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Abstract . The most problematic aspect in the application of a ge­
netic algorithm (GA) is the coding of the problem. In superficial
applications, choosing a representation may appear simple. Yet it is
really an art because the theory provides only partial directives and
is not always fully applicable. Different representations incorporate
varying degrees of nonlinearity among the representation elements .
This interwoven nonlinearity is directly coupled with the representa­
tion and considerably affects the efficiency of a GA search. Both too
much and too little nonlinearity detract from the relative efficiency of
aGA.

This paper suggests that measures to qualify the suitability of a
representation to a GA search can be developed with the concept of
epistasis (a biological term that states the amount of intrachromosome
gene interaction) . By viewing the representation as a whole, being
more than the sum of its composing parts, the discussion on epistasis
in GAs reveals several fundamental features of GAs and leads to a
unique mechanism for "spying" on the suitability of a representation
to a GA.

1. Background

The schema theory [6,12J implicitly lists prerequisite features that a repre­
sentation should exhibit in order to utilize a GA search, namely that with
an above average probability, short, low-order schemata will combine and
form a higher-order co-adapted schemata. The schema theorem shows that
above average schemata will proliferate, but it does not indicate whether
this proliferation will occur at the optimum rate. In that respect, it is self­
evident that the representation is the primary aspect of a GA application
and determines its performance. The importance of the representation was
recognized, attention was given to the issue of building blocks (their size
and number), but the effect of interdependency among the representation
elements did not receive sufficient attention [3,5,8]. Only certain degrees of
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nonlinearity enable a GA search to exhibit a relative efficiency, while others
diminish this efficiency. Therefore, th e amount of int erd ependency among
the represent ation elements is an important ingredient in the GAs' cookbook
and const it utes an essent ial source of information.

Gene interaction is a central issue in natural geneti cs, where genes not
only are dependent on each ot her in order to jointly express phenotypi­
cal characterist ics but also suppress and act ivate th e expression of other
genes [16]. The term that has become synonymous with almost any type
of gene int eraction is epistasis [1 4]. Derived from th e Greek words epis and
stasis ("s tand" and "behind" ), epistas is is th erefore equa ted with stoppage
or masking. Epistasis is used to describe th e situation where one gene pair
masks or modifies th e expression of another gene pair. Wh en th e epist asis
of a chromosome is said to be high, it means that many genes are st rongly
linked to other genes. It is helpful to remember th at GAs, like many natural
systems, assume a certain holistic structure, a structure where th e whole is
different from the sum of its parts [7,13,15,17,18]. The frequent charac terist ic
of such information syst ems is that knowing the value of th e part s does not
necessarily ena ble the calcul ation of their effect together. In the GAs coterie,
epistas is is used to indi cat e th e extent of nonlinearity and int erdependency
among th e elements composing the rep resent at ion.

GA literature emphasizes that GAs do not "see" the pr oblem domain di­
rectly because the latter is obst ru cted by th e represent ation. Accord ingly, the
quest ion "Which problem domains are amenable for a GA search?" should
be replaced by the question "Does the repr esentation (of the given problem)
promot e th e most efficient GA search?" By shifting the question of suit­
ability from the problem dom ain to the represent ation, one focuses on the
core issue of GA applications, thus asking a question th at is not only more
consistent with the schema th eorem but also easier to answer (and at least
its meaning is more clear) .

2. Notional epistasis in GAs

Tracing epistasis is an elusive occupation because th e presence of epistat ic
elements can be traced only at the phenotypic level away from th eir scene of
interaction (genotypic level). Furthermore, even if the amount of epistasis is
known, th e question remains "Can this be put to use?" Section 2.1 addresses
the latter question and section 2.2 expa nds on string epistasis in contrast to
fitness.

2.1 Epistasis on a scale

If a repr esentation contains very little or no epistasis, any individual string
element is affected by the value of the other elements , and therefore opti­
mization becomes a bit -wise maximization. At the other end of the epistatic
scale, when a representation is highly epistat ic, too many elements are de­
pendent on other elements and th e building blocks become long and of high
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Figure 1: The region on the epistasis scale suitable for GAs, hill
climbing, and random search.

order. Wh en the epistas is is extremely high , th e elements are so dependent
on each other that unless a complete set of unique element values is found
simultaneously, no subs tantial fitn ess imp rovements can be noticed (such as
in the parity problem) . Under such ext reme circumstances, nonlinearity has
exacerb ated to the extent that the performance space does not contain sig­
nificant regulariti es (or the mapping function from string to fitn ess becomes
too global) .

