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B ackpropagation is Sensitive to Initial C onditions
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Abstract. This paper explores the effect of initial weight selection on
feed-forward networks learning simple functions with the backpropa­
gation technique. We first demonstr at e, through the use of Monte
Carlo techniques, that the magnitude of the initial condition vec­
tor (in weight space) is a very significant parameter in convergence
time variability. In order to further understand thi s result, additional
deterministic experiments were performed. The results of these ex­
periments demonstrate the extreme sensitivity of backpropagation to
initial weight configuration.

I ntroduction

Backpropagation [17] is the network t ra ining met hod of choice for many
neural network pr oj ects, for good reason . . Like other weak methods, it is
simple to implement , fas ter than many other "genera l" approaches, well­
t est ed by the field , and easy to mold (with domain knowledge encoded in the
learning environment ) into very specifi c and efficient algorit hms .

Rumelhart et a1. mad e a confident statement : for man y tasks, "the net ­
work rarely gets st uck in poor local minima that are significan tly worse than
the global minima." [17, p. 536] According to them, initi al weight s of exactly
ocannot be used, since symmetries in th e environment are not sufficient to
break symmetries in init ial weights . Since their pap er was published , t he
convention in the field has been to choose ini tial weights with a uniform
dist ribution between plus and minu s p, usu ally set to 0.5 or less.

T he converg ence claim was based solely upon their empirical exp erience
with the backpropagatio n technique. Since then , Minsky and P ap ert [14J
have argued th at there exists no proof of convergence for the tec hnique, and
several resear chers [3, 9, 10] have found th at the convergence t ime must be
related to the difficulty of the problem ; ot herwise an unsolved computer

science question (P J: N P ) would finally be answered. vVe do not wish to
make claims about convergence of the techn ique in the limi t (wit h vanishing
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Figure 1: Percent age T-convergence vs. init ial weight range.

ste p-size), or t he relatio nship between task and perform an ce, bu t wish to
talk abo ut a pervasive behavior of th e technique which has gone un noticed
for several years: the sensitivity of backpropagation to initial condit ions .

The Monte-Carlo experiment

Initially, we performed empirical studies to det ermine the effect of learni ng
rate, momentum rate, and the range of initial weights on t-convergence [l1 J.
We use the term t-convergence to refer to whet her or not a netwo rk , starting
at a pr ecise initial configuration, could learn to separ at e th e input patterns
acco rding to a boolean fun ction (corr ect ou tputs above or below 0.5) within
t epochs . T he experiment consisted of t rainin g a 2-2-1 network on exclusive ­
or while varying three independent variables in 114 combinations: learni ng
rate, .", equal to 1.0 or 2.0; moment um rate, 0', equal to 0.0, 0.5, or 0.9; and
initi al weight rang e, p, equal to 0.1-0 .9 in 0.1 incremen ts, and 1.0-10.0 in 1.0
increments. Each combination of param et ers was used to init ialize an d train
a number of ne tworks.! Figure 1 plot s the percentage of t-convergent (where
t = 50, 000 ep ochs of 4 pr esent ations) initial conditions for the 2-2-1 network
t rained on the exclusive-or problem. From the figur e we thus conclude the
choice of p :::; 0.5 is mor e than a convenient symmetry-breaking default; it is
quite necessary to obtain low levels of non convergent behavior.

1 Num bers ranged from 8 to 8355, dependi ng on availability of computational resour ces.
T hose data points calculat ed with small samples were usually surrounded by data points
with larger samples .
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Scenes from exclusive-or

271

Why do networks exhibit the behavior illustrat ed in figure I ? While some
might argue th at very high initial weights (i.e., p > 10) lead to very long
convergence times since th e derivative of the semilinear sigmoid fun ction is
effectively zero for large weight s, this does not explain the fact th at when p
is between 2 and 4, th e non-s-convergence rat e varies from 5 to 50 percent.

Thus, we decided to utilize a more determinist ic approach for elicit ing the
st ructure of init ial conditions giving rise to t-convergence. Unfortunately,
most networks have many weights,and thus many dimensions in initial­
condit ion space. We can, however, examine two-dimens ional slices through
the space in great det ail. A slice is specified by an origin and two orthogo­
nal directions (the X and Y axes) . In the figures below, we vary the initi al
weights regularly throughout th e plane formed by the axes (wit h the origin in
the lower left -hand comer) and collect th e resul ts of running backpropagation
to a particular time limit for each initial condition. The map is displayed
with grey-level linearly relat ed to time of convergence : black meaning not
i-convergent and white representing th e fastest convergence time in th e pic­
ture. Figure 2 is a schemati c representation of the ne tworks used in this and
the following experiment . The numbers on the links and in the nodes will
be used for identification purposes. Figures 3 through 11 show severa l inter­
est ing "slices" of the the initial condit ion space for 2-2-1 networks t rained
on exclusive-or. Each slice is compactly identified by its nine-dimensional
weight vector and associated learning/momentum rates. For inst ance, the
vector (-3 + 2 + 7 - 4X + 5 - 2 - 6Y ) describes a network wit h an init ial
weight of -0.3 between the left hidd en uni t and the left inp ut unit. Likewise,
"+5" in th e sixth position represents an initial bias of 0.5 to the right hidden
unit. The letters "X" and "Y" indic at e th at the corre sponding weight is
varied along the X - or Y-axis from -10.0 to +10.0 in steps of 0.1. All th e
figures in th is pap er contain the results of 40,000 runs of backprop agation
(i.e., 200 pixels by 200 pixels) for up to 200 epochs (where an epoch consists
of 4 traini ng examples).

