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Abstra ct. Th e quantitat ive characterizat ion of complexity for several
dynami c processes is approached by a mathematical scheme based on
th e met ric and combinatori al prop ert ies of the space Z of finite mea­
sur able par titions . Precisely, Z is embed ded in a larger spa ce R of
new objects, "rational part it ions," describin g the anti similarity be­
tween two prob abilistic experiments . Rational par titions consist of
properly reduced couples of ordinary par titions, and th eir mai n fea­
tures are briefly reviewed. An ext ended ent ropy functional in R allows
the introdu ction of indicators sensitive to different possible aspects of
complexity for cellular auto mat a, shifts, mapp ings, etc. Th ese in­
dicators appear to be accessible to numerical experiments in many
nontrivial situations .

1. Intro duction

It seems natur al that t he re does not exis t a uniqu ely defined app roach to
quantit at ive estimates of complexity , nor a sing le functi onal m ap ping t he
degree of complexity into a. real number. Complexity, indeed , is in itself a
comple x concept , in the sense that it pr esents many aspects that are irr e­
du cible to one another. Updated reviews st ress t he m at t er [1- 4J. Neither
the Kolmogorov metric ent ro py, nor Ko lmogorov or Ch ait in idea of algo rith­
mic complexity, for inst ance, seems to disting uish ad equately t he character
of pro cesses tha t behave ve ry differently, d ur ing finit e t imes, for a local 01­
server . It would be usefu l therefore to get indices sufficiently flexib le to re­
flect, t hrough a pr oper tunin g of the ir par ameter s, po ssib le different aspect s
of local complexit y.

Our purpose here consist s in intro d ucing a. class R. of mat hematical ob­
ject s , "rat iona l part it ions," extending th e ord inary concept of par t iti on s in
proba bility spaces , whose propert ies fit a simplified characterizat ion of com ­
plex ity for seve ral nontri via l models . In a number of in t erest ing s it uat ions
(e .g., all on e-d im ensional cellu lar automata, st range at t rac tors, sh ifts . etc.)
indi ces based on rat ional par ti t ion s are effect ively computable qu ant ities.
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Mor eover , rational part it ions result to be endowed wit h peculiar probabilistic
and combinatorial proper ties, which seem to deserve attent ion in themselves ,
independently from the complexity problem.

Some elementary fact s and nota tions have to b e recalled [5-7J. In a
probabilit y space (M , M , /-l) (M be ing a a -algebra of subse ts of M and /-l a
probability measure on M ), a collection a == { AI ," " An} E M is said to
be a measurable partition of M if

(1.1)

(all rela tions are to be intended mod 0). Sets Ai are called cells or at oms
of a . The trivial parti t ion consisting of a single at om (necessarily M ) will
be deno ted t/ . The relat ion a ::; (3 (sometimes read as "a contained in (3,"
wit h an abuse that does not make confusion) mean s that (3 refin es a . Such
a relation introduces a par tial order in the set Z of all partition s.

If a == (AI , ... , An) and (3 == (B 1 , .. . , B r ) are two partitions , their product
or composition, = aV (3 is the minimal partit ion such that a::;, and (3 ::; T
At oms Gij of , are the nonemp ty int ersections of Ai and B j . The operation
"V" is commutative and associative. For brevit y, we shall oft en writ e a(3
instead of a V (3.

Another op eration , , = a A (3 , defines the in tersection or decomposition
, between a and (3 , as th e maximal par tition such th at , ::; a and, ::; (3.
Opera t ions " V" and" A" in Z may be seen as ana logous to th e minimal com­
mon mu ltiple an d maximal common divisor of entire numb ers. In par ti cular ,
for every a the uni t parti tion v t rivia lly satisfies a V v = a, a A v = 1/.

The Sh annon en tropy of a partition a is the fun ction al H (a) :

H (a ) c~f - t/-l (Ai )l n(/-l (Ai) )
i = l

A conditional en tropy H(a l(3) of a with respect to (3 is also defin ed :

H (a l(3 ) ~f - t t j.l (Ai n B j )ln (j.l (AiIBj ) )
i = 1 j = !

(1.2)

(1.3)

whe re , as usu al , /-l (aiIB j ) = j.l (Ai n B j )j j.l (Bj ) whenever Ai n B , =f 0 . Main
properties of H (a ) and H (a l(3 ), such as H (al(3 ) = H (a(3 ) - H ((3 ), are listed
in th e references [5-7] .

T he set Z of all measurabl e fini te partit ions may be made a metric space
introdu cing for every a and (3 the distance p(a l(3) :

p(a l(3) ~ H (a l(3 ) + H((3 la ) (lA)

All these qu an titi es admit a natural probabi list ic interp reta tion : it part i­
tio n a may be seen as an a bst ract math ema t ical scheme for an experim ent,
where atoms represent single events . 11(0') is the a priori incer t it ude about
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expe riment a , while H( a 1,8) is a measure of th e residual incertitude of a
when exp eriment ,8 is assumed to be kno wn. In this per specti ve, p gives an
estimate of the degree of similit ude between two experiments , and product
V gives th e simplest expe riment containing all informations from it s factors.
Neverthe less, V is not a product in th e usual sense , becau se all par t it ion s
~( ::::; a behave on a as the unit parti tion : a, = a ; moreover , since for every
a and ,8, a,8 ~ a and a,8 ~ ,8, th ere does not exist in Z any partition inverse
to a given partition, i.e. , such th at th eir product is 1/ .

