L(k) = 90 + fo tanh (fMk - ko+ ~))

(3.18)

(3.19)

(3.20)

Next consider a transit ion (or shock wave) between two homog eneous
equilibr ia, (fo,90) = (1 1,?h) for k --4 00 and (12,g2) for k --4 -00, moving
with a ra tional velocity v = p/q. Assume that this transit ion relaxes to some
stable shape, so

Define

l (k,l) = Hb+(k, l) - b_(k, 1))
g(k, 1) = Hb+(k + 1,1) + b_ (k, 1))

(3.21)

(3.22)

then by subtract ing th e equations of (3.10) one finds th e continuity equa t ion

{l(k ,l + 1) -l(k, 1)} + {g(k,1+ 1) - g(k - 1, 1+ I)} = 0 (3.23)
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Note that for homogeneous equ ilibria definiti ons (3.13) and (3.22) coincide.
Using relation (3.21 ) summation of equation (3.21) over k and l yields

{ f - i: }l(k,O) + IJg(np,l) - g(-np,l) )=O (3.24)
k=-(n+l )p+l k= (n -l )p+I 1=1

In the limi t n ---+ 00 t he remaining summations are over regions where t he
limiting equilibria dominate. T his leads to the velocity of the shock wave:

(3.25)

4 . Relationship between t h e Boltzmann equation and t h e ce llular
automaton

Now that the properties of both the Boltzmann equat ion and the automaton
have been st udied we can relate the two systems .

First the lattice is fixed in space-t ime : site (k, l) is associate d with the
event

(x,t ) = (k!::>., l!::>.)

!::>. is the spatial and tempora l lat tic e spacing .
Next the averaged quantities of the au tomaton are rela te d to the physical

quantit ies of the Boltzmann equation. In R.W. the probability during a time
interval !::>. , a + particle flips is !::>.a + 0(!::>.2). Therefore we choo se:

a = a!::>. and 73 = (3!::>. (4.1)

When a > (3 it was found in sect ion 2.2 that for R .W ., as a consequence
of nonlinearity, the interval [0, a - (3J is an invar iant of evolution. For the
automaton it was found in sect ion 3.2 that , as a consequence of the exclusion
principle, the averages b1 ,2 are restricted to [0,1] . Bearing this in mind define

A.2(X= k!::>., t = i !::>. ) = (a - (3 )b1,2 (k, i ) (4.2 )

(4.3)

From equation (3.4) it is found that these 11,2obey the relations

fJ fJ' ••(dJ + og )~I (X, t ) = +f'l(~I(X , t) ,~2(X , t )) + O(!::>.)

(m - Oi)h(x, t) = - f'l(jl (X, t ),h(x,t )) + O(!::>.)

which differs by O(!::>.) from the Boltzmann equation (2.2) for the distribu ­
tions f l and h. Therefore an initial difference of O(!::>. ) between 11,2an d f l,2
will remain O(!::>.) on a time sca le of at least 0(1 ).

One can test this result by comparing special solutions of bo th systems,
where R.W. is restricted to a > (3, f l ,2 E [O ,a - (3], T he homogeneous
equi libria (2.25) and (3.16 ) coincide by the identificat ion

go = !::>.ge and fa = !::>.1"; WI:S Ha- (3) (4.4)
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Inhomogeneous equilibria (2.31) and (3.20) both have the shape of a tanh.
Their difference of O(L':.) is compl et ely accounted for by a shift of half a
lattice site, and a contraction

(4.5)

in the space variable x. Shock wave velocities (2.30) and (3.25) coinc ide and
are bounded by

I I ~
- a -§

v < = -- a + a + ,B (4.6)

Assuming that the conjecture made at the end of section 2.4 is correct,
it is concluded that differences between 11,2 and !I.2 remain O(L':.) for all
solutions for all time scales .

5. Simulations

The automaton constructed in section 3 was simulated by a Turbo C program
on an Atari 1040ST computer . Two lines of 16 bit -words, each corr espond ing
to an ar ray of + or - particles , were used to represent the microscopic
configuration of the system. To represent the state of scatterers, the bits of
two additional words were randomly set with a probability Ci or 73. T hanks
to the homogeneity and locality property, all bits of a word could be updat ed
simultaneously.

A straightforward method of deciding which bits of a word should be set
is to apply a (quasi) random number generator to each bit ind ividua lly. In
this way the probability c(n) that n bits within a word will be set is given
by t he binomial distribution

p = a or 73

Now recall that Ci and 73 are of ord er L':., so very small when L':. « 1. T herefore
the probability that more than two bits will be set is neglected by truncating
all powers of p higher than two in the binomial distribu tion:

c'(O)
c'(l)
c'(2)
c'(k)

1 - 16p +
16p -

o

120p2
240p2
120p2

2 < k :::; 16

(5.1)

For p E [0, -Is] equation (5.1) again defines a dist ribution, i.e. it is normalized
and positive definite. Further single bits are set with a probability p and the
products of two bits are uncorrelated, i.e. bibj = p2 for i i- j . Products of
more than two different bits ar e zero , so they are complete ly anticorre lated.
This truncation leads to the following pro cedure. A random number Xi is
generated in order to decide whether zero, one, or two bits are to be set . In
the case where one bit is to be set, its place (16 altern at ives) is det ermined by
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Figure 3: Simulation of relaxation toward equilibrium using homo­
geneous initial distributions and periodic boundary conditions. The
averages bi and b~ were tak en over t he entire spatial lat tice (N sites).
The horizontal solid lines correspond to the appropriate homogeneous
equilibria. Error bars at th e right margins indi cat e t he expected fluc­
tuations .

using information from the same random number X i . When t wo bits are to be
set, a secon d random number Xi +! is gener ated to determine their places (120
alternat ives). In this way no more than two random numbers are needed to
fill a word, which is about a factor 10 less than in the straightforward method.