Figures 12 and 13 present a closer look at the sensitivity of backpropa­
gation to initial condit ions. T hese figures zoom into a comp lex region of
figure 11; the captions list th e locat ion of the origin and step size used to
generate each picture.

Sensiti vity behavior can also be demonstrat ed with even simpler fun c­
tions . Take th e case of a 2-2-1 network learning th e "or" funct ion. Figur e 14
shows the effect of learning "or" on networks (+5 + 5 - I X + 5 - 1Y + 3 - 1)
and varying weights 4 (X- axis) and 7 (Y-axis) from - 20.0 to 20.0 in ste ps
of 0.2. Figur e 15 shows the same region, except that it partitions the dis­
play according to equivalent solution netwo rks afte r i-convergence (200 epoch
limit) , rather than the t ime to convergence. T wo netwo rks are considered
equivalent ' if their weights have th e same sign. Since there are 9 weights,

2For rendering purposes only. It is ext rem ely difficnlt to know precisely the eqni valence
classes of solutions, so we ap proximated .
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Figure 2. Schematic network.

Figure 4. (H- 7+6+0-3Y + 1X + 1)
TJ = 2.75 a = 0.0.

Figure 6. (Y,X -3+6+8+3+1+ 7- 3)
TJ =3.25 a =0.00.
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Figure 3. (-5 - 3 + 3 + 6Y - 1 - 6 +
7X )TJ = 3.25 a = 0.40.

Figure 5. (-5+5+1-6+3XY+8+ 3)
TJ = 2.75 a = 0.80.

Figure 7. (Y +3- 9-2+6+7-3X +7)
TJ = 3.25 a = 0.60.
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Figure 8. (-6- 4XY - 6- 6+9- 4- 9)
1) = 3.00 a = 0.50.

Figure 10. (+l + 8 - 3 - 6X - 1 +
1 + 8Y) 1) = 3.50 a = 0.90.

Figur e 12. (-9.0, - 1.8) step 0.018.

Figure 9. (-2+l+9-1X -3+8Y - 4)
1) = 2.75 a = 0.20.

Figure 11. (+7+4 - 9 - 9 - 5Y -3+
9X) 1) = 3.00 a = 0.70.

Figure 13. ( - 6.966, - 0.500) step
0.004.
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there are 512 (29 ) possible network equivalence classes. F igures 16 through
25 show successive zooms into the cent ra l swirl identified by the XY coor ­
dinate of the lower-left corner and pixel step size. After' 200 ite rat ions, the
resulting networks could be partit ioned into 37 (both convergent and noncon­
vergent ) classes. Obv iously, t he smooth behavi or of t he i-convergence plots
can be deceiving, since two initial conditions, arbit rarily alike, can obtain
quite different final network configuration .

Not e the t riangles ap pearing in figures 19, 21, 23 and the mosaic in fig­
ure 25 corre sponding to the area that did not converge in 200 iterations in
figure 24. The tri angular boundaries are similar to fractal structures gener­
ated under it erated funct ion systems [2]; in this case, the iterated funct ion
is the backpropagation learning method . We propose that these fractal-like
boundaries arise in backpropagation due to t he existence of multiple solu­
tions (attracto rs) , the non zero learning paramet ers , and the non linear de­
terministic nature of the gradi ent descent approach. When more than one
hidden un it is utilized , or when an environment ha s intern al symmetry or
is very underconstrained, there will be multiple attractors corres ponding to
the large number of hidden-unit permutations that form equivalence classes
of functionality. As the number of solutions available to the gradient descent
method increases, the mor e complicated the nonlocal interactions between
them. This explains the pu zzling result that several resear chers have noted,
that as more hidden uni ts are added, instead of speeding up , backpropaga­
tion slows down (e.g. , [13]). Rather than a hill-climb ing met aphor with local
peaks to get stuck on, we should instead think of a many-body metaphor:
The existence of many bodies does not imply that a particle will take a sim­
ple path to land on one. From this view, we see that Rumelhart et aL's claim
of backpropagation usually converging is due to a very tight focus insid e the
"eye of the storm."