We shall prove (1) th at Z may be embe dded in a larger space R where
the ex te nded product V becomes invertible, and (2) that R enjoys int er esting
probabilis t ic features, nontri vial extensions of those of Z , which naturally
apply to th e study of complex syste ms . In analogy with th e embe dding of
ent ire numbers in the rational field , whe re the product becomes inv ertible,
the elemen ts a E R will b e called rational parti tions.

In section 2, definitions in troducing ra tional partitions are given, an d
their mai n properties ar e discussed wit h pa r ticular reference to th e meaning
of the extended ent ropy functional. In sect ion 3, rational par titions are
ap plied to the an alysis of complexity in various pr ocesses. Fi nal comments
and conclusions are given in section 4.

2 . R ational par t it ion s

The aforementioned analogy wit h rational numbe rs consists in the following :
cons ider the set Z2 = Z X Z of all ord ered couples of fini t e measur able
part ition s. For couples (aI, a2) and (,81, ,82)' a product could be defined in a
natural way by

(2.1)

Assuming moreover an equivalence relation such that for every 1/ ,

it would follow , for every a , t hat (a, a ) == (1/, 1/ ), and consequently that

(a, ,8 ) V (,8 , a ) = (a,8, a,8 ) == (1/,1/)

(2.2)

(2.3)

In product (2.1) (1/, 1/) is the unit coup le; moreover , for couples of th e form
(a, I/), an ob viou s isomorphism holds with usual par titions and product . It
seems therefore that Z 2 may constit ute th e natural extension of Z , where
the "inverse" exists for every coup le (and , in par ti cular , (a , I/)-1 = (1/, a)).
Nevertheless , such a naive extens ion is un satisfactory in many resp ect s. T his
essentially dep ends on the fact that a parti tion does no t admit a uniquely
defined decomposition into "prime" factors. For in st an ce, it may happen
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th at I = ad31 = a2(32 , and consequent ly th at the red uction (2.2) of common
facto rs may give both

'Ne shall int roduce now an equivalence criterion allowing to overcome, as far
as possible, such an amb iguity.

D efinition 2.1. For every partit ion a with atoms {AI " ' " AN} , we define
"simple factors" of a as th e partit ions ak == {Ak, Ad , where Ak is the com­
plementary set M - Ak. S (a) will denote the collect ion {ad of all simp le
factors of a , S(a, O") th e subcollect ion of those ak such th at ak 1\ 0" = II,
i.e., simple factors of a that are pr ime with 0" . Therefore, S (a ,a) == II,
S(a, II) == S(a) , and (31 :::; (32 =} S(a, (32) ~ S(a,(3I) ' S(a) generat es a in the
sense that a = Vkak.

D efinition 2.2. For every a and (3 , let 0" = a 1\(3 be their maximal common
facto r. Classes S (a , O") and S( (3 , O") are then defined . An operat ion 7f: Z2 ---->
Z2:

7f(a , (3) = (a ' , (3' )

may be introduced by defining ex' an d (3' :

{
a' = Vkak, ak E S(a,O")
(3' = Vj(3j , (3j E S((3,O")

Clearly,

a' :::; a,

(2.4)

(2.5)

(2.6)

E x ample 2.3. Let M = (1,2 ,3 ,4, 5,6 ) be a set of six points. Let a and (3
be respect ively

a == {(1) , (2) ,(3) , (4,5 ,6 )}

(3 == {(1,2 ),(3),(4, 5), (6)}

with obvious notation for subsets . Then

0" == a 1\ (3 = {(I , 2), (3), (L1, 5, 6)}

and the classes S(a , 0" ) an d S( (3 , 0") are composed by

a l {(1), (2, 3, 4, 5, 6)}

a2 {(1, 3, 4, 5, 6),(2)}

(31 {(l ,2 , 3,4 , 5) , (6)}

(33 {(l,2, 3,6),(4, 5)}

therefore

a' {(1), (2), (3, 4, 5, 6)} < a

(3' {(l , 2, 3), (4, 5), (6)} < /3
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and

a' = a ' 1\ (3' = {(1, 2, 3,4, 5, 6)} == v

Theor em 2.4. 'If is a projection into an invariant subset R C Z x Z , i.e.
'lf2 = To.

