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Abstract. Occam's razor, the principle of parsimony, is a tool that
finds application in many areas of science. Its validity has never been
proven in full generality from first principles. Convergent guessing is
the property th at as more examples of an input-output mapp ing are
provided , one would expect the modelling of that mapping to become
mor e and more accurate. It too is widely used and has not been proven
from first principles. In thi s paper it is shown that Occam 's razor and
convergent guessin g are not independ ent - if convergent guessing
holds , so does Occam 's raz or. (The converse of thi s statement is also
true , providing some extra condi tions are met.) Therefore, if you have
reason to believe th at your guesses are getting mor e accurate as you
are fed more data, you also have reason to believe that application
of Occam's razor will likely result in better guesses. Rather than at­
tri butes concerning how an ar chitecture works (e .g. , it s coding length ,
or its number of free par ameters) , thi s pap er is concern ed exclusively
with how the ar chitecture g uesses (which is, aft er all , what we're really
interest ed in). In this contex t Occam's razor mean s that one should
guess according to the "simplicity" of an archite cture's guessing behav­
ior (as opposed to according to the sim plicity of how the ar chi tecture
works). This pap er deduces an optimal measure of the "simplicity"
of an architecture's guessing beh avior. Given this op timal simplicity
measure, this paper th en establishes th e aforementioned relationship
between Occam's razor and converg ent guessing. T his paper goes on
to elucidate the many oth er advantages, both practical an d theoreti ­
cal, of using the optimal simplicity measure. Finally, this paper end s
by exploring the ramifications of th is analysis for the question of how
best to measure t he "complexity" of a syste m.
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Introduction

David H. Wolpert

This pap er is concerned with the quest ion of how best to generalize from a set
of input-output examples (the learning set) to a full mapping from the input
space to the output space. Many of the processes of inferring mathematical
theories from data can be viewed as such a generalizat ion problem [24]. More
pro saically , much of the resear ch in machine learning, neural nets , and art ifi­
cial in telligence is concern ed wit h this prob lem [3,5,12,14,15,17,18,21,22,25­
30].

For the pu rposes of thi s pap er , Occam's raz or is taken to mean that,
given a learning set of samples of an input- output mapping , cho osing be­
tween two generalizers of that learning set according to whi ch is simpler
(ac cording to an appropriate simplicity measur e) will, on average, result in
better generalizing (i.e. , better guessing of what output should corre spond to
a novel input). In other words, Occam 's razor is a way to build (hopefully)
op timal generalizers. Convergent guess ing refers to the shrinking of guessing
error, on average, when the cardinality of the learning set increases. Mu ch
of machine learning is devoted to the problem of t rying to ma ximi ze the rate
of convergent guessing in certain severely limited contexts . Both convergent
gues sing and Occam's razor share the property that their utility is ultimately
dep endent on the kinds of generalization pr oblems one is likely to encounte r
in our universe. As such, it might be impossible to provide a rigorous first
principles proof of eit her one .

Rather than t ry ing to prove eit her Occam's razor or convergent guessing
from first principles, it is shown here that one of them necessitates the other
(for large enough learning sets) . In this sense, the validity of Occam's razor
does not follow from the utility of limiting the number of degrees of freedom
of the guesser , or some vague observation that nature works parsimoniously,
or anything of this sort. Rather , it is a simple consequence of convergent
guessing; if convergent guessing app lies, so does Occam's razor , and vice
versa . This relationship between convergent guessi ng an d Occam's razor
shouldn't be too surpri sing. One would expect both convergen t guess ing
and Occam's raz or to apply if (and only if) the fun ction to be guessed that
created the learning set has some "regularity" in its structure.'

This paper concent rate s on the guessing distribution of architect ures,
that is, how they guess in response to a novel input . It complete ly ignores
how the architectures are implement ed. All implementation considerat ions
(e.g., coding length, number of free parameters) are irrelevan t to the issue of
generaliza tio n accuracy. Minimizing such variables canno t directly gain you
anything in generalizat ion accuracy, since they are not directly concerne d
with generalization accuracy. Such accuracy, and it s relation to Occam's
razor and convergent guessing, is inst ead det ermined in toto by the guessing
distribution. Onl y by concent rat ing on the guessing dist ribution can whole

l Indee d , one can use eit her the usefulness of Occam's razor when guess ing , or the
validity of convergent guess ing, as a definit ion of "regula rity" in the structu re of th e
fun cti on that produced the learnin g set.



Occam's Razor and Convergent Guessing 321

categories of ar chitectures be tr eated at once (as opposed to on a case-by-case
basis). Moreover , even when working with a single par ticular architecture,
it is only by concentrating on the guessing distribution that one can hope to
prove anything concern ing the efficacy of Occam's razor and it s relationship
to convergent guessing .

The complete ignoring of implementation issues is one of the more im­
portant distinctions between th e approach of this paper and previous work
on the subject of Occam's razor (e.g., [16, 1]). This exclus ive concent ration
on the guessing distribution is essential if one wishes to make bro ad state ­
ments concerning Occam 's razor. In other words, it is essential if one wishes
to address one of the most important issues of modern science: why does
Occam's razor, which underlies the enti re scientific enterprise, work so well
in so many contexts?

Viewed in terms of guess ing behavior , convergent guess ing mean s that
the average guess of the guessing distribution gets closer and closer to th e
"correct" answer as more and more input-output examples are made kno wn.
It holds if there is a correlation between the architec ture and the "correct"
input-output function that genera tes the learning sets. Often a simpli city
value is associated with a particular implementat ion of an archite ct ure. Oc­
cam's razor says that , on average, using the simplest implementation will
give guesses close to the "correct" ones . T his paper deduces an optimal mea­
sure of the simp licity of a given imp lementation of an architecture in te rms
of the architecture's guess ing behavior (not in te rms of how the architec­
ture works). The minimal such sim plicity value turn s out to occur a t the
guess made mor e often than any other by the possible implementations of
the architecture. T herefore Occam's razor says to make this gues s. Rou ghly
speaki ng, convergent guessing imp lies Occam's razor because if the average
of the gues sing is getting closer to the "correct " answer , then the mode of
the guessing should be getting closer to it as well.

Section 1 of this paper is a presentation of a mathemat ical formali sm
for addressing Occam's razor and convergent guessing in an ar chitecture­
independent manner. Many if not all of the conventional means of apply­
ing Occam' s razor are subsumed under this formalism (e.g ., minimizing the
number of axioms in a theory, minimizing the codi ng length of a computing
device, minimizing the number of free parameters in a neural net).

Section 2 is an elucidation of some of the problems wit h the conventional
ways of ap plying Occam 's razor and how to remedy them. It is in this sec­
t ion that t he optimal simplicity measure is derived . This section goes on to
elucidate the many advantages of using this op timal simplicity measure. One
such advantage is th e fact that because thi s optimal measure is determined
solely by the guess ing distribution, it allows Occam 's razor to be used even
when the architecture possesses no obvious "hand le" to be minimized (like
a number of free parameters ). Being independent of imp lementation consid­
erations, Occam 's razor as form ulated in this paper is not restricted by such
considerations. This section ends by relating the optimal simplicity measure
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to those measures contained in the "conventional ways of explo it ing Occam's
razor," summarized in sect ion l.

Section 3, with the help of appendices A and B, proves the relationship
between Occam's razor and convergent guessing. This relationship is a direct
consequence of using Occam's razor with the optimal simplicity measure
deduced in section 2. As su ch this relationship is yet another reason (in
addition to all those mentioned in section 2) for using the optimal simp licity
measure rather than any of the convent ional simplicity measures.

Occam's razor is intimately related to many of the suggested measures of
a sys tem 's "complexity" (e.g., algorithmic information complexity [4], logi­
cal depth [2J, thermodynami c depth [13]). Accord ingly the an alysis of this
pap er has ramifications for th e question of how best to measure a system's
comp lexity. Section 4, which can be profitably read without first reading
sections 1 through 3, describes these ramificatio ns in some det ail.

1. Occam's razor and conver gen t guessing

In this section the bas ics of a formalism for investigating Occam's razor and
convergent guessing is present ed. This formalism is architecture-i ndependent,
i.e., it can be applied to any comput ational ar chitecture capable of support­
ing Occam's razor. Special cases of how this formalism applies to Occam's
razor ar e minimizing the coding length of a tape fed into a universal Tur­
ing machine (UTM) [9], minimizing the number of weights in a neural net
(NN) [21], striving for parsimony of ru les in a classifier system (CS) [8J, and
Rissanen's minimum description length scheme (MDL) [20J. This section
starts by defining archite ctures and simplicity measures, the cent ral concepts
in the analysis of this pap er. This section ends by giving Occam's razor and
then convergent guessing rigorous definitions in terms of these concepts.

1.1 A r chitectures and sim p licity mea su res

In investigating Occam's razor we are interested in functions from inputs to
output s. In this paper we will assume that the inputs E X ~ Rm and the
outputs E Y ~ R" . Although the an alysis of this paper is phrased for n = 1,
it carries over for any n. A function f(x ) from X to Y is called a generating
or parent function. A finite set of samples of a parent function is called a
learning set , and is usually ind icated by the symbol (): () E {({X} x {Y })P;
P E Z+} . For mathematical convenience, no learning set is allowed to cont ain
more than one element with the same x value; it is assumed that there are
no inconsistencies or duplications in the learning set. A quest ion, usually
indicated by the symbol q, is any element of the input space X. Our problem
is how best to guess t he output corresponding to an arbit rary ques tion, given
only the learning set, i.e. how best to generalize the full function from only
some instances of it .

To apply Occam's razor, any function from inp ut s to outputs must be
broken up into two parts. T he first part is a set of elements called the defin-
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ing set and is usually indicated by the symbol ¢J. The second par t , called
a method , is usually indi cated by the symbo l M and maps the defin ing set
to functions from inputs to outputs. For example, the weights and connec­
tivity in a neural net could serve as a defining set , wit h the me thod being
the mapping of such weights into a fun ction taking inputs to outputs. A
particular method M tog ether with a set of defining sets cl} and input and
output spaces X and Y is called an architecture, {M , cl},X,Y }. Formally,
M : (¢J E cl}) ....... {f : X ....... Y}. ¢J uniquely defines the guessed fun cti on in all
of its details, while M is the method by which thi s defining is achieved. A
defining set is loosely equivalent to what Pearl calls a "sentence," whereas a
method is loosely equivalent to what he calls an "interpreter" [16].

If M is a method and ¢J is a defining set, (M, ¢J) is defined to be the set
of all pairs , {question, output to the question guessed using M and ¢J}. It is
the guessed function defined by ¢J. The value of this fun cti on for an input q
is written as (M, ¢J)(q) .

To apply Occam's razor, it is necessary to have a measure of the "sim­
plicity" of a function (M, ¢J). As commonly used (see examples below) , such
a measure is a function only of the defining set. A simp licity measur e of a
defining set ¢J is written as 5 (¢J ) : {5 : (¢J E cl} ) ....... D ~ R+}. 5 is surjective
over the set D. Along with D , cl} , the set of allowed arguments of a simp licity
measure 5, is implicit when writing "5(¢J)" . To avoid infinities, in practice
D is bounded from above. To norm alize different simplicity measures and
different ar chitectures, we require that for any simp licity measure 5 and any
architecture {M, cl}, X ,Y} :3 ¢J E cl} such that 5(¢J) = O. We want such a nor­
malization point to correspo nd to as uncomplicated a definin g set as possible,
so higher 5(¢J) means a more complicated defining set ¢J.

The term "simplicity" is used becaus e "information content" already
means som ething [23], and "complexity" doesn 't necessaril y mean the quan­
tity that must be minimized to apply Occam's razo r; the term carr ies other
connotations as well (see, for example, [13], and chapter 12 of [9]).

Some examples of methods, defining sets, an d simplicity measures appear
in table 1. In example 5 in t ab le 1, k == the smallest possible encoded TM
length, given a particular coding scheme for the UTM. It is subtracted from
the simplicity measure so that the measure mee ts the requirement that 0 E D .
Similarly, in example 4 we subtract 1 when calculat ing the simplicity measure
to take car e of the fact t hat every TM mu st have a st art state [9].

Occam's razor means use the defining set with the smallest simpli city
measure subject to some restriction (usually that of reproducing the learning
set). For example, in example 1 of table 1 Occam's razor says that, given a
set of basis functions, you should generalize from a learning set by finding the
smallest subset of that set of basis fun ctions such that a linear combination
of the functions of that sub set goes thro ugh all the points in the learning
set. That linear combination of basis fun ctions is your guess for the parent
function. In example 3, Occam 's razor says that you should generalize from
a learning set with the smallest neural net that can repr odu ce the learni ng
set. A more formal statement of Occam's razor occurs later in this sect ion .
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Method Defining set Simplicity measure
1. input = x; output = The set {ad. n, the cardinality of

2:;=1aihi(x) {ad ·

2. Using math an d The set of ax ioms . Vague; ap proximately
established science, given by the nu mber
use the set of of axiom s.
axioms to create a
theory (i.e. a map-
ping from inputs to
outputs).

3. The input-output The architecture Number of hidd en
algorithm of conven- of a particular net, neurons (or alterna-
t ional feedforward suitably encoded. tively the number
neural nets. of weight s) in a net .

4. T he inp ut-outpu t T he state transit ion T he numb er of st at es
algorit hm of table of a particular in the transit ion tabl e
Turing machines. TM. of a particular TM,

-1.

5.

6.

The input-output
algorithm of a
universal Turing
Machine.

Rissanen's MDL
scheme.

The code of a par­
ticular Turing
machine, encoded on
a UTM's tape.

T he parameterized
conditional dist ribu­
ti on fe ,k(x t+1IXt)
along wit h the
learn ing set {xn } .

Length of the code of
the Turing machine
encoded on a UTM's
tape, -k.

See [20J.2

Table 1: Some examples of methods, defining sets, and simplicity
measures.

Not hing in the list of examples making up table 1 is supposed to be
un ique. For example, some might prefer to measure the simp licity of a Turing
machine as the nu mbe r of steps it takes to reproduce the learning set. Using
such a measure rather than the one given in the list above is akin to measu rin g
the complexity of a sequence of numbers in terms of it s logical depth [2] rather
than in terms of it s algorithmic information com plexity [4].

2Note the peculiarity of llissanen's scheme, which states that since only conditional
probability distributions are used, no guessing can be done without providing some data
points, i.e., the defining set must contain the elements of the learning set.
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Although "simplicity" isn't synonymous with Shannon's information, Shan­
non's information can be used as a simplicity measure for certain methods
(as with Rissanen's MDL scheme - see [7]). Similarly, although t hey are
not necessarily identical, simplicity and complexity are intimately re la ted
wit h one another. For example, the algorithmic information complexity of
a sequence of numbers is simply the minimal simplicity value of a defining
set that produces t he seq uence, using the method and simplicity measure of
example 5.3 ,4 The connection between simplicity measures and complexity is
examined in more detail in section 4.

1.2 Required properties of architectures and simplicity measures

We do not want to allow information from a learning set to be hidden in a
method, t hereby allowing us to reproduce the learning set using defining sets
with simplicity measure arbitrari ly (and meaninglessly) close to O. Therefore
it is required that any method must be able to reproduce any learn ing set
exactly. This means that the method cannot have any data "hidden" in it
pertinent to some particular learning set . Formally,

(1.1) For all architectures {M, <P, X, Y} and for all learn ing sets B= {({X }
x {Y})p; p E Z+} of finite cardinality, there exists a defining set ¢ E <P
such that B~ (M , ¢).

For example 1 from the list above, req uirement (1.1) will be met if the
hi ( x) are a complete basis for the space X X Y of allowed input- ou t put func­
tions . For the Turing machine examples, (1.1) is roughly equivalent to t he
requirement of computational universality. For the conventional feedforward
neural net of example 3, it is equivalent to the requirement that for every

3Str ict ly speaking, to make the correspondence between algorithmic inform ation com­
plexity and minimal simplicity measure we need to ma ke a corres pondence between a finite
sequence of numbers and an input- output mapping . Per haps the simp lest way to do this
is to use the same simp licity measure as in example 5, but to modify the defining sets to
be the ent ire conte nts of the tape fed to the UTM and to mod ify the method so that the
domain of the input-output mapping is a sing le (arbitrary and unspecified) number. The
sequence of numbers generated by running the UTM is then viewed as the decimal ex­
pansion of the output of t he architecture, where thi s output is a rational number between
0.0 and 1.0 whose decimal expansion consist s of a finite number of digits (assum ing the
UTM halts ) . The defining set now includes all of the tape fed in to the UTM . Under this
scheme, all learn ing sets have cardinality 1, and equation (1.1) (see below) is imm ediate.
Since (1.2) (see below) is a property of defining sets (i.e., a property of the rules for run­
ning th e TM mapping the input to the output ) an d not of how inpu ts and outpu ts are
interpr eted , it too holds, simply because it holds for the TM examples in the list above.

