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Abstract. Many algorithms have been proposed for training a single
layer or a Hopfield network with binary activations . The purpos e of
this work is to compare some of these algorithms experimentally and
point out the advantages of each. Experiments are also reported in
which the density of the synaptic connections is reduced or in which
a few quantization levels are used for the synaptic weights.

1. Introduction

During the last decade, artificial neural networks (ANN) have been proposed
for many different applications, mainly for mapping approximation (mult ilay­
ered networks) , optimization problem (Kohonen and Hopfield net works) , or
pattern recognition and pattern association (Hopfield, Koh onen , and layered
networks). In this paper, I will focus on the third type of applicati ons. ANN
used as associat ive memories present three major advantages over the clas­
sical methods for recognition and association. First, the sequential research
is replaced by a parallel process . Second, the st ored data are widely dis­
tributed in the network and this br ings some robustness with respect to the
parameters of the model. Last, a memory bas ed on an ANN model pr esents
some insensitivity to input noise. While the first characteristic depe nds only
on the ar chitecture of the network, the other two can var y with the learning
algorithm used .

In what follows, I will describe some widely used learning algorithms,
based either on algebra, geometry, or combinatorial optimization. I will
investigate the influence of the number of stored patterns and the correlation
of these patterns on the quality of error correction, while the memorization is
performed by each of these algorithms. The robustness of the memory while
using these different algorithms will be pointed out. Finally, I will study the
performances of networks when the weights are restricted to take only t hree
values.
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2. Network m odels and learning quality measures

The single-layer network (SLN) is composed of m output neurons connected
with n input neurons. In a binary model, each neuron is characterized by an
activation taking the value -1 or +1 and denoted aj for an input neuron j
and b; for an output neuron i. A synaptic weight Wij is associated with each
edge connecting the input neuron j to the output neuron i. For an inpu t
vector a , the output of a cell i is defined by

{
- 1

b, = sgn(vi) = 1
if Vi ::; 0
if Vi > 0

wher e Vi = 'L'J=I Wijaj is called the membrane potential of the cell i for the
input a. If W is the m X n matrix of synaptic weights and if sgn is a vectorial
operator applying sgn for each component, we can also write

b = sgn(Wa) (2.1)

T he SLN is suited for the pattern association problem, which can be
formulated as follows: for a given learning set of p pairs of input- output
vectors {(a\ b '}, . . . , (aP , b P)} , find a synaptic matrix W such that

B = Sg n (W A ) (2.2)

where A and B are the n x p and m x p matrices whose columns are the
vectors ai< and b",

If we consider a particular SLN with n = m and if we connect each out put
to one different inp ut such that after the computation of an output b , b is
the new input, we get a recurrent fully connected synchronous network called
a Hopfield network (HN). So the evolution of an HN is a temporal process
and the state at a time t is defined by

a(t) = sgn{Wa(t - 1)] (2.3)

A usual variation of the HN model results from a threshold function sqn";
which differs from sgn only when the membrane potential is 0:

{

- 1
sgn*(Vi,ai) = a~

if Vi < 0
if Vi = 0
if Vi> 0

In general, this difference is not relevant because the probability of Vi to
be 0 is small, but with some learning rules it may not be the case. In this
HN model, the activation rule sgn* is symmetric and then a' = sgrr'{Wa)
iff - a ' = sgn*[W (-a)].

The HN can be used to store a set of vectors {aI, • . . , aP } as stable points
of it s dynamic. The learning of such a content-addressable memory (CAM)
consists in determining W such that

A = Sgn(WA) (2.4)
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(2.5)

As mentioned above, ANN working as memories presents error-correcting
abilities, that is, if a is an input vecto r such that H(a , ak)l is small, we can
hope that the output of the SLN will be b" for the input a. Similarly, if we
set an HN in an initial state a( O) = a , it will converge after a finite number
of steps t on the state a(t) = ak

• The basin of attraction of a prototype inpu t
a k is defined as the set of input a such that for this input, the SLN output
is b k and the HN stability point is a k . In the recurrent case, we define the
direct basin of a prototype input a k as the set of inputs a such that a(l) = a k.
When studying the direct basin only, an HN can be considered as a pa rticular
SLN. From now on , SLN will be considered and m will be taken to be equal
to 1 since each output neuron is independent. wand b will denote the row
vector corresponding respectively to the unique line of Wand B .

