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Abstract. The quantitative characterization of complexity for several
dynamic processes is approached by a mathematical scheme based on
the metric and combinatorial properties of the space Z of finite mea-
surable partitions. Precisely, Z is embedded in a larger space R of
new objects, “rational partitions,” describing the antisimilarity be-
tween two probabilistic experiments. Rational partitions consist of
properly reduced couples of ordinary partitions, and their main fea-
tures are briefly reviewed. An extended entropy functional in R allows
the introduction of indicators sensitive to different possible aspects of
complexity for cellular automata, shifts, mappings, etc. These in-
dicators appear to be accessible to numerical experiments in many
nontrivial situations.

1. Introduction

It seems natural that there does not exist a uniquely defined approach to
quantitative estimates of complexity, nor a single functional mapping the
degree of complexity into a real number. Complexity, indeed, is in itself a
complex concept, in the sense that it presents many aspects that are irre-
ducible to one another. Updated reviews stress the matter [1-4]. Neither
the Kolmogorov metric entropy, nor Kolmogorov or Chaitin idea of algorith-
mic complexity, for instance, seems to distinguish adequately the character
of processes that behave very differently, during finite times, for a local ob-
server. It would be useful therefore to get indices sufficiently flexible to re-
flect, through a proper tuning of their parameters, possible different aspects
of local complexity.

Our purpose here consists in introducing a class R of mathematical oh-
jects, “rational partitions,” extending the ordinary concept of partitions in
probability spaces, whose properties fit a simplified characterization of com-
plexity for several nontrivial models. In a number of interesting situations
(e.g., all one-dimensional cellular automata, strange attractors, shilts, ctc.)
indices based on rational partitions are effectively computable quantities.
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Moreover, rational partitions result to be endowed with peculiar probabilistic
and combinatorial properties, which seem to deserve attention in themselves,
independently from the complexity problem.

Some elementary facts and notations have to be recalled [5-7]. In a
probability space (M, M, 1) (M being a o-algebra of subsets of M and p a
probability measure on M), a collection o = {A;,...,A4,} € M is said to
be a measurable partition of M if

?=1A,' =M and AjﬂAkZ Q, ]#k (11)

(all relations are to be intended mod 0). Sets A; are called cells or atoms
of a. The trivial partition consisting of a single atom (necessarily M) will
be denoted v. The relation o < /3 (sometimes read as “a contained in f3,”
with an abuse that does not make confusion) means that 3 refines a. Such
a relation introduces a partial order in the set Z of all partitions.

Ifa=(A,...,A,)and g = (By,...,B,) are two partitions, their product
or composition v = aV f3 is the minimal partition such that o <y and g < 7.
Atoms Cj; of v are the nonempty intersections of A; and B;. The operation
“V” is commutative and associative. TFor brevity, we shall often write a3
instead of a V f3.

Another operation, v = a A 3, defines the intersection or decomposition
~ between a and S, as the maximal partition such that v < a and v < .
Operations “V” and “A” in Z may be seen as analogous to the minimal com-
mon multiple and maximal common divisor of entire numbers. In particular,
for every « the unit partition v trivially satisfies a Vv = o, a Av =v.

The Shannon entropy of a partition « is the functional H(«):

n

H(a) ¥ =3 u(A)n(u(A:)) (1.2)

i=1

A conditional entropy H(«|f) of o with respect to 3 is also defined:

H(alg) & =3 Y u(A; 1 By)n(u( A4 B,)) (13)

=1 7=1

where, as usual, p(a;|B;) = p(A; N B;)/p(B;) whenever A; N B; # @. Main
properties of H(a) and H(«|3), such as H(a|f) = H(ap) — H(j), are listed
in the references [5-7].

The set Z of all measurable finite partitions may be made a metric space
introducing for every a and f the distance p(«|f):

p(clB) ¥ H(alp) + H(Ba) (1.4)

All these quantities admit a natural probabilistic interpretation: a parti-
tion o may be seen as an abstract mathematical scheme for an experiment,
where atoms represent single events. [ (a) is the a priori incertitude about
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experiment «, while H(«|f) is a measure of the residual incertitude of «
when experiment [ is assumed to be known. In this perspective, p gives an
estimate of the degree of similitude between two experiments, and product
V gives the simplest experiment containing all informations from its factors.
Nevertheless, V is not a product in the usual sense, because all partitions
v < « behave on « as the unit partition: ay = a; moreover, since for every
aand B, aff > «a and aff > B, there does not exist in Z any partition inverse
to a given partition, i.e., such that their product is v.