4TMs , whether used in simp licity meas ures or in algorit hmic information complexity,
suffer from the Halt ing Pro blem [9]. As a resu lt , t he funct ion (M, ¢)(q) in exa mples 4
and 5 might not be defined for all q EX. This difficulty can be avoided, if so desired:
simp ly set a maximum on the num ber of possible steps of the TM. Essentially, this is
equivalent to red ucing the TM to a determinist ic finite automata. Anot her way to avoid
the problem of a TIVr that never halts is to simp ly expand the output space to include a
new symbol representing "no answer."
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finite learning set there is a set of weights such that the resultant neural net
reproduces the learn ing set.S ,6

Since the simplicity is supposed to correspond to Occam's razor as hu­
mans usually use it, we make two additional requirements of 5(¢i), the second
requirement being a logical consequence of the first. We state these require­
ments here for the case where we desire exact reproduction of the learning
set and where <P is finite. (<p is finite, for example, whenever the system is
being emulated on a finite digital computer.) Nonfin ite <P will be dealt with
in section 2.

(1.2) Take any architecture {M,<p,X,Y}, defining set ¢i E <P, simplicity
measure 5, and learning set B~ (M,¢i). Then for all simplicity values
s' E D where s' > 5(¢i), there exists a defining set ¢il E <P such that
B~ (M,¢il) and 5(¢i1) = SI.

(1.3) We are given an arch itecture {M, <P,X, Y }, a learning set B E {( {X} x
{Y } )P; P E Z+ } of finite cardinality, and a simplicity measure 5 . Let
<P (1 be the set of all defining ¢i E <P set s such that B ~ (M , ¢i ) an d
5(¢i) = 0". T hen the cardinality of <P(1 is a nondecreasing funct ion of 0"

over the range D.

In (1.3), <P(1 is implicitly a function of M and B as well as 0".

Intuitively speaking, (1.2) is the requirement that if you can reproduce
a learni ng set with a simple system, then you can reproduce it with a more
complicated system as well. If need be, the extra complexity can be designed
to have no effect on the guessing.

Equation (1.3) is the requirement that the more complicated a defin ing
set ¢i, the higher the number of functions with its simplicity (i.e. , the higher
the number of functions in the set {M, ¢il}; ¢il E <PS(q,). In other words, the
more complicated a defining set is required to be, the less of a constraint that
requirement imposes on its allowed guess ing. A property similar to (1.3) also
appears in Pearl's work on parsimony [16]. Although (1.2) implies (1.3), the
reverse is not true. Together, (1.2) and (1.3) relate the simplicity of a set of

SIn [30] it is shown that the two variations of (1.1) also hold: "for all defining sets ¢ E <1>

and for all learning sets 0 E {({X} x {Y})P; P E Z+ }, there exists a method M such that
oE (M, ¢)" and "for all met hods M and all defining sets ¢ E <1>, t here exists a learning set
osuch that 0 E (M, ¢)." Other aspects of the mathematics of met hods and defining sets
are investigated in [30] as well. For examp le, it is shown there how to perfo rm arithmetic
operations over the space of met hods .

6Somet imes (1.1) has to be amended so as to not run astray of car dina lity arguments .
For example, for a meth od taking defining sets consist ing of a finit e numb er of integers,
(1.1) cannot be obeyed exactly for learning sets consisting of finite numbers of rea ls. In
such cases, (1.1) is assumed to be mod ified to read "Over an ar bitrar ily large region , for
all met hods M , and for all learning set s e, there exists a defining set ¢ such tha t a set of
numbers that constitu te an arb it ra rily good (bu t not necessarily perfect) approxima tion
to the elements of eis cont ained in (M, ¢) ." ("A rbitrarily good ," for example, could mean
that the sum of the squar es of the differences betwee n e and (M ,¢) is less tha n some
pre-set threshold , 6, over some region of quest ions.) For these cases the variat ions of (1.1)
mentioned in footnote 5 are modified in a similar way.
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defining sets to the number of degr ees of freedom that set has, as meas ured
by its abi lity to reproduce learn ing sets.

For example 1 from the list above, (1.2) follows from the fact that an+l can
always equ al zero, so any fun ction that can be repr esented using n coefficients
can also be represented using n + 1 coefficient s. For example 3, (1.2) follows
from the fact that the values of addit ional weights can always be set to zero.
Similarly, for the Turing machine examples it follows from the fact that the
state transition table can be designed so that additional st at es ar e never
reached. Every simplicity measure I know of that is used for generalizing
from a learning set either obeys (1.2) and (1.3) directl y or can be modified
slightly so as to obey them.

1.3 R estrictions imposed on defining sets by learning sets

In applying Occam's razor, one does not work with the ent ire set <I> . In
general, one works with a subset of <I> that is det ermined by the learning set.
For example, one might only consider those defining sets that , in concert with
the met hod, reproduce the learn ing set. Such a restriction on <I> is reflected
in the phrasing of (1.1) through (1.3 ). It is desir able, however , to expand
t he formalism to allow more general kinds of restri ctions than those of (1.1)
through (1.3) . This entails modifying (1.1) through (1.3) .

Formally, restrict ions on <I> are expressed via mappings from <I> to <I>; given
an architecture (M, <I> , X , Y) and a learning set 8, a restri ction RM,u(<I» is a
mapping, determined by M and 8, from <I> to a subset of it self: {RM,u : <I> -+

<I> ' ~ <I>}. Requiring rep roduction of the learning set is a restriction - given
the method M and learning set 8, it rep laces the set of all ~ E <I> with the set
of all ~ E <I> such that (M, ~) :J 8. If the data is noisy, it might be desired
to rest rict our attention to some set of defining sets other than those which
perfectly reproduce the learni ng set. The definition of rest riction given here
is broad enough to accommodate such situations.

Let 8 = {(Xl , Yl) , (X2, Y2) , .. . (XN,YN)}. Then the 8-restri cted input space,
Xu, is defined as the set X with 8's input values removed ; X - {xI} - {X2} ­
.. . - {XN}. In this paper, to allow the ana lysis to be as broad as poss ible, a
"restricted" form of (1.1) will be used:

(1. 1') For all architectures {M , <I> ,X, Y} , for all learn ing sets 8 E {({X} x
{Y} )Pj P E Z+} of finit e cardinality, for all pai rs (x E Xu, Y E Y) , and
for all restrictions R, there exists a defining set ~ E RM,u( <I» such that
(M, ~)(x) = y.

The restricted form of (1.1) says that if you have a learning set and
resultant restriction on what defining set you are allowed to consider, you
can st ill find a defining set to guess any input-output pair, so long as that
pair lies outside of the learning set that determined the restriction . If the
rest rict ion is reproduction of the learning set , then th e restricted form of (1.1)
holds for a particular architecture iff the unrestricted form of (1.1) holds for
that architecture. Whether the restriction is reproduction of the learning
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set or something else, no restriction-arch itecture pairs will be allowed if they
do not obey the restricted form of (1.1). From now on, whenever "equation
(1.1)" is referred to in this paper , what is really meant is the restrict ed form
of (Ll), (Ll') .

In a similar manner , whenever "equat ion (1.2) " is referred to what is
really mean is the restricted ·form of (1.2):

(1. 2') Take any architecture {M, <I>, X, Y }, learn ing set B E {({X} x {Y} )P;
P E Z+} of finite cardinality, restrict ion R, defin ing set <jJ E RM,o(<I»,
simplicity measure 5, and pair (x E X o, (M, <jJ )(x)). Then for all
simplicity values 17 E D where 17 > 5 (<jJ ), there exis ts a defining set
<jJ' E RM,o(<I» such that (M , <jJ') (X) = (M , <jJ)(x) and 5(<jJ') = 17.

Simil arly, from now on "equation (1.3 )" means the restricted form of (1.3) :

(1.3') We are given an archit ecture {M, <I>, X, Y}, a learni ng set BE {({X } x
{Y})P; P E Z+}, a restriction R, and a simplicity measure 5. Let <I>",
b e the set of all defining sets E RM,o(<I» with simplicity measure 17.

Then the cardinality of <I>", is an increasing function of 17 over the range
of D.

Note that <I>", is implicit ly a funct ion of M and Bas well as 17. As before , we
ar e assuming that <I> is finite. For the restriction of reproducing the learn ing
set, (1.1) through (1.3) are logically equivalent to (1.1') through (1.3'); for
this case the restricted forms imply the unrestricted forms and vice versa.

For the rest of this paper, all architectures, simplicity measures, and re­
strict ions are assumed to obey the restricted forms of (1.1) through (1.3) .
Not e that by performing the analysis in the context of restrictions, we are
implicitly concerned with the guessing distribution. The analysis has been
narro wed to conside ration of the behavior of the generalizer in response to a
particular question , given that the learn ing set is reproduced (or given that
some other restriction is met) . Moreover, by considering B-restrict ed inp ut
spaces we are making the analysis completely independent of the irrelevant
and trivial issu e of reproducing the learning set (or meeting some other re­
st rict ion) . Anyone who can write a lookup table can reproduce a learn ing
set - we are afte r bigger game here .

1.4 Occam's razor

We now have the terminology necessary for giving a precise formulation of
Occam's razor. For the pur poses of this paper Occam's razor is the following
statement : "Of two possible explanat ions for a set of data, with no way to
choose between the two explanations except according to their simp licity,
choosing that explanation that is simpler gives better guessing, on average."
Translating, "set of data" means a learning set B generat ed from a parent
function, said fun ct ion constituting the "corre ct" explanat ion of the data.
(The cardinality of that learn ing set will be indicated by the symbol n.)
"Simpler" means lower simplicity measure. An "explanation" for a learn ing
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set is an element of RM,o(<I». "Be tter guessing" refers to guess ing behavior
for questions chosen from X o- through the restriction the "set of data" itself
fixes the guessing behavior for all ot her questions . Translated in full, Occam's
razor is the following statement: "Assume you are given an architecture,
(M,<I>,X, Y), a parent fun ction f: X -+ Y, a learning set cardinality n , a
simplicity measure 5 , and a res trict ion R. Randomly pick a learning set 0
with cardinality n such that f (x) J O. Take two defining sets cPl and cP2, both
contained in RM,o(<I» , where 5( cPl) < 5( cP2) ' T hen, on average, generalizing
from 0 using (M, cPl) gives guesses closer to f (x E X o) than generalizing with
(M, cP2)'" "On average" means averaged over all such pairs of defining sets,
over all n-element learning sets 0 chosen from f( x), and over all questions
from X o. It is implicitl y assume d that the card inality of X exceeds n so that
X o is not empty. For mathematical convenience , we will here only consider
defining set s cPl and cP2 where 5( cPl) is the largest simplicit y value smaller
t han 5( cP2)'

To define Occam 's razor in a complete ly rigorou s manner, firs t make the
notational definition

( ff)
- L:constraints st uff

st u (constraints) = "
L."constraints 1

(J 's rep lace L:' s for continuous constra ints. )
We will say that "Occam's razor applies" for an archite ct ure (.Al, <I> , X ,Y) ,

a cardinality n, a parent funct ion f( x ), a simp licity measure 5, and a rest ric­
t ion R, if the Occam error,

EO ccam == \L:s"{(I(M, cPij )(q) - f( q)l)4>i,ERM,ei(<)\ ),S(4>i,)=S')­

(I(M , cP:j) (q)- f (q) I)(4);,ERM,ei (<)\) ,S(4>;,)=S,,) })
(Oi C!(x),q EXei)

is less than zero. In this definit ion of EOccam t he averaging over learni ng sets
Oi comes first , i.e. , th e sum over all possible learning set s is the outermost
sum going into the average . i indexes these learning sets, all of which are
assumed to have cardinality n. T he summing over 5 " is over all simp licity
measure values meeting the following requirement : for the learning set Oi and
the method M , t here is both at least one defin ing set from the restricted set of
definin g sets with that simp licity measure value 5 ", and there is at least one
defining set from the restricted set of defining sets with simplicity measure
value sm aller than 5". 5' is the larg est such simplicity measure value < 5" .
(Vve sum over 5" rather than average over it to make the mathemat ical boo k­
keeping simpler. ) cPij is the set of defining sets E RM,Oi(<I». For a given Oi,
t hese defining sets are indexed by j.

We could modify the definition of the Occam error to make use of the
squares of the guessing errors rather than the absolute values of those err ors,
but for the purposes of this paper absolute valu es will be easier to work wit h .
We could also modify the defini tion of E o ccam to concern differences between
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a simp licity measure value and all simplicity measure values sm aller than
it (not just the largest simp licity smaller than it). Similarly, rather than
work ing with the Occam error we could work with the covariance between
S(rf>ij) and I(M , rf>ij )(q) - f(q) l, or analyze the correlation between the two.
In general, however, it is easier to work with the Occam error as given here
than with any of these alternative measures of the efficacy of Occam's razor.

Because (ao - a1) + (a1 - a2) +...+ (an- 1 - an) = ao - an, the Occam
err or can be rewrit ten as

E Occam = ((j (M, rf>ij)(q) - f(q)I) (¢ijERM.8i (~) .S(¢ ij)=Smi n ( 8 i)) - (1.4)

(j(M, rf>;j)(q) - f(q) I)(¢:jERM.8i(~).S(¢:j)=Sm.. (8i))\
1(8iC!(X),QEXe)

Smax(8i ) is the maximum simplicity measure value such that, for the given
learning set, there is a defining set from RM ,8i(<I» wit h this value, and Smin(8i )
is the minimum such value." We can just as easi ly use (1.4) as the original def­
init ion of EOccam to det ermine whether or not Occam's razor applies . When
the values of S are continuous (i.e. , when the set S has nonzero Lebesgue
measure) the largest simplicity measure value < S" is not well defined , so
t he original definition of Occam erro r given above is meaningless. For such
cases we define Eo ccam via equation (1.4) .

As an example cons ider example 1 from table 1 of the linear combination
of basis functions hi(.), with the restriction being rep rod uction of the learn ing
set. You are given a learn ing set 8 of cardinality n generated from a parent
function f(.). Let m be an integer such that there exists an m-element linear
combination of the hi ( . ) that reproduces 8. Compare the average erro r (as
determined by f(.)) when guessing the response to a question q wit h an m­
element linear combination to the average error when guess ing with an (m +
1)-element linear combination. If, averaged over all n-element learning sets,
all m, and all q's , the error is smaller wit h the m-element linear combination,
then the Occam error < 0 and Occam's razor ap plies.

The following simp le-minded model illustrates why Occam's razor is rea­
sonable. Assume that our restriction is reproduction of the learning set, so
the larger the learn ing set, the fewer the allowed defin ing sets: if 82 J 81 ,

then RM,8, (<1» J R M•8, (<1» . Furthermore, assume that we have a finite num­
ber of poss ible defining sets and therefore (due to (1.1')) a fini te X. Let
f ~ be the set of defin ing sets compatible wit h the full parent funct ion f (.);

7Note that the Occam error being negative does not imply that the average erro r
mag nitude of those defining sets with the lowest simp licity measure is smaller th an the
average error magnitude of all the defining sets . Occam' s razor as defined in this paper
refers to the difference in the average err or magnitude between those defining sets with t he
lowest simplicity measu re and those defining sets with the larges t simp licity measure. T he
question of whether or not t he guess of the simplest defining sets is bet ter than the average
defining set's guess will be addressed later in th is paper . Although int imately related to
the Occam error, the guessing error of the simp lest defining sets is not determin able from
the Occam error alone.
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(M , ¢» (q) = f (q) V q E X , ¢> E f if>o By (1.1'), f if> is nonempty. Define
a == min(S(Jif>)), t he minimal S value of the elements of !if>, an d define N to
be the cardinality of X . The set of defini ng sets that reproduce a learning set
generated from f( .) shrinks as that learning set grows. T his culminates with
N element learning sets, which fully specify f (.) and which are compat ible
only with the defining sets of f if> o If we are fortunate in f( .) an d in our choice
of simplicity measur e, then this shrinking of RM,o(<I» event ually results in
there being an int eger n < N such that for any learning set 0 of cardinality
n , every defining set E RM,o(<I» bu t rf. f if> has simplicity measure> a. For
such a case, any defining set wit h simplicity Smin(O) is contained in f if> , and
therefore guesses f (q) exactly. This means that every term in the average
over q and OJ in equation (1 .4) is negative, for this case, for any learni ng
set cardinality ~ n. Therefore the ent ire Occam error is negat ive for such
learning set cardinalit ies. Since we can allow some terms in the average over
q and OJ in equat ion (1.4) to be positive an d still have a negat ive Occam
err or , there will often in fact be an integer m slightly less than n such that
the Occam error is negative for any learning set cardinality ~ m. 8

1.5 Convergent guessing

Now on to convergent guessing, the pro per ty of one's guessing becoming more
and more accurate as the learning set size increases. We need a measu re of
the average guessing error we would expect for a method M guessing a parent
function f( x), for an n-point learning set chosen from the parent function .
Define the exp ected guessing error Eguessin g of an architecture (M, <I> , X, Y ), a
restriction R, a parent fun ction f(x) , and a lea rni ng set cardinality n, as the
average of the absolute value of the guessing err or for an average question.
T he average is over all n- point learning sets chosen from f( x), and, for each
of the learning sets 0, over all questions from X o and over all defining sets
that are contained in RM,o(<I» :

Eguessin g = ((I(M , ¢>jj )(q) - f (q)I)(<Pij ERM,.i(if> )))(OiC!(x),qE X.,) ( 1.5)

As in (1.4) , i index es all the learni ng sets going into the average, and j
ind exes the set of defining sets cont ained in RM,Oi(<I». All OJ are assumed to
contain n element s.

