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Abst ract . Det ermining just what tasks are computable by neural
networks is of fun damental importance in neural comp uting . The
configuration space of several mod els of paral lel computation is es­
sentially the Cantor middle-t hird set of real numbers. The Hedlund­
Richardson th eorem states that a transformation from th e Cantor set
to it self can be realized as th e global dynamics of a cellular automaton
if and only if it takes th e quiescent configuration to itself , commut es
wit h shifts , and is continuous in the product topology. An analogous
theor em characterizing th e realizability of self-mappi ngs of the Cantor
set as net -input global dynamics of neural netwo rks has recent ly been
established . Here we give a char act erization of such realizability as the
mor e na tural activa tion global dyn amics of neural networks. We also
pr esent such a characte rization for realizability via global dyn amics of
more general au tomata networks. This dynamical systems appr oach
to neural computing allows pr ecise formulations of signifL cant prob­
lems about the computational power of neural networks.

1. Introduction

Artificial neural networks (or con nectioni st models) [9], herein simply ca lled
neural networks, ar e often t hought of as models of massive ly p ar all el com­
putation. T hese neural networks can b e naturall y cons ide re d as dynam ical
sys tem s [2]. In thi s paper, we are concerned with which dyn amical systems
can be reali zed by such neural networks. The motivation for this concern
comes from simila r work in cellular automata [5, 8].

Det ermin isti c cellu la r au tomat a [10- 12] can b e viewed as discr ete dy­
namica l sys tems wit h local dynam ics defin ed by a single fini te state ma­
chine . This lo cal dynamics induces a glob al dy nami cs , i .e. , a self-m apping of
confi guration (i .e. , global st a te ) sp ace C. Since not all self-m aps of C ar ise
th is way, i t is natural t o as k what self-mappin gs of the configura tion space
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arise (or can be realized) as the global dynamics associated wit h some cel­
lul ar automaton. T his ques t ion is answered satisfactorily by Richardson's
theorem [8]: it is necessary and sufficient for the mapping to preserve the
quiescent configuration 0, to commute with all the shift operators on the
underlying cellular space, and, most impor tan tly, to be continuous with re­
spect to the product topology on configuration space. A one -dimensional
vers ion of this result follows from ear lier work by Hed lund [5]. Since the
set of local states of a cellular automaton is finite and the number of cells
countably infinite, t he configuration space in its product topology is home­
omorphic to the Cantor midd le-third set of real numbers [6, p . 97]. Thus,
Richardson's T heorem can be regarded as a characterization of the realiz­
ability of self-maps of the Cantor set in terms of the global dynamics of a
cellular automaton.

Synchronous, discrete neural networks can also be thought of as discrete
dynamical systems with their local dynamics defined by local, nonuniform
activation functions together with a local non un iform inp ut funct ion consist­
ing of the weighted sum of input values. However, unlike cellular automata,
their local dynamics give rise to global dynamics both on the net-input space
and on the activation space of the network. It is natural to ask aga in which
self-maps of the net-input space or the activation space arise from such lo­
cal nonuniform dynamics. As before, it would be des irable to characterize
these self-maps in terms of a minimal set of global properties. Since neural
networks also have finitely many local activation values and countably many
cells, their net-input spaces and activation spaces are also homeomorphic to
Cantor sets [6, p. 97]. T hus one may ask which self-maps of Cantor sets
are realizable as the global dynamics of some neural network. T his ques­
tion has been previously answered for net-input global dynamics [2] (see
theorem 3.1 below) . Here we provide an answer for the activation global
dynamics case.

Cellu lar automata an d neural networks are each examples of a more gen­
eral kind of model, automata networks [3, 7]. The analogous question of
which self-maps of Cantor sets are realizable as the global dynamics of some
automata network is also answered.

Viewing t he global dynamics of neural networks as self-maps of the Cantor
set lead s to precise formulations of important pro blems about neural networks
which are posed in the last section.

2. D efin itions

Intui ti vely, a neural network consists of cells (also called units, nodes, etc.) or
processors capable of some ar ithmetic, connected by links bearing weights.
Cells sum their weighted inp uts and apply an activation function to calcu late
their new activation state.