This leads to th e conclusion that a repr esentation should be constructed
in a manner incorporating mild epist asis (neither too high nor too low). In
figure 1, th e three typical search strategies - hill climbing, GA, and random
search - are plotted on a percent age epistasis scale according to their zones
of relative efficiency : low, mild, and high epistas is respectively.

What effect does epist asis have on relat ive efficiency? A represent ation
with low epistasis means that co-adaptation is not prominent , and therefore
a hill-climbing algorithm is likely to be th e most efficient . A repr esentation
with high epistasis implies that co-adaptat ion is too strong, ab ove-average
fitnes s schemata are of too high order, and therefore the efficiency of a GA
will decreas e significantly. A represent ation with mild epistasis is suitable for
a GA (figure 1). If the epistasis can be calculated for a given representation,
it is likely to offer an important yardstick of its suitability to a GA.

2.2 The linear assumpt ion

Anot her aspect of GAs and th eir coding paradigm is that any fitness fun ction
can ultimat ely be reduced to a set of linearly independent partial fitn ess
functions [8] so that for any string j it is possible to write its fitness as th e
following sum:

21

v(sj) = L j(Sj)Oij,
i=1

{
I if i = j, .

Oij = 0, if i =j:. J (2.1)

In other words, th eoretically a fitness space can always be reduced into a table
of fitn ess values for each of th e phenotypes. This approach is adopted here,
but in a different way. Instead of decomposing the fitness space according to
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strings as equa tion 2.1 implies, the fitn ess space is decomposed according to
th e codin g elements (genes' value or alleles). Assuming such a decomposition
is possible, the fitness of any string j may be calcula ted by summing th e
values of its genes:

21

A(Sj) = L:: A(SI)
i=l

(2.2)

This means that instead of th e 21 fitness values required to compute any
fitn ess according to equa t ion 2.1, only 21 values are needed when considerin g
equ at ion 2.2. Fur th ermore, th e discussion in this paper focuses on the rela­
tionship bet ween th e two values and its use as a suitability cri terion for GAs
efficiency.

The ob jective for applying the above linear decomposition is to develop a
method for the predict ion of th e amount of nonlinear ity (in terms of gene in­
teraction) embe dded in a given repr esentation. To this end, fitness has to be
associated with the repr esent ation elements. If a linear decomposition proves
to be inaccur at e, then it implies that the representation incorporates non­
linearities. Quantifying the amount of nonlinearity will provide an estimate
for the suitability of a given repres entation to a GA processing. From a GA
persp ective, a coding format in which the effect of any individual parameter
on the total fitness is independent of other parameters suggest s that there is
little co-adaptation.

On the other hand, a high degree of non linearity indicat es that above­
average schemata are too long. The whole GA ideology is based on the
assumption th at one can only say something about the whole by knowing its
parts . Wh at neither the schema th eorem nor population genetics indi cate is
exactly how much of th e whole the parts should indicate.

It is possible to detect nonlin earity by measuring the discr epancy between
the real fitn ess an d th e recomposed fitness according to equat ion 2.2 . The
arguments for est imating th e degree of nonlinearity of a coding fun ction
by estimating the applicability of the linear assumption are sound and are
imp licitly found ed in the schema theorem. What is less clear is how these
ideas can be formul at ed in a practical way. This issue is discussed in th e
next section.

3. The basic elements of epistasis

It was already emphasized above th at th e effect of epistasis lies in the ability
to predict the value of a whole from the value of its parts. One possible
method of calculating epistasis is based on the linear assumption and is
loosely connected to Fisher's th eorem (see Crow and Kimora [4] for a det ailed
discussion of Fisher's th eorem). The following definitions are adopted for the
preliminary analysis.
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A string S is composed from l elements s , (wit hout loss of genera lity, l is
fixed),

S =(Sl, S2, . .. , SI ) (3.1)

With out loss of generality, only a binary alphabet is considered. The
allele of the ith gene in a st ring is denoted by

s, = a a E {O , I} , i = 1,2, ... , l (3.2)