We can rewrit e the expected guess ing error Eguessing in the form

E . _ (L: <PijERM,.,(if» {1( M , ¢>ij) (q)-f(q)l} )
guessmg - L: {I }

<PijERM,.i (if» (OiC!(x),qEXo,)

=/L,YEY L <PijERM,Oi(if» {8((M, ¢iij )(q),y) Iy- f( q)l})
\ L <PijERM,oi(if> d 1} (Oi C!(x),qEXo

i
)

8Note th at t his argume nt does not by any means const it ute a pro of of Occam's razor ;
it simply descr ibes some very limited circumstances in which Occam 's razor might apply.
This argume nt is very similar to the convent ional machine learn ing arguments concerned
with constructin g a learning set large enough to force uni que generalization when the
parent fun ction is known beforeh and to be from a particular "concept class ."
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When the yare discrete-valued, 5(.,. ) is the normal Kronecker delt a func­
tion . When the index j on the ,pij is continuou s-valued, the sum over defining
sets is replaced by an integral. When the yare continuous-valued as well,
5(., .) is replaced by the Dir ac delta function, and the sum over y is rep lace d
by an integral. (Due to (1.1') , the y cannot be continuous-valued if the index
j on the ,pij is discrete-valued.) We can rewrite the denominator inside the
outermost brackets:

L {I} = L L {5((M,,pij) (q),y )}
¢'jERM,o,(<1!) yEY ¢jERM,O, (<1! )

Therefore, if we multiply and divide the formula for Eguessing by the total
number of possible guesses and then by the total number of defining sets , we
get the following:

E . _ ( (Oo,q(y) IY - ! (q)I)(YEY))
guessIng -

(OO ,q (y)) (yEY) (OC f(x), qEXo)

where when the index j on the ,pij is discrete,

(1.6)

O ()
= I:¢ ERM,o(<1! ){5((M, ,p)(q) ,y)}

Oqy - {}, I:¢ERM,o(<1! ) 1

The subscript i has been dropped from the learning sets Oi in (1.6) since there
is no longer any ,pij whose indices have to be matched to those of the learning
set. For this case of discrete valued j , OO,q (Y) is the fracti on of defin ing set s
from RM,o (q» that, for me thod M, ques tion q, and learn ing set 0, make the
guess y .

For continuous-valued j and discrete-valued y, we have sums over outputs
and integrals over defining sets, so (1.6) holds for

O ()
= f¢ERM,O(<1! )d,p 5(y, (M, ,p)(q ))

oq Y - 1. dA-' ¢ERM,o (<1! ) 'I'

In this case OO ,q(Y) is the probability of a randomly chosen defining set from
RM,o (q» making the guess y for the question q. If y as well as j is cont inuous­
valued, we have int egrals over ou tputs as well as defining sets , so

O ( )
_ J¢ERM,O(<1! ) d<P 5(y - (M , ,p)(q))

°q y = 1.' ¢ERM,O(<1!) d,p

In such a situation OO,q(Y ) is the differential pro bability of a defining set from
RM,o(q» making the guess y for the question q; f Oo,q(y)dy = 1. We always
assume that for this case of continuous-valued y OO,q( y) is finite, i.e. for no
y E Y is the Leb esgue meas ure of the support of the functi on 5(y - (M , O) (q))
over the space of defining sets nonzero.

Equation (1.6) has the advantage that it, like the original formula for
Eguessing, is given ent irely in terms of expectation values. Nonetheless , in
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(1.7)

practice it will oft en be useful to use a formula for Eguessing that does not
share this property:

Eguessing = \ L {Oo,q(Y) Iy- f (q)I})
yEY (OCf(x), qEXe).

As usual, the sum over y is replaced by an integral for continuous-valued y .

A generalizer is a mapping taking a learn ing set to an inp ut -output func­
t ion (see [29]). Examples of generalizers are backpropagation [21], memory­
based reasoning [25], and hyperplanar HERBIEs [28]. In convergent guess ing
we are inte rested in how the gues sing accuracy of a particular gene ra lizer
varies as the size of the learn ing set grows . However , just specifying an
architecture does not specify a full gener alizer. Such a full specification ne­
cessitates also choosing a means of deciding amongst the elements of the
(rest rict ed) set of defin ing sets . Such a means of choosing a defining set tells
us how to guess in response to a particular learning set and question. For
the purpose of defining convergent guessing , we assume no knowledge of this
scheme by which the gene ralizer chooses amongst the defin ing sets . Equiv­
alently, we assume a worst case where the scheme behaves randomly (when
averaged over all learni ng sets chosen from the parent curve). T he guessing
accuracy of such random behavior is given to us by Eguessing.

9

A method M along with its associated architecture and restriction is said
to exhibit convergent guessing for a parent function f (x ) if the following
condit ion holds : For all errors t,. > 0, there exist s an int eger m such that
Eguessing < t,. for all learn ing set cardinalities n that exceed m. The require­
ment of convergent guessing for a parent function f(x) is a restriction on the
method used in the generalization. Intuitively speaking, M exhib its conver ­
gent guessing for a parent function f (x ) if you would expect that the func­
tion is compatible wit h (and reflected in) the method. Convergent guessing
is roughly equivalent to Pearl and Cover's "ambiguity" [16, p . 259]). Conver­
gent guessing is also related to cross -validation [6]. More precisely, convergent
guessing of an architecture and parent function implies that for large enough
learning sets the "average" generalizer implied by the architecture has small
st rong self-guessing error for learni ng sets chosen from the parent function
[30]. In the analysis below, it might be possible to replace the definit ion of
convergent guessing given here with a weaker one, but due to its intuitive
appeal, we will st ick wit h this definition.

2. U n ifo r m s im p licit y measures

T he previous section outlined the conventional ways of exploiting Occam's
razor, which use simplicity measures on ly dependent on the defining set. As

9The word "ra ndom" can be interpreted differentl y than it is interpreted here . For
example, the averaging over learning sets and ques tions could be mo dified so that it is
weighted, perhaps according to the entropy of the dist ribution of the guesses ind uced by
a given learning set and question . Such alt ernative definitions of "ra ndom" will not be
considered in this paper .
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was mentioned in the introduction, however, there are some major flaws in
this conventional approach . This section starts by exploring these problems
inherent in simplicity measures that are only a function of the defining set
(e.g. , all the examples in table 1). To avoid these problems it is necessary for
5 to be a function of the method, restriction, and question, as well as of the
defining set. This section presents a formalism for dealing with such a mod­
ified simplicity measure. (It is through such modifications to the simplicity
measures that this paper goes beyond the conventional ways of exploiting Oc­
cam's razor.) This section then introduces an optimality condition for such a
modified simplicity measure. Any measure obeying this optimality condition
is called a "uniform simplicity measure." This section ends by detailing the
many advantages of uniform simplicity measures (e.g., it is when used with
uniform simplicity measures that Occam's razor can be proven equivalent to
convergent guessing).

2.1 The problems with the simplicity measures of section 1

There are two major problems with the simplicity measures introduced in sec­
tion 1 and their dependence solely on the defining set. The first is that they
are architecture-specific. In gene ral, using Occam's razor with one architec­
ture from the list in section 1 (along with its associated simplicity measure)
rather than with another leads to different generalization. Yet there is no
reason to assume that one particular architecture together with one particu­
lar simplicity measure should be used over all others. However, without such
an ad hoc assumption, there is no answer to the question "If I'm given a
learning set and a question and nothing else, what is the best guess for the
output corresponding to the question, according to Occam's razor?"

The second major problem is that even if the architecture is given before­
hand, there is no reason to believe that the associated simplicity measures
given in section 1 are optimal. There is no reason to believe they will result
in negative Occam error. All those simplicity measures are either ad hoc
or , at best, are designed to address an issue (like coding efficiency) that is
not directly related to the efficacy of Occam's razor (i.e ., that is not directly
related to the sign of the Occam error) .

These problems have many different guises. One is the fact that in­
finitesimal changes in the method can change the guessing recommended by
Occam's razor in an arbitrary manner. Using method A1, if </1 and </11 are
both members of RM,o(iI» and 5(</1) < 5(<P'), then Occam's razor says that
we should generalize with the function (M, </1). Now let M I be a new method
identical with M except for one difference: if the defining set is </1 (</1' ), M I

first replaces it with </11 (</1) and then performs the same mapping M does. In
a certain sense this is the smallest: possible modification to the method M.
However since the simplicity measure has not been changed by this modifica­
tion, using M I we would be led to generalize with (M I

, </1) = (M, </11), getting
the exact opposite results from when we used M. (This problem ari ses even
when we average over all defining sets having given simplicity values, as in
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calculating Eo ccam . ) If we had some way to pick betw een M an d M ' we
would not have this problem. Barring such a way to choose, we cannot de­
rive unique gene ra lization of our learn ing set based only on the principle of
Occam's ra zor.

In a simil ar manner, we can fix the architecture, but make an infinitesimal
change in the simplicity measure. If the original simplicit y measure is 5,
then define 5' to be the same measure as 5, except that 5' (¢» = 5(¢>') and
5'( ¢>') = 5 (¢». Assuming 5 mee ts (1.2') and (1.3'), it is often the case that
5' does as well. However , just as when we changed from M to M ', t he tiny
change to 5 resulting in 5' does not change the method and means that we
would not pick ¢>' rather than ¢> and generalize with (M, ¢>').

Other pro blems with conventional simp licity measur es arise from the fact
that many of the simplicity measures in sect ion 1 simply count the numb er of
free variables in the defining set . Any finite set of real- or integer-valu ed vari ­
ables can always be bijectively mapped to a sing le vari ab le. A new method,
entirely equivalent in its guessing to the original method, can then be used
for such a comp acted defining set. (This new method simply uncompact s
its defin ing set and then runs the original me thod.) Equivalent ly, an origi­
nal defining set of n vari ables can be bijectively map ped to a set of m > n
variables. Unless one wants to somehow set rest ricti ons on the continuity
of methods , or rest rict to a finite set the number of allowed values of the
variables in a defining set , there is nothing to disallow such "compacting"
or "expanding" of defining sets. Yet if such compacting an d expanding are
allowed , freedom to change methods mean s that the common simp licity mea­
sure of "cardinality of the defining set" is meaningl ess. It resu lts in different
gene ralizing for "defining set compacted" and "defining set noncompacted"
methods. Similar problems afflict "coding length" measures of simplicity
(e.g., [19,20]). Different coding schemes give different guesses .

To get around these problems, 5 must not depend only on the defining set.
5 must also be a fun cti on of M ; 5 = K (M). T his way 5 cannot be changed
without changing M, and to the degree that K is one-t o-one, M cannot
be changed wit hout changing 5. To negate the "secon d major pr ob lem"
complete ly, K should be designed so that using M with the associated 5
results in a negat ive Occam erro r . Unfortunately, no fun ction K wh atsoever
is used to determine th e simp licity measu res list ed in table 1, never mind a
K designed to result in negative Occam erro r .

To prove any thing at all abo ut the efficacy of Occam's razor when used
with a particular architecture, what is important is the guessing distribution .
This is the distribution of which defining sets from RM,u( <1» make which
guesses, for a given learning set () and a given question q E Xu. It is through
the guessing distribution that simplicity measures can be relate d to me thods.
Unfortunately, none of the simplicity measures list ed in sect ion 1 take the
guessing distribution into account . In fact , they are comp lete ly indep endent
of the guessing distribution, despite the fact that it (and it alone) determines
the efficacy of Occam's razor. This ignoring of the guess ing distribution is
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the underlying reason why these conventional simp licity measures have the
problems expounded above.

2 .2 Simplicity distributions and unifor m simplicity measures

T he only way to avoid these difficult ies is to have t he' simp licity measure take
int o account the guessing distribution and therefore be an implicit function
of the architecture , question, learn ing set, and restrict ion, as well as of the
defining set. In other words, the (very reasonable) st ipulat ion is made that
to exploit Occam's razor the simp licity measure shou ld depend on everything
that affects the guessing, not just on the defining set. To investigate how the
simplicity measure shou ld depend on these other factors, we must introduce
the concept of a "simplicity distribution" and how to optimize one,

We are provided with an architecture, a restrict ion, a learning set (}, a
question E Xo, and therefore a guessing dist ribut ion. Fi rst assume that both
Y and D contain an uncountably infinite number of values . T he simplicity
distribution p is the differential probability distribution of defining sets in the
space Y x D. It s value at a given point (y, d) is the normalized differential
probabili ty density of a randomly chosen defining set (from the restricted set
of defining sets) havin g simplicity measur e d and making guess y in response
to question q. Formally, with (G )(z) meaning the prob abili sti c average of G
sub ject to the constraint z, we require that

(F[(M , ¢)(q),S(¢ )])(¢I¢ ERM,e(<Il),YI $(M,</>)(q)$Y2,SI $5(</»$S2) =

1~2 dY 1:
1

2dDp(y,d)F[y,d]

1~2 dY 1:
1

2dD p(y, d)

for all funct ions F [y, d] and for all Yl, Y2 E Y and 51, 52 E D . (When Yl,
Y2, 51, and 52 extend to the limits of Y and D respecti vely, then the in­
tegral in the denominat or is assumed to equa l 1.) As one would expect ,
I p(y , d)dD = OO,q (y), the function int roduced just below (1.5) that is com­
pletely determined by the guess ing dist ribu t ion . To see this, simply choose
a function F independent of its second argument, S( ¢), and verify that the
formula for (F) given here agrees with the formu la given in sect ion 1 when
I p(y , d)dD = OO,q(Y)·

If the space Y only contains a finite number of elements, then we require
that

(F [(M , ¢)(q),S(¢ )])(</>I¢ERM,e(<Il),YI $(M,</>)(q)$Y2 ,SI $5(</»$S2) =

L~~YI 1s7 dD p(y, d)F[y,d]

L~~YI 1:1

2dD p(y , d)

for all functions F [y,d] and for all Yl , Y2 E Y and 5 1, 52 E D . If D is also
discrete, then the same formu la holds except that now all integrals are re­
place d by sums. In gene ral, the simp licity distribution p(y, d) is implicitly
determined by the architecture, restriction, learni ng set, and question.
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We can now extend (1.1') through (1.3') to the case of infinite <P . First,
note that as (1.1') is defined in section 1 the maximum value over all D
of p(y, d) could be infinitesimally close to zero for certain values of y. For
example, assume that there are an infinite number of defining sets making
any guess except that one guess, Yl, is only guessed by a finit e number
of defining sets. In such a case , p(Yl, d) would have to equal 0 V d E D,
despite the fact that (1.1') is being obeyed. In general, such pathologica l cases
where the Cantor cardinality of Jp(y, d)dD varies with yare excluded from
consideration for the same kinds of reasons that justified (1.1') . Formally,
we modify (1.1') to be the statement that for all y E Y , :3 d E D such that
p(y, d) =I O. Similarly, we modify (1.2') to be the statement that for all y E Y,
and d1 and dz E D , if d1 > dz, then p(y ,d1 ) 2: p(y ,dz). (1.3') is now the
statement that Jp(y, d) dY is a nondecreasing function of d over the space
D (2::'s replace J's for discrete Y). This new version of (1.3') follows from
the new version of (1.2') regard less of the car dinality of <P .