Formally, th is means that a neural network is built on a directed graph,
i.e., a structure consisting of a set of vertices V (rep resenting the cells of
the ne twor k) and arcs (d irected edges representing the links of the network).
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Each arc from vertex j into ver tex i is lab eled wit h a weight Wij . In order for
t he network to be physically realizable, each vertex mu st have only finitely
many incoming and outgoing arcs, i.e., the gr aph mu st be locally finite. In
order to have full computat ional ability (i.e., that of Turing machines [1])
neural netwo rks must allow for an arbitrarily large nu mb er of cells . We
will simply assume a countab ly infin ite number. To enable the necessar y
arithmetic, we assume that all activation values and weights come from a
ring with uni ty. T hus, a neural network over a finit e rin g with uni ty R is
built on a countably infini te, locally finite, arc-d irected grap h D .

In addition to the ring R and the graph D , a neural network needs for
each cell i an activation function Ii : R -+ R . We assume that each I. satisfies
Ii(O) = 0 (in ord er to avoid spontaneous generation of activat ion) an d that
Ii(1) =f 0 (to avoid tri vial netwo rks) . In theorem 3.1 below we fur ther assume
that each f;( 1) is a uni t in R.

The weight ed sum of the inputs to each cell from its neighbor s is given
by a function called net,, where i is the index of the given cell. Think ing
of a neural network as a discrete dynamical sys tem, at any time t + 1 (t a
nonnegative integer), the net -input at i is given by

neti(t + 1) = L Wijaj(t)
j

where

(2.1)

(2.2)

is th e acti vation of the cell j at time t, and the sum is taken over all cells
j supporting arcs into i. T hese equations define the local dynamics of the
network.

T here are two possible neural netwo rk analogs of the notion of a configu­
ration of a cellu lar automaton. One might look at the vector of all net-inputs
to indi vidual cells during a parti cular time step , or one might choose the vec­
tor of all activatio ns of individu al cells during that time step. At a fixed t ime
t, th e network has at each cell i it s net inp ut neti(t ) and its acti vation ai(t ).
T he vector of net -inputs x ha s in it s ith component th e net- input X i = J] et~)

of th e ith cell of D , a value from th e ring R, and is th us a memb er of R .
(Recall that RV is the set of all functi ons from V to R, or the car tes ian
product of R with itself th e cardinality of V times.) Simi larl y, the vector of
activations (ai(t)) is also a memb er of RV. In th e following we will use C
to refer to acti va tion space and call it t he configuration (activation) space of
the network , and we will use RV to refer to th e net -inp ut space.

Each of these possibilities gives rise to it s own global dynam ics. At each
ti ck of the time clock, the current net -input vector changes, as do es the
activat ion vector . T hese changes reflect the two disti nct globa l dynam ics of
the net work .
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More formally, the family of functions Ii mapp ing R into R gives rise to a
pro du ct funct ion F : RV ---> C so that the following diagram commutes under
composition of fun ct ions:

F
RV

----t C
7f;l ! 7fi

R ----t R
Ii

where 7fi is th e pro jection from RV onto R. This means that for each cell i
an d each net-input vecto r x E RV

, F (X)i = l i(Xi).
We are now able to define the net-inpu t global dyn amics Tnet : R V ---> R V

of the network . For any net -input vector x E RV pu t

Tnet(X)i = neti(F(x ))

T his gives ri se to the following commutat ive diagram:

i;:
RV

----t RV

F! 1 7fi

C ----t R
net,

(2.3)

T his global dynamics Tnet describes the evolution of the ent ire network via
the net-input vectors.

In a manner similar to the definit ion of F above, for each cell i, the net ­
inp ut function net; maps R into R. This family of funct ions gives rise to
a pro duct func tion net : C ---> RV so that th e following diagram commutes
under composit ion of fun ct ions:

net
C ----t RV

i d 1 1 7f;

C ----t R
n et;

where 7f; is the pro jection from RV onto R and id is the identi ty map. This
mean s th at for each cell i and each act ivation vector x E C, neti(x) =

7f;(net(x )).
In an analogous fashion we now define the activation global dyn amics

Tact : C ---> C of the net work. For any act ivat ion vect or x E C put

Tact(X)i = f i(neti(x )) (2.L1)
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This gives rise to the following commut ative diagram :

T act

C ------t C
n et ; 1 1 1I"i

R ------t R
Ii

513

With these two not ions of global dynamics defined for neural network s in
place, we turn our attention to automata networks .