We shall prove (1) that Z may be embedded in a larger space R where
the extended product V becomes invertible, and (2) that R enjoys interesting
probabilistic features, nontrivial extensions of those of Z, which naturally
apply to the study of complex systems. In analogy with the embedding of
entire numbers in the rational field, where the product becomes invertible,
the elements a € R will be called rational partitions.

In section 2, definitions introducing rational partitions are given, and
their main properties are discussed with particular reference to the meaning
of the extended entropy functional. In section 3, rational partitions are
applied to the analysis of complexity in various processes. Final comments
and conclusions are given in section 4.

2. Rational partitions

The aforementioned analogy with rational numbers consists in the following:
consider the set Z?2 = Z x Z of all ordered couples of finite measurable
partitions. For couples (e, ) and (S, f2), a product could be defined in a
natural way by

(71,72) = (@1, @) V (B1, B2) = (11, az/82) (2.1)

Assuming moreover an equivalence relation such that for every 7,

(cum, con) = (o, a9) (2.2)

it would follow, for every a, that (a,a) = (v, v), and consequently that

(o, B) V(B a) = (aB, o) = (v, v) (2.3)

In product (2.1) (v,v) is the unit couple; moreover, for couples of the form
(v, ), an obvious isomorphism holds with usual partitions and product. It
seems therefore that Z? may constitute the natural extension of Z, where
the “inverse” exists for every couple (and, in particular, (o, v)! = (v, a)).
Nevertheless, such a naive extension is unsatisfactory in many respects. This
essentially depends on the fact that a partition does not admit a uniquely
defined decomposition into “prime” factors. I'or instance, it may happen
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that v = oy 81 = a2, and consequently that the reduction (2.2) of common
factors may give both

(’)’, a10’2) = (ﬂla 012)3 ("/,011012) = (ﬁz,al)

We shall introduce now an equivalence criterion allowing to overcome, as far
as possible, such an ambiguity.

Definition 2.1. For every partition a with atoms {A;,..., Ay}, we define
“simple factors” of a as the partitions oy = {4, Ax}, where Ay is the com-
plementary set M — Aj. S(a) will denote the collection {ay} of all simple
factors of a, S(a,o) the subcollection of those oy such that ax Ao = v,
i.e., simple factors of a that are prime with o. Therefore, S(a,a) = v,
S(a,v) = S(a),and B < B2 = S(a, B2) C S(a, B1). S(a) generates a in the
sense that o = Vypay.

Definition 2.2. For every o and f3, let 0 = a A be their maximal common
factor. Classes S(a, ) and S(f3,0) are then defined. An operation 7 : 22 —
Z?;

7(a, 8) = (e, B') (2.4)

may be introduced by defining o’ and "

o = Viag, oy € S(a,0) (2.5)
B'=V;B;, Bi€ S(B,o) ‘
Clearly,
o < a, B'<p (2:6)

Example 2.3. Let M = (1,2,3,4,5,6) be a set of six points. Let a and 3
be respectively

a {(1),(2),(3),(4,5,6)}

g = {(1,2),(3),(4,5),(6)}
with obvious notation for subsets. Then

c=aAf=1{(1,2),(3),(4,506)}

and the classes S(a, o) and S(f,0) are composed by

ar = {(1),(2,3,4,5,6)}

az = {(1,3,4,5,6),(2)}

B8 = {(1,2,3,4,5),(6)}

B {(1,2,3,6),(4,5)}
therefore

o = {(1),(2);(3,4,5, G)} <a
g = {(1,2,3),(4,5).(6)} < B
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and
o= ANF ={1,2,3,4,5,6)} =v

Theorem 2.4. 7 is a projection into an invariant subset R C Z x Z, ie.
2
7=,

Proof. Since o is generated by S(a, o) it results that, between its simple
factors, there are at least all generating factors oy, € S(a, o), and therefore
S(a/,0) 2 S(a, o). Iterating the process 7, one should consider o” generated
by S(a,0’), where o’ = o/ AB’. It holds that o” < ¢/, as in general from 2.6,
but since ¢’ < o we have

S(a',0") 2 S(a,0) 2 S(e, 0)
and therefore o” > o, which implies o’ = o’. In the same way, 8" = . B

Note 2.5. Differently from rational numbers, it may happen that reduced
partitions o' and 3’ are not relatively prime, i.e., that o’ = &' A ' # v, as
another example shows:

Example 2.6. With M = (1,2,3,4,5,6,7,8,9,10), let

a = {(1,2,3),(4,5),(6,7),(8,9,10)}
B = {(1,2,3),(4,6),(5,7),(8,9,10)}

then
o= {(1,2,3),(4,5,6,7),(8,9,10))
a; = {(4,5),(1,2,3,6,7,8,9,10)}
Qg = {( a3’4757879310}

By

B = {(5,
and finally

o = {(4,5),(6,7)(1,2,3,8,9,10)} < «

B = {(4,6),(5,7),(1,2,3,8,9,10)} < 8
o = o AP ={456,7),(1,238,910)} <o

Il

—

=
ot o e e
R R IR )
= = =2
P o e 22

=

)
1,2,3,5,7,8,9,10)}
1,2,3,4,6,8,9,10)}

The following theorem precisates the nature of o’

Theorem 2.7. Let o/ = &' A # v. Atoms of o' are cither those atoms
of o that are composed with more than one atoms of « and f3, or they are
complementary sets to such atoms.

Proof. If 0 = a then o = v, and ¢’ = v (the same with respect to ).
If ¢ # «, then there exists at least one atom in o composed by two or
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more atoms of a. Let S(™ be one such atom: S(™) = Ulf"’A§m); ag-m) will

denote the simple partition corresponding to Ag-m). Clearly, agm) Ao =v,
therefore ag-m) € S(a,o0) and S™) is still a subset in . Clearly, also the
complementary set to such sets stays in o (and this is the only possibility
for an atom of o coinciding with a single atom of «). Repeating the same
with respect to 8, and taking into account that ¢’ is made up of subsets
common to ' and 4, the theorem follows. W

We remark that simple partitions are irreducible, and in this sense they
play the role of prime factors for numbers. But every dicotomic partition
(i.e., a partition composed of two atoms) is also irreducible. Therefore there
may exist other classes of dicotomic (not simple) factors that, provided they
satisfy theorem 2.4, would lead to a different reduction process 7: it seems
that this reintroduces the ambiguity we wanted to cancel. The point is that
the very choice of classes of irreducible factors constitutes a tool to fit peculiar
features of objects to describe. The reduction process introduced above is
the most natural for abstract partitions spaces, where only measurability is
required (therefore it is always reproducible, and by default we shall refer to
it). But atoms may enjoy further features (connection, order, etc.) suggesting
a different and more convenient choice of irreducible factors [14]. In other
words, classes of factors alternative to S(«), S(a, o), etc. may be correlated to
a definite similarity criterion between partitions. In this sense the possibility
of a different reduction process is a richness, not an ambiguity of the method.

Definition 2.8. A rational partition a = (a1, az) is an element of the set
R C Z x Z of the ordered couples such that 7(ay, ;) = (a3, a2).

To prove that R constitutes an extension of Z, a consistent definition of
the product is needed.

Definition 2.9. Let a = (aj,a) and b = (f;, f2) be in R. Their product
c=aVb=ab=(y,y)is

—
o
-1

~

c = ab = (11,72) = 7(@151, a2/32)

In the particular case when v, = o181, 72 = @232, a and b will be called
“relatively independent” rational partitions (or r.. r-partitions).

Note 2.10. Product (2.7) is clearly commutative and idempotent in the
whole R, where u = (v, v) is the unit element. Moreover, r-partitions of the
form (a,r) constitute a subset R” isomorphic to Z.

Note 2.11. For a = (aj,a3) € R, let a = (ag,ay). Then

aa = 7(ajag, a1a0) = u
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and & may be noted a=!. In particular, r-partitions of the form (v, ) are

inverse to those in R”. However, the inverse element is not uniquely defined

in general, because equation ax = u may have further solutions besides
A

x=a"l.

Note 2.12. Since 7 and product in £ do not commute, product in R is no
longer associative, and equation (ab™) V (bc) = ac (which is true in R¥)
does not hold in general. Therefore definition 2.9 must be completed. For
n > 2 we can distinguish, for instance, between a nonordered product

Vi@ =7 (szlagk)> VZ:W‘S”)
and an ordered one defined iteratively through 2.7:
Visag = a, V (Vizla)
Note 2.13. Partial order in R” is extended in R by the relation

(e, ) < (B, 02) & a1 < P,z < s (2.8)

but, as a consequence of the reduction process, the relation a <b = a < bc
is no longer true for every c. It holds, however, for r.i. r-partitions. Distance
p is also extended from Z to R defining p,:

pr(a,b) = pon, 1) + plevz, B2) (2.9)

The obvious meaning of p, is that two r-partitions are near when both their
first and second terms are near.