Proof. Since a' is generated by S(a , a) it result s that , between it s simple
facto rs, there are at least all generating factors ak E S (a, a ), and th erefore
S(a', a ) :.2 S(a, a). It erating the process 'If , one should consider a" generated
by S(a ' , a') , where a' = a ' 1\(3' . It hold s that a" S; a', as in gen eral from 2.6,
but since a' S; a we have

S (a' ,a') :.2 S (a', a ) :.2 S(a , a )

and therefore a" ::::: a', which im plies a" = a' . In the same way, (3" = (3'. •

N ote 2 .5 . Differently from ra tio nal numb ers, it may happen that reduced
parti tions a ' and (3' are no t relatively pri me, i.e., that a ' = a ' 1\ (3' of v, as
another example shows:

E xample 2.6. Wit h M = (1, 2, 3,4,5, 6,7 ,8,9,10), let

a {(1,2 ,3),(4 ,5),(6 , 7), (8,9 , 10)}
(3 {(1, 2, 3), (4,6) , (5, 7),(8,9 , 10)}

t hen

a {(1, 2, 3), (4, 5, 6,7) , (8, 9,10)}
aJ {(4, 5), (1, 2, 3, 6, 7,8, 9,10)}
a 2 {(6, 7),(1 , 2, 3,4, 5,8, 9, 10)}
(31 {(4,6), (1, 2, 3, 5,7 ,8,9 ,10)}
(32 {(5,7),(1,2, 3,4, 6,8,9 , 10)}

and finally

a
,

{(4, 5), (6, 7)(1, 2, 3,8, 9,10)} < a
(3' {(4, 6), (5, 7), (1, 2,3 ,8, 9,10)} < (3
,

a ' 1\ (3' = {(4, 5, 6, 7),( 1,2,3 ,8,9 , 10)} < aa

T he following theorem pr ecisates the nature of a' .

'I' h e orern 2 .7 . Let a' = a' 1\ (3' of I). A toms of a' are eit her those at oms
of a that are comp osed with more than one at oms of a aDd (3, or the)' arc
complem entary sets to sucl: a.toms .

Proof. If a = a th en a ' = u , and a' = v (the sa me wit h respect to (3).
If a of a, th en there exists a t least one at om in a comp osed by two 01
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more atoms of a . Let s(m) be one such atom: s(m) = u~m A}m)j a}m) will

deno te the simple partition corresponding to A}m). Clearly, a}m) /\ (J" = u ,

therefore a}m) E S(a , (J" ) an d s(m) is st ill a subset in a' . Clearly, also the
complementary set to such sets stays in a' (and this is the only po ssibil ity
for an atom of (J" coincidin g with a single atom of a ). Repeating th e same
with respect to (3, and taking int o account that (J"' is made up of subse ts
common to a ' and (3' , th e th eorem follows. •

We remark that simple partitions are irreducible, an d in this sense they
play the role of prime factors for numb ers. But every dicotomi c par ti ti on
(i.e., a partition composed of two atoms) is also irreducible. T herefore there
may exist other classes of dicotomic (not simp le) factors that , pro vided they
satis fy theorem 2.4 , would lead to a different reduction process 7.: it seems
that this reintroduces the ambiguity we wanted to cancel. T he po int is that
the very choice of classes of irr edu cible factors constitutes a tool to fit peculiar
features of objects to describe . The reduct ion pr ocess introduced above is
the most natural for abs tract parti t ions spaces, where only measurab ilit y is
requ ired (therefo re it is always reproducible, an d by default we shall refer to
it). Bu t atoms may enjoy further feat ures (connection, ord er , etc.) suggest ing
a different and mor e convenient choice of irreducible factors [14] . In oth er
words, classes of factors alternative to S(a ), S(a , (J" ), etc . may be correla ted to
a defin it e similarity criterion between partitions. In th is sense the poss ibility
of a different reduction process is a richness , not an ambigu ity of the met hod .

Definition 2. 8 . A ra tional partit ion a = (aI , (2 ) is an element of the set
R C Z x Z of the ordered couples such that 1r(al ,a2) = (a1>a2)'

To p rove that R const it utes an extension of Z , a consistent defini tion of
th e prod uct is need ed.

Definition 2 .9 . Let a = (al , a 2) and b = ((31, (32) be in 'R.. Their product
c = a V b = a b = (,1,/2) is

(2.7)

In the part icular case when I I = al(31, 12 = a2(32, a and b will be called
"relat ively independent" rat iona l par ti tions (or r.i. r-par ti t ion s) .

Note 2.10 . P roduct (2.7 ) is clearly commutat ive and idempoten t in the
whole R , where 11 = (//,1/) is the unit element. Moreover , r-part it ions of the
form (a , I/) const it ute a subset RV isomorphic to Z .
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and a m ay be noted a-I . In parti cular , r-partitions of the form (v,a) ar e
inverse to those in R V

• However, the inverse element is not uniquely defined
in general, b ecause equation ax = u may have fur th er solut ions besides
x = a - I .

N ote 2 .1 2 . Since 7r an d prod uct in Z do not commute, product in R is no
longer associative , and eq uation (ab" ") V (be) = ae (which is t rue in R V

)

does no t hold in general Therefore definit ion 2.9 must be complet ed . For
n > 2 we can dist inguish , for instance, between a nonordered pr oduct

v: (vn (k) v: (k) )k=1a, = t; k=1a l , k=1a z

an d an ord ered one defined it eratively th rough 2.7:

Vk=lak = an V ( Vk;;;;ak)

Note 2 .13 . Partial or der in R V is exte nded in R by the relation

(2.8)

but , as a consequence of the reduction pro cess, the relation a :::: b =} a :::: bc
is no longer tru e for every c . It holds, however , for r. i. r-partit ions, Distance
p is also extended from Z to R definin g p.:

(2.9)

T he obvious mean ing of pr is that two r-part.it ions are near when both their
first and second terms are near.