Like cellu lar automata and neural networks, eac h au tomata network is
built on a digraph containing vert ices representing th e cells of the net work
and directed edges representing the links of the network. As in neural net­
works, this digraph can be qui te irr egular in structur e. T he pro cessor at
each ver tex is a finit e-st ate machine that takes it s inputs from it s neighb or­
ing cells at adjacent nodes in the network. Again, the network is assumed
to be locally finit e an d to have a countab ly infin ite number of cells . Also
for ph ysica l realizability, we assume that the cardinality of the state sets is
unifo rmly bounded . Hence one may assume th at each Qi is contained in a

. single finite state Q. Also assume that Q contain s a common qui escent state
denoted by O.

Assoc iate d to every auto mata network, there is a configuration space
TIi Qi consisti ng of all config urations (or total states, or state vectors] of th e
space. It is again homeomorph ic to the Cantor set [6 , p . 97] and will be
denoted by C.

An automata network operates as follows. Synchronously, the finite-state
machine M, occupying a vertex i of D looks up its input in the states
Xi" . . . , Xid its neighbo r cells and its own state Xi, then changes its state
acco rd ing to a prespec ified local dynamics 8i . Also , each 8i preserves qui ­
escent states , i.e., 8.;(0,0 , . . . , 0) = O. The automata network performs its
calculat ion by rep eatin g this atomic move any (possibly very large) number
of times.

These local funct ions induce a globa l dynami cs

T: C--,> C

T (x )i = 8.i (Xi , Xi" . .. , XiJ (2.5)

wher e i l , . . . , id are the cells adjacent to i , and Xj is the curre nt state of cell
J .

3 . R esults

The realizabili ty of a self-map of C as net -inpu t global dynamics is charac­
terized by the following theorem , which was pro ven in [2] for R a field . Th e
same proof ap plies to the slightly mor e general case stated next.



514 Max Garzon and Stan Franklin

T h eorem 3.1. A self-map T : C -> C is realizable as the net-input global
dyn ami cs of a neural network with activat ion func tions {Ii : R -> R} (where
R is a finite ring with uni ty an d each /;(1) is a unit) if and only if

1. T(O) = 0 ;

2. T is continuous;

3. T(ek
) has finite support for each pixel con figuration e"; and

4. T and {Id are related, for all Xj in R , by

Here ek denotes the pixel configuration with activation 1 at th e kth cell and
quiescent elsewhere.

While th e net- inp ut space of a neural network and it s associate d global
dyn ami cs are technically easier to handle, the act ivation space of the net work
and it s associa ted dynamics are more natural objects of st udy. On e normally
think s of the "curr ent configurat ion" of a neural net work as its vect or of
activa tion values at the given time. T he following theor em chara ct erizes the
realiza bility of self-maps of the Cantor set as activation global dynamics of
a neur al network. Again R is a finite rin g wit h uni ty.

Theorem 3 .2. A self-map T : C -> C is realizable over a finite ring R wit h
unity as an activation global dyn amics of a neural network if and only if

1. T (O ) = 0 ;

2. T is continuous;

3. T (ek ) has finite support for each pixel configuration e\ and

4. T = F 0 L , where L is a linear self-map of C and F is strictly local.

Here, F is strictly local if F (X)i = F( Xiei); for all x and i.

In this case, we say that such a self-map T is implement ed by or real­
ized on t he corres ponding net work. Note th at condition 4 holds wit h linear
activat ion map F if and only if T is linear.

In each of these two theorems, condition 1 disallows spontaneous gener­
a tion with in th e network. Condit ion 2 allows the recovery of th e underl ying
network st ruct ure. Condition 3 reflect s the local finit eness of the network.
Condition 4 mirr ors th e local dyn amics of the network. T hus , as one would
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expect, the first two condi tions are two of those from Richar dson 's theorem,
while the other two result from the less regular ty pe of architecture of the
net work and from the characteristic form of it s local dynamics. (It follows
from conditions 1 and 2 that the sum in the right -hand side of condition 4
in theorem 3.1 is finite.)

Theorem 3.2 makes it easy to find common self-maps of the Can tor set
that ar e not neurally computable. The mapping defined by T( x) = 1 - x
reflects the Cantor set about x = 1/ 2. It fails to satisfy condition 1. The
mapping defined by T(x) = 3x mod 1 simply shifts left the digits in the
ternary representation of x (except for x = 1/ 2, 2/3 , 1), then dropping the
left-most.' Since T is not cont inuous at x = 1/3 , it fails to sat isfy conditi on 2.
Finally, the self-m ap that converts from te rnary to binary represen tation of
points of the Cantor set fails to satisfy condit ion 3 since 1/3 is a te rnary pixel
1000... with an infinite binary represent ation 010101 . . ..