Could learning and moment um rates also be involved in the storm? Such
a question prompted another study, this time focus ed on the int eraction of
learn ing and momentum rates. Rather than alter the ini t ial weights of a set
of networks, we varied the learning rat e along the X axis and momentum rate
along the Y axis . Figures 26, 27, and 28 were produced by training a 3-3-1
network on 3-bit parity until z-convergence (250 epoch limit) , Tab le 1 lists the
initial weights of the networks trained in figures 26 through 31. Examination
of the fuzzy ar ea in figure 26 shows how small changes in learning and/ or
moment um rate can dr astically affect i-convergence (figures 30 and 31).

Discussion

Chaotic behavior has been carefully circumvented by many neural network
researchers (e.g., throug h the choice of symmetric weights by Hopfield [5]),
but has been reported in increasing frequency over the past few years [1, 4,
6, 12, 16, 18]. Connectionists , who use neural models for cognitive modeling,
disregard these reports of ext reme nonlinear behavior in spite of common
knowl edge that nonl inearity is what enables network mod els to perform non-
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Figure 14. (- 20.00000, -20.00000)
st ep 0.200000.

Figure 16. (-4.500000, - 4.500000)
st ep 0.30000.

Figure 18. (- 1.680000, -1.350000)
ste p 0.002400.

Figure 15. Solution networks.

Figure 17. Solution networks.

Figur e 19. Solut ion networks.
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Figure 20. ( -1.536000, - 1.197000)
step 0.000780.

Figure 22. (- 1.472820, - 1.145520)
step 0.000070.

Figure 24. (- 1.467150, - 1.140760)
step 0.000016.
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Figure 21. Solution networks .

Figure 23. Solution networks .

Figure 25. Solut ion networks.
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Figure 26. Tf
(0.0, 1.25).

(0.0, 4.0) a Figure 27. Tf
(0.0, 1.25).

(0.0,4 .0) a

Figure 28. Tf
(0.0 ,1.2 5).

(0.0, 4.0) a Figure 29. Tf = (3.456, 3.504) a =
(0.835,0 .840) .

Figure 30. Tf
(0.59,0.62) .

(3.84, 3.936) a
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Figures 26, 29, 30 Figure 27 Figure 28
Weight 1 - 0.34959000 -0.34959000 - 0.34959000
Weight 2 0.00560000 0.00560000 0.00560000
Weight 3 -0.26338813 0.39881098 0.65060705
Weight 4 0.75501968 - 0.16718577 0.75501968
Weight 5 0.47040862 - 0.28598450 0.91281711
Weight 6 - 0.18438011 -0.18438011 -0.19279729
Weight 7 0.46700363 -0.06778983 0.56181073
Weight 8 - 0.48619500 0.66061292 0.20220653
Weight 9 0.62821201 - 0.39539510 0.11201949
Weight 10 0.90039973 0.55021922 0.67401200
Weight 11 0.48940201 0.35141364 - 0.54978875
Weight 12 - 0.70239312 - 0.17438740 - 0.69839197
Weight 13 -0.95838741 -0.07619988 -0.19659844
Weight 14 0.46940394 0.88460041 0.89221204
Weight 15 -0.73719884 0.67141031 -0.56879740
Weight 16 0.96140103 - 0.10578894 0.20201484

Table 1: Network weights for figures 26 through 30.

trivial computations in the first place. All work to dat e has noticed various
forms of chaos in network dynamics, bu t not in learn ing dynamics. Even if
backpropagation is shown to be non chaoti c in the limi t , this still does not
preclud e the existence of fractal boundar ies between attractor basins since
ot her non chaotic nonlinear systems produce such bound aries (i.e., for ced pen­
dulums with two attractors [7]).

What does this mean to the backprop agati on community? From an engi­
neering applicat ions standpoint , where only the solution matters, nothing at
all. When an optimal set of weights for a par ticular problem is discovered,
it can be reproduced through digital means . From a scient ific standpoint,
however, this sensitivity to init ial conditions demands that neural network
learning results must be specially tr eat ed to guarantee replicability. When
th eoretical claims are made (from experience) regarding the power of an
adaptive network to model some phenomena, or when claims are made re­
garding the similarity between psychological da ta and network perform ance,
the ini tial con dit ions for the network need to be precisely specified or filed
in a public scientifi c database.

What about the future of backpropagation ? We remain neutral on the
issue of its ultimate convergence, but our result points to a few directions for
improved methods. Since th e slowdown occurs as a result of global influences
of multiple solutions, an algorithm for first factoring th e symmetry out of
both network and training environment (e.g., domain knowledge) may be
helpful. Furthermore, it may also t urn out that search methods that harness
"st range at tractors" ergodically guaranteed to come arbitrarily close to some
subset of solutions might work better tha n methods based on st rict gradient
descent . F inally, we view this result as strong imp etus to discover how to
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exploit the informat ion-creat ive aspects of nonl inear dynamical systems for
future models of cognition [15].
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