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Abstract. We study a model for the effect of learning on a popula­
tion of asexually reproducing individuals . While current models are
usually based on simulations of the actual hypothetical organisms, we
adopt a classic population genetic approach, which deals directly with
gene frequencies. This allows us to investigate the model in great
detail, obtaining results which are difficult to obtain using other tech­
niques . In particular, we demonstrate that learning has a drastic effect
on evolution, as has already been noted by Hinton and Nowlan [3] us­
ing computer simulations. A detailed quantitative description of the
temporal behavior of the model is also presented. In particular, an
interesting interplay between mutation and learning is demonstrated.

1. Introduction

While most biologists today agree that acquired characteristics cannot be
passed to future generations, it is much less clear how learning during an
individual's lifetime can influence evolution. Since in an unpredictable envi­
ronment it is more advantageous to leave decisions to learning than specify­
ing them genetically, it is rather obvious, from a Darwinian viewpoint, that
differences in the learning capabilities of the individuals will produce a se­
lective pressure for the genes responsible for the learning advantage, thereby
increasing their frequency. However, anything but obvious is the proposal
put forward by Baldwin [1] that in a fixed environment properties that were
behavioral goals in earlier generations could be genetically determined in the
course of the evolution. Although the idea is simple enough, it has not always
been clear how such a scheme would work.

In a recent paper, Hinton and Nowlan [2] have proposed a model that
explains how such a facilitation of evolution through learning could come
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abo ut . T he model considers a population of N haploid (see below) indiv id­
uals, each cont aining a neur al network with L connections. lt is assumed
that each connectio n is det ermined by a single gene, which comes in th ree
bas ic types (alleles): 1, 0, and ? A 1 allele specifies that a connection is
pres ent, a 0 allele that it is absent , and a ? allele specifies a plastic connec­
tion that can be det erm ined through learning. To make the mod el as simple
as possible (but not simpler) , Hinton and Nowlan assume that th ere is a sin­
gle combination of alleles, say all alleles 1, corresponding to a specific neural
network st ructure, which confers a reproductive advantage . Clearly in such a
sit uation, termed a "needle-in-a-haystack" prob lem, the evolutionary search
for such a combination would be extremely difficult since th ere is no slope
leading to the maximum ("needle" ) so the usual evolut ionary hill-climbing
pro cess would be no better than a random search. What Hinton and Nowlan
have shown is that learning can create an increased fitness zone around th e
"needle" by allowing individuals whose connections are near perfect to learn
the correct setting.

To check Baldwin's proposal, Hinton and Nowlan simulat ed a populat ion
of 1000 individuals with 20 genes each. Learning consists of giving each
individual 1000 random trials to guess the correct setting, th e fitne ss being
larg er for individuals that learn more rapidly. Reproduction in their mod el
was sexual, in the sense that in each generation 1000 matings were performed
between parents chosen according to th eir fitn ess. Note however that the
"organisms" are hap loid, i.e., cont ain a single version of each allele for every
locus as opposed to most real organisms, which are diploid, i.e., th ey contain
two alleles for each locus. Crossover between two "chromosomes" takes place
by picking the crossing-over position at random. They demonstrated that
even for low initial values of th e correct allele 1, th e population evolved a very
high proportion of correct alleles, due to the increased fitness conferred on
organisms through learning. An exhaustive analysis of Hinton and Nowlan's
model can be found in reference [3].

Whi le sexual repro duction seems to be the rule rather than the exception
in t he natural world, it is not at all clear what th e advantages are of sex­
ua l versus asexual reproductio n. In fact, this is a hotly debated issue to this
very day (see for example reference [4]). Two point s are usually cited in favor
of sexual reproduction [4]: (1) Sexual organisms evolve more quickly t han
asexual ones, due to the possibility of two (or more) favorable genes com­
ing together, and (2) sexual organisms are less likely to accumulate harmful
mutations as these can be reconstituted through recombination. In the asex­
ua l case , a revers e mutation would have to take place . These point s should
be weighed against the advantage of asexual reproduction, namely that fa­
vorab le genes are transmitted directly to the offspring without the potential
harm of mixing them with unfavorable genes of the mate. While it is not
our wish to discuss these fascinating issues, and we are certainly not quali­
fied to do so, we note that in a fixed environment , as is the one st udied by
Hinton and Nowlan, sexual reproduction does not have any advantage over
asexual reproduction. Moreover, as pointed out by Maynard Smith [5], in the
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absence of learning a sexual populat ion would never evolve th e correct set t ing
in th e above setup, while an asexual one would (although it would take a
very long t ime). From our point of view, however, asexual reproduction has
the added advantage of facilitatin g the mathematical analysis and enabling
us to explore an alyti cally the full dynamical behavior of th e mod el.

