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Abstract. The most problematic aspect in the application of a ge-
netic algorithm (GA) is the coding of the problem. In superficial
applications, choosing a representation may appear simple. Yet it is
really an art because the theory provides only partial directives and
is not always fully applicable. Different representations incorporate
varying degrees of nomlinearity among the representation elements.
This interwoven nonlinearity is directly coupled with the representa-
tion and considerably affects the efficiency of a GA search. Both too
much and too little nonlinearity detract from the relative efficiency of
a GA.

This paper suggests that measures to qualify the suitability of a
representation to a GA search can be developed with the concept of
epistasis (a biological term that states the amount of intrachromosome
gene interaction). By viewing the representation as a whole, being
more than the sum of its composing parts, the discussion on epistasis
in GAs reveals several fundamental features of GAs and leads to a
unique mechanism for “spying” on the suitability of a representation
to a GA.

1. Background

The schema theory [6,12] implicitly lists prerequisite features that a repre-
sentation should exhibit in order to utilize a GA search, namely that with
an above average probability, short, low-order schemata will combine and
form a higher-order co-adapted schemata. The schema theorem shows that
above average schemata will proliferate, but it does not indicate whether
this proliferation will occur at the optimum rate. In that respect, it is self-
evident that the representation is the primary aspect of a GA application
and determines its performance. The importance of the representation was
recognized, attention was given to the issue of building blocks (their size
and number), but the effect of interdependency among the representation
elements did not receive sufficient attention [3,5,8]. Only certain degrees of
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nonlinearity enable a GA search to exhibit a relative efficiency, while others
diminish this efficiency. Therefore, the amount of interdependency among
the representation elements is an important ingredient in the GAs’ cookbook
and constitutes an essential source of information.

Gene interaction is a central issue in natural genetics, where genes not
only are dependent on each other in order to jointly express phenotypi-
cal characteristics but also suppress and activate the expression of other
genes [16]. The term that has become synonymous with almost any type
of gene interaction is epistasis [14]. Derived from the Greek words epis and
stasis (“stand” and “behind”), epistasis is therefore equated with stoppage
or masking. Epistasis is used to describe the situation where one gene pair
masks or modifies the expression of another gene pair. When the epistasis
of a chromosome is said to be high, it means that many genes are strongly
linked to other genes. It is helpful to remember that GAs, like many natural
systems, assume a certain holistic structure, a structure where the whole is
different from the sum of its parts [7,13,15,17,18]. The frequent characteristic
of such information systems is that knowing the value of the parts does not
necessarily enable the calculation of their effect together. In the GAs coterie,
epistasis is used to indicate the extent of nonlinearity and interdependency
among the elements composing the representation.

GA literature emphasizes that GAs do not “see” the problem domain di-
rectly because the latter is obstructed by the representation. Accordingly, the
question “Which problem domains are amenable for a GA search?” should
be replaced by the question “Does the representation (of the given problem)
promote the most efficient GA search?” By shifting the question of suit-
ability from the problem domain to the representation, one focuses on the
core issue of GA applications, thus asking a question that is not only more
consistent with the schema theorem but also easier to answer (and at least
its meaning is more clear).

2. Notional epistasis in GAs

Tracing epistasis is an elusive occupation because the presence of epistatic
elements can be traced only at the phenotypic level away from their scene of
interaction (genotypic level). Furthermore, even if the amount of epistasis is
known, the question remains “Can this be put to use?” Section 2.1 addresses
the latter question and section 2.2 expands on string epistasis in contrast to
fitness.