The Grand Populat ion , r, is th e set of all possible strings of length l ,

1

r = II {O, I}
i = l

(3.3)

Let Pop denote a sample from I' where th e sample is selected uniformly and
with replacement . T he size of a sample Pop is

N = !pop I

The fitness of a st ring is given by

v( S) = fitn ess

(3.4)

(3.5)

where v is a "blackbox" function . The average fitn ess value of th e sample
Pop is

- 1
V = N L v(S )

SEPOP

The excess fitness value of a string is denot ed by

X (S) = v(s) - if

(3.6)

(3.7)

The number of str ing inst ances in Pop that match s, = a is denoted by N,(a).
The average allele value is denoted as

1
Ai (a) = Ni(a) L v(S)

SEP OP, ,= a

(3.8)

where pOP.;=a is the set of all str ings in Pop havi ng th e allele a in their ith
position. The weight of s, is

~i = IAi(l) - Ai(O)1

The excess allele value is defined by

X;(a) = A;(a) - if

(3.9)

(3.10)
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and the excess genic value is
I

X(A i) = LXi(a) (3.11)
i= l

and the genic value of a string S - the predicted st ring value - is defined
as

(3.14)

A(S) = X (Ai ) + if (3.12)

Thus, the difference c(S) = v(S) - A(S) might reasonably be supposed to
be a measure of epistasis of a st ring S .

Consequent ly, an epist asis measure for the Grand Population , and hence
for the repr esentation, is termed the epistasis vari an ce and is defined as

1
17; = N L[v(S) - A(S)]2 (3.13)

r SEr

where th e implicit Ai(a) are computed over the Grand Population (note that
thi s definition does not follow th e common definition of variance as it involves
element s from two different set s). This measure can be estimated from the
corresponding expression

2 1" 2
17pop = N L.J [V(S) - A(S)]

SEPOP

(3.16)

However, since the computation of A;(a) is determined by the sample popu­
lation, this statistic is subject to sampling error (par asit ic epist asis) , but as
yet , confidence measures for t he est imate are unavailab le. Thi s would require
an investigation of th e distribution of

2 217r - 17pop

The above definitions (summarized in t able 1) provide a method for es­
timating the epist at ic variance for a Grand Population - the base epistasis
- from a sample population . The distinction between base epistasis and
parasitic epistasis is very important because the effect of th e latter is often
of equal or higher order of magnitude. This will be demonstrat ed further in
sect ion 4.

T he fitness variance is denoted as

17~ = ~ L (X(S))2 (3.15)
SEPOP

and the genic variance is denoted as

2 1" ( 2
17A = N L.J X(Ai ) )

SEPOP

The difference between the fitness variance and the genic variance is im­
portant (though not intuitive) for estimating to what extent the sample de­
partures from the Grand Population , and it is denoted as

17~_A = 17~ - 17~ (3.17)
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Symbol Term
S String
v( S) Fit ness
X (S) Excess fitness value
a Allele
Ai(a) Allele value of a
Xi( a) Excess allele value
X( Ai) Excess genic value
A(S) Gen ic value
o:(S) Epistasis value
(72 Fit ness vari an cev
(7 2 Genic varianceA
(72 Ep istasis variancee

Table 1: Summary of the symbols and their definitions in the epistas is
discussion.

4. Calculating epistasis: A few ex am p les

375

In the following, the epistasis measur ing to ols develop ed in sect ion 3 are
applied to two fitness functions of known and characterist ic epistasis (the
strings and their corresponding fitn ess values are summarized in table 2).
T he fitness fun cti ons are the algebra ic function summation

3

SUM = 2.33 L Si,
i= l

and the logical function AND,

3

AND = 28 L Si,
i=l

s, = {O,l}

s, = {O,l}

which represent zero and total epistas is pr oblems respectively. A pseudo
semi -epistasis function SUM&AND is achieved by combi ning the two func ­
tions,

3 3

SUM &A ND = 1.16 L Si + 14 L Si,
i= l i = l

s, = {O, l }

The first analysis uses Grand Populations and thus ad dresses the issue of
base epistasis (section 4.1), aft er which the effect a sampled populat ion has
over the statistic is investigated (section 4.2) . In section 4.3, a problem of an
unknown epistasis - a fully deceptive problem - is analyzed. The functions
are arranged to have an equal average fitn ess value to pro mote comparabil­
ity between the epistasis variance in the abs ence of st andard normalizing
procedures.
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String SUM AND SUM&AN D Decept ive
000 0.00 0 0.00 7
001 2.33 0 1.16 5
010 2.33 0 1.16 5
011 4.66 0 2.33 0
100 2.33 0 1.16 3
101 4.66 0 2.33 0
110 4.66 0 2.33 0
111 7.00 28 17.50 8

Table 2: Strings and th eir fitness values of four fitness funct ions:
SUM , AND, SUM&AND, and a deceptive problem of zero, total ,
serni-, and bounded epistasis resp ectively.