So far, apart from the extension of the metric, only combinatorial proper-
ties have been considered. The fact that we deal with measurable partitions
enters with the probabilistic interpretation of R: as a partition is a scheme
for an experiment, a rational partition may be seen as a representation of the
difference or “antisimilarity” between two experiments, since the reduction
process eliminates common factors as far as possible. If z = (o, #) € R and
o = a A # v, this means that there is an irreducible similarity between
a and . On the contrary, it may happen that ¢ = v even il every atom
Ag in o is very similar to an atom B; in 3 (in the sense that the symmetric
difference of Ay and Bj is very small). So, there are two different concepts
of similarity between partitions: a combinatorial one, which is taken into
account by the reduction process 7, and a metric one, which may regard also
relatively prime or irreducible partitions.

To pass from these qualitative considerations to a quantitative estimate
of antisimilarity, a suitable extension of entropy from Z to R is needed:

Definition 2.14. The entropy of a rational partition, or r-entropy, is a [unc-
tional h, in R with the following properties:

1. h, coincides in R¥ with the ordinary entropy / in Z.

2. hy(a) >0,and h.(a)=0=a=u



498 Mario Casartelli

3. if a and b are r.i. r-partitions, h.(ab) < h.(a)+h,(b). A further axiom
will be considered separately:

4. let oy, be a sequence of partitions irreducible with respect to § (i.e.,
a, = (an,f8) € R), and such o, — [ in the metric of Z; then,
h.(a,) — 0.

Considering for the moment properties (1)—(3), the only nontrivial point
is the restriction of the “subadditivity” (3) to r.i. r-partitions. We shall
return later to this point, which is deeply involved with the features of R.
Two important and, in a sense, natural examples of r-entropies are presented
in the following theorem.

Theorem 2.15. Functionals H® and H' defined for every r-partition a =
(O’la 0’2) by

H(a) = H(au) + H(az) (2.10)
H'(a) = p(ay, ) (2.11)
are r-entropies in R.

Proof. Requirements (1) and (2) of definition 2.15 are easily checked for
both H® and H', by elementary properties of entropy H and distance p in
Z. To prove (3) for H® we have

ab = 7(a1 4, a2f) = (’71772)
for every a, b € R, and we may write a8 = o, and ay3; = o7,. Now

H°(ab) = H(m)+ H(y2) < H(om)+ H(om)
< H(aw)+ H(as) + H(B) + H(B) = H°(a) + HO(b)

Thus, for H°, the subadditivity is not even restricted to r.i. r-partitions, but
holds in the whole R.

Now let a and b be relatively independent, i.e., ab = (a5, a3/32). Then,
using known properties of the conditional entropy in Z,

Hl(ab) = plaifr,axf) = H(aafi|azfB) + H(afBa|arfBr)

= H(ay|aefs) 4+ H(BrlaraafBa) + H(az|ayB1) + H(Ba2|ayazpy)
H(oy|ag) + H(az|oy) + H(B1|Ba) + H(B:2]51)
plas,a3) + p(Bu, B2) = H'(a) + H'(b)

IA

Il

Note 2.16. The proof of (3) for [I' does not work in the general case,
when ab = (y1,72) with a1 = o7, a2 = 0% and o # v, because
H'(ab) = p(v1,72) > ploy,072) = plaiBi,a28:). However, notwithstand-
ing the failure of the proof, one may conjecture that [I" too enjoics subaddi-
tivity in the whole of R. The answer to this conjecture is negative. We shall
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briefly indicate how to build a counterexample: let x = (&;,&2) be such that
H'(x) < e. Let z = (£1,&,) be relatively independent with respect to both x
and x~ !, and

H'(z) > 6, H'(zx") <e

1 1

then if g = zx™! and gx = zxx~' =z,

H'(qx) = H'(z) > 6
H'(q) + H'(x) < 2¢

and a good choice of € and § leads to the result. It is not difficult to provide
examples of r-partitions with the required features.

Note 2.17. As a corollary of theorem 2.15 we have that
HP(a) = (1 — p)H(a) + pH'(a) (2.12)

for 0 < p <1, are also r-entropies (the proof is immediate). The converse is
not true: there exist r-entropies that are not in the form 2.12 (for instance

h,(a) = max{H (cy), H(a2)}).