The organization of the pap er is as follows. In sect ion 2 we define our
mod el and der ive the equations governing the evolut ion of the allele frequen­
cies. We take a classic population genetics approach [6] in deriv ing these
equations, as opp osed to th e "microscopic" one taken by Hint on and Nowlan.
To bet ter appreciat e the effect of learning, we study in section 3 th e evolu­
t ion of a population witho ut learn ing on the "needle-in-a-hayst ack" fitness
landscape discussed above. We th en go on to derive the full consequences
of incorporat ing learning into th e model in section 4. We find very similar
results to those obtained by Hinton and Nowlan in th eir simulati ons using
sexual reproduction . We are able, however , to derive much more, as will be
demonstrat ed. In particular , an interesting interplay between learning and
mutation is demon str ated. Section 5 th en summarizes our result s and point s
out how the mod el may be generalized.

2. The m od el

We consider an infinite populat ion of haploid individuals, each one repre ­
sented by its genotype, which we model by a stri ng of L genes. The genes
may occur in three different forms (alleles): 1, ?, and O. At generation n ,
these alleles have frequencies Pn, qn, and Tn, respectively. These frequencies
are defined in terms of the total populat ion's geneti c distribution so that,
at each generation, one has Pn + qn +Tn = 1. We assume that a genotype
is completely characterized by three parameters P , Q, and R st anding for
th e number of alleles 1, ?, and 0, respective ly, that it possesses. Thus, the
genotype frequency in th e population at generat ion n is

IIn(P,Q,R) = Cft,Q ,RP: q~T~ (2.1)

where Cft,Q ,R := L!/ P !Q!R ! and P + Q + R = L.
Natural selection is taken into account by assigning to each genotype a

fitness value or rat e of repro duction I1-(P,Q,R). Without loss of genera lity,
we assume t hat the correc t neural network is achieved by the genotype P = L
and Q = R = O. Mut at ion is introduced int o the mod el by allowing the alleles
to cha nge spontaneously with some probability. More specifically, we define
th e mutati on rate v as th e fraction of alleles that underwent mutat ion in one
generation and treat v as a contro l parameter. We focus on the evolut ion of
the allele frequencies, since th e genotype frequencies can be obtained from
them th rough equation (2.1).

In the following we derive th e recursion relat ions for the allele frequen­
cies. In the absence of mut at ions, the fraction of allele 1 that each genotype
contributes to the next genera t ion is proportional to the pr oduct of three
fact ors: the numb er of alleles 1 it contains, its frequency in the population,
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and its rate of reproduction. Hence the frequen cy of allele 1 in generation
n +1 is

1
Pn+l = -=- L PITn(P,Q,R)p(P,Q,R)

Wn P,Q,R
(2.2)

where wn is the average rate of reproduction of the entire population in
generation n,

wn=L L ITn(P,Q,R)p(P,Q,R)
P,Q,R

(2.3)

The significant parameter measuring the reproductive advantage of a
genotype over its comp etitors is its relative rate of reproduction p(P,Q,R) /wn.

