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Abstract. We present a new method of designing neural networks
using the genetic algorithm. Recently there have been several reports
claiming attempts to design neural networks using genetic algorithms
were successful. However, these methods have a problem in scalabil­
ity, i.e., the convergence characteristic degrades significantly as the
size of the network increases. This is because these methods employ
direct mapp ing of chromosomes into network connectivities. As an
alternative approach, we propose a graph grammatical encoding that
will encode graph generation grammar to the chromosome so that it
generates more regular connectivity patterns with shorter chromosome
length. Experimental results support that our new scheme provides
magnitude of speedup in convergence of neural network design and
exhibits desirable scaling property.

1. Introduction

Use of genetic algorithms for neural network designing encompasses two ma­
jor attractive features. First, it automatically discovers optimized network
structures for given tasks in which researchers had to manually carry out
trial-and-error processes to find near-optimal network architecture. Second,
it is analogous to an actual biological process in that the blueprint is en­
coded in the chromosome, which can be changed through the evolutional
process, and neural networks are created based on information encoded in
the chromosome.

Recently there have been a few studies on the use of genetic algorithms
for automatic designing of neural networks, including [9] and [15J. These re­
ports claim effectiveness of genetic algorithms for neural network designing.
Actually, their experimental results indicate that an optimized ne twork can
be generated through an evolutional process simulated by the genetic algo­
rithm. There are two major problems in these approaches. First, none of
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these studies carried out systematic experiments in terms of scalability and
the speed of convergence, leaving applicability of the schemes for designing
larger networks open to question. In fact, we will demonstrate in the next sec­
tion that these methods have an undesi rable scaling property. Second, these
methods are biologically unfeasible, because they assume that connectivity
information is encoded in the DNA in almost one-to-one correspondence.
This leads to two major problems: (1) it cannot capture mor phogenesis of
neural systems , and (2) sufficient information cannot be encoded in DNA of
the given length. Thus, existing methods do not take full advantage of using
genetic algorithms for neural network designing.

The purpose of this paper is to present a new method of neural network
designing using genetic algorithms that surpasses current methods in both
efficiency and biological plausibility. We employ a completely different ap ­
proach from the existing methods in encoding neural network architectures.
Ins tead of direct ly encoding network configuration, as seen in the exist ing
methods, our scheme encodes a graph generation grammar that defines the
growth of graphs. The graph generation grammar is augmentation of Lin­
denmayer's L-system, which is designed to describe morphogenesis [13, 12].
Although at this moment we have no decisive evidence to prove the graph
L-system to be the underlying mechanism of morphogenesis, the fact that
the system has successfully described several morphogenesis gives us strong
rationale to believe that our approach is biologically more plausible than the
exist ing methods.

We believe that this difference of how to encode genetic information is a
significant factor in the speed of convergence. Our paradigm is that the evo­
lutional process operates upon the system that comprises the cent ral dogma.
In this framework, the major thread of processing is that the genetic infor­
mation, called genotype, is interpreted to create an actual individual, called
phenotype, and that the natural selection forwards evolu tion of the popu­
lation. In this process, the fitness to the environment is evaluated for each
individual - not DNA itself, and what is selected to the next generation
is the DNA itself - not a copy of individuals that have undergone learning
in the environment . There are two factors that largely affect the speed of
evolution in this scheme:

1. representation of genetic information encoded in the DNA and its in­
terpretation to create phenotype, and

2. how each ind ividual is trained and evaluated until the end of its repro-
duction period.

Since the second factor can be homogeneous in neural network designing that
we are considering in this paper, we will focus on the first factor . Our working
hypothesis is that the representation and the interpretation scheme that is
more likely to be used in the actual biological process is the most efficient
one, since the scheme is actually selected through the evolution process .

In the next sect ion, we will demonstrate that the current scheme of neu­
ral network design by genetic algorithms has undesirable scaling property.
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We will then describe our scheme using the graph generation grammar, and
experimental results will be shown.