Note 2.18. Even if both H° and H! satisfy (1)—(3) in definition 2.14, their
meaning is quite different: H° simply gives the entropy of a r.p. z = (a, )
as the sum of entropies of o and 3, while H! is a measure of their distance.
Now, dealing with partitions of a Lebesgue space, it is possible that, for fixed
M and e, H® > M and H! < e. It is the same as with rational numbers
r = P/Q, where rational “height” P 4+ @ may be larger than any fixed
quantity, and the value of r as close as one wants to 1. Taking into account
that the combinatorial similarity has been reduced by =, H* is therefore more
representative of the metric similarity between its components, giving, with
respect to H°, a better account of the true difference between experiments.

Note 2.19. From elementary properties of p in Z, p(av, 6) < p(a, ) for
every «, f3, v, §. Therefore, if a = m(ay,ay), H'(a) > p(ay,as), while
obviously H%(a) < H(ay) + H(az). In other words, a large common factor
may mask the antisimilarity of two partitions; by eliminating this common
part, reduction 7 amplifies the metric distance I of the couple and reduces
on the contrary its rational height H°.

Note 2.20. The choice of H! as the “true” r-entropy would follow straight
from the supplementary axiom (4), not satisfied by H°. We are inclined
to think, indeed, that such a metric continuity is important, e.g., for the
problems of the next section. Nevertheless, the weaker definition with axioms
(1)=(3) could turn out to be useful in contexts where such properties play a
role as the one described in the following theorem.
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Theorem 2.21. Let a and b in R. Then
a<b = H%a) < H°b) (2.13)

while the same property does not hold for H*

Proof. Since a < b, we write a = (ay, @), b = (1101,7203). The first part
of the theorem is quite obvious:

H%a) = H(ew) + H(ew) < H(mien) + H(z02) = H(b)

To prove that 2.13 does not hold for H', we choose a particular b = b, =
(a1,7:2) > a, where, for € > 0, 7. is such that

plar,ve) = H(aa|ve) + H(ve|on) < e (2.14)
Define now A and B by

A = H'(a) = H(ay|as) + H(az|ay)

B = H'(b.) = H(aiyeaz) + H(yezlon)
Let A=A—Z, B =B~ Z, where Z = H(as|e1). Then

A" = H(a|ay)

B = H (o y=2) + H(ye|araz)

Since H(oy|year) < H(ca|ye) and H(velaraz) < H(7e|en), from 2.14 it
follows that B’ < ¢, and, choosing € < H(ai|as), B' < A’. Therefore B < A,
ie., H'(a) > H'(b.). B

A consistent extension of entropy in R is also expected to generalize the
fundamental relation of the conditional entropy:

H(alB) = H(aB) — H(B) (2.15)

which, in Z, has an immediate and meaningful interpretation in terms of
“residual information.” Then, whatever h, is from definition 2.14, we pose

h,(alb) = h,(ab) — h.(b) (2.16)

which reduces to 2.15 in R”. It is possible to choose p, q € R in such a way
that, for a=pg~! and b = q

h.(alb) = hr(pqq_l)_hr(q)
= h.(p) = h(q)
Therefore, when h.(p) < h.(q), h.(a]b) < 0. We have proven the following

statement: in R, the conditional r-entropy 2.16 is not necessarily nonnega-
tive. In particular, h.(ala™') = —h,(a). Such a conclusion does not fit the
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usual concept of conditional entropy as residual information. It excludes, for
instance, that a distance in R may be based on a formula like 1.4 (it would
give p(a,a™) = —2h,(a)).

In conclusion, apart from the problem of choosing the right entropy h,,
there are in R peculiar features that cannot be seen as trivial extensions
of those of Z. They derive indeed from nonassociativity and reduction or
annihilation of factors by the process m. For instance, subadditivity (3) in
definition 2.14 is limited to r.i. r-partitions just to take into account these
features. In this context, the fact that quantity 2.16 may become negative is
neither surprising nor in contrast with assuming it as an extended conditional
entropy: it is the very idea of conditioning, indeed, to be deeply revised.