T he (differential) probability of defin ing sets making a given guess y ,
Jp(y ,d)dD , is given by the guessing distribut ion . Equations (1.1'), (1.2') ,
and (1.3') put further constraints on the allowed form of p(y ,d) . Due to
(1.1'), for all y E Y , :3 d E D such that p(y, d) =I O. Write the smallest such
d as dmin(y) . Then if the upper bound on the set D is d', (1.2') mean s that
Vd 2: dmin(y), p(y, d) =I o. In other words, for any value of Y the distribution
of p(y , d) over D is non zero and nondecreasing everywhere above a cert ain
D value, and zero everywhere below it (D being viewed as the vertical axis
and Y being viewed as the horizontal axis) .

An Occam transformation of a guessing distribution and/or simp licity
measure is any transformation that either leaves the simplicity dist ribution
unchanged, scales all the simplicity values by an ident ical positive nonz ero
constant (i.e., send s p(y ,d) to p(IkIY,d)), or t ranslates all those values by an
identica l constant. An interchanging of both the guesses and the simplicity
values of two defini ng sets is an Occam transformation , as is pe rmutation of
the simplicity values of the defining sets all making the same guess . (Both op­
erations leave the simplicity distribution un changed.) The Occam invariance
of a guessing distribution together with a simplicity measure is the invari­
ance, under Occam transformations, of how Occam's razor says to guess. For
example, if the defining sets <p and <p' result in the same guess for th e value
of the output, then interchanging their simp licity values will not affect Oc­
cam's razor 's recommendation for what guess to make. Similarly, scaling all
simplicity values by the same pos it ive constant will not affect the recommen­
da t ions of Occam's razor. Note that t here are t ransformations that leave the
Occam error as defined in (1.4) unchanged but are not Occam transforma­
tions. This is becaus e the Occam error as defined here ignores the simp licity
dist ribution for simp licity values in between d' and d., d. being the minimal
d value over all Y and D such that p(y, d) =I O.

To determine how best to relate the simplicity measure to the guessing
distribution we do not need to set the simplicity distribution uniquely - set ­
ting it up to Occam transformations will do . Although they are rather severe
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restrictions, equations (1.1') th rough (1.3') are not quite strong enough to set
the simp licity measure uniquely, even up to Occam transformations. (If they
were strong enough, then since all th e examples in table 1 obey (1.1') through
(1.3') , they would all have equivalent simplicity distributions and therefore
- when using Occam 's razor - they would all result in the same guess, on
average.) To fix the distribution uniquely up to Occam transformations, we
return to the justification for (1.3'): the higher the simplicity value, the less
restricted should be the guessing. In accordance with this principle , we re­
quir e that for the highest simplicity value d*, p(y, dO) is min imally restricted.
In other words , we require that th e entropy of the distribution p(y,dO) over
all Y is maximal (subject to the constraint that f p(y, d*)dY equals some
unimportant constant) . From (1.1') and (1.2') , we know that p(y,d*) is
nonzero for all y. T his new constraint says that in fact p(y, dO) must be fiat
across Y. (The fact that such a fiat distribution has higher entropy than
any other distribution serves as further justificat ion of (1.1') .) Accord ingly,
define p" == p(y, dO). Given the guessing dist rib ution, to get uniqueness of
the simplicity distribution p(y, d) it suffices to add the constraint that p(y, d)
is as informative as possible, i.e. the ent ropy of p(y, d) over all Y an d D is as
small as possi ble. Given the guessing distribut ion, this constraint sets p(y,d)
uniquely, up to Occam transformat ions:

(2.1 ) Given a guessing distribution, the optimal simp licity distribution p(y,d)
is one that everywhere has either the value 0 or the value p", p" being
an arbitrary but fixed positive and nonzero rea l-valued const ant. For
any y E Y, p(y,d) = 0 for all d values less tha n a thresho ld dmi n (y) and
equals p" for all d values above that threshold. dmin(y) is fixed by the
guessing distribution together with p",

P ro of. Hypothesize that for the distribution with minimal entropy there
is a region in Y x D where p rt (p*,0). Everywhere outside of this region
p E (p*, 0). Assume that this region is simp ly conn ect ed in R x R. (Ar­
guments similar to those present ed here work when this assumption does
not hold.) p(y,d*) = p" and p(y,d) is everywhere nondecreasing. There­
fore p(y,d) ~ p" V (y E Y,d E D) , and in particular 0 < P < p" over the
hypothesized region. Moreover, for all y E this hypothesized region , the
highest D value within the region bounds from below a region where p = p",
Take any two very small distinct subregions of the hypoth esized anomalous
region , 0"1 and 0"2, neit her of which contact the boundary of the hypothe­
sized anomalous region. Because they are arb it rarily small, p is const ant
across t he subregions 0"1 and 0"2 (assuming p(y,d) is a cont inuous funct ion
over 0"1 and 0"2)' The corresponding p values are written as P(O"l ) and P(0"2) '
Without loss of generality, assume P( O"l) ~ P(0"2). Adjust the sizes of th e
two subregions so tha t (p* - P(O"l ))Y1 = P(0"2)VS, where Y1 is the area of 0"1
and V2 is the area of 0"2 . Now consider a new distribution p'(y ,d), identi cal
to p(y,d) except th at P'(O"l) = p* and P' (0"2) = O. Changing distributions
from p to p' does not mod ify the value of the integrated probability, nor
does it run afoul of (1.1'). The difference in ent ropy between p and p' is



Occam's Razor and Convergent Guessing 339

-p*ln [p*]Vl + {p(0"1)In[p(O"I)] Vl + p(0"2) In[p(0"2)]V2 }' This can be rewritten
as - Vl {p*ln [p*]- {P(O"I ) In[p(O"I )]+(p*- P(O"I)) In[p(0"2)]}} S; - VI{p*ln [p*] ­
{P(O"I) In[p(O"I)] + (p* - P(O"I)) In[p(O"I)]}} = - Vt{ p*ln[p*/ P(O"I)]}' Since p* >
p(0"1) , this quantity is always negative, which means that the ent ropy differ­
ence is always negative. This new p' distribution is not legal, however, since
it violates (1.2'). To take care of thi s, we modify p' by "shuffling it around"
in D space. For all Y in 0"1 we carry out th e following pro cedure (carry out a
similar pro cedure for 0"2): Let [d1, d2] be the range in D for the subregion 0"1
along the axis Y = y. Let dmax(Y) be th e highest d value for which p'(y , d)
does not have the value p", (dmax(Y) is the boundary of our hypothesized
region within which p ri {p*,O}.) Change p' by setting p'(y ,d) to the original
value of p'(y,d + (d2 - d1)), 'rid E [d1, dmax(y) - (d2 - d1)]. Then set p'(y, d)
for the interval from d = dmax(y) - (d2 - d1)) to d = dmaAy) to the value
p", the original value of P'(O"I) ' This shuffling procedure does not affect the
entropy of the simplicity dist ribution , nor does it violate normalizat ion of th e
distribution or requireme nt (1.1'). When carried out for all y in 0"1, however,
it results in a distribution that obeys (1.2') and therefore is fully legal. This
legal distribution has smaller entropy than the original distribution p(y, d),
however, contrary to hypoth esis. Therefore all p values must either be p"
or 0. •

dmin(y) is fixed by the guessing distribution and p" via Jp(y, d)dD =
p*(d* - ~(y)) . Given the guessing distribution, the optimal simp licity
distribution is defined complet ely by p*. However, changing p" does not
change how Occam's razor says to guess; such a change is ju st an Occam
transformation.l'' Therefore, up to such (irr elevant) transformations, the
optimal simp licity distribution is set uniquely by th e guessing distribution.

Given an architecture and a restriction , a simplicity measure that results
in an optimal simplicity distribution for all learning sets and all questions is
called a uniform simp licity measure. (The adject ive "uniform" refers to the
fact that p(y,d) has the same value over all of its support .) The dep endence
of a uniform simplicity measure on the method occurs through the guessing
dist ribution. Although st ill written as S(¢J ), such measures are implicitly
understood to be functions of the guessing distribution in addition to the
defining set .

For a uniform simpli city measure, the funct ion dmin(y) is simp ly a (nega­
tive-valued) scalin g an d translat ing of the func t ion OO,q(y ) = Jp(y, d)dD,
int roduced below equ ation (1.6). Up to such a scaling and t ranslat ing, th e
simplicity dist ribution is set by the guessing distribution, for a uniform sim­
plicity measure.

10 Note, however , that for a fixed guessing distribut ion, lower p" means higher values
{dO- dmin(Y)}' This effect means that the guessing distribution sets a lower bound on p";
p" smaller than th is lower bound would mean that d., the lowest value of dmin(y) , is less
than 0, the value of the smallest element of D.
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2.3 Advantages of uniform si m p licity measures

In addit ion to their resulting in an optimal sim plicity dis tribution, there
are many other advantages to uniform simplicity measures. First , un iform
simplicity me asures reflect the Occam invariance of the associated guess ing
distribution; for a given guess ing distribution , changing from one uniform
simplicity measure to another is simply an Occam tran sformation and there­
fore does not affect how Occam's razor says to guess. The freedom in choosing
a unifo rm simplicity measure corresponds exact ly to the invariances in the
effect s of app lying Occam's razor . As a result , any analysis of Occam's raz or
that holds for one unifo rm simplicity measure also holds for another uniform
simplicity measure. No such property characterizes the simplicity measures
of table 1 - those measures completely ignore the invari ances inherent in
Occam's razor .

Ano ther advantage of uniform simp licity measures is that they are im­
perv ious to the "guises of the majo r problems" of conventional simplicity
measures concerni ng t iny modifications to the me thod or the simplicity mea­
sure. For example, repl acing M with M ' as in secti on 2.1 does not change
OO,q(Y) and therefore does not change the uniform simplicity measure, up to
an Occam t ransformation . So when a uniform simplicity measure is used it
does not change th e recommend ation of Occam's raz or as to how to gues s.P

Uniform simplicity meas ures also have the advantage that they focus a t­
te nt ion on the guessing behavio r of an architecture rather than on the det ails
of how the archite ct ure works . Moreover , since Occam's razo r is dependent
solely on this guessing behavior, uniform simplicity measures allow an anal­
ysis of whole categories of archite ct ures at once. This cont ras ts wit h the
convent ional app roach , which relies on a case-by-cas e analysis of arch itec­
tures, as was carried ou t in [16] for example.

Some might argue that the simplicity measures in sect ion 1 are uni quely
specified by the architecture, more or less, as the most "reasonable" measur es
for those architectures . However, for certain architectures it mig ht not be
clear how to const ruct a "most reasonable" simplicity measure. On the other
hand , given an archite ct ur e, a learning set , and a restriction, the set of uni ­
form simplicity measures is always uni quely specified, no mat ter how peculiar
the ar chit ecture. Even if we can not calculate a uni form simplicity distribu­
t ion analytically, we can always build one by using Monte Carlo techniques
to est imate OO,q(Y). Therefore the dom ain of ap plicability of uni form simplic­
ity measures far exceeds that of cons tructing a "most reasonable" simplicity
measure (the procedure implicitly emp loyed in formulating the examples of
t able 1) .

11 Note however that we still haven't really addressed in full the "first major prob lem ,"
presented earlier in this section, of how to deduc e an a priori opt ima l architecture . An
architecture must still be assumed beforehand in orde r to use Occam 's razor. However ,
the "second maj or problem" has been partly solved by using uniform simp licity measures,
in th e sense th at we now have a uniqu e choice of simpli city measur e given an architecture.
(It is th e task of further ana lysis to determine if and when this simp licity measure resul ts
in negative Occam erro r .)
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If for some reason the simpli city measure is fixed beforehand, t he results
of thi s sect ion can be used to help det ermine the architecture. For examp le,
using Rissan en 's MDL scheme the simp licity measure is determined by a
parameterized conditional pr obability working over the provided learning
set. Differen t par amet erizations of the conditional probability will result in
different simplicity distributions. The res ults of this section suggest a way to
decid e amongst a set of parameterizati ons; pick that par ameterizati on that,
for the learning set at hand, is closest to being uniform.

The final advantage of uniform simplicity measures is that they allow
the analysis of the rest of this paper; it is with them that Occam's razor is
equivalent to convergent guessing.

Not e that unifo rm simplicity measures appear as very peculiar beasts
when viewed from the perspect ive of the conventional simplicity measures
list ed in table 1. All those measures work by examining the det ails of how
the asso ciated architecture is implemented and then trying to minimize some­
thing roughly equivalent to the coding length of the implementation. This
procedure seems to reflect how human beings are accustomed to using Oc­
cam's razor. However as was mentioned previously, the implementation issu e
is actually irr elevant ; only the guessing distribution is important for Occam's
razor. Accordingly, un iform simplicity measures ignore the implementation
issue altogether. They view the issue of which particular defining set (out
of those making a certain guess) gets which simplicity value as a red her­
rin g. Ind eed, they explicit ly treat different simplicity measures as equivalent
if they are Occam transformations of one another.

Despite the t heoretical rationale for using uniform simplicity measures,
the fact t hat they contrast so st rongly with the conven tional kinds of sim­
plicity measures might be a bit worr isome . Presumably hu man s use Occam 's
razor as they do because, by and large, it works well when used that way.
This would seem to imply that un iform simplicity measures cannot work
well . For tunately, t his conundrum can easily be resolved. Fi rst not e that
in the Occam error all we are interested in is the simplicity dist ribution for
d = d' and for d = d•. Now convent ional simplicity measures obey (1.1' )
through (1.3' ). In particular, whenever a simplicity measure is some thing
like "coding length ," one would expect (1.2' ) to be ob eyed . Therefore, ev­
erything else being equ al , one would expect convent ional simplicity measures
to be rough appr oximat ions to uniform simplicity measures. In par ti cular,
one would expe ct the y value corre spo nding to d. for a convent ional simplic­
ity measure to be near to the mode of the guessing distribution (i.e., close
to d. for a uniform simplicity measurej.P By this line of reas oning, when

12Unfortunately, it is ext remely difficult to measure with any pre cision just how closely
any of th e simplicity distribut ions listed in table 1 exh ibit this behavior . Just calculating
guessing distributions for thos e cases, never mind simplicity distributions, is a calculational
nightmare. For example, even the prob lem of how to calculate what defining set s reproduce
a learning set (i .e ., th e problem of how to calculate th e restricted set of defining set s) has
yet to be solved analyt ically for th e neural net architecture. (That is why people use
techniques like backpropagation [21] and simulated annealing [11] to construct neural
nets to reproduce provided learni ng sets.) In practice, it seems likely that Monte Car lo
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determining a simplicity measure for a particular means of implement ing a
particular architecture, humans are really just applying heuristics for how
to construct a useful simplicity measure. On average, these heuristics result
in a simplicity measure that is approximately uniform and therefore whose
minimum occurs near the mode of the guessi ng dis tribution. T he results
of the next section then tell us that if we believe that convergent guessing
applies, then minimizing one of these heuristic simplicity measures will on
average result in minimal guessing error.

3. W hy convergen t gu ess ing im plies Occam's razor

In this secti on it is proven that for uniform simplicity measures convergent
guessing implies Occam 's razor when there are a fini te number of possible
guesses (i.e., when the cardinality of the output space Y is finite). This
restriction to finite Y obtains, for example, whenever the architecture is
emu lated on a finite digital computer. This section starts by deriving a new
formula for E O ccam that applies when the simplicity measure is uniform. Then
Occam's razor is related to convergent guess ing for the case of two poss ible
guesses. If Y is the set {a + si Ii E [a,b]} (a an d s are real-valued constants ,
a and b both E Z, and [a,b] ind icates th e closed interval of int egers betw een
a and b) then the analysis is more complicated; this case is dealt with in
appendices A and B. If elements are removed from this set Y (i.e., if Y is
changed to be a proper subset of {a + s[a, bJla and b both E Z}), a variation
of the analysis of appendices A and B can be used. In this way all cases
are covered in which Y is finite and the differences between the elements of
Yare rati onal number pro ducts of one ano ther. However any finite set of
real numbe rs Y can be viewed as a limit of a sequence of sets , all of which
have the differences between their elements rationally related to one another .
Therefore the analysis of this section in fact applies to any finite set Y .

After dealing with these cases where Y is finite, this sect ion discusses the
situation where there are an uncountably infinite number of poss ible guesses
and what conditions are sufficient to have Occam's razor imply convergent
guessing for such a case . T he section then ends with a cursory discussion of
alternati ve definitions of Occam's raz or and how they relate to convergent
guessing .