To introduce th e effect of mutation, we notice that the probability of
an allele 1 escaping mutation to ? or 0 is 1 - 2v and th e probability of an
allele? or 0 changing to 1 is u . Thus, in order to take mutation into account,
equation (2.2) must be rewritten as

1
Pn+l = -=- L ITn(P, Q,R) p(P, Q, R)[(l - 2v)P + v(Q +R)J (2,4)

Wn P,Q ,R

which after some simple algebra , redu ces to

1-3v
Pn+l = V +-_- L P ITn(P, Q,R)p(P, Q, R)

Wn P,Q ,R
(2.5)

The same procedure may be used to derive the recursion relations for qn and
Tn . It yields

and

1 - 3v
qn+l = V +- _- L QITn(P,Q,R)p(P, Q, R)

Wn P,Q ,R

1- 3v
Tn+l = V +- _- L RITn(P,Q,R)p(P,Q,R)

Wn P,Q,R

(2.6)

(2.7)

To examine th e behavior of this system of coupled recursion relations one
must specify th e rate of reproduction assigned to the genotypes. This can
be done rather straightforwardly in the case of a population without learn­
ing, and th e next section is devoted to the study of the evolut ion of such a
population. However, in the case of a population with learning the rate of
reproduction is not specified genetically, i.e., it is not uniquely determined by
P, Q, and R and equat ions (2.5) , (2.6), and (2.7) are not readily applicable.
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3. Evolution without learning

Within the "needle-in-a-haystack" scenario we ascribe to the correct geno­
type the rate of reproduction L and to the remaining genotypes the rate of
reproduction 1. Moreover, since in this case there is no difference between
alleles? and 0, we consider only two types of alleles, 0 and 1. We choose
as the relevant variable the frequency of correct alleles P«, the fraction of
incorrect alleles being obtained from it through the normalization constraint
1"n = 1 -Pn. Following the reasoning of the last section and using /1(L, 0) = L
and /1(P, R -I 0) = 1, it is straightforward to write down the recursion rela­
t ion for Pn,

1- 2v [
Pn+l = v +- _- Pn+ (L - 1)p~ ]

W n
(3.1)

where wn = 1 + (L - l)p~. In the following analysis we take L = 20 as in
Hinton and Nowlan's original model.

Let us consider first the simpler case where mutations are not allowed,
v = O. There are two equilibria, namely v: = 0 and p. = 1. The former is
unstable and the latter is globally stable, i.e., P --+ 1 irrespective of its starting
value Po -I O. Figure 1 shows the frequency of allele 1 when introduced at
three different initial frequencies, Po = 0.7, 0.6, and 0.57. Since the frequency
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Figure 1: The frequency of allele 1 in a population without learning
as a. function of the genera.tion number for po = 0.7, 0.6, 0.57 with
L = 20 and v = O.
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Figure 2: The dependence of the number of generations that a popu­
lation without learning needs to reach fixation on the initial frequency
of correct allele for L = 20 and v =O.

of the correct genotype is pL , small values of p do not affect the average rate
of reproduction significantly, result ing in a slow increase of p in the earlier
generat ions as observed in the lower curve of figure 1. However, a the correc t
genotype becomes common (p > 0.6) there is an explosive growth leading to
fixation in a few generat ions. Thus, an asexual pop ulat ion can do quite well
in t he "needle-in-a-hayst ack" fitness landscape if it is given enough time to
evolve. How well it does will depend on the number of generations it needs
to reach equilibrium (7), which, as can be seen in figure 1, depends on Po. In
figure 2 we show this dependence with 7 defined as the generat ion for which
1 - p < e = 10- 6 . Th e specific value of e is not import ant, any small er than
0.2 will give very similar resu lts . This and also the stai rcase shap e of the
curve in figure 2 are consequences of the steep gradient of the curves in figure
1 for p close to 1. The st ra ight part of the curve in figure 2 indi cat es that
7 grows as a power of Po ; the best fit being 7 = 0.02p017 .3 . For inst ance,
for Po = 0.25 approximat ely 5.2 X 108 generations will be needed unt il the
population is composed only of individ uals carrying the correct setti ng of
alleles.