Spatial averaging of a single evolution was used to est imate ensemble
averages, instead of aver agin g over a large set of evolutions all subject to a
given ini ti al distribution. Define t he spatial average over N sites at site (k , 1)
by

N

b~ ,2(k, 1) == tv L b1 ,2(k + i, 1)
i=l

(5.2)

It can be shown (see for ins t ance [8]) that if correlations bet ween different
b1•2 's are of no importance

bS(k 1)__1 _ i X 2
j1,2(x ,1t::,.)dx = 0 ( fT)

" X 2 - Xl JX1 Q - {3 V4N (5.3)

where Xl = kt::,. and X2 = (k + N)t::,.. So this spatial average of a sing le
autom aton evolution approximates to the spatial average of the Boltzmann

equation , t he typical difference being J l/4N.
First the system was subject to periodic boundary condit ions. All ini ti al

distributions were found to relax to the homogeneous equilib rium (3.16) be­
longing to the conserved total particle number, with fluctuations of the order
given by (5.3) . In figure 3 the evolut ion of two homogeneou s ini t ial distribu­
ti ons is presented by averaging over all lattice sites . Relaxation times were
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indeed found to b e of the order of a few collisions. Correlations bet ween +
and - particles at the same site were estimated by

c(l) = < b±b_ > - < b± > < L >
J< b± > (1- < b±» < b: > (1- < L »

(5.4)

where < x >= 11 LZ~i" x (k, 1) and N is the number of lattice sites . T hese
estimates were found to fluctuate around zero, with amplit udes of O(-7'N) '

Next fixed boundari es were imposed: at ea ch advect ion ste p, a + (-)
particle at the sit e furthest to the most left (right) was crea ted, with a cer­
t ain probability. Figure 4 shows the evolut ion of homogeneou s ini ti al dis­
tribu tions. The lattice spacing was!":.. = 2- 10 and the lat t ice cons isted of
N = 6144 sites, so x E [0,6 ]; a = 40 and f3 = 10. Spatia l averages were
taken over 400 lattice site s. The observed evolu t ion was in agreem ent wit h
t heory: after an initial relaxation, three sho ck waves appe ared. At t ~ 10

1;- _.. : -.. - • . .te...J ..oOOn --
<\. = 2- 10 '\"=614·1

~ bf a = 40.000 J = 9.992
~ 1

1 ;- ...1'0...e .u.IZ....D.Il Il...-- .

\.
x

0 '--' --- --- - =----- -'--­
1• .

x
c--=~----

0'-- --- - - - ::____
1, .
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0'-' - --- ---- - --- - "

'" 0•• _

0''--' - - - --- - --- ----

\
\
\

\.

x

t = 2S epp

~ bf
[ !

,
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, ,, .

1: '..._

1. - .
x

I t _,__- ~ __. ._.t.~ , .~.~..~ 11l0 QL......----.
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t I
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Figure 4: Simulation of shock wave int eraction as a function of time,
using homogeneous initial distributions and fixed bound aries. Th e
spatial lat tice consist ed of N = 6144 sites. Averages were taken over
400 lat tice sites .
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bo th waves interact , resulting in a sing le wave . The veloc ities of the waves
were in agreement with (3.25) .

6. C oncl u sion s

A cellular automaton for the solvable Ru ijgrok-Wu model has b een con­
structed, analyzed, and simulated. With the relationship given in sect ion 4
it has been shown that for a > (3 th e two systems coincide qualitatively.
Quantitatively the automaton is an approximation of R.W. up to the first
ord er of the lat tice spacing !:l . These deviations could not be found by sim­
ulations for t hey were obscured by the st atistical fluctuations of O(~) . In
addit ion, simula t ions show that the Stofizahlansatz, which had to be made
for both systems in order to derive closed evolution equations for one -particle
distribu t ions, is correct.

Two Boltzmann equations (with different a and (3) can be related by a
combination of a Lorentz and scaling transformation. Such exact relation s
cannot be obtained for the automaton due to the discr eteness of the lat ti ce.
However on the basis of the relations between the two systems as established
in section 4 it is concluded that two automata, (0'1,131) and (0'2,132), for
which 0'1,2 > 131,2, can be related up to terms of order !:l for all t ime scales.

Acknowledgments

I am grate ful to Professor Th.W. Ruijgrok for his helpful comments an d sug­
gestions. Fur the r, I should like to thank Professor M.H. Ernst an d Dr. G.A. van
Velzen for giving me some important references. Finally I sho uld thank
Ms. S.M. Mc.Nab for giving me many linguistic advices .

References

[1] U. Frisch, B. Hasslacher, and Y. Pomeau, Pbys. Rev. Lett., 56 (1986) 1505.

[2] U. Frisch, D. D'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and
J.P. Rivet, Complex Sy stems 1 (1987) 649.

[3] J . Hardy, O. de Pazzis, and Y. Pomeau, Phys. Rev., A 13 (1976) 1949.

[4] S. Wolfram, J. Stat. Pliys ., 45 (1986) 471.

[5] S. Wolfram, Th eory and Applications of Cellular Automata (World Scien-
tific, 1986).

[6] Th.W. Ruijgrok and T.T. Wu, Physice, 11 3A (1982) 401.

[7] Th.W. Ruijgrok and T .T. Wu, Phys. Lett., 85A (1981) 420.

[8] B.M. Boghosian and C.D . Levermore, Complex Systems, 1 (1987) 17.

[9] L.E. Reichl, A Modern Course in Statistical Physics (Arnold, 1980).