2. Problems of the direct encoding method

Current research in genetic algorithm-based neural network design methods
uses an approach that directly encodes network configurations. A common
feature of var ious versions of this approach is that these methods directly
encode network connectivity onto the chromosome. We call this method
a direct encoding method. Miller et al. [15J emp loys what they called a
strong specification scheme, which represents connectivity matrix by a string
of bits. Obvio usly, this scheme degrades its convergence perfor mance as
the size of network grows. Harp et al. [9J use clusters of areas that define
the size of the area and projections going out. Since their methods do not
strictly define each connection, they call it a weak specification scheme. The
weak spec ification scheme, however, does not escape from the scalability
problem when it needs to define large and complex networks, because each
area has to encode connectivity in nearly one-to-one fashion, and there is no
way to efficiently encode repeated patterns with complex internal structure.
Therefore, although there may be some differences in the two methods, both
require longer chromosome length as network size increases, and search space
will be increased accordingly. Such schemes will degrade their convergence
performance as the size of the networks grows. To support our speculation
with regard to the scaling property of the direct encoding method, we have
carried out a series of experiments designed to identify the scal ing property.

The task we used is the 4-X-4 encoder/decoder problem. This is essen­
tially the N-M-N encoder/decoder problem where the numbers of input and
output nodes are four. Since we do not know how hidden layers can be config­
ured, it is shown as "X." Experiments are conducted for networks of size 10,
20, and 30. The length of a chromosome are 100, 400, and 900, respect ively.

We used a strong spec ification scheme as used in [15J. Figure 1 shows
how we represent the 4-2-4 network in a connectivity matrix and in a chro­
mosome with the strong specification direct encoding method. In the strong
specification direct encoding method, each point of the chromosome directly
corresponds to each grid of the matrix.

We used a proportional reproduction strategy in which reproduction prob­
ability is decided based upon the fitne ss of each chromosome. The elit ist
copying is int roduced so that the best chromosome is copied into the next
generation. Mutation is adapt ive mutation with probability varying from
2% to 30%. Crossover probability is 50%. We used multipoint crossover as
well as single- and two-point crossover, alt hough no significant difference has
been observed. Each pos ition of the chromosome takes value either "1" or
"0," and the value "1" means th at the connection is established. Probab ility
of the "1" to be generated at each position of the chromosome is set to 30%.
Population size was 10. We also have changed popula t ion size to see if our
result shown in figure 2 can be observed genera lly, and we confirmed that
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Figure 3: Development of the 2-2-1 XOR network.

Figure 4: Graph generation rules used for generation of the 2-2-1 XOR
network.

port ant factor to determine actual cell division patterns and differentiation.
However , we use a simplified model and employ a context-free model.

In figure 3, we illustrate how the standard XOR network can be generated
using the graph generation system. Figure 4 shows rules involved in the
development of the network. It starts from an initial state with a single
symbol "S" (figure 3(1)) . At the first cycle, the initial graph was rewritten
by the first rule in figure 4. At the second cycle, each symbol is rewritten
by the corresponding rewriting rule. The connectivity matrix grows to the
predetermined size after three rewriting cycles (figure 3(4)) . Symbols "I" and
"0" denote existence and nonexistence of connection resp ectively. It should
be noted, however , that symb ols "I" and "0" are not terminal symbols. In
the next cycle, they can be rewrit ten in a 2 x 2 matrix of full connect ions
(all elements are "I" ) or nonconnections (all elements are "0" ).

4. Experimental settings

This section describes experimental settings of the controlled experiments
designed to ident ify performance of the grammar encoding method over the
direct encoding method. For the direct encoding method, we use the same
parameters described in section 2. For the grammar encoding method, a
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basi c genetic algorithm is identical to what is used for the direct encoding
method. The only differences are the content of chromosomes (how to rep­
resent networks) and chromosome length, du e to the different representation
scheme.