A noteworthy effect of incorpora ting mut at ion int o the model is the elim­
ination of the fixed point p' = O. In fact, it can be seen easily from equa-
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tion (3.1) that p' cannot be smaller than 1/2. For small 1/ the equilibrium
frequency of correct allele 1 decreased to

p' = 1 _ _ L_1/ +0(1/2)
L - 1

(3.2)

although the convergence is slightly speeded up. Numerical analysis indi­
cates that equation (3.2) gives the only fixed point of equation (3.1) for
1/ < 1/1 c::= 4.35 X 10- 4

. A second stable fixed point , p' c::= 1/2, with a large
basin of attraction appears for 1/ > 1/1. As we increase 1/ further on , the high p
fixed point disappears discont inuously at 1/ = 1/2 c::= 0.08, the driving of na tu ­
ra l selection being complete ly eliminated by t he ran dom per turbations due to
mut ation. In figure 3 we show the basins of attraction of the two fixed points
in a phase diagram in the plane (I/,po ). The region below the curve belongs to
the bas in of attraction of p' c::= 1/2 and th e region above it to the high p fixed
point, equation (3.2). The curve starts at 1/ = 1/1 and ends at 1/ = 1/2; beyond
this point only the low p fixed point exists . We notice that due to our prob ­
abilistic interpretation of the mutation rate, the maximal value it can have
is 1/ = 1/ 2, tho ugh evolution is disrupted for a much smaller value, 1/ c::= 0.08.

1.0

0.8

0.6

Po
0.4

0.2

0.0
0.00 0.02 0.04 0.06 0.08 0.10

'J

Figure 3: Phase diagram showing the basins of attraction of the high
p fixed point (above the curve) and of the low p fixed point (below
the curve) as a function of the mutation rate for a population without
learning with L = 20. The solid curve begins at 1/ z: 4.35 X 10-4

(before it only the high p fixed point exits) and ends at 1/ ~ 0.08
(beyond it only the low p fixed point exists) .
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4. Evolution with learning

Reverting to the three alleles model described in sect ion 2, we proceed in
the incorporation of learning into th e mod el. Following Hinton and Nowlan
we allow each individual a maximal numb er G of random guesses to find
th e corre ct set of neural connections. It is assumed that the individuals can
sense when they have guessed correctly so the learning or guessing process
is stopped at that moment . Since th ere are Q learnable connect ions, the
pr obability that an ind ividu al sets th em correct ly in one t rial is c == 2- Q and
during its lifetime (G trials) its odds are increased to 1 - (1 - c)G.

Reproductive advantage is conferre d on individuals with th e correct neu­
ral network, not necessarily with th e corre ct genotype, as opposed to the case
without learning discussed before. Thus, the rate of reproduction must be
assigned to the phenotype rather than th e genotype. The learn ing capabil­
ity, however, is genetically determined in th e sense th at an individual whose
genotype has at least one allele 0 will never be able to guess th e corre ct neu­
ral network, while the rapi dity with which individuals guess it depends on
th e number of undefined alleles in their genotypes. There are two situations
where th e rate of reproduction is geneti cally determined: when the individual
carries the correct genotype, P = L, R = Q = 0, and when th e individual
has a least one allele 0 in its genotype, R =f O. The former is assigned rate
of repro duction L and th e latter , 1. It remains to define th e rate of repro­
duction of individuals possessing only alleles ? and 1, R = O. According to
Hint on and Nowlan, the rate of reproduction of these individuals is

p(g) = L - (L -1)!L
G

(4.1)

where 1 :s: 9 :s: G is the numb er of guesses that th e individu al made before
findin g the correc t setting. Thus p(g) depends not only on the individual's
genotype but also on the sto chastic valuable g . This dependence on 9 is
th e main obstacle to applying the formalism developed in sect ion 2 to the
evolution of a population with learning. However, rather than studying the
evolut ion of a specific population depending on the particular realizations of
the stochast ic variable g, we focus on the evolution of an "average" popula­
tion whose allele frequencies at each generation are regarded as the average
of the allele frequencies of an infinite number of populations at that genera­
tion. Thus, p(g) will be replaced by its average (p(g)). To accomplish that
we must consider the statistical distribution of g.

