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1. Introduction

The study of cellular automata (CA) was motivated recently by their appli-
cation to systems whose complex behavior arises from the interaction among
simple identical components. Actually, a CA consists of a linear biinfinite
array of cells, each one connected with the r cells that precede it on the left-
hand side and the r cells that follow it on the right-hand side neighborhood.
Each cell is in one of finitely many states. The new state of a cell is computed
according to a local rule that is a function of the states of the cells in the
neighborhood, besides the old state of the cell.

All cells are assumed to change state simultaneously.

In [5] CA are classified with respect to their behavior. The great part
of CA falls in the third class, that is, the one whose evolution leads to a
chaotic pattern. Recently, however, Wilson [3] and Culik [1] exhibited some
CA belonging to this class and having a very regular behavior, fractal-like
on particular initial configurations.

In this paper, we study a class we will call pseudototalistic cellular au-
tomata (PTCA).

In PTCA, the local rule defines the new state of a cell as a linear combi-
nation of the state of its neighborhood. They have, in one case, the additive
CA studied by Culik in [1], where it is shown that they have a highly regular
behavior on an arbitrary finite configuration as initial seed. Here we will
prove that PTCA whose number of states is a prime number show regular
behavior when the initial configuration is a single non-idle state.

In section 4 we study the class of CA with radius r and code 0"1?™Q"
where n +m =7+ 1, n > 1, m > ¢ > 1, where ¢, is some constant
depending on 7. Culik conjectured in [1] that they behave in a regular way
for finite configuration as initial seed. In'[1] it is proven that CA with code
001100 and 011110 behave regularly. on seeds of the form (00 + 11)*. Here
we prove that CA with code 0110 behave regularly on seeds belonging to the
set I =% I where 3> = {0,1} and ' = 32" 000 >-* U " 11137
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2. Preliminaries

Formally a CA is a triple (S, f,r) where S is a finite set of states, r is the
neighborhood radius, and f : $¥*! — § is the local function called CA-rule.
At time zero, an arbitrary configuration is assumed: initial seed; then, all
cells change state simultaneously according to the local function.

A configuration is a function o : Z — S; the set of configurations is
denoted by SZ and (i) represents the state of the ith cell for every a €
S%; Gy : 8% — S§% is the global function such that if o and 8 are two
configurations, then

Gyla) =B iff fla(i —71),...,a(i),...,a(i +7)] = B() for every i € Z;
G’f(a) represents the configuration obtained after k steps from a.

A CA A= (S, f,r) is called a totalistic cellular automata (TCA) if S is a
subset of Z and there exists a new function f’such that f(s_,,...,s0,...,5,) =
f(ser .o+ s0+...+35).

If S = {0,1}, then the transition function can be expressed as bay41, bor, - . -,
bo,Leq

f(s=ryeiyS0yeeeysr)=biiff s, +...+s0+...+8 =1

An interesting case of TCA are those defined by XOR-rule; with this
rule a cell at time ¢ + 1 will be active iff the number of cells active in its
neighborhood at time ¢ is odd.

The class of PTCA is obtained by considering all the CA A = (S, f,r)
such that S = {0,1,...,n — 1} and for every z_,,...,20,..., &, € S,
F(SeryevvyS0yees8r) = (S_pZp+...+S0To+...+5,2,) mod n where s; € S
for —r <i<r.

From now on let s;(¢) be the state of the ith cell at time t.

With this assumption the XOR-rule can be expressed as s;(t) = (si—-(¢)+

..+ 8:(t)+ ...+ 8ipr) mod 2. Note that this is a particular case of a rule of
PTCA.

3. PTCA

In this section we will prove that the behavior of PTCA A = (S, f,r) with
S =1{0,1,...,p — 1} where p is a prime number, pPTCA, is very regular at
least when the initial seed has only one nonquiescent state.

First we show how to compute the speed-up rule for PTCA, by giving a
closed form formula for s;(t + k) for every k.

Theorem 1. Let A = (S, f,1) be a PTCA. Then there exist t_y,. .. ,t such
that

si(t+ k)= (Z ti8i44(t ) mod n (3.1)

j=—k
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Moreover,
o ¢ =1\ il g il

ag

Y. C(k,i,5)X(k,5,5)

1=0

Proof. The proof is by induction on k.1t is omitted because it is very long
and tedious. N

We start by studying pPTCA with initial seed “0s0¥ when z; = z, =
z3 =1 and s = 1. It is easy to generalize to case s > 1.