The chromosome consists of a variable and a constant part (figur e 5.) The
variable part is a part of the chromosome that actually acquires ru les through
a selection process. Genetic operations, such as mutations and crossovers ,
are performed on this region . The chromosome length in this method refers
to the length of the variable part because the constant part is not involved in
the recombination and mutation process. The constant part does not change,
and 16 ru les that rewrite symbols for nondifferentiated cells into symbols
for differenti ated cells are pre-encoded. Each rule is encoded as five allele
positions (figure 6). For the var iable region , symbols are generated for each
position of the chromosome in range between "A" to "p." The first position
of the chromosome, however, is fixed to be "S" (an initial graph), so that the
ru le for the first cell division can always be created . For t he constant region,
the left -hand side (LHS) has pre-assigned unique symbol between "a" to "p,"
corresponding to the 16 possible patterns for the right -hand side (RHS) . The
RHS of the rule consists of "I " and/or "0."
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Each chromosome is int erpreted to form the network to be trained . At
th e end of the entire rewriting cycle, if a certain posi tion of the connect ivity
matrix is still a nondifferentiated cell (neither "1" nor "0" ), it is considered
to be dead and no connection is created. In this experiment , we use a simple
version of the graph generation system so tha t we ignore cell types that could
be represented in the diagonal elements and assume that the first N nod es
function as input nodes and the last N nodes function as output nodes.

The network crea ted by interpret ing the chromosome will be t rained using
ba ckprop agation. Of course, the same backpropagat ion parameters used for
the direct encoding method are used here.

As tasks that we conducted in our experiment s, we employed various sizes
of th e encoder / decoder problems. This is because (1) the encoder / decoder
problem is easi ly scalable, and (2) it is easily accessible by other researchers
in ord er to rep licate our result s. Of course, experiments with larger and
real-world tas ks are necessary to make decisive conclusions. However, at this
mom ent, we need to examine the various properties of competing methods
with more tractable and accessible tasks so that the community can exp lore
new aspects of this new and unknown tech niques.

5. Experimental results

We carried out severa l sets of experiments to compare the speed of conver­
gence and scaling property of the direct encoding method and the grammar
encoding method, and we confirmed that the grammar encoding method con­
sist ently outperformed the dire ct encoding method. For each experiment we
ran 20 trials, and figures are drawn based on the average TSS error of the
best chromosome in each tri al.

The first experiment was conducted on the 4-X-4 encoder/decoder prob­
lem with networks of size 16 (16 X 16 connectivity matrix) . Figure 7 shows a
result of the experiment. The TSS measure of the network created from the
best chromosome is plotted aligned to the generation. The TSS measure is
a value after training the network with 10 epochs. This is same for the rest
of experiments.

In the second experiment , we have scaled up to the 8-X-8 encoder/ decoder
problem with networks of size 32 (32 x 32 connect ivity matrix) . Similar to
the previous experiment, superiority of the grammar encoding method was
clearly demonstrated (figure 8). In this experiment, we ran a set of population
size 10 and a set of populat ion size 100. Results from the population size 10
are drawn by solid lines and results from the population size 100 are shown
by dotted lines. The grammar encoding method seems to get more benefit
from increased pop ulation size.

In the next set of experiments, we investigated the scaling property of
the direct encoding method and the grammar encod ing method. We have
scaled up the network size from 16 to 64 using the 4-X-4 encoder/decoder
for region from 16 to 32 and the 8-X-8 encoder/decoder for region from 32 to
64. Figure 9 shows results of this experiment. Although the direct encoding
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Figure 8: Convergence in the 8-X-8 problem

method suffered from scaling up the network size , the grammar encoding
method does not seem to be affected much.

6. Discussions and future studies

6 .1 Speed of convergence and scaling property

The superior convergence and scaling property of the grammar encoding
method over the direct encoding method has been clearly demonstrated. In
any experiment, the grammar encoding method outperformed the direct en-
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method.

coding method with a significant margin. The comparison of the convergence
with different size of networks (figure 9) shows dramatic difference between
the grammar encoding method and the direct encoding method . Wh ile the
direct enco ding method suffers from degraded convergence speed, the conver ­
gence speed of the network gener ated by the grammar encoding method does
not seem significantly affected by the size of the network created. The supe­
rior performance of the grammar encodi ng met hod over the direct encoding
method can be attributed to several major reasons.