The probabi lity of an individual guessing correctly at the gth trial is equal
to the probability it fails in th e first 9 -1 trials and succeeds in th e gt h t rial,

(1 - C)9-l c (4.2)

However, we must accou nt for the possibility that the individual never guesses
correctly, the probability of thi s being og,G(1 - c)G. Note that if 9 = G there
are two possibilities: (1) with probability (1 - c)G-lC the individual guesses
correc tly in its last trial or (2) with probability (1 - c)G it fails in the G
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trials; the rat e of reproduction being 1 in both cases. Hence 9 is distributed
according to

Y(g) = c(1 - C)9-1 +59 ,G(1 - c)G (4.3)

and, since 9 appears only linearly in equa tion (4.1), we must compute only
the first moment

G

(g) = LgY(9)
9=1

which, after performing the summati on, redu ces to [3]

(g) = 1 - (1 - c)G
c

(4.4)

(4.5 )

Thus, averag ing p(g) makes explicit th e dependence on the genotype param­
eters

(p(g)) = J1-( P =f L ,Q,R = 0) = L _ (L -1) [1 - (1- 2-
Q
)G]

2-QG
(4.6)

At thi s st age the framework presented in sect ion 2 can be readily app lied.
Insert ing equation (4.6) together with J1-( P = L, Q = 0, R = 0) = Land
J1-(P,Q,R =f 0) = 1 into equat ions (2.3), (2.5) , and (2.7) yields

i = 1+ (L - 1) {(1 -rn)L +~ [1+ ~~ - (1 + In)L ]} (4.7)

_ 1 - 3v {L - 1 L [ O I L - I ]
Pn+l - v + W

n
/ L -cPn 1 + ~n - ~n/L - (1 + In )

+ Pn [(L - 1)(1 - rn)L- l + I]) (4.8)

1 - 3v
+ -- rnrn+l = V wn/ L

respectiv ely, where

L L'o _" . Q - Q G
~n - ~o Q!(L _ Q)!'n (1 - 2 )

L LI
~1 _" • Q( - Q G

n - LJ /"\I/T /"\\Iln 1-2 )
Q = O

(4.9)

(4.10)

(4.11)

and I n = 2qn/ Pn' The frequency of undefined alleles in generation n + 1 is
obt ained through th e normalization const raint,

qn+l = 1 - Pn+l - rn+l (4.12)
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These equations reduce to th e ones of the evolution without learning by
setting qn = 0 provided l/ = O. The nonlearning equations are not recovered
for l/ =t- 0 because th ere is no equilibrium with qn = O. In th e remainder of
this section we concentrate on the numerical analysis of th e above system of
recursion relation with the par ameters set as in Hinton and Nowlan 's paper ,
L = 20 and G = 1000.

Figure 4 shows the evolut ion of the allele freq uencies for Po = 1'0 = 0.25
and qo = 0.5 with l/ = O. These are th e same initial frequencies chosen by
Hinton and Nowlan in th eir simul ation. There is a single stable equ ilibrium,
p* = 1, while th e other two, q* = 1 and 1'* = 1, are unstable . Note that in
only 200 genera t ions th e correct alleles amount to 90% of th e total number of
alleles present in the popul ation , in cont rast to the evolut ion without learning
wher e 108 generations are needed to reach this proportion. A further increase
of p becomes extremely slow becau se, as pointed out by Hinton and Nowlan ,
th ere is very little select ive pressure against alleles? since a few trials will
suffice to guess th e correct set ting of neur al connections. In figure 5 we use
the same parameters as in figure 4 except for the mut at ion rate, which takes
on th e value l/ = 0.01. This figure illustrates the speedup of the relaxation to
equilibrium when low mutation rates are allowed, as we have mentioned in
the last sect ion. Of course, the price to pay is th e decreas e in the average rat e
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Figure 4: The frequency of alleles in a population with learning as
a function of the generation number for Po = 1'0 = 0.25, qo = 0.5,
L =20, G = 1000, and l/ =0.
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of reproduction shown in figure 6 for different mutation rates and the same
initial frequencies used in figures 4 and 5. For small /I there is a single stable
equilibrium. For /I > /II ~ 0.019, however, a second stable equilibrium with
p* ~ q* ~ r" ~ 1/3 appears, which accounts for the lower curve (horizontal
line) in figure 6. A similar behavior was observed in the evolution of the
population without learning, though there the second equilibrium appeared
for a much smaller value of /I. This interesting result indicates that learning
strongly increases the robustness of the population to mutation. For /I >
/12 ~ 0.074 the high p equilibrium disappears. The interplay between the
two equilibria as /I varies is depicted in the flux diagrams of figure 7. Several
pieces of information can be obtained from these diagrams: the fixed-point
locations, their basins of attraction, and the number of generations needed to
reach fixation that is roughly measured by the density of dots. In figure 7a,
/I = 0.01, there is a single fixed point p* ~ 0.77, q" ~ 0.22. Notice the
sticky region around p ~ q ~ 1/3 indicating that the landscape is rather
flat there, and the turnpike-like topology around the fixed point with all
paths converging to a single one that leads to the fixed point. In figure 7b,
/I = 0.02, the second stable fixed point p* ~ 0.35, q* ~ 0.4 has already
shown up, draining almost all paths toward it. The high p fixed point is
p* ~ 0.72, q* ~ 0.25. Figure 7c, /I = 0.07, illustrates the shrinking of
the basin of attraction of the high p fixed point, p* ~ 0.56, q* ~ 0.34, the
turnpike-like topology having disappeared. The low p fixed point is p* ~ 0.34,
q* ~ 0.33. Finally, in figure 7d, /I = 0.08, there is again a single fixed point
p* ~ q* ~ 0.33. As can be seen in figure 6, the low p fixed point has rate of
reproduction ~ 1 corresponding to a situation where natural election does
not affect the distribution of alleles in the population.