2.1 Epistasis on a scale

If a representation contains very little or no epistasis, any individual string
element is affected by the value of the other elements, and therefore opti-
mization becomes a bit-wise maximization. At the other end of the epistatic
scale, when a representation is highly epistatic, too many elements are de-
pendent on other elements and the building blocks become long and of high



Yuval Davidor 371

hill climbing suitable for GA-type search random search

™ 7 . Q7O

0% epistasis 100% epistasis

Figure 1: The region on the epistasis scale suitable for GAs, hill
climbing, and random search.

order. When the epistasis is extremely high, the elements are so dependent
on each other that unless a complete set of unique element values is found
simultaneously, no substantial fitness improvements can be noticed (such as
in the parity problem). Under such extreme circumstances, nonlinearity has
exacerbated to the extent that the performance space does not contain sig-
nificant regularities (or the mapping function from string to fitness becomes
too global).

This leads to the conclusion that a representation should be constructed
in a manner incorporating mild epistasis (neither too high nor too low). In
figure 1, the three typical search strategies — hill climbing, GA, and random
search — are plotted on a percentage epistasis scale according to their zones
of relative efficiency: low, mild, and high epistasis respectively.

What effect does epistasis have on relative efficiency? A representation
with low epistasis means that co-adaptation is not prominent, and therefore
a hill-climbing algorithm is likely to be the most efficient. A representation
with high epistasis implies that co-adaptation is too strong, above-average
fitness schemata are of too high order, and therefore the efficiency of a GA
will decrease significantly. A representation with mild epistasis is suitable for
a GA (figure 1). If the epistasis can be calculated for a given representation,
it is likely to offer an important yardstick of its suitability to a GA.

2.2 The linear assumption

Another aspect of GAs and their coding paradigm is that any fitness function
can ultimately be reduced to a set of linearly independent partial fitness
functions [8] so that for any string j it is possible to write its fitness as the
following sum:

; 2 ; ife=7g
o= 3K, b={ ) 7] (21)

i=1

In other words, theoretically a fitness space can always be reduced into a table
of fitness values for each of the phenotypes. This approach is adopted here,
but in a different way. Instead of decomposing the fitness space according to
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strings as equation 2.1 implies, the fitness space is decomposed according to
the coding elements (genes’ value or alleles). Assuming such a decomposition
is possible, the fitness of any string j may be calculated by summing the
values of its genes:

2l
A(S) = 2 A(S) (2.2)

This means that instead of the 2' fitness values required to compute any
fitness according to equation 2.1, only 2/ values are needed when considering
equation 2.2. Furthermore, the discussion in this paper focuses on the rela-
tionship between the two values and its use as a suitability criterion for GAs
efficiency.

The objective for applying the above linear decomposition is to develop a
method for the prediction of the amount of nonlinearity (in terms of gene in-
teraction) embedded in a given representation. To this end, fitness has to be
associated with the representation elements. If a linear decomposition proves
to be inaccurate, then it implies that the representation incorporates non-
linearities. Quantifying the amount of nonlinearity will provide an estimate
for the suitability of a given representation to a GA processing. From a GA
perspective, a coding format in which the effect of any individual parameter
on the total fitness is independent of other parameters suggests that there is
little co-adaptation.

On the other hand, a high degree of nonlinearity indicates that above-
average schemata are too long. The whole GA ideology is based on the
assumption that one can only say something about the whole by knowing its
parts. What neither the schema theorem nor population genetics indicate is
exactly how much of the whole the parts should indicate.

It is possible to detect nonlinearity by measuring the discrepancy between
the real fitness and the recomposed fitness according to equation 2.2. The
arguments for estimating the degree of nonlinearity of a coding function
by estimating the applicability of the linear assumption are sound and are
implicitly founded in the schema theorem. What is less clear is how these
ideas can be formulated in a practical way. This issue is discussed in the
next section.