Lemma 2. GivenapPTCA A = (S, f,1) with initial seed “010% and f(z,y,2) =
(z +y + z) mod p, then

si(kp) =0fork>1land (j—1)p<i<jp Vj:—k+1<j5<k

Proof. In figure 1 the behavior claimed by lemma 2 is shown.
From theorem 1 we have

k=t
silk) = lfjj BV 2= M psds  —mcies
i = P h h+ i P R g

We provide the proof only for ¢ > 0, since the proof for : < 0 is symmetrical.

Let 2 > 0:
[l 5 R

stin) = 43 (W) (1) hmods
h=0

kp=lil
. (kp)!
h=0

h(kp — 2k —i)!(h + i)!(h +3)! } mod p ()

=0..0=x0..0 p steps

=0. _ 0x0. .0=x0. . 0x0..0x 2p steps

Figure 1.
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Figure 2.

First we note that the factor n can be found k times in (kp)!.

Since the factor p can appear at most k£ —1 times in k!(k —2h —z)‘(h—{—z)
in each term of (*) the factor p occurs and cannot disappear because p is a
prime number.

Then:

h=0

e
si(kp) = { Z thp} mod p =0 th e N

Suppose now ¢ = j with —k < j < k. When j >0,

sibl) = {“z‘? ( ky ) ( I;zp+—jz )} mod p

[ (kp)!
: : mod p
= Rk —3)p —2h)(R + jp)!

The number of occurrences of the factor p in Al[(k — j) — 2R]!(h + jp)! is
k—1—1(2z) <k-1ifz > 0, k otherwise, where I(c) = aifp < c < (a+1)p
and z = h — I(h) X

Then not all terms are 0. B

In figure 2 the evolution of pPTCA A = (S, f,1) when S = {0,1,...,4}

is shown.

Lemma 3. Given a pPTCA A = (S, f,1) with initial seed “010, and
f(z,y,2) = (z 4+ y + 2z) mod p then

sjp(kp) = sj(k) mod p (3.2)
Proof. It can be noted that (3.2) is equivalent to the following:

8ip(kp) = (s(i—1)pl(k — 1)p] + 8;5[(k — 1)p] + s(+1)p[(k — 1)p]) mod p
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.010. .01 p steps

Figure 3.

When k£ = 1 we only need to prove that G% (“010¢) = (107~1)? (see figure 3).
We prove the assertion only for 0 < ¢ < p since the proof is symmetrical for

1 < 0.
s(p) = {LgJ(£)<Z;Z>}mod;}:
o) = {i(z)(plh)}mdp

Since p is a prime number |p/2]| = (p —1)/2,

s h
so(p) = {;(Z)(p; )}modp
=0
p!
= {1+Zh'p 2h)'h|}modp
But
p! _ - _
h!(p—Qh)!h!mOdp_O Vh:1<h<(p-1)/2

since A, (p — 2h) < p. Then so(p) = 1.
Moreover, s;(p) = 0 for i # —p, 0, p as proved before. Now we prove that
(3.2) is true Vk > 1. From theorem 1,

woro={$ (5 (1) (22h)] o) o

From the last expression (¢ = (k — 1)p and ¢ = p) we obtain

si(hp) = { ) {LTEU} (2) (22 )] sinal(k — 1)p1} .

l=—p
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Figure 4.

As can be seen in figure 4, we obtain

satir) = {(5) () suwnlti -1

::J ( ) ( Bt > sip[(k = 1)p]
( ) ( ) s(+npl(k — 1)p]} mod p

{sG-vp[(k = 1)p] + s5p[(k — 1)p] + si+1)p[(k — 1)p]} mod p B

The results obtained for z; = z; = z3 = 1 can be generalized for all
possible values of z1, 3, 3.

Lemma 4. GivenapPTCA A = (S, f,1) with initial seed“010% and f(z,y,2) =
(z1z + 29y + z32) mod p, then

(a) si(kp) =0 Vk>1, —k+1<j<k (j—1)p<i<jp,
(b) sijp(kp) = s;(p) VE=1,—k+1<j <k

Proof. (a) is easily proved analogously to lemma 2. (b) is equivalent to

ip = (218G-1)p[(k — 1)p] + z2855[(k — 1)p] + 238 (j4+1)[(k — 1)p]) mod p

From theorem 1 (for t = k — 1 and ¢ = p) we obtain

. i lj%wj p p—"h h+1—|— p—|l|~2h h+U—
Skp a I==p h=0 h h + ]ZI 2

sinl(h — 1)p]} smollp
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Figure 5.