3. Rational partitions and complexity

We shall provide here some examples showing that the concepts of section 2
naturally apply to the quantitative characterization of complexity. Such ex-
amples will be successively considered within a common frame, which seems
to be quite general. The first example regards cellular automata (see [8-
12] for general references). A cellular automaton (CA) is a triple {X, L, f}
consisting of an alphabet K, a lattice L, and a map f : K* — K% that,
for every configuration ¢ € K%, gives a new configuration f(q) depending
only on the values of a finite neighborhood of each point on the lattice. To
regain the concepts of section 2, to a particular configuration ¢ € K%, we
associate a partition «, e.g., in the following way: let M be a finite subset
of L, say a hypercube. Then, the collection of homogeneous connexe subsets
of M (where vertices are homogeneous if labeled by the same symbol of K,
connexe if they may be joined by a homogeneous walk) is a partition of M.
If Z = Z(M) is the space of such partitions, the correspondence K — Z
will be denoted ¢, i.e., @« = ¢(¢). Such a correspondence is noninvertible,
the associated partition being invariant both for permutations in K and for
different configurations in K” that coincide in M.

Starting from a configuration gg, the evolution produces a sequence of
configurations qx4+1 = f(qx); a transformation 75 in Z(M) is then naturally
defined through the relation oy = Ty(ag) = &(f(qx)). Provided that a
probability measure s is given in M, the triple {M, T}, puas} constitutes a
dynamical system (note however that T is not measure-preserving for subsets
in M). If M is sufficiently large, complexity of the automaton is related to
the problem of giving a reasonable estimate of the creation of newness in
the sequence ag, ay, g, ..., with a; = T;‘ag. We claim that the concepts of
section 2 may be useful to this task. Indeed, the point is now to establish
how different a4 is from ayp. Defining more in general

A = W(O'k-i-n:ak) (;l)

the entropy h,(ax,) results in being a measure of the antisimilarity created
between the kth and (k+n)th steps. With n = 1, in particular, one considers
antisimilarity produced step by step. Of course, the choice of a definite &,
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()3
(=)
(8]

is important, and the discussion of section 2 will be taken into account. By
default we shall use h, = H*, not only for its continuity (note 2.21) but also
because 7 amplifies the distance between partitions of a couple (note 2.19);
this fact may be extremely useful in numerical experiments.

Note that a periodic evolution immediately reflects in the periodicity of
h.(ag,) as a function of “time” k. The time behavior (periodic or not)
of h.(axy,) and its absolute value are both significant in order to analyze
the complexity of the automaton, while the parameter n is related to the
“memory” of the process. The most immediate complexity indicator for
generic CA is therefore the entropy itself:

I(k, M, a) = h,(axn) (3.2)

which as a function of k& shows the variety of time behavior of the pro-
cess through the amplitude and regularity of oscillations. Provided that the
(absolutely nontrivial) problem of an explicit computation has been solved,
the study of the time complexity of the automaton is mapped, indepen-
dently of the dimension of L, in the one-dimensional analysis of the function,
1,,(k,M, «) versus k. Usual tools in the analysis of time series (e.g., power
spectrum obtained by Fourier Transform) may be immediately applied.

Consider, for definiteness, an automaton where K has two symbols, say
0 and 1, and L = Z, the relative integers. Let M be a string of NV cells.
Consider moreover the simple case of the rule exchanging the symbols 0
and 1. Then, for every initial configuration ¢ € {0,1}%, the corresponding
partition a of M is stable: T}‘ = a. The couple (T}"a,Tf“a), seen as a
rational partition, corresponds to the unit u, consistently with the fact that
this particular rule does not create any novelty in the evolution. Whatever
h, is, h,(u) = 0. With another rule, Tfk+1oz is different, in general, from T;fa
and the quantity (3.2) says how different they are.

Another indicator is the time average of the previous one:

o I o
I,(M, a) = l{glﬁ';ln(k,M,a) (3.3)

giving a time-independent estimate of the capacity of the automaton in pro-
ducing new configurations at distance n. The dependence on a and M may
be eliminated in an obvious way:

LM) = supl,(M,a) (3.4)
Ly, = 1i1\1'}11,1(M) (3.5)

More correctly, in (3.4) the sup operation should be written with respect to
configurations a € KX, because there are infinite configurations (giving rise
to different evolutions in M) that are projected by ¢ in the same partition
a. The limit in (3.5) means, of course, that the size of M goes to co. We
stress, however, that the analysis of the complexity in a dynamic process
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should reflect the kind of interest the observer has, and that a finite time
or a finite window M can be as significant, in certain contexts, as the limit
quantities (3.4) and (3.5). It is also evident that from indicators (3.2) and
(3.3) other useful parameters may be obtained, such as the variance of the
values appearing in the time series.