S v(S) X(S ) X (A;) A(S) £(S )
000 0.00 - 3.50 - 3.50 0.00 0
001 2.33 - 1.16 -1.16 2.33 0
010 2.33 -1.16 -1.16 2.33 0
011 4.67 1.16 1.16 4.67 0
100 2.33 -1.16 - 1.16 2.33 0
101 4.67 1.16 1.16 4.67 0
110 4.67 1.16 1.16 4.67 0
111 7.00 3.50 3.50 7.00 0

i a A;(a) X;(a) bo ·•
1 0 2.33 -1.16 2.33

1 4.67 1.16
2 0 2.33 -1.16 2.33

1 4.67 1.16
3 0 2.33 -1.16 2.33

1 4.67 1.16

I a
2

a
2

a
2

a
2

- a
2 Iv A • v A

4.08 4.08 0 0

Table 3: Calculating the epist asis variance for th e SUM function.

4. 1 T hree epistatically d ifferent functions

The Grand Populations of three epistatically defined functions are analyzed:
zero epistasis (table 3) , total epistasis (t able 4), and semi-epistasis
(table 5).

When analyzing the epist asis variance of the SUM and AND functions,
it is possib le to observe the st rength of the linear assumption. The SUM
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S v(S) X(S ) X(A) A(S) 6(S)
000 0 - 3.5 - 10.5 - 7 7
001 0 - 3.5 - 3.5 0 0
010 0 - 3.5 - 3.5 0 0
011 0 - 3.5 3.5 7 - 7
100 0 - 3.5 - 3.5 0 0
101 0 - '3.5 3.5 7 - 7
110 0 - 3.5 3.5 7 -7
111 28 24.5 10.5 14 14

i a A;(a) X;(a) .0.;
1 0 0 - 3.5 7

1 7 3.5
2 0 0 - 3.5 7

1 7 3.5
3 0 0 - 3.5 7

I 1 7 3.5

0-; 0-:4 0-; 0-; - 0-A
85.75 36.75 49 49

Table 4: Calculating t he epistasis variance for the AND function .

S v(S) X(S) X(A) A(S) 6(S)
000 0.00 - 3.50 - 7.00 - 3.50 3.50
001 1.16 - 2.33 - 2.33 1.16 0.00
010 1.16 - 2.33 - 2.33 1.16 0.00
011 2.33 - 1.16 2.33 5.84 - 3.50
100 1.16 - 2.33 - 2.33 1.16 0.00
101 2.33 - 1.16 2.33 5.84 - 3.50
110 2.33 - 1.16 2.33 5.84 - 3.50
111 17.50 14.00 7.00 10.50 7.00

i a A;(a) X;(a) .0.;
1 0 1.16 - 2.33 4.66

1 5.84 2.33
2 0 1.16 - 2.33 4.66

1 5.84 2.33
3 0 1.16 - 2.33 4.66

1 5.84 2.33

0-; 0-:4 0-; 0-; - 0-A
28.6 16.3 12.3 12.3

Table 5: Calculating the epistasis variance for the SU M&AN D func­
tion .

377
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5 v(5) X (5 ) X( A) A(5) 0: (5)
000 0 - 3.5 -3.5 0 0
001 1 -2.5 - 2.5 1 0
010 2 -1.5 -1.5 2 0
011 3 -0.5 -0.5 3 0
100 4 0.5 0.5 4 0
101 5 1.5 1.5 5 0
110 6 2.5 2.5 6 0
111 7 3.5 3.5 7 0

i a Ai(a) Xi (a) b.i
1 0 1.5 - 2.0 4

1 5.5 2.0
2 0 2.5 2.0 2

1 4.5 -1.0
3 0 3.0 -0.8 1

1 4.0 0.5

I (72 (72 (72 (72 - (72 Iv A ~ v A
5.25 5.25 0 0

Table 6: A three-bit unsigned integer binary representation with zero
, epistasis.

fun ction can be accur ately recompos ed from the decomposed A;(a) values,
while th e recomposit ion of th e AN D fun ction reveals a larg e epistatic vari­
ance. By analyzing the semi-epistatic function 5UM &AND, the notion of
epistasis variance as a measure for int ermediate nonli near ity in a representa­
tion is expended.