5. Conclusion

We have introduced and investigated a model of how learning may affect
a population of asexually reproducing organisms. One of the main advan­
tages of considering asexual reproduction is the analytic tractability of the
model and the ease of analyzing its behavior under a variety of conditions.
Moreover, as stressed in the introduction, in a fixed environment like the
one considered in this paper, sexual reproduction confers no advantage over
asexual reproduction. We have shown that the recursion relations obtained,
equations (4 7)-(4.9), give rise to behavior that is qualitatively very simi­
lar to that observed by Hinton and Nowlan in their simulations of sexually
reproducing organisms.

The main conclusions we can draw from our study are the following.
First, as has already been observed by Hinton and Nowlan , learning has a
drastic effect on evolution. Our study corroborates their claims in a slightly
different model using a classic population genetics approach. Second, we have
been able to quantitatively analyze the model obtaining many interesting
features that would be very difficult to detect solely through simulations. In
particular, we have calculated the time it takes a population without learning
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Figure 6: Average rate of reproduction of a pop ulation wit h lea rning
as a function of the number of generations for different mutation rates
v = 0, 0.01, 0.015, 0.02 wit h L = 20 and G = 1000.
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Figure 7: Flux diagrams for different mutation rates: (a) v = 0.01,
(b) v = 0.02, (c) v = 0.07, (d) v = 0.08 with L = 20 and G = 1000.

to reach equilibrium (figure 2) as well as the basin of attraction as a funct ion
of the mutation rate (see figure 3 for the nonlearning case and figure 7 for
the learn ing case). Third, the behavior of the model for various mutation
rates has been fully analyzed. For small mutation rates, we find a single
stable equilibrium with the correct setting of alleles, i.e., p ~ 1, and high
fitness value. Mutation has the beneficial effect of speeding up the evolution
at the price of lowering the fina l fract ion of correct alleles. Large mutation
rates give rise to a second stable equilibrium with a very small fitne ss value
that ends up dest abilizing t he high fitness equ ilibrium. We further find an
interesting interdependence between learning and mutation. In particular,
we find that learning populations are much more robust to mutation than
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nonlearning ones, in the sense that they can tolerate a much higher mutation
rate before natural selecti on becomes ineffective.

Although the approach we have taken has been very fruitful in gaining
insight into various asp ects of learning and evolution , it does have some lim­
it ations. One very interesting development of the Hinton and Nowlan model
is that of incorporating culture into the model [3]. To incorporate culture one
must assume some form of communication between organisms that allows the
transmission of information between individuals. For instance, an individual
with a good learning ability may wish to "teach" other org anisms with simi­
lar genetic makeup , thus increasing their fitness. While it is straightforward
to st udy the effect of culture in the Hinton and Nowlan model through simu­
lations, it does not seem so easy to do so in the population genetic approach.
Another point to note is that ou r approach can be easily extended to the
case of sexual reproduction, though the equat ions obtained in this case are
too complicated to be useful.
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