First , the grammar encoding method generates more regular patterns
than the direct encoding method. Figure 10 shows the connectivity matrix
generated from the best chromosome at the 10th generation. Apparently,
the grammar encoding method creates far more regular connectivity patterns
than the direct encodin g method: In the direct encoding method, probability
of creating a cluster of connect ion of a size 4 X 8, as seen in the upper center of
figure 10(B), would be of th e order of 1/232

, whereas in the grammar encoding
method the figure would be in the order of 1/162

• This is due to the fact that
the direct encoding method does not entail intrinsic mechanism to generate
regul ar network connection patterns, whereas the grammar encoding method
ensures regular pat terns emerge from its acquired grammar. Generation
capability of regular patterns is important because in the complex t asks, we
need several neu ral modules with similar functionalities but which are tuned
for different input patterns and reactions. For example, time delay neural
net work (TDNN) [18) assumes several multilayered feed-forward networks,
each of which recognizes cert ain phonemes from sound spectrum pat tern s.
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Figure 10: Final networks for the 8-X-8 problem.

Also, it is biologically attractive because the existence of regul ar repetitive
patterns are observed in many regions of the brain such as th e hypercolumn
clusters in the visual cortex .

Second, th e grammar encoding method better preserves and is cap able of
copying the meaningful subcircuits discovered . This is because these patterns
are preserved in grammar rules that can be localized in the chromosome so
that the rules are less likely to be disturbed by crossover. In addition, reuse
of the discovered local circuit is easy because each of the local circuits is
likely to be under a symbol that can be further rewr itten to generate the cir­
cuit. If other parts of the rule include this specific symbol, the same pattern
will appear in different parts of the network. However, the direct encoding
method is not capable of preserving local circui ts because connectivities of
these local circuits are represented distributively in the chromosome, so that
these local pat terns are likely to be lost by the recombination process. Also,
the direct enco ding does not allow discovered local circuits to be used in
various different parts of the network, because there is no means to reuse or
copy its circuit topology.
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Third, the grammar encoding method requires shorter chromosome length
t han the direct encoding method. In most experiments described in this
paper, th e chromosome length of the grammar encoding method was 100,
allowing 20 rules to be acquired. The direct encoding method required chro­
mosome length ranging from 256 (for 16-node netwo rks) to 4096 (for 64-nod es
networks) . Theoret ically, the grammar encoding method does not cover the
whole search space with the chromosome of the length 100. 'However , our
experimental results indicate no significant problem due to the short chro­
mosome length. To confirm this point, we ran the 8-X-8 encoder/decoder
problem with network size of 32 with varying chromosome length (25, 50,
100, and 200). The result is shown in figure 11. An experiment with dif­
ferent chromosome length (figure 11) shows that , except with a very short
chromosome (25 elements) , th e grammar encoding method outperforms the
direct encoding method (compare with figure 8), and similar convergence
curvat ures have been observed . Of course, there are some effects due to the
chr omosome length. While th e shorter chromosome (50) converges quickly at
the initial few generations but slows down drastically later, the longer chro­
mosome (200) converges a bit slowly but it converges down to lesser error
measures aft er the 10th generation. This indicates th at though the longer
chromosome works better in t he long run, the shorter chromosome does just
fine as far as it is longer than a certain length. From this obser vation, we
can generally assume that the grammar encoding method requires shorter
chromosome length than the direct encoding method without significantly
undermining its final convergence level.
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Although the grammar encoding method generates a much more regular
connectivity matrix, the generated network is not guaranteed to be a fully
optimized network. In fact , there are some redundant connections that can
be pruned out. Also, there may be cases in which the addit ion of some nodes
or connections improves the speed of convergence and the final performance.
Theoretically, even such a detailed fine-tuning can be done with sufficient
numbers of generation and with a larger population. However, in the genetic
algorithm, the convergence speed for detailed fine tuning tends to degrade
compared to the initial spe ed of convergence. Thus, it would be more effi­
cient to configure networks with genetic algorithms, just enough to determine
overall architecture, and use different mechan isms to make detailed adjust­
ments on creation and elimination of nodes and connections. Fortunately,
there are some investigations available on dynamic node creation and elimi­
nat ions [7, 1, 11]. Since th ese node creat ion and elimination methods assume
rather simp le networks to start with, it is a subject of further investigation
to discover an architecture that can be effect ively applied to more complex
initial network configurat ions.