4.2 Samples and sampling noise

Since the population size in all practical GA appl ications is only a minuscule
portion of th e genotype pool, it is imp ort ant to investigat e whether calcu­
lating th e epistasis variance from a sample involves a parasitic bias. This
section investigates this sampling bias and suggests th at the sampli ng bias
has an overpowering effect on th e measurement of base epistasis variance.

It was already shown th at calculat ing epistasis variance with a Grand
Populati on for a representation that contains zero epistasis yields a correct
epist asis figure. This sect ion will show th at this conclusion is valid only for
the Grand Popu lation and erro neous when the calculation is not based on
the Gran d Population. In t ables 7 and 8 such a calcul ation is shown, and it
reveals a substantial parasiti c epistasis variance.
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S v(S) X(S ) X(A) A(S) e(S)
000 0 - 3 - 2.0 1.0 -1.0
001 1 - 2 -2.0 1.0 0.0
010 2 - 1 -1.0 2.0 0.0
011*
100 4 1 1.5 4.5 -0.5
101 5 2 1.5 4.5 -0.5
110 6 3 3.0 6.0 0.0
11 1*

i a Ai(a) Xi(a) t..i
1 0 1.0 - 2.0 4.0

1 5.0 2.0
2 0 2.5 - 0.5 1.5

1 4.0 1.0
3 0 3.0 0.0 0.0

1 3.0 0.0

379

0'; 0',4 0'.
4.66 3.75 0.25

0'; - 0'A
-0.92

Table 7: A 75% Grand Population sample shows parasitic epistasis
variance. The starre d (*) strings are the ones not included in the
sta tistics.

The an alysis of sam pled populations suggest s the following:

1. The nonlinearity a GA operates with increases as the sample diverts
from a Grand Pop ulation.

2. Epi st asis, as used by biologists, consists of two elements: the base epis­
tasis resulting from t he represent at ion an d a parasit ic epist asis resulting
from sampling noise.

4 .3 A fully deceptive problem

So far , the funct ions that were analyzed had a known epistasis. To conclude
the preliminary discussion on epistasis variance, it is interesting to analyze
a function of an unknown epistasis, known to be a "hard" prob lem for GAs.

The fully deceptive Hammi ng prob lem! is th e archetype of a hard func­
tion, and it is that function to which the epistasis to ols are app lied . A decep­
tive funct ion may include considerable structure . This structure quality is
required by th e very definit ion of the function (in spite of the contradiction

lThe fully deceptive problem used here is based on the fully deceptive problem as de­
fined by Goldberg [5,9] and involves variat ions of negligible import ance th at were adopted
for convenience.
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S v(S) XeS) X(A) A(S) €(S)
000 0 -3.5 -6.5 - 3 3
001 1 -2.5 -5.5 - 2 1
010'
011'
100'
101•
110 6 2.5 5.5 9 - 3
111 7 3.5 6.5 10 - 3

i a A;(a) X;(a) Ll;
1 0 0.5 -3.0 6

1 6.5 3.0
2 0 0.5 -3.0 6

1 6.5 3.0
3 0 3.0 - 0:5 1

1 4.0 0.5

Table 8: A 50% Grand Population sample shows furt her pa rasitic
epistasis variance. The starred C' ) strings are the ones not included
in the statistics .