3. The basic elements of epistasis

It was already emphasized above that the effect of epistasis lies in the ability
to predict the value of a whole from the value of its parts. One possible
method of calculating epistasis is based on the linear assumption and is
loosely connected to Fisher’s theorem (see Crow and Kimora [4] for a detailed
discussion of Fisher’s theorem). The following definitions are adopted for the
preliminary analysis.
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A string S is composed from [ elements s; (without loss of generality, [ is

fixed),
S = (81,82,...,81) (3:1)

Without loss of generality, only a binary alphabet is considered. The
allele of the ith gene in a string is denoted by

si=a a€{0,1}, $= 1,2, w5 1 (3.2)

The Grand Population, T, is the set of all possible strings of length [,

r= f[{o,1} (3.3)

Let Pop denote a sample from I' where the sample is selected uniformly and
with replacement. The size of a sample Pop is

N = |Pop| (3.4)
The fitness of a string is given by
v(S) = fitness (3.5)

where v is a “blackbox” function. The average fitness value of the sample
Pop is

B e % T (S) (3.6)
SePop
The excess fitness value of a string is denoted by

X(S)=v(s) =V (3.7)

The number of string instances in Pop that match s; = a is denoted by N;(a).
The average allele value is denoted as

> () (3.8)

SePop,,_,

1

A= N

where Pop, _, is the set of all strings in Pop having the allele a in their ith
position. The weight of s; is

A = |Ai(1) — Ai(0)] (3.9)
The excess allele value is defined by

X,-(a) = A;(a) = V (3.10)
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and the excess genic value is

i) = Z:Xi(a) (3.11)

and the genic value of a string S — the predicted string value — is defined
as

A(S) = X(A)+V (3.12)

Thus, the difference (S) = v(S) — A(S) might reasonably be supposed to
be a measure of epistasis of a string S.

Consequently, an epistasis measure for the Grand Population, and hence
for the representation is termed the epistasis variance and is defined as

Z[v(S — A(9))? (3.13)
I ser
where the implicit A;(a) are computed over the Grand Population (note that
this definition does not follow the common definition of variance as it involves
elements from two different sets). This measure can be estimated from the
corresponding expression

Thop =3 2 IV(S) = AP (3.14)
SePop
However, since the computation of A;(a) is determined by the sample popu-
lation, this statistic is subject to sampling error (parasitic epistasis), but as
yet, confidence measures for the estimate are unavailable. This would require
an investigation of the distribution of

0'1Z - a%'op
The above definitions (summarized in table 1) provide a method for es-
timating the epistatic variance for a Grand Population — the base epistasis
— from a sample population. The distinction between base epistasis and
parasitic epistasis is very important because the effect of the latter is often
of equal or higher order of magnitude. This will be demonstrated further in

section 4.
The fitness variance is denoted as

1
=% 5 (X)) (3.15)
SePop
and the genic variance is denoted as

1
oh = I > (X(4)) (3.16)
SePop
The difference between the fitness variance and the genic variance is im-
portant (though not intuitive) for estimating to what extent the sample de-
partures from the Grand Population, and it is denoted as

ol y,=02-0% (3.17)
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Symbol | Term

S String

v(S) Fitness

X(S) | Excess fitness value

a Allele
A;(a) Allele value of a
Xi(a) | Excess allele value

X(A;) | Excess genic value
A(S) Genic value
e(S) Epistasis value

2 Fitness variance
a2 Genic variance

“ Epistasis variance

Table 1: Summary of the symbols and their definitions in the epistasis
discussion.

4. Calculating epistasis: A few examples

In the following, the epistasis measuring tools developed in section 3 are
applied to two fitness functions of known and characteristic epistasis (the
strings and their corresponding fitness values are summarized in table 2).
The fitness functions are the algebraic function summation

3
SUM =233 Es;, s; ={0,1}

=1

and the logical function AND,

3
AND =28 28,’, 8i={0,1}

=1

which represent zero and total epistasis problems respectively. A pseudo
semi-epistasis function SUM&AND is achieved by combining the two func-
tions,