So far , apart from th e exte nsion of the metric, only comb ina tori al prop er­
ties have been considered . The fact that we deal wit h measurable partit ions
enters wit h the probabilist ic interpretati on of R : as a par titio n is a scheme
for an expe rime nt , a rational partition may be seen as a rep resen tat ion of the
differ ence or "ant isimila rity " between two experiments , since the red uct ion
process eliminates common factors as far as pos sible. If z = (a ,(3) E R. and
17 = a /\ (3 =f u; this means that there is an irr edu cible similarity betw een
a and (3 . On the contrary, it may happ en that 17 = 1/ even if every atom
11k in a is very simila r to an atom B , in (3 (in the sense that the symmet ric
difference of 11k and B , is very small) . So, t here are two differen t con cepts
of simila rity bet ween par titio ns: a combinatoria l one , which is taken int o
account by the reduct ion pro cess 7r , and a metric one, which may regard also
relati vely prim e or irr educible par titions.

To pass from these qualitati ve cons iderat ions to a quanti t at ive est imate
of antisimilari ty, a suitable extension of ent ropy from Z to R is needed :

Defi nition 2 .14 . T he ent ropy of a rational par titi on , or r-entropy, is a func­
tional h,. in R wit h the following proper ti es:

1. h,. coincides in R V wit h the ordi nar y entropy 11 in Z .

2. h, (a) :::: 0, and h,.(a) = 0 =} a = u
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3. if a and b are r.i. r-part itions , hr(ab ) :s; hr(a)+ hr(b ). A fur th er ax iom
will be considered separately:

4. let an be a sequ ence of partit ions irreducible wit h respect to (3 (i.e.,
an == (a n, (3) E n ), and such a n -t (3 in the met ric of Z ; t hen,
hr(an ) -t O.

Considering for the moment prop er ties (1)-(3), the only nontrivial point
is the restriction of the "subadditiv ity" (3) to r. i. r-p art itions. We shall
return lat er to this point , which is dee ply involved wit h the feat ur es of R:
T wo import an t an d, in a sense, natural examples of r-en tropies are presented
in the following theorem .

Theorem 2. 15 . Fun ctionals HOa.n d HI
(001,002) by

HO(a) = H (ad + H (a2)

H 1(a) = p(al , a2)

are r -entxopies in R:

defined for every r-part it ion a =

(2.10)

(2.11)

Pro of. Requirements (1) an d (2) of defini tion 2.15 are easily checked for
both HO and HI , by element ary proper ties of entropy H and distanc e p in
Z . To pro ve (3) for HOwe have

for every a , bE n , and we may write 001 (31 = 0"1'1 and 002(32 = 0"1'2 . Now

HO (ab ) = H (ll ) + H (l2) :s; H (O"/'I) + H (0"1'2)
< H (al ) + H (a2) + H ((31) + H ((32) = HO (a) + HO(b )

T hus , for HO, t he suba dditivity is not even restri ct ed to r.i . r-par ti tions, but
holds in the whole R:

Now let a and b be relatively ind epend ent, i.e. , ab = (001 (3], 002(32 )' T hcn ,
using known propert ies of the condit ional ent ropy in Z ,

H 1(ab) p(a l(31,a2(32) = H (0'1 (3ll a2(32) + H (0'2(32I a l (31 )

H (a l la2(32) + H ((31Ial a2(32) + H (a2Ia l (31 ) + H ((32I a l0'2(31 )

< H (al la2) + H (0'210'1) + H ((311(32) + H ((32!(31)

P(O'I, 0'2) + P((3I ' (32) = H 1(a ) + fP (b)

•
N ot e 2 .16 . T he proof of (3) for HI does no t work in the general case ,
when a b = (l1 ' ~(2) with 0'1 (31 = 0"/'1, 0:2(32 = 0"1'2 and 0" =I- /1 , becau se
JIl (ab) = (1 (1 1> 1'2) 2: p(O"I' 1> 0"1'2) = (1 (°'1(31 , 0'2,82), Ilowevcrv no twithsta nd­
ing t he failure of the proof, one may con ject ure that III too enjoies subaddi­
t iv ity in t he whole of R , T he answer to t his conject ure is negat ive. We shall
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briefly ind icate how to bu ild a counterexample: let x = ( ~l'~2) be such that
J-P(x) < c. Let z = (~l' ~2) be relat ively independ ent wit h respect to both x
and x " , and

then if q = zx- l and qx = zxx - l == z ,

Hl (qx) = Hl (z) > 8

H1(q) + Hl(x) < 2c

and a good choice of e an d 8 lead s to the result. It is not difficult to provide
examples of r-partit ions with the required features.