3.1 An int u itive r a tionale for the relationship between Occam's
r azor a n d convergen t guessi ng

Consider the case of the feedforward neur al net architecture. Given any
learn ing set (), question q E X o, and output y, there exists a set of weights
(i .e., a defining set) such t hat the resultant ne t bo th rep ro duces () and makes
guess y in response to question q. Therefore running a procedure like back­
propagation to derive a net that reproduces a learning set cannot, by itself,

techn iques would have to be used to calculate the guess ing and simp licity distribut ions for
any nont rivial architecture.
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have anything to do with generalizati on. To put it another way, there exists
a global minimu m in weight space (for the problem of reproducing a given
learning set 0) correspond ing to any output y in response to any question
q E X e. So the procedure of simp ly finding such a minimum can result in
any guess at all, independ ent of the correct guess f(q) .

There are two natural ways to modify things so that backpropagation can,
theoretically at least , have some relat ion to expected generalization accur acy.
The first is to cons train the net over which backpropagation is being run, for
example by fixing the number of hidden neurons. Now, for a sufficiently
severe constraint , it is no longer necessarily t ru e that there exists a set of
weights both reproducing any learning set q and making guess y in response
to an arbitrary question q E X e. We have const rained the allowed guessing .
In this scheme backpropagation will result in accurate guessing if and only
if there is a close correspondence between the guess made in response to the
question q, when th e const raint is in force, and the correct guess f(q) .

The second way to modify things is to examine the average guess made by
backpropagation , without any constraint s imposed on the net. Here back­
pro paga tion will res ult in accurate guess ing if and only if there is a close
correspondence between the average guess made in response to the qu estio n
q and the correct guess f (q).

Assume that the "severe cons tra int" picks out net s approximately lying
at the D-space minimum of the support of a uniform simplicity measure, in
accordance with Occam's razor. T hen these two "natural ways to mo dify
things" are roughly equivalent . This is because for a uniform simplicity
measure the mode of the Y-space projection of the simplicity distribution has
the same Y value as the D-space minimum of the support of the distribution .
However, under the assumption that the average and th e mode of the Y-space
projection of the simplicity dist ribution are close to one another, then the
"second way to mo dify things" picks out the mod e of the Y-space project ion .
On the other hand, the D-space minimum of the dist ribu t ion is picked out
by the "first way to modi fy things" (under our assumption concern ing the
effect s of the "severe constraint"). T herefore when one way of mo difying
things results in accurate guessing, so does th e other.

In addition , both of these ways of mo difying things res ult in accur ate
guessing only if they enjoy a correspondence wit h the correct guessing. The
second way to mo dify things enjoys such a correspondence if convergent
guessing holds (an d if the learning set is of sufficient size) . The first way to
modify things enjoys such a corres pondence if Occam 's raz or holds. T herefore
convergent guessing and Occam 's razor are relate d.P

13Note that we can act ua lly test if these two ways of mod ifying th ings are equivalent.
Test if convergent guess ing ap plies (for a reasonably chosen parent fun ction , it should) .
Then te st if allowing the size of th e net to expand for a given size learn ing set results in
worse generalization . If the size of the net is indeed a uniform simp licity measur e, th en
the one effect will always occur when the oth er does. Moreover , if the guessing accuracy
does ind eed improve with increasing learn ing set size, th en th e improveme nt gain ed by
using a sm all net should become more pronounced with incr easing learning set size. This
is becau se if converge nt guessing app lies, then the larger the learning set the mor e t ightly
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The rest of this section is nothing more than a formal statement of this
relationship. To carry it out, we first need to perform some preliminary
analysis.

3 .2 P re lim inaries

For a uniform sim plicity measure, Smax (B ) = d* for all B. Furthermore , for
all allowed guesses Y E Y the (differential) pro bability that a defining set
¢> E RM,e(iP) with simplicity measure d* resu lts in guess y in respon se to a
question q E X e is constant and independent of y (t he probability is p* , in
fact), T herefore the second term inside the outer brackets in equat ion (1.4)
is simply the average over all allowed guesses of (the ab solute value of) the
difference bet ween that guess and f(q) . T his term is independent of the
method and learn ing set. As a result, we can write this te rm as (Iy - f( q)l) ,
where the expectation is over all poss ible guess values y E Y.

For a uniform simplicity measure S, {(M, ¢»(q)\¢> E RM,e(iP), S(¢» =
Smin(B)} = {argmax (Oe,q(Y) }. Therefore we can rewrite the Occam error
for a uniform simplicity measure as

EOccam = ( (Iy - f (q)l)(y E argmax [o . ,q(.)]) )(eC!(x), qEX. ) - (3.1)

(Iy - f (q)I)(YEY ) ) (eCf(x) , qEX.)

The subscript i on the learning sets q has been dropped in going to equa­
tion (3.1) from equation (1.4) because there is no longer any ¢>ij whose indices
have to be matched to those of the learn ing set. For the rest of this paper
the definit ion of Eo ccam given by equat ion (3.1) will be taken as ax iomatic,
i.e., for the rest of this pape r any reference to a simplicity measure implicitly
means a uniform simplicity measure.

It should be clear from comparing equations (1.7) and (3.1) that, for
sufficiently small expected guessing error, there is a limit on how big the
Occam error can be . The size of the Occam erro r is determined by the
first term in (3 .1), the expected difference between the mode of Oe,q(Y) and
f(q). T he exp ected guessing erro r is instead determined by the Oe,q(Y)­
weighted average of the difference between the element s of Y an d f( q). W hen
this average difference gets small, t he mode of Oe,q(Y ) must ap proach f(q).
Ind eed, as we will shortly see, for sufficiently small expected guess ing error,
the Occam error has to be less than zero and therefore Occam's razor must
apply. This is the sense in which convergent guess ing implies Occam's razor.

To faci litate the analysis define the partial expected guess ing erro r as the
exp ected guessing error for a fixed learning set and question (i.e ., the expected
guessing error whe re only the defining set is allowed to vary ). T he partial
expected guessing error is the term inside the expectation value bracket s
in equat ion (1.7). Sim ilarly, define the partial Occam error as the Occam
error for a fixed learn ing set and question (again, this meaning that only

O. ,q(Y) gets wrapped about a point (J(q)) and th e closer the mode of O. ,q(Y) is to its
average.
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t he defining set is allowed to vary ). Define t he term (Iy - f (q)I)(y EY) from
equation (3.1) as e (t he averag ing is over all y E Y and not over different
learning sets or different questions). Equation (3.1) tells us that the par ti al
Occam err or equ als the average of t he values Iy - f (q)1 such that OO,q(Y) is
maximized, minus c. Call that aver age /-L ; the partial Occam error = /-L - c.

3.3 Two p ossible outputs

First we will deal with the case where there are only two allowed guesses, a
and b > a. This is the case , for examp le, when we are dealing wit h a neural
net outputting to a single neuron. Wi thout loss of generality, set a = 0 (i .e.,
translate all outputs in both learni ng sets and guesses by - a). e for this case
of only two possible ou tpu ts = (b - a)/2 = b/2 , regardless of f(q ).

Wi thout loss of generality, assume that f(q) = a = O. Call OO,q(O) m ,
and call Oo,q(b) n ; m +n = 1. T he partial exp ected guessing err or equals bn.
Since e is independ ent of the learning set and quest ion , the partial Occam
error for a particul ar learning set and quest ion is completely determined by
/-L , and therefore by whether m > n or vice versa. More precisely, the partial
Occam error = - b/ 2 if m > n, 0 if m = n , and b/2 if m < n. If m > n,
t he partial exp ected guessing erro r < b/2 . If m < n, the part ial expected
guessing err or > b/2. T herefore for the partial expected guessing error < b/ 2,
the partial Occam err or = -b/2 , and for the partial expected guessing error
> b/2 the partial Occam err or = b/2. For the part ial expected guessing error
= b/2 , t he par ti al Occam error = O.

Now we must move fro m partial errors to the total errors of section 1,
i.e . to t he full erro rs, averaged over all allowed learni ng sets and quest ions.
If ( partial expected guessing error ), Eguessing , = x, what is an upper bound
on ( partial expected Occam error ), Eoccarn? In ot her words, what limits on
the (total) Occam erro r are set by the (total) expected guessing error? To
answer this question , we write

Eguessing = l dEp(E){E } , where l dEp(E) = 1 (3.2)

p(E) is the (different ial) pro bability density of learn ing set/question pairs
that have part ial expected guessing error E. (It is not to be confused with the
p(y ,d) of sect ion 2.) Becau se of (1.1') , there is not a legitimate distribution
of defining sets for which either m = 0 or n = O. Therefore there is not a
legitimate distribution of defining sets for which the part ial expected guessing
error equals 0, nor is there one for which it equals b. However for t he case
where an uncountabl e infinity of defining sets meet the restriction of the
learning set s, the part ial expected guessing err or can get arbitrarily close to
the limits 0 and b. Hence the limits on the integrals in (3.1) must be set to
oand b. The total Occam'error can be wri tten as

(b/2 {-b} r {b}EOccarn = Jo dEp (E) 2 + Jb/2dEp(E) "2 (3.3)
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The limits on the integrands written as "b/ 2" are implicitl y understood to ac­
tually be b/2 - 15 1, where 5is infin itesimal. This takes care of the case where
the partial expected gue ssing err or = b/2 exactly and the corresponding par­
ti al Occam error = 0 by causing the expression for EOccam in equat ion (3.3) to
act ually be an overestimate of t he t rue EOccam corr espo nding to a dist r ibut ion
p(E).

We must now find the distribution p(E) meeting the requirements of
equat ion (3.2) for a particular value of Eguessing that maximizes E Occam as
given by equation (3.3) . To do this first assume that there exists an E
value , e, greater than b/2 and less than b, such that p(e) == D =f O. Now
if we reduce p(e) to 0, increas e p(b/ 2) by D + C , and decrease p(O) by C,
where C == D(e - b/2) /(b/2)), then we are sti ll meet ing the requirement s
of equation (3.2). Now EOccam has been increased however . (In doing this
rearranging, we might have forced p(O) to be negative. But we are only
interested in bounds , so the meaninglessness of such a value for p(O) is of no
concern.) As a result , t o maximize EOccam we should have p(E) = 0 for all
E > b/2. This means that the limi ts on the second integral can be replaced
with b/2 - 151and b/ 2, rather than b/ 2 - 151and b.

Now assume that there exists an E value, e, lying be tween 0 and b/2 - 151,
such that p(e) == D =f O. As above, set p(e) down to 0, but this time increase
p(O) by D(b/2 - e)/(b/2) , and p(b/2) by De/(b/2) . Again , although this do es
not viola te the requirements of equat ion (3.2) it increases t he Occam error.
Therefor e p(E) = 0 for E lying bet ween 0 and b/2 - 151. We can now write
down t he p(E) which maximizes the expression in equat ion (3.3), subject to
the constraints of equation (3.2):

(E ) = (b/2 - Eguessing) 5(E ) + (Eguessing) 5(E _ b/2)
p b/2 b/2

(5(.) is here the Dirac delta fun ction, regardless of the card inali ty of Y and / or
<P. ) This allows us to write down the maximum possible value of Eo ccam ' given
Eguessing:

The maxi mu m of Eo ccam ' given Eguessing, =

b Eguessing b ( Eguessing) b
"2 (b/2) -"2 1 - (b/2) = 2Eguessing - "2 (3.4)

Now du e to our assumption of convergent guessing , for any positive .6.
there exists a cardinality m such that for all learn ing set cardinalities greater
than m, Eguessing <.6.. In part icula r, there exists such an m such that
Eguessing < b/4 . From equation (3.4), for such an Eguessing, the maximum of
EOccam is less than zero. This concludes the proof of the following theorem:

Theorem 1. Ass ume we have a restriction and an architect ure whose output
space Y consists of two elements. Assume further that the archit ecture and
restri ction exhibit convergent guessing for a parent surface f (x) . Then th ere
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exists a positive integer m such th at , for th e parent surface f (x) and for
learning sets of cardinality greater than m , th e archit ecture obeys Occam 's
razor for any uniform simplicity meas ure.

For cases where there is a limit L to the maximum size of the learning
set (e.g. , when the architecture is emulated on a fini t e digit al compute r so
that both X and Yare finit e) , we must modify our definition of convergent
guessing. For such cases, theorem 1 holds if convergent guessing is taken to
mean that "for all errors .6. > E, where E is a po sitive real number < b14,
there exist s an integer m < L such that E guessin g < .6. for all learning set
cardinalit ies that exceed m ."

3 .4 M ore than two p ossible outputs

To deal with cases where the cardinali ty of Y is finite bu t greater than two,
first we address the case where Y == {o:+sili E [a,b]} (0: and s are real-valued
constants, a and b E Z, [a,b] is the closed interval of integers between a and b,
and b- a ~ 2) . The case of two po ssible outputs is a special case of this one,
except that there b - a = 1. Without loss of generality, we can take 0: = O.
(This simply amounts to translating f( .) along with all the elements of Y by
- 0:, an operation that clearly will not affect partial expected guessing errors
or partial Occam errors.)

As when there are two poss ible guesses, the an alysis for more than two
possible guesses starts by showing how a given partial expected guessing
error sets an upper limit on the corresponding partial Occam err or . Unlike
the case when Y has cardinality 2, however , here we cannot immediately
write down a simple relation between a partial Occam error and a partial
expected guessing error. This is because OO,q(Y) now has more than one
deg ree of freedom, and therefore is not uniquely specified by a single number
like the partial expected guessing error.

We will find how partial expected guess ing errors set upper limits on the
corresponding partial Occam errors by working in reverse, so to speak. We
will find the minimum partial expected guessing error whi ch can corr esp ond
to a given partial Occam error first, and then we will show that an increase
in this minimu m part ial expected guessing error necessitates an increase in
the corresponding partial Occam error, as well as vice versa. Appendix A
is a rigorous proof that this "working in reverse" is a valid way to relate
a partial expected guessing error and the maximum possible corresponding
part ial Occam error.

As before, define the term (Iy - f(q) l)y from equation (3.1) as s :

e == s {[b - f(q)][b
2
- f(q) + 1] + [f(q) - a][~(q) - a + 1]} I{b _ a + 1}

As before, equation (3.1) tells us that the partial Occam error equals the
average of the values Iy - f(q) 1such that OO,q(Y) is maximized, minus c .
Again as before, call that average Pi the partial Occam error = P - c . Call
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the maximum of OO,q(Y) m. Assume further that there are k values of Y such
that OO,q(Y) = m. By (1.1'), mk :::; 1. Delineate the set of Y values such that
OO,q(Y) = m by {gil . There are k elements in {gil . Delineate the set of Y
values not contained in {gil by {Gd . The total number of poss ible guesses
= b - a + 1 == N. The cardinality of {Gil = N - k.

Since we are "working in reverse," our task is to vary the question and
the guesses of the indi vidual defining sets so as to mini mize the partial ex­
pected guess ing err or, sub ject to a given partial Occam error . App endix B
shows how this is done. In a manner similar to the analysis for the case of
two possible output s, appendix B then uses the rela t ion between the partial
errors to derive the maximum (total) Occam error that can correspond to a
particular (total) expected guessing error. The result is the following:

The maximum of E o ccam' given Eguessing,

(b - a) Eguessing (3.5)< s - -2- E'

[
1 _ Eguessing] [8] [~ _ (b - a)2 +2(b - a)]

+ E' 4 4((b - a) + 1)

8 Eguessing [3(b - a)2 + 3(b - a) - 1] _ 8 [(b - a)2 + (b - a) - 1]
E' 4((b -a) +1) 4((b- a) + 1)

E' is a positive constant defined in appendix B. It lies in the real-value
interval (0, s(b -a)] and is set by a, b, and s. Note that because (b-a) ;::: 2,
both terms in the square brackets in the last line of (3.5) are positi ve. Un­
der the assumption of convergent guessing, for any pos itive I::::.. there ex­
ists a cardinality m such that for all learn ing set cardinalit ies greater than
m Eguessing < 1::::... In particular, t here exist an m such that Eguessing <
{E'}{(b- a)2 + (b- a) -1 }/ {3(b - a)2+3(b- a) - I } . From equat ion (3.5),
for such an Eguessing , the maximum of E Occam is less than zero ; EOccam mu st
be negative. In conjunction with theorem 1, thi s con cludes the proof of the
following theorem:

Theorem 2. Assume we have a restriction and an erchiieciute whose output
space Y consists of {O:" + si Ii E [a, b]} (a and b E Z, 0:" and s real-valued
constants, and b > a). Assume further that the architecture and restriction
exhibit convergent guessing for a parent surface f(x). Then there exists a
positive integer m such that, for the parent surface f(x) and for learning sets
of cardinality greater than m, the architecture obeys Occam 's razor for any
uniform simplicity meas ure.