Let l be the max imum radius of a ball centered on a k and contained in
the basin of attraction of ak. Then a good measure of the error-correcting
capability of a memory is also given by p = mink l. From the definition of
sgn and sgn', it is clear th at the beh avior of the network does not depend on
linear normalization of w. The unsigned membrane potential uk defined as
vkbk for an association k, is an interesting measure of the attraction power of
the input ak. The output is correct for the input a k iff uk ~. O. Moreover ,"
if uk ~. 0 and if w is normalized, for instance, maxi IWil = iii, we have''

uk

L2iiiJ. ~ l

For a given association k, define wj as wiajbkj then the tightness of the lower
bounds for l given by (2.5) depends on the number of wj closed on iii. If we
reorder the input unit s such tha t wt > ... > w~, we can compute l exactly:

(2.6)

and if uk < 0 then l is arbitrarily set to -1.
Wh en the wj are in increasing order, the same right expression of (2.6)

gives the largest radius ),k of the basin of attraction of the input a", iii an d
the ar ithmetic mean of the IWi l will give an idea of the size of the bas ins of
attraction outside the direct ball of radius uk / 2iii.

The operation performed by each output neuron can be interpreted geo­
metrically as a hyperplane determined by wand separating the input space
nnin two parts such that an input a will give th e output + 1 iff it lies in the
first half-space. The aim of each learning rule is to determine a hyperplane
that classifies correctly all the input vectors. In the following sect ion, I will
briefly describe the learning rules that will be compared in the last sectio n.

1 H : {-1, l}" x {-1, l }" -+ {O, ... ,n } denotes the Hamming distance.
2The symbol ~ . must be interpreted as > if the activation funct ion is sgn and as ~ if

the activation function is sgn" .
3The expression LxJ. represents the biggest integer i such that -i ~. OJin other words,

it means either rx1- 1 or LxJwhen the activation function is sgn or sqn" respectively.
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Many references can be found in the literature for theoretical properties of
these rules [3,6,9,11- 14,16].

3. Learning rules

The first rule I will consider is based on the correlations of each input with the
output through every prototype association k and can be expressed simply
as

w =bAT (3.1)

This well-known rule, referred to as the Hebb rule [5], is certainly the simp lest
and the most studied. The Hebb rule is based on the correlations between
pairs of input vectors and on the rank of A . In the particular case where all
inputs are orthogonal, we have

(3.2)

We find in [15] a proof for rn/2p1- 1 :s; P for the activation function sgn*,
but the result of (3.2) can be directly deduced from (2.5) if we note that from
(3.1) we have iii :s; P and uk = L:j wjajbk = L:jl b1a;ajbk = n, when the a k

are orthogonal. In the general situation, n/2r - where r is the rank of A
is a good approximation of a lower bound for p,
A generalization of the Hebb rule is the pseudo-inverse rule [15]

(3.3)

where At is the pseudo-inverse or Moore-Penrose inverse of A [1]. The

matrix At can be computed in O(nmp) by the iterative Greville algorithm.
The Moore-Penrose inverse A t is defined such that xT = YTA t is the vector

that minimizes IlxTA - YTII . SO w = bA t is the matrix that minimizes the

error II w A - b ] on the output unit. In the case of an HN, W = AA t is the
projection matrix on the space generated by the input vectors a k and can be
computed in O(n 2p) by adding each input vector iteratively, according to

k = 1, ... ,p

where W(O) = 0 and d k = ak
- W(k - 1)a k

•

The Hebb rule and the pseudo-inverse rule are direct rules since they
give an expression for W independently of the previous state of the synaptic
matrix. However, there are iterative rules that define a temporal learning
process, such as the famous perceptron rule [13 ]

w(t +1) = w(t) +7]t(b - sgn[w(t)A])AT (3.4)
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or the adaline rule, also called delta rule or Widrow-Hoff rule [18]

w(t +1) = w(t) + 7]t(b - w (t)A)AT

481

(3.5)

These formu las correspond to the case where the weights are adjusted after
a complete cycle through the learning set. Note that w can also be updated
after presentation of every single association.

The advantage of iterative rules with respect to direct ru les is that they
can preserve some alrea dy memorized informations while learning some new
patterns. Nevertheless, I will not present result s about these two rules be­
cause t he adaline rule produces its best solution on the convergent point,

which is w = bA t - with a sequence of learning speed decrease like 7]t = l it
- and the perceptron rule is incomparable with the others when the goal is
robustness on input errors, because it stops to modify the synaptic weights
as soon as the output is correct, even if there is no power of attraction (more­
over, it does not converge if the inputs are not separable).