Note 2 .17 . As a corollary of theorem 2.15 we have that

(2.12)

for a:::; p :::; 1, are also r-entropies (the pr oof is immediate). T he converse is
not true: there exist r-entropies that are not in the form 2.12 (for inst an ce
hr ( a) = max{H( CXl ), H (CX2)})'

Note 2 .18 . Eve n if both HOand H l satisfy (1)-( 3) in definition 2.14, their
mean ing is qu ite different: HO simp ly gives the ent ropy of a r.p. z = (o , {3)
as the sum of ent ropies of cx and {3, while H" is a measure of their distance.
Now, dealin g with partitions of a Leb esgue space, it is po ssible that, for fixed
M and c, HO > M and H' < c . It is the same as with rational numbers
T = P IQ, where rational "height" P + Q may be larger than any fixed
quantity, and the value of r as close as one wants to 1. Taking into acco unt
th at the combinatorial similarity has been redu ced by x , H l is therefore more
represe ntat ive of the metric similarity between it s componen ts , giving , wit h
respect to HO , a better account of th e t rue difference bet ween experiments .

N ote 2.1 9. From elementary pr op erties of pin Z , p(cx, , {38) :::; p(cx , {3 ) for
every o, {3 , , ,8. T herefore, if a = 1r( CXl , CX 2) ' H l (a) ~ P(CXl, CX2)' while
obv iously HO(a) :::; H (cxl ) + H( cx2) ' In ot her words, a large common factor
may mask th e ant isimilarity of two partitions; by eliminating thi s com mon
part, redu cti on 1r amplifies th e met ric dist an ce J-P of the couple and red uces
on th e contrary it s rat ional heigh t HO

Note 2.20. T he choice of H l as th e "true" r-entropy would follow st ra ight
from the supplementary axiom (4), not sa tisfied by HO. 'vVe are inclined
to think, ind eed , that such a metri c cont inuity is imp or tant , e .g., for the
pro blems of th e next sect ion. Nevert heless, the weaker definition wit h ax ioms
(1)-(3) could t urn ou t to be useful in contexts where such propert ies pl <1 y a
role as the one described in the following theo rem.
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T heor em 2.21. Let a and b in R . Then

while the same proper ty does no t llOld for HI

Mario Casart elli

(2.13)

P roof. Since a ::; b , we wri te a = (0'1,0'2), b = (-rlO'I ,120'2) ' The first part
of the th eor em is quite obv ious:

To prove th at 2.13 does not hold for H I, we choose a part icular b == b , =

(0'1' 100'2) 2:: a , where, for 6 > 0, 10 is such that

(2.14)

Define now A and B by

A H1(a) = H(0'110'2 ) + H(0'210'1)
B H1(bo) = H(0'11100'2) + H b o0'210'1)

Let A' = A - Z, B' = B - Z , where Z = H (0'210'1 )' T hen

A' H (0'1 10'2)

B' 11(0'11100'2) + H b o10'10'2)

Since H(0'Iho0'2 ) ::; H (O'l llo) and 11(,010'1 0'2) ::; H(~f<I O'I ) ' from 2.14 it
follows that B' < 6, and, choosing 6 < H (0'110'2), B' < A' . T herefo re B < 11,
i .e., H 1 (a) > H 1 (b o ) .•

A cons istent extension of entropy in R is also expected to generalize the
fund amental relation of the condit iona l ent ropy:

H (O'I ,B ) = H (O',B) - H( ,B) (2.15)

wh ich, in Z , has an immediate an d mean ingf ul interpretat ion in te rms of
"resid ual informat ion. " Then , whatever li; is from definit ion 2.14, we po se

h,.(alb) = hr( ab) - hr(b) (2 .16)

which redu ces to 2.15 in R V
• It is possible to choose p , q ERin such a way

tha t , for a = pq-l and b = q

h,.(alb) hr(pqq- l) - h,.(q)

h,. (p) - h,.(q)

T herefore , when hr(p) < hr(q ), hr(alb) < O. We have pr oven the following
statement : in R, the condit ional r-entropy 2.16 is not necessaril y nonnega­
tive. In par ticul ar, h,. (a la- 1

) = - h.,.(a). Such a conclusion does not At th e
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usual concept of condit ional entropy as residual information. It excludes, for
inst anc e, that a dist an ce in R may be bas ed on a formula like 1.4 (it would
give p(a,a-1 ) = - 2hr (a)).

In conclusion , apart from the problem of choosing the right entropy li . ,
there ar e in R peculiar features that can not be seen as trivial extension s
of those of Z . T hey derive ind eed from nonassociativity and reduction or
annihilation of factors by the process 7r. For instance, subaddit ivit y (3) in
defini tion 2.14 is limi ted to r .i. r-par ti tions just to take into account th ese
feat ures. In th is context , the fact that quanti ty 2.16 may become negative is
neither surprising nor in contrast with assuming it as an extended cond iti on a.l
entropy : it is th e very idea of conditioning, indeed, to be deeply revised.