3 3
SUM&AND =1.16 Zsi+14 ZS,’, 81':{0,1}

i=1 i=1

The first analysis uses Grand Populations and thus addresses the issue of
base epistasis (section 4.1), after which the effect a sampled population has
over the statistic is investigated (section 4.2). In section 4.3, a problem of an
unknown epistasis — a fully deceptive problem — is analyzed. The functions
are arranged to have an equal average fitness value to promote comparabil-
ity between the epistasis variance in the absence of standard normalizing
procedures.
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String SUM AND SUM&AND Deceptive
000  0.00 0 0.00 7
001  2.33 0 1.16 5
010 2.33 0 1.16 5
011  4.66 0 2.33 0
100  2.33 0 1.16 3
101 4.66 0 2.33 0
110 4.66 0 2.33 0
111 7.00 28 17.50 8

Table 2: Strings and their fitness values of four fitness functions:
SUM, AND, SUM&AN D, and a deceptive problem of zero, total,
semi-, and bounded epistasis respectively.

S o(8) X9 X(A) AG) %)
000 0.0 —3.50 —350 0.00 0
001 233 —-1.16 -116 233 0
010 233 —1.16 -1.16 233 0
011 467 116 116 467 0
100 233 —1.16 —116 233 0
0
0
0

101 4.67 1.16 1.16  4.67
110 4.67 1.16 1.16  4.67
111 7.00  3.50 3.50 7.00

i a Ai(a) Xi(a) A

110 233 -—1.16]2.33
1 4.67 1,16

210 233 -—-1.161]2.33
1 4.67 1.16

310 233 -1.16]2.33
1 4.67 1.16

or o4 o ol-o}

708 408 0 0

Table 3: Calculating the epistasis variance for the SUM function.

4.1 Three epistatically different functions

The Grand Populations of three epistatically defined functions are analyzed:
zero epistasis (table 3), total epistasis (table 4), and semi-epistasis
(table 5).

When analyzing the epistasis variance of the SUM and AN D functions,
it is possible to observe the strength of the linear assumption. The SUM
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Table 4: Calculating the epistasis variance for the AN D function.

Table 5: Calculating the epistasis variance for the SUM&AN D func-

tion.

5 (8) X(5) X(A) AS) ()
000 0 =35 =105 -7 T
001 0 =35 =35 0 0
010 0 -35 =35 0 0
011 0 =35 3.0 T =T
100 0 =35 =35 0 0
101 0 -35 3.5 T =T
110 0 =35 3.5 T =T
111 28 245 10.5 14 14
7 a A,‘(a) X,-(a) A,‘
110 0 =35 7
1 7 3.5
210 0 =35 7
1 7 3.5
310 0 =35 7
1 7 3.5
o, 03 0. 0y,—03
85.75 36.75 49 49

S o(S) X(8) X(A) AB) <)
000 0.00 -3.50 -7.00 -3.50 3.50
001 1.16 -2.33 -2.33 1.16 0.00
010 1.16 -2.33 -2.33 1.16 0.00
011 233 -1.16 2.33 5.84 —-3.50
100 1.16 -—2.33 -2.33 1.16 0.00
101 233 -1.16 2.33 5.84 -3.50
110 233 -1.16 2.33 5.84 —3.50
111 17.50 14.00 7.00 10.50 7.00
i a A,'(a) X,-(a) A,‘
110 1.16 -—2.33|4.66
1 584 2.33
210 116 —2.33|4.66
1 5.84 2.33
310 116 —2.33]4.66
1 5.84 2.33
0’3 0124 0'3 0'3—0‘%
28.6 16.3 12.3 12.3

377
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S v(S) X(S) X(A) A(S) e(95)
000 0 -3.5 =3.5 0 0
001 1 -2.5 =25 1 0
010 2 -1.5 =15 2 0
011 3 —-0.5 -=0.5 3 0
100 4 0.5 0.5 4 0
101 b 1.5 1.5 5 0
110 6 2.5 2.5 6 0
111 7 3.5 3.5 7 0

1 a Afa) Xi(a) A
110 1.5 —2.0| 4
1 5.5 2.0
210 25 20| 2
1 4.5 -1.0
310 3.0 —-056] 1
1 4.0 0.5
or o4 of ol-g}

595 B350 . 0

Table 6: A three-bit unsigned integer binary representation with zero
epistasis.

function can be accurately recomposed from the decomposed A;(a) values,
while the recomposition of the AND function reveals a large epistatic vari-
ance. By analyzing the semi-epistatic function SUM&AN D, the notion of
epistasis variance as a measure for intermediate nonlinearity in a representa-
tion is expended.