The last rule I will examine in this paper was proposed by Krauth and
Mezard in 1987 [10]; it tries to maximize the stability of every association
k. Because uk gives a lower bound for pk (equation 2.5) when w is fixed,
Krauth and Mezard propose to maximize u = mink uk and choose a linear
normalization of the weights that reduc, the problem to a linear program.
This gives naturally the optimal p determined by

(3.6)

A second interesting advantage of this rule is that when Q = pin is not too
large, most of the Wi are in {-w, 0, w}. This empi rical observation can be
explained by the fact that the linear program is composed of n constraints
-w ~ Wi ~ wand p constraints uk ~ u, therefore the optimal solution
(Wb"" W m u), which is a vertex of the polyhedron drawn by these n + p
const raints, satis fies at least n +1 - p equations Wi = ±w. This suggests th at
in some particular cases, with a quantization of the weights, the performances
of the network could remain quite interesting [17].

4. Simu la tion results

In th is sect ion, a selection of numerous simulatio ns of learning in neural
networks will be prese nted. I will focus essentially on their sensitivity to
input noise when they are used as CAMs or as pa ttern associators.

The first two figures illustrate the average power of attraction of the
prototype inputs by plotting an approximation of the fraction of inputs that
are at a given distance of a prototype input and that belong to its bas in
of attraction. To perfo rm this, for each input a k and for each radius r in
{O, .. . , 20}, 1000 patterns were randomly chosen on the orb it at distance
r of a k (if there are less than 1000 elements on the orbit, all of them are
taken) , and tested. Then, for each radius, the mean value, t he maximum
and minimum values on every prototype, are stored and this operat ion is
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Figure 1: Part of attracted inputs on each orbit around the prototype
inputs, with n = 81 and p = 18. In (a), the minimum value over each
prototype is plotted (b) the average value is shown.

repeated 20 times for different random matrices A in which each aj take the
value - 1 or +1 with equal probability. Figures 1a and l b show the curves
of minimum and mean values respectively for n = 81 and p = 18.

A first remark is that the curves of the Hebb rule are quite different in the
two figures and this suggests tha t the Hebb rule can privilege some prototypes
of a problem and neglect some others. This fact is clear in figures 2a and 2b,
which displ ay the minimum and the maximum values respectively for a much
harder problem (0 = 35/63 = 0.56 instead of 18/81 = 0.22). On one hand,
the curve of the Hebb rule is the constant OJ this means that in each of the
20 problems, at least one of the prototype pair was not correctly associated
by the Hebb rule. On the other hand, there is always one input a k that
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Figure 2: Part of attracted inputs on each orbit around the prototype
inputs, with n = 63 and p = 35. (a) and (b) present respectively the
minimum and maximum value over each prototype.

contains a ball of radius 14 in its basin of attraction. On the cont rary, with
t he pseu do-inverse rule, the basins of every prototype are nea rly ident ical.

The curves corresponding to the pseudo-inverse and the maximum-stability
rule are very similar . Most of the time, the pseudo-inverse rule produces
a p as good as the one given by the maximum-stability rule, and usually,
further this value p, pseudo-inverse is a bit better than maximum-stability.
Therefore I experiment with a rule referred to as maximum-stability in two
phases, which works as follows: It first maximizes u while Wj is in the interval
[- w,w]j then, if u is the optimum and if it is not a multiple of 2w, it relax es
u to u, the nearest smaller multiple of 2w, and tries to maximize L kUk while
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Figure 3: p is plotted against the proportion of deleted weights when
the smallest weights are chosen first.

keeping each uk bigger than u. In fact, as can be seen in figures 1 and 2, this
second phase has no positive effect on the attractivity over the rad ius.

Let us now consider the network robustness in terms of synaptic dest ruc ­
tion. I will present results of two different types of weight deletion: one when
weights of the smallest absolute value are deleted first (denoted by (c) in the
legends) and the other when t he weights are chosen randomly (denoted by
(1') ). To estimate the evolutio n of the associative properties of the network
during the delet ion operation, I will look -at the variat ion of p, Figure 3
presents the variat ions of p during delet ion of the first type, for a network of
85 neurons an a learning set of 5 patterns. Once more, the tests are repeated
20 times.

Note that the learning rules that take into account the correl ation be­
tween the input vectors tend to afford higher deletio n rate without a sensib le
memo ry degradat ion. Figure 4 shows typical examples of both types of de­
struction. The first curves (4a) present the average of pk for n = 85 and
p = 25 and the second (4b) show p for a more difficult problem n = 85 and
p = 45. It is not surprising that the network capabilities persist longer when
the smallest weights are deleted first than when they are randomly chosen.

The main weakness of the Hebb rule lies in the fact that a weight Wij

depends only on the activations of the input unit j and the output un it i .
This guarantee locality but may lead to undesirable situations. Let consider,



E. Mayoraz 485

--<>-- Hebb (e)
Hebb (r)

p

2

......... .
Pseudo-inverse (c)

Pseudo-inverse (r)

Max stability (e)
Max stability (r)

part of de leted links 0.750 .500.25

o +-~-~~-~--,--~~-~~-.,-~-~~-~--.