3 . Rational p a r t it ion s a n d complex it y

We shall provide here some examples showing that the concep ts of section 2
naturally apply to the quantitative characteriza ti on of complexity. Such ex­
amples will be success ively consi dered within a common frame, which seems
to be qui te general. T he first example regard s cellular automata (see [8­
12] for general references). A cellular automaton (CA) is a triple {1(, L , f}
cons ist ing of an alphabet 1(, a lat ti ce L , and a map f : 1(L --+ 1(L th at,
for every configuration q E J(L , gives a new configurat ion f (q) depending
only on t he values of a finit e neighborhood of each point on the lat ti ce. To
regain the concepts of section 2, to a parti cular configuration q E J(L , we
associate a parti tion a , e.g., in the following way: let M be a fini te subset
of L , say a hypercu be . Then , the collection of homogeneous connexe subsets
of M (where vert ices are homogeneous if labeled by th e same symbo l of K ,
connexe if they may be joined by a homogeneous walk) is a par tition of M .
If Z = Z (M ) is the space of such part it ion s, the correspondence f{ L --+ Z
will be denoted ¢, i.e. , a = ¢(q). Such a corr espondence is noninverti ble,
the associated partition being invari an t bo th for permuta tio ns in J( and for
different configurations in J(L that coincide in M.

Start ing from a configuration qo , th e evolution pr odu ces a sequ en ce of
configurations qk+l = f(qd ; a transformation Tj in Z (M ) is then nat ur ally
defined thro ugh the relation a k+l = Tj (ak) = ¢(J (qd ). P rovided that a
p robability meas ure fiM is given in M , th e triple {M, Tj , PM} consti t utes a
dyn amical syst em (note however that Tj is not measure-pr eserving for subse ts
in M) . If M is sufficiently large, complexit y of t he a utomaton is related to
the pro blem of giving a reaso nable estimate of the creation of newn ess in
the sequence ao, a I, a2, " " with ak == Tj ao. Vie claim that the concep ts of
sect ion 2 may be useful to th is task. Indeed , the point is now to establish
how different ak+l is from ak. Defining more in general

(3.1)

the entropy hr(ak,n) results in being a measure of th e ant isirn ilarity created
between the kt h an d (k +n)th steps . With n = 1, in part icu lar , one considers
antisimilari ty prod uced st ep by step . Of cour se, the choice of a definit e li;
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is imp ortant , and the discussion of section 2 will be taken into accoun t. By
defaul t we shall use h; == HI , not only for it s cont inuity (note 2.21) bu t also
becau se 1r amplifies the distance between par ti tion s of a couple (note 2.19);
this fact may be extremely useful in nume rical exp eriments.

Not e that a period ic evolution immediat ely reflect s in the period icity of
hr(ak,n) as a funct ion of "time" k. T he time behavior (p eriod ic or not)
of hr(ak,n) and its ab solute value are bo th significant in order to analyze
th e complexity of the automaton, while th e par amet er n is related to the
"me mory" of the process. The most immediate com plexity indicator for
generic CA is therefore the ent ropy itself:

(3.2)

which as a funct ion of k shows the variety of t ime behav ior of the pr o­
cess through th e amplitude and regular ity of oscillations. Provided that the
(absolutely nontr ivial) problem of an explicit comput at ion has been solved,
the st udy of the t ime complexit y of the automaton is mapped, indep en­
dently of t he dimension of L, in the one-dimensional anal ysis of the function ,
In(k,M,a ) versus k. Usual to ols in the analysis of time series (e.g. , power
spectrum obtained by Fourier Transform) may be imme diately applied .

Consider , for definiteness, an automaton where K has two symbols, say
o and 1, and L = Z, the relati ve integers. Let M be a st ring of N cells.
Cons ider mor eover the simp le case of th e ru le exchanging the symbols 0
and 1. Then, for every initi al configuration q E {O, 1}z , the corre sponding
par ti ti on a of M is st able: Tj a == a . The couple (Tja, TJ+Ia) , seen as a
rational par tit ion, corresponds to the unit u , consistent ly with th e fact th at
this par ti cular rule does not creat e any novelty in the evolution . Whatever
h; is, hr(u) = O. Wi th another ru le, TJ+Ia is different, in gen eral, from TJa
and th e qu anti ty (3.2) says how different they are.

Ano th er indicator is th e time average of the pr evious one :

1 N
In(M ,a ) = lim - IJn(k,M,o')

N N k= I
(3.3)

giving a t ime- indepe ndent estimate of the capacity of the aut omaton in pro ­
ducing new configurations at d istance n . T he dependen ce on a and M may
be eliminate d in an obvious way :

lim In(M )
M

(3.4)

(3.5)

More correct ly, in (3.4) the sup operation should be written wit h respect to
configurat ions a E ]{L , becau se th ere are infinite configurations (giving rise
to different evolut ions in M ) t hat are projected by ¢J in the same pa r tit ion
a . Th e limit in (:3.5) means, of cours e, that the size of M goes to 00 . \ \le
st ress , however , that t he anal ysis or t he complexity in a dynami c pro cess
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should reflect the kind of int erest the obser ver has, and t hat a finite time
or a finit e window M can be as sign ificant , in certain contexts, as the limi t
quantit ies (3.4) and (3.5) . It is also evident that from indi cators (3.2) and
(3.3) other useful param eters may be obtained , such as the variance of the
values appearing in the time series.