If there is a limit L to the maximum size of th e learning set (i.e., if L, the
cardinality of X, < 00), we must modify our defin ition of convergent guess ing
for theorem 2 to hold. For such cases, convergent guess ing implies that
Occam's razor applies if convergent guess ing is taken to mean the following:
"For all errors I::::.. > L;, where L; is a positive real number < {E'}{ (b - a)2 +
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(b-a) - 1}/{3(b- a)2+ 3(b- a) - I } , there exist s an integer m < L such that
Eguessing < !1 for all learn ing set cardinalities that exceed m." Note that the
expected guessing error is not defined for learning sets of size L, since for no
such learning set does there exist a question that is not an input component
of one of the elements of the learning set.

3. 5 D iscontiguous guess ranges

The results of section 3.4 can be extended to the case where the range of
allowed guesses is not the full set of numbers as , (a +1)s, . .. bs, but is inst ead
a subset ofthis set. For example, if s = 1, one such "discontiguous set " would
be the set of numbers { [a, e], [d,b]}, where (d - e) > 1. It is assumed that Y
st ill consists of more than two elements (if this isn't the case, then theorem 1
applies) .

Equations (1.7) and (3.1) are not changed if the set of allowed guesses is
discont iguous. In addition, the analysis of app endices A and B goes through
unchanged through the conclusion in appendi x B that k = 1, through the
"squ eezing" procedure used to set the OO,q(Gi ) , through th e conclusion that
m ' = 0, through equat ion (B.l), and through equa t ion (B.2). T hroughout
all of this portion of th e analysis we can ignore the fact that there are cert ain
guesses where, due to the diseontiguity of the set of allowed guesses, we are
not allowed to place the free defining sets. This is because taking account of
these diseontiguities could only serve to increase the partial expected guessing
error over what it would be otherwise.

Now, however, e, the term (Iy - f( q)l}y from equation (3.1), is different.
In particular, the lowest possible value of C is now lower than it is for the
case of no discontiguities (although it is still greater than 0) . Taking this fact
into account , equ ation (B.3) can be rewri tten as 8Eo ccam = s[Eguessing/ S +
1/2]2 -Cmin, Cmin being the lowest possible value of c . The variable E', which
is define d in terms of equation (B.3), is now different (although it is still
between 0 and s(b - a).) Other than this , the analysis still continues as
before to equation (B.7); the only difference is that th e two two te rms in the
square brackets in equation (B.7) have to be rewritten in terms of Cmin :

The maximum of EOccam ' given Eguessing,

= S {Eguessing [~ _ ~ + c min ] _ [ c min _ ~]}
E' 2 4 S S 4

Since (b - a) 2: 2, the term in the first set of square brackets is st ill
necessari ly positive, just as in equation (3.5). Since there are at least three
possible guesses , the term in the second pair of squ are brackets is also nec­
essarily positive. Therefore the conclusion stated in theorem 2 st ill holds:
convergent guessing implies Occam's razor, for large enough learning sets,
even if the allowed set of guesses is dicontiguous . (Note that this means, in
turn, that even if restriction (1.1') does not hold , convergent guessing still
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implies Occ am 's razor, for large enough learning sets .) Given the relation­
ship between rational and irrational numbers outlined in the preface to this
section, t his means that convergent guessing implies Occam's razor for any
finite output space Y having two or more elements.

3.6 Continuous guesses

We can t reat the case of cont inuous-valued outputs (i.e., uncountably infinite
Y) by let ting b in equation (3.5) go to infinity, while keeping a constant
(0) and having s equal t/b for some constant t . Such a procedure gives
us the maximum of Eoccam, given a particular Eguessing, for the case where
Y = [0:, 0: + t] (0:, t E R) . To deduce the resultant relationship we must first
write E' in terms of band s:

as b -4 00 E' -4 t { {3 - ~}, V4b 2b

Therefore the maximum of EOccarn, given Eguessing , becomes

Eguessing ff- -~
Since b is becoming infinite, any value of Eguessing above a will res ult in a

positi ve Occam's error and Occam 's razor will not apply. It is not hard to
see why this is so. Imagine 0: = 0.0 and t = 1.0, so the possi ble outputs lie in
[0.0,1.0]. Imagine fur ther that f(q) = 0.0, and that OO,q(Y) is infinitesimal
everywhere except for at Y = 1.0 , where it is m , and for the range from 0.0
to t::.. , where it is m - 5. T he par ti al Occam err or is positive, but the partial
expected guessing is t::../2, and sin ce we can make t::.. as small as we like, we
can have the partial expecte d guessing error be as small as we like while st ill
having a positive partial Occam error .I"

As a result , to have convergent guessing imp ly Occam's razor for the
case of continuous-valu ed outputs, we have to strengthen our assumptions
concerning the nature of the guessing distribution when the cardinality of
the learning set is large. This should not be too surprising; the requi rement

14 At first glance, it might appear that our formul a for maxim al Eo ccam given Eguessin g

for cont inuous-valued Y must be wrong , since for E guessing of 0 it says Eo ccam can be
infinite, when in fact its maximum is t/2. This overestimate for the maximal value of
Eo ccam is due to our forcing p(E) to be two delta functions centered at 0 and E' (see
appendix B). For the limit we are taking, E' approaches 0, and the delta funct ion at
o is weight ed by an infinite negative number . A more car eful ana lysis than the one in
appendix B would conclude th at th e maximum of Eoccam is t/2. However , the conclusion
that infinitesimal Eguess ing can resul t in positive EOccam must st ill be mainta ined , as is
shown by the examp le where OS,q (Y) is infinitesimal everywhere except a t 1.0 and in a
fl.-neighborhood of 0.0.
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of convergent guessing is an extremely weak one, and in fact it is somewhat
surprising that there exist any situ ati ons at all where it can set limits on th e
Occam error.

There are a number of ways to go abo ut this "strengthen ing of assump­
tions." For example, to directly take care of th e case where OO,q(Y) is 1
everyw here except for at Y = 1.0 (where it is m ) and for the rang e from 0.0
to 6. (where it is m - 8), we could require that for sufficient ly large learning
sets, OO,q(Y) is allowed to have at most one local maximum within the allowed
range of guesses .

Although this extra assumption will probably recover the relat ionship
between convergent guessing and Occam's razor even when the guesses are
cont inuous-valued, provi ng thi s relationship from this ext ra assum ption would
entail a calculat ion at least as complicated as that contained in appendi x B.
What is more, it is not clear th at this assumption is really all that reasonable
- it is a pretty strong claim to say that OO,q(g) must be roughly bell-shaped
for all learning sets and for all questions .

Instead, we will make the simpler assumption that as the sizes of the learn­
ing set s grows larger, th e magnitude of th e difference between (1-£ ) and Eguessing

grows smaller (the avera ges being over all learning sets () and over all ques­
tionsj, Xo). More precisely, define the mode-average difference D(O, f( .), n)
as follows:

D(O,f(x ),n) == ({(IY - f(q)l)( y E argmax [0 . ,.(')]) (3.6)

- 2: {OO,q(y) jy - f(q)l} })
y EY (O e f(x), qEX. )

All learning sets () in the average are required to have n elements. The
first term on the right-hand side is recognizable from equation (3.1) as (1-£ ).
The second term is recognizable from equation (1.7) as th e expected guessing
error, E gu essing'

For a parent curve f( x ), a method M exhibits convergence between th e
expected guessing error and the expected guessing mode if, for all real num­
bers 8 > 0, there exists a positive int eger n such that for all learning set
cardinalit ies exceeding n, ID(O,J(x ),n )1 < 8. Roughly speaking, conver­
gence between the exp ect ed guessing error and the exp ect ed guessing mode
means th at we expect that, for large enough learning sets, the mode of the
probability distribution over Iy- f(q) 1values occurs near the average of that
distribution (the distribution being set by OO ,q(y), averag ed over all learning
sets () and questions q E Xo). Certainly for sit uations where OO,q (y) be­
comes approximately gaussi an for large learning sets for any question, this
assumption should be satisfied .

We can now writ e

Eo ccam = D(O,f(x) ,n)+Eguessing -(( ly- f(q)I)(YEY))(Oef( x) , qEX.) (3.7)

For convergent guessing and convergence between the expected guessing
error and th e expected guessing mode, th ere exists an n such that D(O, f(x), n)



352 David H. Wolp ert

+ E gu essin g is an arb it rarily small (posit ive) nu mb er . What's mor e, for any
learning set and question, (Iy - f (q)I)(YEY) has its lower bound set by the
ran ge of allowed guesses, an d that lower bou nd is necessarily a positi ve num­
ber (i.e., regardless of the correct guess f(q), (Iy - f(q) I)(YEY) is positive
definite). Therefore we have the following theorem:

Theorem 3. If an ercbitecteie and rest rict ion exhibits convergent guessing
for a parent function f( x ), and if it exhibits convergence between the ex­
pected guessing error and the exp ected guessing mo de for that parent func­
tion f (x) , then there exists a positive integer n such that, for the parent
fun ction f( x) and for learning set s of cardinality greater than n , M obeys
Occam's razor for any uniform simplicity measure.

T heorem 3 holds regardless of the cardinality of Y. It is trivial to pr ove
the converse of theorem 3:

Theorem 4. We are provid ed with an architecture and rest rict ion that ex­
hibits convergence between the expected guessing error and the expecte d
guessing mode for a paren t surface f( x) . Assume further th at for any real
number 8 > 0 ibere exis ts an integer n such th at the Occam error of th e ar­
chit ecture and restriction (calculat ed with a uniform sim plicity m easure) for
th e parent surface f(x) is less than 8 - ((Iy - f(q)I)(YEY))(UC!(x),qEXe) for all
learning set cardinalities> n . Th en the architecture and restri ction exhibit
convergent guessing for the parent surface f (x) .

Note that this converse of "convergent guessing implies Occam's razor"
depends critically on the assumption of convergence between the expected
guessing error and the exp ected guessing mode; if such an assumption is not
made (as it is not in the analysis leading up to equation (3.5)) , t his converse
does not necessaril y hold.

As in the discussion following theo rem 2, if there is a limi t L to the
sizes of the allowed learning set s, then theorems 3 and 4 hold for a mod ified
definition of convergent guessing and/ or convergence between the expected
guessing error and the expected guessing mode.

3.7 Alternative measures of Occam's razor

Equation (3.5) tells us that if convergent guessing ap plies, your learning set
B is large enough , and you have two randomly chosen defining sets 1>1 and 1>2
bo th E RM,u(iP ) where 5(1)2) < 5(1)1) (but there is no defining set 1>' such
that 5( 1)2) < 5( 1)') < 5(1)1))' t hen you sho uld use 1>2 rather than 1>1 to gen­
eralize. This means that guessing with the mode of OO,q(Y) should give better
generalizing than guessing with a randomly chosen Y E Y . Now, having cho­
sen 1>2 over 1>1, should we choose a defining set 1>3 with lower simplicity than
1>2 over the defining set 1>2? Equation (3.5) does not answer this question ,
sin ce we are no longer picking the simplicity value of the defining set wit h
higher simplicity at random. (We are constraining 5(1)2) to be st rict ly less
than d* since 5 (1)1) ::; d* and 5(1)2) < 5(1)1)') T herefore (3.5) does not
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answer the question of whether we should implement a pr ocedure of picking
defining sets with lower simplicity all the way down until we get a defining
set with simplicity d.:

We can therefore ask the following novel question: If convergent guessing
applies and you have two defining sets ¢1 and ¢2 both E RM,O(iP) where
S(¢2) is d*, the min im al S value over all defin ing set s E RM,o(if»(¢l being
a randomly chosen defini ng set E RM,o (if»), then should you use ¢2 rather
than ¢1 ? This question is equ ivalent to asking if guessing with the mode of
OO,q(Y) should give better generalizing than guessing wit h a randomly chosen
¢ E RM,O(if». (T his contrasts with the ques tion that is answered by (3.5),
which assumes a randomly chosen Y E Y rather than a randomly chosen
¢ E RM,O(if» .)

Intuitively, we would expect that if Eguessing is sm all enough, then OO,q(Y)
is very close to f(q), whereas due to (1.1') E gue ssin g must always t ake into
account the error associated with all Y E Y. Therefore we would exp ect that
for small enough Eguessing the magnitude of the guessing error of the mode of
OO ,q(Y) would have to be less than the average guessing error magnitude over
all of the guessing distribution , i.e. (J-l) would be smaller than Eguessing ' To
try to prove this, we could start arg uing in a manner similar to that followed
by the proof in appendix B. Following along with appendix B, we would
figur e out the limits on BEgu essin g set by BJ-l . ( "BEguessing " is short hand for
the partial expected guessing error and similarly for BJ-l j see appendix B.)
Unfortunately, BEguessin g will only set limi ts on BJ-l if BEguessing is very small
(e.g. , < s/2 ). This is precisely the domain in which the approximations of
appendix B result in the grea tes t overestimation of what BJ-l can correspond
to a given BEguess ing ' (This overestimat ion is so bad in fac t that it leads to
the conclusion that BEguessing must be negative to force BJ-l < BEguessing.)

Even if we make a mor e careful analysis, however, we can only come to a
conclusion concern ing part ial errors. For a given guessing distribution (i.e.,
for a given question and learning set) there are (partial) expected guess ing
errors low enough to force an even lower guess ing erro r magnitude for the
mode of OO,q(Y)' However , the relationship be tween these two errors is not
linear. In fact when we average over all questions and learning sets to get
tot al errors it turns ou t that the expected guessing error can never be so low
as to force the average guessing error of the mo de of OO,q(Y) to be even lower.
Eguessing can force J-l to be less than e, but it cannot force it to be less than
Eguessing '

As an example, imagine that Y consists of the three elements {O, 1, 2}
and that we have n + 1 {question, learn ing set } pairs. For n of those pairs ,
let OO,q(Y) be infinitesimal for all Y except f(q). For the remaining pair, let
f(q) = 0, have OO,q(Y) be infinitesimal for Y = 1, and have 00,q(2) infinitesi­
mally great er than OO,q(O) . For all of those first n pair s BJ-l = BEguessing = 0,
e ~ 2/3 and BJ-l - e :s: - 2/ 3. For the (n + l)th pair, however , BJ-l = 2 while
BEguessing = e = 1 and BJ-l - e = 1. The to tal J-l , averaged over all n + 1
pairs , = 2/( n + 1) . However , E guessing = l/(n + 1) and can be arbit rarily
small (for large enough n). For this example sm all enough E guessing forces n
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large and therefore forces the average of OJ.! - e (i.e., Eoccam) to be negative.
Nonetheless, no matter how small Eguessing is, the total J.! averaged over all
pairs exceeds it.

There are two ways ar ound this impasse. One is to make addit iona l
assumptions conce rn ing how much the guessing distribution can vary from
one {quest ion , learn ing set } pair to another. Another solution is to not
average over all {question, learning set } pairs, but instead to work in terms
of a sing le (provided) question and learning set . T his second solution involves
replacing the assumption of convergent guessing with the assumption that the
particular learn ing set at hand is big enough so that for it and the provided
question the partial expected guessing error is particularly low (i.e., < 5/2).
Under such an assumption we can conclude that finding the defining set
E RM.O( <p) with lowest simplicity will give better guess ing than simp ly picking
one of the defining sets E RM,O (<p) at random.

There are a number of other questions simi lar to this "novel question"
concerning the preferability of guessing with a defining set chosen from the
mode of OO,q(Y) rather than with a random defining set . To deal with these
questions, one might prefer to define the Occam error as the difference in
guessing accuracy averaged over all legitimate S' < S" (i.e. over all S' < S"
that correspond to at least one guess ), not just as the average difference in
guessing accuracy when S' is the highest legitimate simp licity value < S".
In other words, where the ai are the partial Occam errors corresponding to a
given value of S" (as in the derivation of (1.4)), one might want to investigate
the alternate Occam error EoA :

as opposed to the definition from equation (1.4),

(T he expectations are over all learning sets Bwith a given cardinality and all
quest ions E RM,o(<p), as usua l.)

When there are two poss ible guesses (i.e., n = 1), as in subsection 3.3,
EOA = Eoccam. When there are three poss ible guesses, EOA = 2Eoccam .
However, when there are four or more possible guesses, specifying EOccam
does not uniquely specify EOA' For example, for n = 3, EOA = ({ao - a3+
al -a3+a2 -a3 +aO-a2 +al -a2 +aO-ad ) = ({3(aO- a3) + (al- a2)}} =
3(Eoccam)+ ((al - a2)}' Since the value of (al - a2) is not set by Eoccam' the
value of EOA is not set by EOccam either.