S v(S) XeS) X(A) A(S) €(S)
000 7 3.5 1.25 4.75 2.25
001 5 1.5 0.75 4.25 0.75
010 5 1.5 0.75 4.25 0.75
011 0 -3.5 0.25 3.75 - 3.75
100 3 -1.5 - 0.25 3.25 - 0.25
101 0 -3.5 - 0.75 2.75 - 2.75
110 0 -3.5 -0.75 2.75 - 2.75
111 8 4.5 -1.25 2.25 5.75

i a A;(a) X;(a) Ll;
1 0 4.25 0.75 - 1.25

1 2.75 -0.75
2 0 3.75 - 0.25 -0.5

1 3.25 - 0.25
3 0 3.75 0.25 -0.5

1 3.25 -0.25

0'; O'A 0'; 0'; - 0'A
9.25 0.68 8.57 8.57

Table 9: The epistasis analysis for a fully deceptive function.
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in th e name) . For the deception to be effective, most part ial fitness evalua­
tion s (low-order schemata) must agree with each other (thought not with th e
globa l optimum). The more deceptive a problem is, more par ti al evaluat ions
should be in agreement with each other and with a disagreement with th e
global opt imum. It is reasonable, th erefore, to expec t th at the sum tot al
epistasi s embedded in a deceptive function will not be too high , and indeed
it ought not to be too high. Calculating th e epistas is variance for the fully
deceptive problem (table 9) supports th e above.

5. Conclusions and future work

Some basic problems regarding coding formats and GAs were discussed in
th is paper. It was suggested that much of th e future success in GAs research
is dependent on the development of analytical tools with which a given coding
of a problem domain can be optimized. In spite of its importan ce, th e precise
analysis of representations is uncommon due to th e tedious computat ion
involved.

There is a novel approach to the analysis of coding-funct ion relationships
origin ally used by Bethke (and later by others [8,9]). This approach consid­
ers the use of Walsh functions in order to evaluate th e fitness of schemata.
However , this method involves a tedious computat ion (the computa t ion of 21

Walsh coefficient s). As an alternative method for th e solut ion of th e coding
enigma, and in an attempt to overcome some limitations of the Walsh func­
tion analysis (such as the requirement for the represent ati on to be of fixed
length), the epistasis variance analysis was suggested.

Epistasis variance is a more flexible method for the measurement of the
degree of nonlinearity embedded in a coding format and hence its suit ability
to a GA . The quantification of nonlinearity is indirect and cannot differen­
tiate between different orders of nonlinearity, but it is very simpl e and intu­
itive. The measurement of epistasis is based on the linear assumption that
th e coding parameters are linearly independ ent with respect to th e fitn ess
function . Assuming linear independence, th e fitness is decomp osed accord­
ing to average allele values, with which the origin al fitnesses are recomposed.
The accuracy of this method, or more precisely, th e epistas is variance, is
an estima te of the total amount of nonlinearity embedded in the coding.
The method proposed, though its results are not conclusive, points out new
underlying coding-funct ion aspects.

Calculat ing th e epistasis variance in grand populations for two illustrative
fun ctions (and for other functions the results of which were not presented
here) revealed the following:

1. The epist asis as defined in this work detects all orders of nonlinearity.

2. T he epistasis variance cannot be scaled or parameterized with the to ols
presented here, but can be compared qualitatively.

The epistasis variance is usually determined by a sample. Analyzing th e
epistasis variance for different samples reveals an extensive sampling error
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resulting from this approximati on . Confidence measures for the extent of this
approxima tion were not pre sented. As a result of th e epist asis analysis for
samples, th e epistasis variance was redefined by means of two elements: the
base epist asis and parasit ic epistas is. It is important to distinguish between
the two because only th e bas e epistas is is relevant to th e issue of suitability of
a coding to a GA. It is also intui tively t ransparent that the parasit ic epistasis
can help in det ermining the optimal population size. Notwithstanding th e
difficulties in applying epistasis measur ements, the epistasis variance does
provide two important lessons th at should be stressed:

1. It is possible to meas ure th e extent of nonlinearity without knowing
anything about the fitn ess function . The analysis holds for all repr e­
sentati ons where th e elements of th e representation can be identified.

2. The common use of epistasis in the context of nonlinearity is misleading
because it combines two nonlin ear properties: a base epist asis and a
parasitic epistasis.

To be useful as a tool, th e epistasis variance requires two extensions t o
th e work pr esented in this paper:

1. Means for normalization of the epistasis variance so it can be plotted
on a scale.

2. The development of confidence measures for estimating the base epis­
tasis from sample populations.

Further work is also needed to establish the epistasis among groups of
representation elements. Such information is desirable becaus e epistasis may
not be homogenously distributed .
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