4.2 Samples and sampling noise

Since the population size in all practical GA applications is only a minuscule
portion of the genotype pool, it is important to investigate whether calcu-
lating the epistasis variance from a sample involves a parasitic bias. This
section investigates this sampling bias and suggests that the sampling bias
has an overpowering effect on the measurement of base epistasis variance.

It was already shown that calculating epistasis variance with a Grand
Population for a representation that contains zero epistasis yields a correct
epistasis figure. This section will show that this conclusion is valid only for
the Grand Population and erroneous when the calculation is not based on
the Grand Population. In tables 7 and 8 such a calculation is shown, and it
reveals a substantial parasitic epistasis variance.
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S v(S) X(S) X(A) A(S) €(5)
000 0 -3 =20 10 -1.0
001 1 -2 =20 1.0 0.0
010 2 -1 =10 20 0.0
011*
100 4 1 1.5 45 =05
101 ) 1.5 45 0.5
110 6 3 3.0 6.0 0.0
111*
v a Afa) Xi(a) A
110 1.0 —2.0 4.0
1 5.0 2.0
210 25 —-0.5 1.5
1 4.0 1.0
310 3.0 0.0 | 0.0
1 3.0 0.0
o2 g4 ol oi-0o%

466 3.75 0.25 —0.92

Table 7: A 75% Grand Population sample shows parasitic epistasis
variance. The starred (*) strings are the ones not included in the
statistics.

The analysis of sampled populations suggests the following:

1. The nonlinearity a GA operates with increases as the sample diverts
from a Grand Population.

2. Epistasis, as used by biologists, consists of two elements: the base epis-
tasis resulting from the representation and a parasitic epistasis resulting
from sampling noise.

4.3 A fully deceptive problem

So far, the functions that were analyzed had a known epistasis. To conclude
the preliminary discussion on epistasis variance, it is interesting to analyze
a function of an unknown epistasis, known to be a “hard” problem for GAs.

The fully deceptive Hamming problem?® is the archetype of a hard func-
tion, and it is that function to which the epistasis tools are applied. A decep-
tive function may include considerable structure. This structure quality is
required by the very definition of the function (in spite of the contradiction

!The fully deceptive problem used here is based on the fully deceptive problem as de-
fined by Goldberg [5,9] and involves variations of negligible importance that were adopted
for convenience.
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S v(5) X(S) X(A) A(S) &(S5)
000 0 3.5 —6.5 -3 3
001 1 —-25 -85 -2 1
010*
011*
100*
101~
110 6 2.5 5.5 9 =3
111 7 3.5 6.5 10 -3
T a A,‘(a) X;(a) A,‘
1{0 0.5 —-3.0| 6
1 6.5 3.0
210 0.5 -3.0| 6
1 6.5 3.0
310 3.0 —-051] 1
1 4.0 0.5
gl o4 o} ol-—o0%
9.25 36.25 9.0 -27.00

Table 8: A 50% Grand Population sample shows further parasitic
epistasis variance. The starred (*) strings are the ones not included

in the statistics.