For ¢ = jp we obtain

stt) = {(B)(2) tsu-mice -
+ Ez(’,i)( )"h} ssnl(k — 1]
" ( ) (p)mss(wl)[(k—l)p]} ady

but, as before, we know that for 0 < h < p,

(1) (73" e

and that 2 mod p = z, so that
sip = (218(5-1)pl(k — 1)p] + 228j5[(k — 1)p] + z35(j41)5[(k — 1)p]) mod p
||

Theorem 5. Given a pPTCA A = (S, f,1) with initial seed “010* and
f(z,y,2) = (z12 + 22y + x32) mod p, it holds that

G% (“010%) = “0z30"" " 2507 " 2,0 Vk >0

Proof. The proof is easily obtained from the last lemma. B

An analogous result can be obtained when the initial seed is “Os0% for
every possible value of s.

In figure 5, the evolution of a pPTCA is shown. Triangles represent zeros.
In the case of a PTCA A = (5, f,1) such that f(z,y,2) = (z12 + z2y + x32)
mod n, where n is not a prime number, we can find examples having very
different behavior.
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Example 1.
A = (8,fir) 8=10,1,23} r=1
f(z,y,2) = (2z+y+22) mod 4
G(“010%) = “2120¢
G%(©010¥) = “010v
G%(¥010) = “010¢

G¥H(»010%) = “2120¢

o
DO NO
—
DO NO
o o

Example 2. Suppose n = z? and let A = (S, f,r)

S = {0,1,2,...,n—1}
r = 1
f(a,b,c) = (za+b+zc)modn
krwpiaey ) C010¢ if k=0 mod \/n
Gy = { “Opzlpz0¥ if k = pmod /0
G;(“0pzlpz0¥) = “Opz*(k + 1)zl(k + 1)zkz?0¥ =

“0(k + 1)z1(k + 1)20

since kz* = 0 mod n.
Let n =9 and f(a,b,¢) = (3a + b+ 3c) mod 9. The evolution of this
PTCA with initial seed 1 is shown in the following:

010

03130

06160
010

Example 3. Let us consider a PTCA defined as follows:

A = (S f,r)
S = {0,1,...,n—1}
n = k%
o=
f(a,b,¢) = (n/ka+b+n/kec) modn
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The evolution of this CA with initial seed “*010% is shown in the following:
0 1 0
0 n/k 1 n/k 0
0 (k=1D)n/k 1 (k—1)n/k 0
0 1 0
The following PTCA has a particular behavior.

Example 4. A = (S,f,r),n =4, S = {0,1,2,3}, f(a,b,c) = (3a +2b+
2¢) mod 4

o O o N
OO O N
OO oW
o N O

(= SR

0 3
00 10
Example 5. A = (S,f,r), r = 1, n = 4, S = {0,1,2,3}, f(a,b,c) =

(2a + 2b+ 2¢) mod 4

O O N
OO N -
o O N

0 0
00 00

In conclusion, pPTCA can have regular behavior starting with an initial
seed composed by a single state.

It is quite possible that it is true for random initial seed also, but we have
no proof of this.

4. CA with code 0110

It is easy to see that s;(t + k) depends on the state of cells at time ¢ that are
distant at most %k cells from the ¢th and then the following property can be
easily proved (see figure 6).

Property 1.
£ Giw)=7 =l +2
and GHw)=7 || =]+ 2k
then
GH(w0™w') = 707"/

In particular for CA with code 0110 the following lemma can be proved.
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Figure 6.

Lemma 6. Given a CA with code 0110, we have
G2 %) =1?

Proof. From now on we will write o = B whenever G’}(a) =f.
For i = 1 the proposition is true because
1% 534

Consider now 1%, Tt is easy to prove that 12 L, 120%'-212, Forevery k > k+1,
from property 1 (since 2° —2% > 22%~1) and by inductive hypothesis, it follows
that

12k02-‘_2k 121: 2:1 12k+1 02:’_2k+1 12k+1

And then for k =17 —1,

i—1 _oi__oi—1_oi—1 Qi—2 i oi_oi_oi i1
12' 02' 2 12 oy 12’02‘ 2'12' - 12

Finally,
17 12077712
— 174
L 1807818
- N Sl e L
e L

and then the assertion holds because
i-2
1+> 29 =211
j=0
Lemma 7. Given a CA with code 0110, we have

17125 2y s

Proof. The proof is analogous to the one of lemma 6.
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Actually, from lemma 6 it follows that for k£ <7 —2,

12k02i_2k_112k 2"_—)1 12k+102i_2k+1_112k+1

We know that 127" 25 1% but since 21 — 1 < 22i~2 property 1 cannot be
used to obtain the next conﬁguratlon reached from 127 02'-2"-112"
Note that by lemma 6,
12;-102-'—112.'—: 2"—_2_)_1
12-‘—102:'—1 _112.'—1 2-’—_2)_1

w00w — 12

wlw — 1271
Finally, 12-1 %5 25 12¥'-1 and then the assertion holds. W

Let us see the evolutlon of the CA with code 0110 between the two con-
ﬁgljllatlons 12" and 1%*" (analogous considerations can be made for 12~* and
12' —1)