This cascaded combination of genetic algorithm-based network design and
dynamic creation and elimination of nodes and links is a physiologically plau­
sible approach. It is well acknowledged that genetic information cannot fully
configure connectivity of neurons in the brain. Wh ile est imated numbers of
neurons are of th e order of 2 x 1010 and th e numbers of synapses may be
aro und thirty thousand times higher, the numbers of gene coding for pro tein
is roughly estimated to be in the range of 104 to 105 [8]. Considering that not
all genes encode neural connectivity, we can reasonably assume that genetic
information det ermines only a framework of neural circui t s and detailed cir­
cuits configuration are left with the capability of neural circuits to change
their local network under external stimuli (neur al plasticity). In fact, there
is ample evidence supporting this hypothesis (for a good overview of such ev­
idences , see [17]). At a certain stage of the development , there are too man y
neurons and many of their connections are eliminated later on [3]. However ,
which cells and connections are eliminated differs dep ending on how external
stimuli are given to the neural system. The death of cells is programmed in
DNA (programmed cell death), but it is not fully deterministic because it is
affected by external stimuli . This can be simulated by our scheme by (1) in­
troducing eliminatable nodes and connections in addition to current "1" and
"0" states, and (2) incorporating dynamic nodes and connection elimination
mechanisms similar to the optimal brain damage mod el [11]. Although some
cells and connections are eliminated, there is a significant increase in synap­
tic connections following the programmed cell death [4]. A mechanism that
enables dynamic creation of new connections should be incorporated into our
scheme in order to simulate this phenomena.

Sperry [16] and Jacobson [10] report that until a certain stage of the de­
velopment, detailed correspondence on the projection of nervous fibers are
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not determined, and it is only after a certain stage of the development that
the rigid projection is determined . This level of dynamism in neural plastic­
ity may be useful if we cannot fully grasp a set of complex tasks with which
neural networks have to deal. Whether our scheme is capable of incorporat­
ing such a mechanism can be examined by training networks in such a way
that the presentation of tasks are flipped at a certain point of the chromo­
some int erpretation cycle. To do this , we need to extend our scheme to allow
present ation of external st imuli even during interpret at ion of the chromo­
some so that extern al stimuli affect each stage of network development. It
is a subject of further research to incorporate some findings and theories of
neurogenesis such as the theory of selective stabilization [2J and the theory
of neur al group selection [6J.

7. Conclusion

In this paper, we proposed a new scheme of neural network designing using
genetic algorithms. The new scheme uses the graph generation grammar to
encode network configuration. The most current scheme of neural network
designing employs the direct encoding method, which directly maps network
connectivity to the chromosome. However, the direct encoding method was
discovered to have an undesirable scaling property so that it is not suitable
for designing larger networks. The new scheme, which we call the grammar
encoding method, encodes a graph generation grammar that defines devel­
opment patterns of neural cells. The grammar is to be interpreted for a few
cycles, similar to the L-system, and a network of the desired size is generated.

Benefits of the proposed scheme can be described as follows:

The grammar encoding method converges much faster than the direct
encoding method. A series of experiments demonstrated that the gram­
mar encoding method consistently outperformed the direct encoding
method in speed of convergence. It also exhibits a significantly better
scaling property than the direct encoding method.

The grammar encoding method generates far more regular network
connectivity patterns than that created by the direct encoding method.
This ensures better scalablilty and th e possibility to generate very com­
plex networks for more difficult real-world tasks.

Biological plausibility is one of the most attractive points of the scheme.
Since the L-system and the graph L-system have been successfully ap­
plied to the description of morphogenesis, it is plausible that an actual
network can be formed in a similar manner. Of course, we do not be­
lieve that th e actual network development directly corresponds to the
development patterns incorporated in our scheme, but it is reasonable
to assume that there may be sub stantial similarity at an abstract level.

The fact that the grammar encoding method exhibited desirable con­
vergence and scaling properties implied that the grammar encoding
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method may actually be used in the real DNA encoding. Obviously,
we do not have any deci sive evidence to claim this hypothesis at t his
moment ; however, it is conceivable that this comput ationally efficient
method is selected in nature after a long evolut ion process.
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