All these considerations and formalism apply immediately to a second
example, constituted by shifts [5], i.e., a source of letters of an alphabet K
giving outcomes w; € K at discrete times j = ..., —1,0,1,2,.... If the source
is a purely probabilistic one, and the outcome w; = ¢ occurs with a given a
priori probability p(c), then this process is a Bernoulli Shift B. Its dynamic
(or Kolmogorov-Sinai) entropy h(B) is the Shannon entropy of the alphabet:
h(B) = — Y .ex #(c)log pi(c). If, on the contrary, the source was ruled by a
periodic law repeating a string wy,...wp, then h(B) = 0, independently of
the length P. Indeed, after its definition, the Kolmogorov entropy takes into
account the whole process in time, and the “local” complexity of a string
of finite length is a minor feature, in a global evaluation, with respect to
periodicity.

Note that Kolmogorov entropy in itself is an index of complexity, e.g.,
in the sense that it distinguishes periodic from probabilistic shifts and clas-
sifies processes with different entropies into distinct classes of isomorphism.
However, as noticed, besides the complexity of evolution law in the whole,
the complexity of local evolution of configurations during finite times can
also be of a certain importance, both practical and conceptual. Consider, for
example, the random number generator (RNG) of a computer as a process
(the alphabet being in this case the extremely large but finite set of possible
outcomes). For practical purposes, inasmuch the time considered in calcu-
lations is short with respect to the periodicity of the RNG, it appears and
works indeed as a genuine random source. Nevertheless, in principle, due to
the recurrence of the algorithm, its ideal Kolmogorov entropy would be 0,
exactly as in the trivial alternate sequence 1,0,1,0,1,0,.... In this sense,
Kolmogorov entropy seems to give a too drastic estimate of the complexity
of the process. It would be useful to develop rigorously defined indices giving
account (not only from a practical point of view in numerical approximation)
of such local features. As for cellular automata, indices based on the entropy
of rational partitions offer a natural answer to this exigence.

Previous formalism is immediately regained: we consider a “window” of
length M in the sequence w = {w;}, for instance wiy1,...,wrrnr. As time
goes on, after n steps the string will be wiypq1,. .., Wkpninr- Every string
may be partitioned into homogeneous substrings. For example, to the string
AABCCCAB we associate the partition {(AA), (B),(CCC),(A),(B)}. The
rational partition (3.1), ap, = 7(Qtn, ), is then defined, and formulas
defining indices (3.2)—(3.3) still work for shifts.

A third example is connected to the complexity of geometrical sets. Let
S be a subset of R™. For simplicity, suppose S C Q", Q™ being the unit
hypercube. For a given lattice in Q", the “black” cells containing at least a
point of S may be distinguished from the empty “white” cells. Once again,
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connected subsets of white or black cells determine a partition o of Q™. An
enlargement of S by a scale factor g (in symbols: 5" = f,(.5)), determines a
new partition coy. Then a = 7m(ao, ) is an r-partition, and the functional
h.(a) gives a measure of the antisimilarity created in the enlargement. This
operation may be iterated, and complexity indices corresponding to (3.2)-
(3.3) may be easily introduced, provided that in this case the enlargement
size g, a continuous parameter, plays the role of the discrete memory n.
Usual considerations about the complexity of fractal sets with respect to
ordinary sets may be easily rephrased in this way. It is almost obvious, for
instance, that a rectifiable curve, after a certain number of enlargements,
produces a sequence of identical partitions, and therefore a sequence of null
r-partitions with 0 entropy; in a Cantor triadic set, the case when g = 3% is
clearly singular, etc. So, with a proper tuning of the different parameters,
indices based on r-partitions can give account of several aspects of geometrical
complexity: the difference between fractal and nonfractal sets, the peculiarity
of an exact internal self-similarity, the mean amount of antisimilarity created
in iterated enlargements, and so on.

As a last example, in the same spirit, one could examinate the onset
and evolution of fractality in attractors: consider a large but finite sequence
Z1,...,T, of points evolving in an interval divided into M subintervals. Then,
subintervals containing at least one zj are “black” and distinct from white,
empty subintervals. The usual correspondence ¢ will produce a first partition
a1, the following sequence 41, .. . , 2, Will give ay, and so on. The analysis,
at this point, goes on as in previous examples. We stress that both n and M
should be large, and this makes the reduction process = important in order
to eliminate a spurious similarity between partitions.