We know that 12 22251 17 and that 17 5 120%-21%. The two 1’s in
120212 are distant more than 2i~! cells and then by property 1 the con-
figuration obtained from 120%'-212 is the concatenation of the two obtained
from 12 after 227 -1 steps and itself. Since this observation can be recur-
sively repeated, lemmas 6 and 7 show that CA with code 0110 and initial
seeds 12 and 1%~ have a fractal evolution. In fact, looking only at a part
of the figure, we know the structure of the entire figure and so we obtain a
so-called self-similar figure. In this case, the figure can be obtained from the
following well-known fractal construction:

Step 1 take an equilateral triangle;

Step 2 picture it in a new equilateral triangle whose vertices are on the
middle of each side of the initial triangle;

Step 3 repeat Step 2 (see figure 7).

Obviously, configurations like the following generate fractal figures also:
100101, 101001, ... as.they give in one step 15, In the following, we will
prove that CA with code 0110 behave regularly on initial seed 1™, for every
n.

Lemma 8. Given a CA with code 0110, we have
122 2‘*_"*)1 12‘—20(2"+2—2)2‘+212‘-2 Yk >0
Proof.
12‘-2 41207712
since 12?251 17" and from property 1 it follows that

i_qq2 20712
1207412 5" ww
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Figure 7.

where w is defined as follows:

(1202)k12

=

ww

Finally

-

§ -

»N

12‘-2

L

12‘—20212‘—2

)

12‘—20212‘—

E=(2"-4)/4

2

12‘—20212‘—2
1202‘-41402‘—4

wlziw
12"—202"+212"—2
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Figure 8.
that is,
12-2 2=l q2igpq2-2
2T 242y 2i-2
212 4
—" wwl*ww
— 12‘—20212‘-20212‘—20212"-2
s 1202‘—41402‘—41402‘—41402"~412
2:2 wlsziw
=4 12‘—2032"+212"—2

In conclusion,

12°-2 212 12-20212'-2

2% i i i_
=5 12 2032+212 2

2 2-2gr2i422i-2
2+ 12202 +?-2)2 4222
Figure 8 shows the evolution of such a CA.
Lemma 9. Given a CA with code 0110 it holds that
123 2T g 2ioagMi-gpin 2oz g g s
Proof.
123 1 1207512 2252 oy
where y is defined as follows:

y 517 ly| =2 —4¢
y = (1%0%)k1* k= (2" -8)/8
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yoy s (1404)k14014(0414)k
— (1202)2k+1 13(02 2)2k+1
18L+6018k+6 12' 20121

=y
Then
123 12‘—20121'—2
12-2012'-2  _,  120%-4130%-4;2
i i §—1_. ;
222 wawz =171 as 13 V57 171
w — 1%|jw|=2"-2
w = (120)F12 k=(2-4)/4
wzw = (1202)k12‘+3(0212)k
N 14k+202‘+114k+2 — 12"—202"+112*-2

In conclusion,

12' -3 2i= 12' 2012' -2 2= 12' 202‘1—112'

The lemma can be proved continuing in this way. B

Lemma 10. Every CA with code 0110 behaves regularly with initial seed
1™ for every n.

Proof. The lemma is proved using lemmas 8 and 9 and observing that each
configuration 12'~* for even k and 2 < k < 2! evolves like 122 and those
with odd k like 2¢=3.

Configurations like (10)™, and the ones in which at most two contiguous
Os or 1’s can be found, behave regularly as they evolve in one step to 17, so
that we can state the following theorem.

Theorem 11. Every CA with code 0110 behaves regularly with initial seed
belonging to 1T U (©* —I') where 3 = {0,1} and ' = %000 = 111 3%

Example 6. We list all configurations of length 4 and 5 that evolve regularly.

n=4
1111
1 011
1 001
1101
=2 B
11 1 11
11 0 01
11 0 11
10 1 01
1 0 10 1 1



E. Fachini and L. Vassallo 399

References

[1] K. Culik and S. Dube,“Fractal and recurrent behavior of cellular automata,”
Complex Systems, 2 (1988).

[2] J. Albert and K. Culik, “A simple universal cellular automaton and its one
one-way and totalistic version,” Complex Systems, 1 (1987) 1-16.

[3] S.J. Wilson, “Cellular automata can generate fractals,” Discrete Applied
Mathematics, 8 (1984) 91-99.

[4] S. Wolfram, “Universality and complexity in cellular automata,” Physica,
10D (1984) 1-35.

[5] K. Culik and S. Yu, “Undecidability of CA classifications schemes,” Complex
Systems, 2 (1988) 177-190.