All these considerations an d formalism apply immediately to a second
examp le, const ituted by shifts [5], i.e., a source of let ters of an alphabet J(

giving outcomes Wj E J( at discre te times j = . . . , -1 ,0 ,1 , 2, .. .. If the source
is a purely probabilistic one , and the outcome Wj = c occurs wit h a given a
priori probability p, (c), then this process is a Bernoulli Shift B. It s dyn am ic
(or Kolmogorov-Sinai) entropy h(B) is the Shannon entropy ofthe alphabet :
h(B ) = - L eEK p,(c) log p,(c). If, on th e contr ary, th e source was ruled by a
periodic law repeat ing a st ring WI , . . . wp , t hen h(B) = 0, independent ly of
the length P. Indeed, after it s definit ion , the Kolmogorov ent ropy takes into
account the whol e process in t ime, and th e "local" complexity of a string
of fini te length is a minor feature, in a global evaluat ion , with respect to
pe riod icity.

Not e that Kolmogorov ent ropy in itself is an index of complexity, e.g.,
in the sense that it distingu ishes periodic from probabili sti c shifts and clas­
sifies processes with different entropies into dist inct classes of isomorphism.
However , as noticed, besides the comp lexity of evolution law in the whole,
the complexity of local evolut ion of configuratio ns du ring fini te t imes can
also be of a cert ain import an ce, both practical and conceptu al. Cons ide r, for
example, the random nu mber generator (R NG) of a computer as a pro cess
(t he alphabet being in thi s case the extremely large but finite set of possib le
outcomes). For pr actical purposes, inasmuch the t ime considered in calcu ­
lati ons is short wit h respect to the periodicity of the RNG , it ap pears and
works indeed as a genuine ra ndo m source. Nevertheless, in pr incip le, du e to
the recurrence of the algor it hm, it s ideal Kolmog orov ent ropy would be 0,
exact ly as in the trivial alternate sequence 1,0 ,1 , 0,1 ,0 , .. .. In this sense,
Kolmogorov entropy seems to give a too dra sti c esti mate of the complexity
of the process. It would be useful to develop rigoro usly defined indices giving
account (not only from a practic al point of view in nu meri cal approximation)
of such local features. As for cellular aut omata, indices based on the ent ropy
of rational partitions offer a natural answer to this exigence .

P revious formalism is immediately regained : we consider a "window" of
length M in the sequence ~ == {W j} , for instance W k+I , . . . , Wk+M. As ti me
goes on , afte r n steps the str ing will be Wk+ n+I , ... , Wk+n+ M . Every string
may be partitioned into homogeneous substrings . For example, to the string
AABGCGAB we associate the parti tion { (AA), (B) , (CGG) , (A), (B) } . The
rationa l partit ion (3.1), a k ,n == 1r( O'k+n ,O'k ) , is then defined , an d form ulas
defin ing indices (3.2)-(3.3) still work for shift s.

A th ird example is connec ted to th e complexit y of geomet rica l sets. Let
S be a subse t of n-. For simplicity, suppose S C Q n, Qn being the unit
hyp ercub e. For a given lat t ice in Q" , the "black" cells containing at least a
po int of S may be distingui she d from the empty "white" cells. Once again ,
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con nected subsets of white or black cells determine a partition 0'0 of Q". An
enlargement of 5 by a scale fact or 9 (in symbols: 5 ' = I g (S)), determi nes a
new partition 0'1 ' Then a == 7r (0'0 ,0'1 ) is an r-p ar ti tion , and the functi on al
hr(a) gives a measure of t he antisimi lari ty created in the enlargement . This
op erat ion m ay be it era ted , and complexity indices corresponding to (3 .2)­
(3.3) may be easily introduced , provided that in this case t he enlargement
size g , a continuous parameter, plays the role of t he discrete memory n.
Usual considerations about t he complexity of fract al set s with respect to
ordinary sets m ay be eas ily rephrased in t his way. It is almost obv ious, for
instance, that a rectifiable curve, after a cert ain number of enla rge ments,
pr oduces a sequence of identical partitions, and therefore a seq ue nce of null
r-p artitions wit h 0 entro py; in a Cantor triadic set, the case when 9 = 3k is
clearly sing ular, etc. So, with a prope r tuning of the different parameters,
indices based on r-parti ti ons can give account of several asp ects of geometrical
complexity : the difference between fractal and nonfract al sets , the peculiarity
of an exact internal self-simila rity, t he mean amount of ant isimila rity created
in itera t ed enla rgeme nts, and so on.

As a last example, in the same spiri t , one could exami nate the onset
and evolution of fract ality in at t ractors : cons ider a large but fini te sequence
X l, . . . , X n of point s evolving in an interval divided into M sub inter vals . Then ,
subintervals con taining at least one X k are "black" and distinct from whi te,
emp ty subinter vals. The usual correspondence rjJ will produce a first parti t ion
0'1, t he following sequ ence Xn+I, ... ,X2n will give 0'2 , and so on. T he analysis ,
at this point , goes on as in previou s examples . We st ress that both nand M
should be lar ge, and this makes t he reduction process 7r important in order
to eliminate a spuriou s similar ity between partitions.