In all of these examples there are several points to be clarified and de-
veloped: (1) elaboration of explicit procedures for numerical experiments;
(2) a possible utilization of indicators in the problem of isomorphism; (3)
applications of method shadowed here for shifts to the analysis of general
time series, or functions, with a discretized range; (4) possible relations with
other concepts of complexity (Chaitin—-Kolmogorov, Bennet, etc.).

4. Comments and conclusion

All examples of section 3 may be unified in a simple mathematical scheme:
let S be a space of “states” ¢,r,s,..., with a transformation f:.S — S, and
let ¢ be a correspondence S — Z, where Z is a space of finite partitions.
Then f induces a transformation 7" in Z:

T(4(q)) = ¢(f(9))

If @ = ¢(q), for a fixed n we define

a, =n(e, T )
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Then, as indicated by 3.2, the functional h.(a,) in R gives a proper estimate
(which crucially depends on ¢ and the space Z of partitions) of the antisim-
ilarity created by f™ in S. With small obvious adaptations in the notation,
definitions 3.2-3.3 follow quite naturally and generally.

To be effective, the procedure above requires some cautions. First, as
remarked in section 2, it may be convenient to consider a reduction process
based on a class of irreducible factors different from simple factors. Second,
for continuous problems, the relevance of the reduction process = depends on
the possibility of a significant discretization (a discussion of this and related
arguments may be found in [13]). Third, both the partition space Z and the
connection ¢ : S — Z are, in principle, arbitrary, and their meaning should
be discussed case by case. For instance, consider two types of shift sequences:

(a) ...A,B,A,B,A B,A B,A B,A B,A B,A B,A B,AB,...

(b) ...A,B,A,C,A,D,A,C, AC,A E,AC,A B,AD,AC,...

(i.e., a regularly alternate sequence and a sequence where odd elements are
random and different from the even, fixed elements): the simple correspon-
dence ¢ described in section 3 would produce identical partitions for (a) and
(b), and the analysis would give a misleading result. However, introducing
another correspondence ¢', based for instance on the assumption of couples
of letters (independently of their order) as basic alphabet, one would obtain
in case (a) the identical sequence:

...AB,AB,AB,AB,AB.AB.AB,AB,AB, AB, ...
with the associate null partition v, and in case (b) a highly irregular sequence
...AB,AC,AD,AC,AC,AE,AC,AB,AD, AC,...

with a very refined partition.

As a time average of the local production of antisimilarity, 7,,(M, a) may
be seen as an analogous quantity to the Lyapunov exponents measuring the
rate of divergence of nearby orbits in the phase space of a dynamic system.
In this spirit, it is possible to define other indicators, say L(7"), making the
analogy with Lyapunov exponents even sharper.

Taking into account that Z is a metric space, for every given orbit {7, a},
it is sufficient indeed to compute the rate of divergence of a second near-
partition 3, which evolves freely for a short time and then is drawn near
to the first orbit. In such a way, the usual computing procedure of Lya-
punov exponents may be replicated in Z or R as faithfully as possible. More
explicitly:

. 1&
L(T) = Jim <3 log(Rk/RY) (4.1)
k=1
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where R} = h,(7(T*a, Bi)) and Ry = h,(7(T*'a,TB:)), Bi being the second
partition chosen near to 7o and independent of it. Here we explicitly pose
h. = H'. Of course, the same procedure can be applied both in Z or in
R, the only difference being in the reduction 7 (but the difference between
divergences in Z or R is in itself an interesting quantity, since it measures
the persistence in evolution of the common part of two partitions). Even if
there are experimental evidences that this approach may prove fruitful [14],
some considerations justify the particular attention devoted to index 3.2 in
the previous section: (1) The evolution of a single partition regards the whole
of S. In this sense, it is intrinsically an averaged quantity, deeply different
in this respect from the evolution of a phase point for a dynamic system.
(2) Indicators 3.2 and 3.4 give estimates of a sort of autocorrelation, in the
evolution of the complexity, and this appears to be in any case a meaningful
quantity. To look at simultaneous evolutions of two partitions, as in 4.1,
could be justified and interesting for particular problems (e.g., evolution of
patterns), and to discriminate in cases which appear ambiguous in a simpler
approach.

Both indicators 3.2 and 4.1 are accessible to explicit numerical calcula-
tions, also in nontrivial cases. Experiments referring for example to one-
dimensional CA and to the “onset of fractality” in geometrical sets seem to
confirm the relevance and reliability of indicators based on r-partitions (for
instance, improving by quantitative measurements the classification of CA
proposed by Wolfram in [10]). They will be fully reported elsewhere [14].
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