Unfortunately, carrying out the calcu lation of the bounds set on EOA
by a given expected guessing error is a much more complicated enterprise
than performing the calcu lations already done in this sect ion. (That is why
this alternate definition of Occam's error has not been used in this paper.)
Note, however, that a very simple and reasonable assumption allows us to
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go directly from the conclusions concerning EOccam reached previously to
conclusions concerning EOA : just assume that as the size of the learning set
grows, terms like ((al - a2)} grow very small, at least in relation to terms
like Eo ccam . This assumption simply says that for large learning sets, the
distribution Oe,q(Y) should become approximately bell-shaped, on average,
so that a2 ~ aI, on average. In point of fact, due to convergent guessing we
would expect that for large learning sets al would actually become smaller
than a2, which would make Occam's razor even more pronounced than it
would be if instead a l becomes equal to a2 (in the limi t of large learn ing
sets) . So this extra assumption that terms like (al - a2} grow small (and
that as a result convergent guessing implies Occam's razor when the Occam
error is defined to be EOA ) is really very weak.

4. Vari ous m easures of "complexity" and Occam's r azor

There has recently emerged a variant of the field of computational complexity
[9] that is interested in broader measures of the "complexity" of an ent ity
than its demand on t ime and computational resources [2,4,13,24]. At present
there is still uncert ainty as to what this broader "complexity" is supposed
to measure, however. W hat some researchers seem to mean by "complexity"
is a measure of the computational randomness of an entity (e.g., a sequence
of in tegers). However, for a given size entity, the "randomness" of that
entity can be viewed as a measure of how well one would expect to be ab le to
generalize from that entity. The less "random" an entity, the more accurately
one would expect to be ab le to generalize from it. For example, if the entity is
a sequence of integers, then we can view it as a learning set of elements in Z+ X

Z+; the inputs of the elements of the learning set are the successive counting
numbers, while the outputs of the elements of the learn ing set are the numbers
in the sequence. For such a case, "generalizing from that ent ity" means
extrapolating the sequence of integers. The less "random" the sequence, the
more accurately one would expect to be able to extrapolate from it .

Implicitly acknowledging this relation between randomness and expected
acc uracy of generalization, Occam's razor is often assumed and the random­
ness then calculated with a simplicity measure. The lower the randomness
(i.e., the lower the simplicity measure), the better the extrapolating shou ld
be, according to Occam's razor. For example, one common comp lexity mea­
sure of a sequence of bits is the size of the smallest Turing machine that can
repro duce that sequence [4, 24]. T his measure is said to give the "random­
ness" of the sequence. What it gives, in fact, is an est imate of how well the
sequence can be extrapolated; according to Occam's razor , the smaller the
simp licity measure of the extrapolator (i.e., the smaller the size of the Tur ­
ing machine reproducing the sequence), the more accurate you would expect
those extrapolations to be. IS

lSStrietly speaking, as usually formu lated, algorit hmic information complexity does not
deal with TMs mapping Z+ to Z+ but rather with TMs generating a sequence of numbers
in Z+. I am being a bit loose with the terminology here.
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Even complexity measures that do not direct ly make use of the idea of
"randomness" often exploit Occam's razor. In fact, this reliance on Occam's
razor is often explicit ly ackn owledged. For example, Lloyd and Pagels [13]
define the "absolute depth" of a system directly in terms of Occam's razor.
There are other cases , however, where the reliance on Occam's razor, though
pronounced , is not exp licit . For example, Bennett 's "logical depth" [2] is
defined as the number of operations made when reproducing a sequence of
numbers by the minimal Turing machine that can reproduce the sequence.
But here, just as with algorithmic information complexity, it is not clear why
one should be interested in things like minimal Turing machines unles s it is
bec aus e of what Occam's razor has to say about them. And in turn, it is not
clear that there is anything Occam's razor can te ll us , except how well you
should expect to be able to generalize.

Whether or not it is only genera lization accuracy we are interested in , it
seems that expected generalization accuracy is closely related to the notion of
"complexity." As a result , to investigate complexity properly we should have
a theoretical structure telling us , from first principles and in an archite cture­
independent manner, when and how we should and should not expect to be
ab le to generalize well.

Along with [29] and [30], this paper const itu tes a first foray at creating
such a theoretical structure. Insofar as the "complexity" of an entity is re­
lated to simplicity measures and therefore expe cted generalization accuracy,
the results of this paper bear direct ly on the quest ion of how to measure t he
"complexity" of that entity. For example, this paper provides a mor e sophis­
t icated measure of the generaliz ation accuracy expected from use of Occam's
razor than, for example, the size of the minimal Turing machine: this more
sophist icated accuracy is simply the (uniform simplicity measure-based) Oc­
cam error resulting from guessing part of the learning set when reproducing
the rest of it. Such an error is an estimate of the Occam error when taught
wit h the ent ire learning set . The lower this Occam error for the entire learn­
ing set, the more likely the guessing is to be convergent. In add ition, the
lower this erro r, the mor e evidence we have that picking a defining set with
approximately minimal uniform simplicity measure (e.g., a Turing machine
of minimal size) generalizes accurately for the parent function at hand, since
the gues sing acc uracy of that defining set for the parent function is directly
reflected in the Occam erro r.

If you are provid ed wit h a full -blown genera lizer rather than just an ar­
chitecture (i .e., if you are provid ed wit h a single-valued mapping sending
learning sets to guessed input/output functions), there are other means in
addition to Occam's razor for estimating the accu racy of a particular gen­
eralization of a particular learning set . One such alternative measure is the
cross-validat ion erro r of the generalizer over the learn ing set, i.e. how accu­
rat ely the generalizer guesses proper subsets of the learn ing set when tau ght
with the rest of the learning set ([6]; and for a mor e sophisticat ed analysis
of cross-validat ion , [30]). For example, if your generalizer is a surface-fit ter
(e.g. , t he hyperplan ar HERBIE of [28], or a memory-based reasoner [25],
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or a backpropagated neural net [21]) , then the cross-validation err or is one
measure of how accurately you expect to ext rapolate from the ent ire learning
set (when the surface-fitter is taught with the entire learning set) . Choosing
a surface-fitter with minimal cross -validation err or an d then ex trapola ting
with it, with the cross -validation error being a measure of your confidence in
the ext rap olation, is exactly an alogous to choosing a Tu ring machine with
minimal size and then ext rapolating with it, with the size of that minimal
Turing machine being a measure of your confidence in the ext rapolation .

As Bennett's logical depth illustrates, however , "complexity" is not al­
ways dir ectly associated with the gener alizing accuracy. This suggests several
alternatives to measuring the complexity of an ent ity as the est imate d accu­
racy in generalizing from that ent ity. One such alternative is based on the
notion of t esting generalization accuracy by teaching a system with a subset
of the learning set and seeing how well it guesses the rest of the learning
set. Under this idea one would define complexity as the rate of fall-off of a
quantity connected with generalization accuracy as the size of the portion
of the learn ing set used for training increas es. Such a complexity measure
is referred to as a "d ifferential" complexity measure. As an example, rather
than the raw cross-validat ion err or, the rat e of fall-off of the cross-validat ion
err or as the proportion of the learning set used for t eaching in creas es could
be used as a measure of the "complexity" of the learning set. In this case, one
would search for the surface-fitter with the greatest fall -off rate (i .e. , deriva­
tive) in the cross -va lidation error.I" Both completely random sequences and
completely regular ones have a low fall-off rate , because no additional infor­
mation pertinent to prediction is gain ed by increasing the size of the training
set. Therefore, alt hough this measure would view the br ain as complex, a
gas or a crystal would be viewed as noncomplex.l" (This is a prope rty that
some researchers (e.g. , [13]) deem desirable in a complexity measure.)

Such differential complexity measures do not have to use generalization
and cross-validation. Nor do they have to involve first derivatives. For ex­
ample, the complexity of a sequence of bits could be defined as the rate of
change of {the change in its algorithmic information complexity as you add
successive bits (perhaps averaged over all orderings of whi ch bits get added
first , perhaps divided by the number of bits) and evaluated when the ent ire
sequence is in place} . Just as with the measure of differential cross-validat ion
error, this differential algorithmic information complexity would view a regu­
lar sequence and a purely random one as having the same complexity. This is
because for both such sequences the derivative of the algorithmic information
complexity is essentially a straight line (wh en plot ted against the number of
bits of the sequence examined so far).

16Note that to use th is definition of complexity, a standard measure is needed for "num­
ber of elements of the learning set, " i.e., th e independ ent var iable in the derivativ e. For
example, if the learning set is a sequence of integers, one such measur e might be the
numb er of int egers in the sequen ce.

17presumably, one should somehow incorporate the size of th e ent ity into these differen­
tial complexity measures . This would pr event the measure from deeming a salam and er 's
br ain to have the same comp lexity as a human one, for example.
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5. Conclusions

Occam's razor constitutes one of the enigmas of the scientific method. It is
used extremely ofte n in scientific research , but it is hard (if not impossible)
to justi fy it from first principles. So the question ar ises, "W hy does adher­
ence to Occam 's razor so often give good results when used in our universe?"
Convergent guessing is also a property that is central to much of modern
science and that has not been proven from first princip les. This paper shows
that the two principles are not independent; convergent guessing implies Oc­
cam's razor and vice versa. We therefore have reduced by one the number
of pr inciples in the foundat ions of science that, although of fundamental im­
portan ce, are unproven . It seems likely that cross-validation can be worked
into this framework as well, as might Rissanen's minimum description length
pr inciple and perhaps the technique of entropy maximization [10]. If indeed
all these techniques (as well as all other fundamentally important but un­
proven techniques resident in the scientific method) can be incorporated into
this framework, and are all seen to be equivalent, then the entire scientific
method will be on a much firmer footing. Instead of a whole series of "fun­
damentally important but unproven techniques" disturbing the foundations
of science, we would have only one.

In addit ion to shoring up the foundations of science, there are other ad­
vantages that accrue from investigating the equivalence of these techniques.
Once we see how these techniques are related to one another, we can apply
them in more sophist icated and effective manners. For example, the analysis
of the relationship between Occam's razor and convergent guessing presented
in this pap er provides us a means of app lying Occam 's razor where before
we might not have been able to.

Finally, there is another, more speculative, advantage that might accom­
pany a complete and successful application of the kind of analysis carried
out in this paper. Currently science is conducted by requiring that its the­
ories possess as much objectivity and rigor as possible. The theories should
be mathematically correct, agree with all of the data, be consistent wit h
other well-established results, etc. In short, current science requires that its
theories be complete ly rigorous. On the other hand , the means scien t ists cur­
rently use for choos ing between competing (rigorous) theories is comp letely
subjective, relying on aesthetics as much as anything else. No mathemati­
cally precise standards of rigor have been established for this meta-realm (the
imprecise musings of some philosophers notwithstanding). Scientists strive
for one set of standards within the theories and are content with another
(much weaker) set of standards amongst the theories.

If the problem of inductive inference ever gets solved (whether according
to the approach of this paper or according to some ot her approach ), this
unsati sfyin g and rather curious double-standard on the part of science will
be removed. We will have a means for determining the optimal generaliza­
tion of any learning set, i.e., a means for determining the optimal theory to
explain any set of data. This goal of determining a means to find the unique
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opt imal generalizat ion of any learning set is analogous to Hilbert 's program
for algorithmically codifying mathematics (a program which Godel proved
was impossible). Both programs, if successful, would take humans out of the
loop .

Appendix A.

In this appe ndix it is proven tha t findin g the lowest partial expected guessing
error for a given part ial Occam error is equ ivalent to finding the largest partial
Occam error for a given pa rti al expected guessing erro r.

For a given learning set , define the function D.(E,0) , from R 2 to R , to
equal 1 if th ere exists a method and a parent funct ion with partial expecte d
guessing error equal to E and partial Occam error equal to O. D.(E,O) = 0
otherwise. The range of possible guesses is as in sect ion 3.4.

max(EID.(E ,O) = 1) ::; b - a. (This maximum occurs when f (q) = a
for all q and M has infinit e defining set s reprod ucing any learn ing set , all
but an infinitesimal fraction of which guess b for all q and all learnin g sets .)
min(E ID.(E , O) = 1) 2:: O. (This minimum occurs in the same situation as
th e one resulting in th e maximum of (EID.(E, 0) = 1), except that the guess
with (almo st) all of defining sets is a, not b.) In a similar way, there exist
finit e bounds on max(OID.(E ,0) = 1) and min(O ID.(E , 0) = 1).

We want to find th e function from E to max(OID.(E , O) = 1). Call this
fun ction g(E) . What we are going to be calcu lating is a function from 0 to a
value which happens to be ::; min(EID.(E ,O) = 1) for those 0 values where
min(E ID.(E ,O) = 1) is defined and finite (there might be 0 values for which
D.(E,0) = 0 for all E) . Call this function j (O), and call the function from 0
to min(EID.(E,O) = 1) h(O); j (O) ::; h(O) for all 0 where h(O) is defined.

We will see when j (O) is calculated that j (O) is defined everywhere,
is everywhere continuous , and has infinite domain (unlike g(E ) and h(O)).
Furthermore, j'(0), th e derivative of j with respect to 0 , is everywhere
greater than 0 (and nowhere infinitesimal). As a result , j(O) is invertible.

The proposition to be proved is that g(E) ::; j -l(E) for all E for which
g(E) is defined. The proof of this proposition involves two parts . First, it is
shown that g(E) ::; max(O lh(O) ::; E) for all E for which g(E ) is defined.
Then it is shown that , for all such E, max (O lh(O) ::; E) ::; j- l(E ). The
transit ivity of th e::; relation then completes the proof.

Given any value of 0 and any fixed value of E, D.(E, 0) can equal 1
only if the minimum over E' of (E'ID.(E', 0) = 1) is defined and is ::; E.
Therefore, for fixed E, th e set of O's such th at the minimum over E' of
(E'ID.(E',O) = 1) ::; E :;2 the set of O's such that D.(E,O ) = 1 (whether
or not eit her of these sets are empty) . Therefore max(O ID.(E, 0) = 1) ::;
max(O I{min(E' ID.(E',O) = 1) ::; E} ) (assuming both sides of the inequality
are defined, i.e. assuming th ere is an E value e, such that D.(e, 0 ) = 1 for
some 0 value). In other words, g(E ) ::; max( Olh (O) ::; E) for all E for
which both sides of the inequality are defined. It is possible, however, to
have the right-hand side defined and not the left (but not vice versa) . To
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take care of this case, it suffices to note that we are only interested in those
E for which g(E) is defined. So for our purposes we can simply state that
g(E) ::;max(O lh(O) ::; E) , as required .

Now examine any point (E' ,O') lying on max(O lh(O) ::; E'). Because
j(O) ::; h(O) for all 0 where h(O) is defined, j(O') ::; E' . By definition, there
is no 0 value exceeding 0 ' such that h(O) = E'. However, the derivative
of j is positive definite and nowhere infinitesimal, so there is a valu e of
o exceeding 0 ' such that j (0) = E'. Since j is inverti ble, we see that
j-l(E') 2: 0 '. T herefore max(O lh(O) ::; E ) ::; j - l( E) , as required. •

Appendix B .

This appendix shows how to minimize the partial expected guessing error,
given the partial Occam error, for the case when the output space Y is as
is sect ion 3.4. The variab les a, b, 5, s, u, k, m , {gil, {G;}, and N are all
defined in section 3.4. The set of {gi} cannot be empty, alt hough the set of
{G;} might be.

To this end of mini mizing the part ial expected guessing erro r , first assume
that f(q) and m are fixed to the values that will min imize the partial expected
guessing erro r. e is fixed by Y, f.l is fixed by e and the partial Occam erro r,
while k, the set {gil, and the Oe,q(Y) have yet to be set.

Now we will show that we can always take k = 1, so that {gil contains
a single element, and as a result {G;} is nonempty. Let k i: 1 and assume
that the average of the magnitudes of the distances of the {gil from f(q),
added to f(q), lies on a point in Y, labeled as g ave ; f.l = gave - f (q) an d
gave E Y. Assume also that Oe,q(gave) = O. (More accurately, due to (1.1')
assume that Oe,q(gave) is infinitesimally close to O. Whenever this appendix
refers to setting an Oe,q(Y) value to "0," what is really meant is that it is set
to an infinitesimal pos it ive number .) Now modify Oe,q(Y) by set t ing Oe,q (gi)
to 0 for all the {gil. Simultaneously, set Oe,q(gave) to mk. This pro cedure
leaves f.l and therefore the par ti al Occam error uncha nged. It also leaves the
par ti al expected guessing error unchanged and preserves the normalization of
Oe,q(Y) . Therefore for this case we can assume that the set of {gil consists of
the sing le element g ave , i.e., we can rep lace the old value of k wit h the value 1.
(Note that despite our assumption of optimal m this procedure gives us a
new (larger) value for m, namely the old value multiplied by the old k. Either
there exists more than one Tn minimizing Eguessing, or our orig inal assumption
that k i: 1 resulted in a contradict ion.)