In all of th ese examples there are several points to be cla rified an d de­
velop ed : (1) elaboration of explicit proced ures for numerical experime nts ;
(2) a possib le utilization of indicato rs in the problem of isomorphi sm ; (3)
applicat ions of method shadowed here for shifts to the an alysis of gen eral
t ime series, or fun ction s, wit h a discre t ized rang e; (4) possible rela tions wit h
other concepts of complexity (Ch ai tin- Kolmogor ov, Ben net , et c.).

4 . C0l11111ents and conclusion

All examples of section 3 may be unifi ed in a simple mathem ati cal sche me :
let S be a space of "s tates" q, r, s, ... , with a transformation 1 : 5 ---> 5, and
let rjJ be a correspondence S ---> Z, where Z is a space of fin ite par ti ti ons.
T hen 1 induces a transformation T in Z:

T( rjJ(q) ) = rjJ(f (q))

If 0' = rjJ(q), for a fixed n we define
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Then , as indicated by 3.2, the fun ctional hr(an) in R gives a proper estimate
(which cruci ally depends on 1> and th e space Z of partitions) of the an tisim­
ilarity crea ted by r in S. Wi th small obvious adaptat ions in the no tation ,
definitions 3.2-3.3 follow quite naturally and generally.

To be effect ive, the procedure above requires some cautions. First , as
remarked in sect ion 2, it may be convenient to consider a reduction pro cess
based on a class of irr educible factors different from simple factors. Second ,
for continuous pro blems, the re levance of the reduction process tt depend s on
the possibility of a significant discreti zation (a discussion of thi s and related
arg uments may be found in [13]). T hird , both the partition space Z and the
connection 1> : S ---+ Z are, in principle, arbit rary, and their meaning should
be discussed case by case . For instance, consider two types of shift sequences:

(~ . .. A, B,A, B,A,B,A,B,A,B,A,B,A, B,A,B,A,B,A,B, ...

(b) . . . A, B, A, C, A, D , A, C, A , C, A, E , A, C, A, B, A, D, A, C, . ..

(i.e. , a regularly alternate sequ ence and a sequence where odd elements are
random and different from the even, fixed elements) : the simple corres pon­
den ce 1> described in sect ion 3 would produce identical parti tions for (a) and
(b ) , and the analysis would give a misleading resu lt . However , introducing
another corr espondence 1>', based for inst an ce on the assumption of couples
of letters (independently of their order ) as basic alphabet, one would ob tain
in case (a) th e identical sequence:

.. . AB, AB, AB, AB, AB. AB. AB, AB, AB, AB, .. .

wit h the associa te nu ll par tition 1/ , and in case (b) a highly irr egul ar seq uence

.. . AB, AC, AD, AC, AC, AE, AC, AB, AD, AC, ...

with a very refined partition .
As a time average of t he local production of anti similarity, In(M ,a) may

be seen as an analogous quantity to th e Lyapunov exponents measur ing the
rate of divergence of nearby orbits in th e phase space of a dynamic sys tem.
In this spirit, it is poss ible to define ot her indi ca tors, say L(T) , making the
analogy wit h Lyapu nov exponents even sharper .

Ta king into account th at Z is a metric space, for every given orbit {Tn, a },
it is sufficient indeed to compute the rate of diverg ence of a second near­
partitio n {3, which evolves freely for a short time and th en is dr awn near
to th e first orb it . In such a way, th e usual computing pro cedure of Lya­
punov exponents may be replica ted in Z or R as faithfully as po ssible. More
explicitly:

(4. 1)
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where R~ = hr ( 1r(T kO' , 13k)) an d Rk = hr ( 1r(T kH O' ,T13k)), 13k being the second
partition chosen near to TkO' and independ ent of it . Here we explicit ly pose
h.; == H I . Of course, the same procedure can be applied both in Z or in
1?., t he only difference be ing in the reduction 1r (but the difference between
divergences in Z or 1?. is in itself an interesting quantity, since it measures
the persistence in evolut ion of the common part of two partitions) . Even if
there ar e experiment al evidences that this approach may prove fruitfu l [14],
some considerat ions justify the particular attent ion devoted to index 3.2 in
the previou s sect ion : (1) The evolution of a single partition regards the whole
of S. In this sense , it is int rinsically an averaged quantity, deep ly differ ent
in this respect from the evolution of a phase point for a dynamic system.
(2) Indicators 3.2 and 3.4 give est imates of a sort of autocorr elation, in the
evolution of t he complexity, and this appears to be in any case a meaningful
qu antity. To look at simultaneous evolut ions of two partit ions, as in 4.1,
could be justified and interesti ng for particular prob lems (e.g., evolution of
patterns), and to discriminate in cases which appear ambiguous in a simpler
approach .

Both indicators 3.2 and 4.1 are access ible to explicit nu merical calcula­
ti ons, also in nontrivial cases . Experiments referring for example to one­
dimensional CA and to the "onset of fract alit y" in geomet rical sets seem to
confirm the relevan ce and reliability of indicators bas ed on r-partit ions (for
instance, improving by quantitative measurements th e classificat ion of CA
proposed by Wolfram in [10]). They will be fully repor ted elsewhere [14].
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