S v(S) X(S) X(A) A(S) ¢(5)
000 7 3.5 1.25 4.75 2.25
001 5 1.5 0.75 4.25 0.75
010 5 1.5 0.75 4.25 0.75
011 0 -3.5 0.25 3.75 -=3.75
100 3 -1.5 -0.25 3.25 -0.25
101 0 -3.5 —=0.75 275 =275
110 0 -3.5 —=0.75 2.75 =2.75
111 8 45 -1.25 2.25 5.75
T a A,‘(a) X,-(a) A,’
110 4.25 0.75 | —1.25
1 27 —0.75
210 3.75 —0.25|—-0.5
1 325 —0.25
310 3.75 0.25 | —0.5
1 325 -—0.25
ol o4 ol ol-o0%
9.25 0.68 8.57  8.57

Table 9: The epistasis analysis for a fully deceptive function.
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in the name). For the deception to be effective, most partial fitness evalua-
tions (low-order schemata) must agree with each other (thought not with the
global optimum). The more deceptive a problem is, more partial evaluations
should be in agreement with each other and with a disagreément with the
global optimum. It is reasonable, therefore, to expect that the sum total
epistasis embedded in a deceptive function will not be too high, and indeed
it ought not to be too high. Calculating the epistasis variance for the fully
deceptive problem (table 9) supports the above.

5. Conclusions and future work

Some basic problems regarding coding formats and GAs were discussed in
this paper. It was suggested that much of the future success in GAs research
is dependent on the development of analytical tools with which a given coding
of a problem domain can be optimized. In spite of its importance, the precise
analysis of representations is uncommon due to the tedious computation
involved.

There is a novel approach to the analysis of coding-function relationships
originally used by Bethke (and later by others [8,9]). This approach consid-
ers the use of Walsh functions in order to evaluate the fitness of schemata.
However, this method involves a tedious computation (the computation of 2
Walsh coefficients). As an alternative method for the solution of the coding
enigma, and in an attempt to overcome some limitations of the Walsh func-
tion analysis (such as the requirement for the representation to be of fixed
length), the epistasis variance analysis was suggested.

Epistasis variance is a more flexible method for the measurement of the
degree of nonlinearity embedded in a coding format and hence its suitability
to a GA. The quantification of nonlinearity is indirect and cannot differen-
tiate between different orders of nonlinearity, but it is very simple and intu-
itive. The measurement of epistasis is based on the linear assumption that
the coding parameters are linearly independent with respect to the fitness
function. Assuming linear independence, the fitness is decomposed accord-
ing to average allele values, with which the original fitnesses are recomposed.
The accuracy of this method, or more precisely, the epistasis variance, is
an estimate of the total amount of nonlinearity embedded in the coding.
The method proposed, though its results are not conclusive, points out new
underlying coding-function aspects.

Calculating the epistasis variance in grand populations for two illustrative
functions (and for other functions the results of which were not presented
here) revealed the following:

1. The epistasis as defined in this work detects all orders of nonlinearity.

2. The epistasis variance cannot be scaled or parameterized with the tools
presented here, but can be compared qualitatively.

The epistasis variance is usually determined by a sample. Analyzing the
epistasis variance for different samples reveals an extensive sampling error
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resulting from this approximation. Confidence measures for the extent of this
approximation were not presented. As a result of the epistasis analysis for
samples, the epistasis variance was redefined by means of two elements: the
base epistasis and parasitic epistasis. It is important to distinguish between
the two because only the base epistasis is relevant to the issue of suitability of
a coding to a GA. It is also intuitively transparent that the parasitic epistasis
can help in determining the optimal population size. Notwithstanding the
difficulties in applying epistasis measurements, the epistasis variance does
provide two important lessons that should be stressed:

1. It is possible to measure the extent of nonlinearity without knowing
anything about the fitness function. The analysis holds for all repre-
sentations where the elements of the representation can be identified.

2. The common use of epistasis in the context of nonlinearity is misleading
because it combines two nonlinear properties: a base epistasis and a
parasitic epistasis.

To be useful as a tool, the epistasis variance requires two extensions to
the work presented in this paper:

1. Means for normalization of the epistasis variance so it can be plotted
on a scale.

2. The development of confidence measures for estimating the base epis-
tasis from sample populations.

Further work is also needed to establish the epistasis among groups of
representation elements. Such information is desirable because epistasis may
not be homogenously distributed.
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