Now examine the case where Oe,q(gave) i: 0 prio r to the process of squeez ­
ing the Oe,q(gi) into Oe,q(gave), although it is st ill t rue that g ave E Y. T his
can in general happ en in one of two ways; gave E {gil , or g ave ~ {gil , but
Oe,q (gave ) is not infinite simal. In the first scenario sett ing all the Oe,q(gi) to
oand Oe,q(gave) to mk is sti ll a valid pro cess, i.e., it does not change the par­
tial Occam.erro r, the partial expected guessing error, or the normalization of
Oe,q(Y). In the second scenario, however , the partial expected guess ing error
has been changed. This can be fixed though - simp ly set the new Oe,q(gave)
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to the old (i.e., pre-"squeezing") noninfini tesimal value + mk. The rest of
the argument follows, and we can take k = 1.

The remaining poss ible case is where gave 1. Y . For this case, for the
calculations of all quantities except e, modify Y to equal th e old Y U {gave} '
(e is calculated according to the original set Y .) With this new Y we can
always fix OO,q (gave) to 0, and thereby get th e exact same values (as when Y
did not include gave) for all quantities , except s, which go into the calculation
of the partial Occam error and the partial expected guessing error . Since e
is calculated with the old Y , however , this fixing of OO,q(gave) to °shows
that, with this new syst em, there exists a set of OO,q(Y) result ing in the old
value for the minimum of the partial expected guessing err or given the par ti al
expected Occam error. As a result , the min imum calculat ed this new way is
bo unded above by the true minimum. Since we are only int erested in such a
lower bound, we can carryon with th is new Y. (The fact that one element of
this new Y 1. {si Ii E [a, b]} will not affect the analysis of this appendix, given
that c: is calculated with the original Y .) With this new Y , OO,q (gave) = °
before th e squeezi ng, and so we can carryon the analysis exac t ly as in the
preceding discussion. When we squeeze the OO,q(gi) to OO,q(gave), we do not
change the normalization of OO,q (y), th e value of the partial expe cted guessing
error, or the value of th e pa rtial Occam error (so long as e is calculated with
the original Y) . Therefore we conclude that k can be set to 1. This takes care
of all possible cases, so we conclude that k can always be t aken to equal 1
(although we might have to augment Y to do so).

m is st ill the optimal value for Y ; if Y has been augmented , we assume
that m has been modified to be the optimal value for th e new Y (though k
is still fixed to 1). This mod ificat ion can not result in a bound on the partial
expected guessing error greater than the real bound for the orig inal Y . Even
if it was necessary to augment Y , f( q) is st ill assumed to E th e original set
Y . Like m, f (q) is assumed to be modified if need be (i.e., if Y is augment ed)
so as to minimize the parti al expected guessing error.

Since k = 1, OO,q(gave)is fixed (to m). Now we will vary the values of the
remaining OO,q(Y) (i.e., the values for Y E {Gd) so as to mini mize th e par ti al
expected guessing error. Once this is done, we will calculate the op timal
values of m and f(q) , the remaining und et ermined parameters.

To minimiz e over the OO,q(Gi) we carry ou t the following procedure: St art
with OO,q(Gi) infinitesimal for all Y except for gave ' Add m - 5 to OO,q(J(q)),
th en to OO,q(J(q) + s) and to OO,q(J(q) - s) , then to OO,q(J(q) + 2s) and to
OO ,q(J (q) - 2s), etc. 5 is an infinitesimal positive constant. T he procedure
is cont inued unti l we run out of free defining sets , i.e., we cont inue until
m ' , defined to equal the difference between 1 and the sum of m with all th e
addit ions to th e OO,q(.) made so far by this procedure, is less than 2m. At
this point we set each of th e next two outputs in line (one for each side of
f(q)) to th e value m '/2. The procedure, which will be referre d to as "the
OO ,q procedure," is now over. This OO,q procedure put as much of the OO,q(Y)
distribution as close to f( q) as possible while pr eserving gave (and th erefore
the pa rtial Occam error) as well as th e value of k. As a result , thi s OO,q
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procedure has resulted in minimal partial expected guessing error, given the
constraints.

Strictly speaking, in carrying out the OO,q procedure we should worry
about the effects of the boundary of the allowed range of the guesses. If f(q)
is too close to such a boundary, then we cannot keep ad ding m - 5 to points
arrayed symmetrically about f (q), since that would mean some defining sets
res ult in guesses outside of Y . For calculational purposes however, we always
assume that in carrying out the OO,q procedure we can range over a subset of
{G;} which is symmetric about f(q ). We can make this assump tion becaus e
we are only interested in find ing a lower bound for the partial expec te d
guessing error, and boundary effects can only serve to increase the part ial
expected guessing error. As when setting k = 1 for gave ff. Y, it might
be necessary to augment Y (for calculations not involving e) to meet this
assumpt ion . T his augmented Y consists of all {a+ sili E [(a - b), (b- a)]). If
this augmentation is necessary, then we assume that m is chosen to minimize
the partial expected guessing error for this augmented Y, as usual. Also as
usual , t his augmentation will not change the applicab ility of our lower bound
calculations to the architecture with the original Y .

Another caveat is needed to take care of the fact t hat the OO,q pr ocedure
as defined might add m - 5 to OO,q(gave)' Since m is already optimal (by
assumption), we must require that the OO,q procedure skip over g ave if it
comes to it. For calculational simplicity however , if the OO,q pr ocedure comes
to gave and gave E the original Y (i.e., if gave = a + si for some i E Z+), t hen
we will calculate the partial expected guess ing error as though gave were not
skipped and m - 5 were added to OO ,q (gave )' Again, we can do this since it
results in an underestimate of the true lower bound on the partial expe cted
guessing error. (Note, however, that no augmenting of Y was nece ssary to
carry out this particular approximation. )

As a res ult of these considerations, we can wri te down the minimal partial
expected guessing error: it is simply flm+s{(m - 5)(0) + 2(m - 5)(1) + 2(m­
5)(2) + .. . + 2(m - 5)(c) + m'(c + 1)}, for some cons tant c. We must now
find the m , c, and m' which minimize this sum , subject to the cons traint
that probability is conserved. To Oth order in 5, this constraint mean s that
m [l + 1 + 2c] = 2m[c + 1] = 1 - m'. (Using the constraint s that c E Z+
and 0 < m' < 2m, if we are given m we can calculate m' .and c, as well
as vice versa.) To Oth order in 5, the partial expec ted guessing err or equals
m[fl + s{c2 + c + m'(c + l) /m}].

As a first step to solving this minimization problem, we will establish
that m' = O. Imagine a dis tribut ion, h(y) , of real-valued numbers over Y .
Given the dist ribution h(y ), OO,q(y ) is calculated by dividing any particul ar
h(y) by the sum of all h(y) values; OO,q (y ) is h(y) normalized . We st art with
h(y) infinitesimal for all y except for gave, for which it equals 1. It is assumed
that fl = gave - f(q ), so that the OO,q (y) calculated from this starting h(y)
has the correct partial Occam error. We are now going to carry out the OO,q
procedure in a gradual manner. First we gradually increase h(y) to the value
1 - 5 at the point f (q) (5 is an infini tesimal positive constant. ) T hen we do
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(B.l)

the same thing with the point f(q)+s, and so on. At any point in this pro cess
we can calculate OO,q(Y) and therefore both partial errors. Once the partial
expected guessing error starts to increase in this process, it will never again
decrease. (This is because the average error will start to increase only when
the point Y whose OO,q value is currently being increased lies further from
f(q) than the current value of the average error. At no point in carrying out
the OO,q procedure beyond such a point can the average error ever decrease.)
Since the partial Occam error does not change in the process, the value of the
partial expected guessing error at this point where it first starts to increase
is the smallest part ial expected guessing error for the given partial Occam
error. Note, however, that if at any point in the process an addition to the
value of a certain OO,q(Y) causes an increase in the partial expected guess ing
error, then any ad dit ion to the original infini tesimal value of that OO,q(Y)
occuring in this process must cause such an increase. Therefore, if OO,q(Y) is
not infinitesimal when the procedure ends, it equa ls 1 - 8; m' = 0.

Since m' = 0, we can write the minimal partial expected guessing error
as [I-' + s{c2 + c}]f[2c + 2]. (m = 1/(2c + 2).) Different iating wit h respect to
c an d setting the result to 0, we get the following :

c = l -1

(The zero corresponding to the negative square root can be discarded because
c must be non negative.) If I-' /s > 1, this value of c is nonnegative and we
know that it ha s to correspond to a minimum since {I-' + sc(c + 1)}/{2c +
2} = 1-' /2 for c = 0, it equals 00 for c = 00, and the derivative of {I-' +
sc(c + I)} / {2c + 2} wit h respect to c is negative for c = °and 1-' / s > l.
Assume for the moment that I-' / s is indeed > 1. Since c is not a real number
but an integer, we have two numbers to check, namely the two values of
{ I-' + sc(c + 1)} / {2c + 2} for each of the two integers bracketing the c given
by equation (B.l). Call these two values E1 and E 2 • The lower bound
on the par tial guessing error is then given by the minimum of E1, and E 2 .

But as usual we are only interested in lower bounds, and since the value of
{I-' +sc(c+ 1)} / {2c+2 } is minimized by the c given by equation (B. l), even if
this is not a valid c (i.e., is not an integer), the value of {I-' +sc( c+ I) }/ {2c+2}
given by plugging in this value of c is a valid lower bound. Therefore we can
dispense wit h E1 and E2 and simp ly plug equation (B.1) into t he expression
{,U+ sc(c+ I)} / {2c+2} . Using the fact that the part ial Occam error = I-' - E: ,
we can writ e the lower bound on the partial expected guessing error for
u]» :» 1:

2J (aE o ccam + E: )/ S - 1
aEguessing = s 2 (B.2)

("0" indicates a partial error here. Technically speaking though, a partial
error is not a different ial.) If 1-' / s :::; 1, so t hat t he c given by equation (B. l)
is negative, the der ivative of {I-' + sc(c + 1)}/{2c + 2} with respect to cis
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positive for all c ~ 0, so that setting BEguessing as in equation (B.2) is an un­
derestimation of the true error. Therefore we can always use equation (B.2),
without any concern for the value of p / s.

Since we do not know f(q), we do not know 6, in point of fact. Therefore
we must find a lower bound on 6, given a and b. (This is equivalent to
minimizing with respect to the only remaining free variable, f(q) .) The
lower bound on 6 occurs when f(q) lies midway between sa and sb:

6 = s{b - (b+a)/2}{b - (b+ a)/2 + 1}/ {b - a + I}

for b - a even, and

6 = s{b -(b +a -l) /2}{b -(b +a -l) /2 +1} /2{b -a +l} +
s{b - (b+ a + 1)/2}{b - (b+ a + 1)/2 + 1}/2{b - a + I}

for b - a odd.
Since the first expression is always lower than the second, we can use it

for getting the lower bound on BEguessing' The result is

Looking at this equation, it is clear that as BEguessing increases, BEoccam
must also increase. Therefore this equation is not only a lower bound on
BEguessing given BEoccam; it is also an upper bound on BEoccam given BEguessing
(see appendix A). In other words, the maximum of the partial Occam error
is given by

BE = { [BEguessing / 2] 2 _ a
2 + b

2
- 2(ab+ a - b)}

O ccam S S + 1 4(b-a + l ) (B.3)

The lar gest possible value of BEoccam = s(b - a)/2. It occurs when
f (q) = a and the mode of OO.q(Y) is at Y = b. Not e, howeve r, that depending
on the values of a, b, and s , t his worst poss ible BEoccam might actually be less
than the BEoccam given by formula (B.3) for certain (completely legal ) values
of BEguessing' This state of affai rs occurs due to the (numerous) inst ances
in the derivation of equation (B.3) in which the minimum possible partial
expected guessing error is approximated by an expression that is always lower
than that minimum possible partial expected guessi ng error.

Now we must move from partial errors to full errors, averaged over all
allowed learn ing sets and questio ns. If (part ial expected guessing error ),
Eguessing, = x, what is an upper bo und on (par tial expected Occam error ),
EOccam? We write

r(b- a)s r(b- a)s
Eguessing = Jo dEp(E){E}, where Jo dEp(E) = 1 (B.4 )
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As in the analysis for two possible outputs, here p(E) is the (differential)
density of learn ing set/question pairs which have partial expected guessing
error E. To simplify the mathematical bookkeeping, we now translate a and
b by - a and redefine b as b - a (i.e., we set the lower and upper limits of
the range of possible guesses as 0 and bs, respectively) and assume that all
learning sets and guesses are translated accordingly. Clearly this translating
will not affect the relationship between the expected guessing error and the
total Occam error. Now the lower limit on the integrals in (B.4) are still 0,
but the upper limits are bs.

With a equalling 0, {a2 + b2 - 2(ab+ a - b)}/{4(b - a + I)} = {b2 +
2b}/ {4(b+ I)}. Therefore, given p(E), the average value ofthe partial Occam
errors (i .e., the full Occam error, as defined in equation (3.1)), can be written
as

fbs {(E)2 b
2+ 2b }

EOccam = Jo dEp(E)s -; + 1/2 - 4(b+ 1) (B .5)

We want to maximize the expression in equation (B.5) subject to the
constraints of equation (B.4) .

For the purposes of our maximizing EOccam subject to the constraints of
equation (B.4), we do not want to allow the quantity inside the curly brackets
in the integrand in (B.5) to exceed the maximal possible 8Eo ccam value of
sb/2. (This can be viewed as an attempt to mitigate the cumulative effects
of all our underestimates of the minimal 8Eguessing that can correspond to a
given 8Eo ccam . ) Therefore we cap the quantity in the curly brackets in the
integrand of equation (B.5), i.e., we replace that funct ion with the function
z(E) : z(E) = s{(E/s+1/2)2-W+2b)/(4b+b)} for E < E', and z(E) = sb/2
for E :2: E'. E' is the value of E such that sHE/s + 1/2)2 - W+ 2bJl [4(b +
I) ]} = sb/2, unless such a value exceeds sb, in which case E' == sb. E' > 0
always . E' is the lowest value of 8Eguessing that can correspond to the largest
possible 8Eo ccam ; see equation (B.2).

Now we must find the p(E) that maximizes EOccam sub ject to the con­
straints of equation (B.4). First hypothesize that for this p(E) there is a
value of E > E', e, such that p(e) is not O. Define p(e) == D. Now modify
p(E) by setting p(e) to 0, p(E') to its old value + D + C, and p(O) to its
old value minus C, where C == D(e - E')/ E'. This modification preserves
the constraints of equation (B.4), but it increases Eo ccam . (Note that this
rearranging might result in p(O) < O. As usual, we are only interested in
bounds, and therefore such negative densities are of no concern.) Therefore,
for the purposes of finding the maximum of Eo ccam ' we can set p(E) to 0 for
all E > E' .

Now hypothesize that the optimal p(E) is nonzero for some E lying
between 0 and E'. Call this E value e, and call p(e) D. Modify p(E)
by setting p(e) to 0 and incrementing p(E') by De/E'. Also increment
p(O) by D(E' - e)/E' . In carrying out this modification we have not vi­
olated the requirements on p(E), but now EOccam equals its old value minus
sD{(e/ s+ 1/2)2 - [b2+ 2b]/[4(b+ I )]}, plus s{ D(E' - e)/ E'}{(O+ 1/2)2 - W+
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2b]/[4(b + I)]}, plus 8{De / E'}{(E' /8+ 1/2)2 - [b2 + 2b]/[4(b+ I)]} . Adding
up these terms, since e < E', D > 0, and 8 > 0, this rearranging ends up
increasing Eo ccam . Therefore, to maximize Eoccam.' one should set peE ) = 0
for all values of E other than 0 and E'.

T he requirements on p(E ) then give us

p(E) = (E' - ~~essing ) e5(E) + (Egu;,sin
g) e5(E _ E') (B.6)

where e5(x) is the Dirac delta function of x. Since we know that z(E') = b8 /2,
this allows us to write down t he maximum possible value of Eoccam.' give n
Eguessing:

The maximum of Eoccam.' given Eguessing,

b Eguessing [ _ EgueSSing ] [ 1[.!. _ b
2 + 2b ]

< 8 2 E' + 1 E' 8 4 4(b +1)

8 Eguessing [3b
2 + 3b - 1] _8 [b

2 + b - 1]
E' 4(b+1) 4(b+ 1)

(B.7)

(B.8)
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