0.00

a)

b)

a

-----.--- Pseud-inverse (c)

. M ..H ~ Pseudo-inverse (r)

-+-- Max stability (e)

...........+.......- Max stability (r)

0.25 0.50 part of deleted links 0.75

Figure 4: p is plot ted against the proport ion of deleted weight s.
The continuous lines (c) correspond to a deletion where the small­
est weights are chosen first, and the dashed lin es (r) to a random
deletion. In (a) the average of pk is shown for n = 85, p = 25 and in
(b) p is plotted for n = 85, p = 45.

for example, an HN with n = 8 and the two following problems A and A '

+1 +1 +1 +1 +1 +1 + 1 + 1
+1 +1 +1 +1 +1 + 1 + 1 +1
+ 1 +1 + 1 +1 +1 +1 +1 +1

A = + 1 +1 + 1 + 1 A' = + 1 +1 + 1 +1
+ 1 +1 + 1 + 1 + 1 +1 +1 - 1
+1 +1 - 1 -1 + 1 +1 - 1 + 1
+1 -1 +1 -1 +1 -1 + 1 +1
+1 -1 -1 +1 +1 -1 -1 - 1
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The two ranks are 4, and H(a\a1) = H(a'''a'l) = 2 for every k =f 1 and
s =f t; nevertheless, the Hebb rul e stabilizes every vector ak and none of the
a's. However , this characteristic of the Hebb rule has above all the following
inconvenience: it cannot take into account a particular architecture. To
illustrate adaptability of the pseudo-inverse and the maximization of stability
rules, some simulations were carried out where synapses were deleted before
learning. Unlike the Hebb rule, these two rules will set the synaptic weights
differently and adapt them to the new problem. Figure 5 presents 3 plots
of averages over 20 problems with n = 85 and respectively p = 5, 25, 45.
Identically to figures 3 and 4b, each plot shows p against the part of deleted
links. For each of the two rules, there are two curves (1') and (b) corresponding
respectively to a random deletion after and before learning. There is a clear
difference between curves (1') and (b), and it increases with the ratio a .

To study how the associative properties of the network depend on the
coding of the weights, an algorithm based on tabu search [4J has been devel­
oped for maximizing the stability of the input vectors when the weights take
one of three values {-1,0,+1}. This algorithm starts from the continuous
solution obtained when w = 1, rounded according to

if Wj < -~
if Iw-I < 1J - 3

if Wj > ~

and search a better solution, moving at each step one weight from °to ±l
or from ±l to 0, and using a tabu list of moves of length n/2.

For the sake of comparison with the case of binary weights {-l,+l}
studied in [2J,experiments were done with same values of nand a . Figure 6a,
b, c, and d plots u against a for, respectively, n = 27, 45, 63, 81. The first
curve corresponds to result of linear program with continuous weights. The
second curve shows the best solution obtained with tabu search, after 500
steps without improvement, starting from the rounded continuous solution.
The third curve- is the result obtained by E. Amaldi and S. Nicolis with
the following adequate normalization u.jii. According to the information
theory, the best u obtained with ternary weights -is always between the value
obtained in the two other cases. Moreover, when n is increasing, the curve
for ternary weights comes nearer the curve for binary weights.

5. Conclusion and further research themes

A large panoply of well-known learning algorithms is proposed today to the
software designer who decides to use a neural network model for some CAMs.
If he is interested in rapidity, in robustness, or in the adaptability to mod­
ifications of the problem, he will easily choose in this set the most suitable
algorithm for his application. However, the hardware constructor who wants
to build a network for some applications faces some complex choices as the
number of bits to be used for the representation of the model's parameters .
The last figure and related comments suggest that for a low capacity a, a
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Figure 5: p is plot ted against the proportion of deleted weights . The
dashed lines (r) correspond to a random post-learning delet ion , and
the cont inuous lines (b) to a random pre-learning deletion. n = 85
and in (a), (b), and (c), p = 5, 25, and 45, respectively.
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Figure 6: T he maximum st ability u is plotted against the ratio a.
The three curves correspond to the cases of continuous, ternary, and
bin ary synaptic weights . n = 27, 45, 63, and 81 in (a) , (b), (c) , and
(d) , respectively.
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quantization of Wj on a few values does not affect considerably the capabili­
ties of the network. Actual research lacks some theoretical results that could
be used as guide lines for these people. As is well known in combinatorial
optimization, the quantization of the search space leads usually to harder
problems (d. linear programming). Therefore, some specific algorithms have
to be deve loped for learning in such a network type.
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