A char acterization of global dynamics of automata networks is given next .
Here we let C = ITiEV Qi be an encoding of the Cantor set . Each Qi is a fin ite
set of st ates contain ed in a common finite set Q and V is a countably infini te
index set.

Theorem 3 .3. A self-map T : C -> C is realizab le as the global dynamics of
an au tomata net work if an d only if

1. T (O ) = 0 ;

2. T is con t inuous;

3. ea ch j E V T- in fluences on ly fini tely many i E V.

Here j T-influen ces i (for i, j E V) if for some x E C there is some y E C so
tiJat Yk = Xk for 3011 l: differen t from j an d T (Y)i =I- T (X)i.

4 . Proofs

Proof of t heorem 3. 3. It is easy to see th at eac h of the th ree cond it ions
is necessa ry. The first is immediate since each S, sends quiescent input to
O. The cont inuity of T follows from th a t of each 7ri 0 T = Di since T is the
product of the Di. (Di can be considered to be a function on th e larg er domain
C by computing its valu e at an a rbit rary x E C by extending x to be quiescent
elsewhere.) For the thi rd condit ion no te that unl ess j is a vertex indexing
the domain of Di it cannot T-in fluen ce i. Since j has finite out-degree, it can
contrib ute to th e defini tion of only fini tely many such dom ains.

For th e sufficiency suppose th at T : C -> C satisfies the three cond it ions
under the encoding C = ITiEV Qi as above . Let V be the verte x set and Qi
the st ate set of th e ith finite-st ate machine.

1Recall t hat t he po ints in the Cantor set are precisely those rea l numb ers is th e unit.
interval that ad mit a ternary repr esentation conta in ing no 2s.
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The continuity of T will allow the recovery of the links between the ver­
tices in V, complet ing the underlying digraph. For each vertex i E V and
for each state q E Qi, let x i,q = {x E CIXi = q} . The set xi,q is both
op en and closed in the product topology. Since T is continuous T - 1(Xi,q) is
op en and hence the union of basi c open sets of C, i.e., sets that restrict onl y
fini tely many components. Since C is compact and T - 1(Xi,q) is closed , it is
the union of finitely many such basic open sets. Let V q,i be the set of ver­
tices indexing the restricted components. Assume also that each rest ricted
coordinate is necessary in the sense that making it unrest ricted would drive
it s basic neighborhood outside of T-1(Xi,q) . Let V i = u{vq,ilq E Q;} . For
each i E V, V i is a finite set . For each j E Vi include a link form j to i in
th e underlying digraph. T hus each i E V has finite in-d egree.

If j T-influences i, t here is an x E C satisfying the defining condition
above. If T(X) i = q, then x E T-1(Xi,q) , an d thus x belongs to some one of
th e finitely many basic neighborhoods covering T-1 (X i,q). If none of these
bas ic neighb orhoods restrict i , t he condition would be contradicted. Thus
there is a link from j to i. Likewise, if th ere is such a link , j E V q,i and
thus is res t ricte d in some basic neighborhood B ~ T-1( X i,q) . Any x E B
will serve to show that j T-influences i. T hus j T-influences i just in case
there is a link from j to i. T he third cond ition of the theorem now implies
that each vertex has fini te out-degree, and the underlying digra ph is locally
finite.

Ta ke V i to define the domain of Oi . Given any input states to i extend
them with zeros to a configuration x and define the value of S, to be T(x);. It
is eas y to see that the choice of x does not affect the value. This defines , for
each i, a finite-state mach ine in such a way as to yield T as global dynamics
of the network .

P roof of t h eor em 3.2. We first show the necessity of the four condit ions .
The first three follow immediately from theorem 3.3 since every neural net­
work is an automata network. For th e fourth condition, let L = net . L
is clearly linear an d T = F 0 L , where F is the product of th e act ivation
functions as defined above. One read ily checks that F is strict ly local.

For the sufficiency, suppose that the four condit ions are satisfied . Choose
a countably infini te set V to serve as the vertices of the und erlying digraph.
The cont inuity of T along with T( 0) = 0 provides the links in th e digraph
as in [2]. Links cons t ructed in this way yield a grap h of finit e in-degree. Con­
dition 3 impli es fini te out-degree, and thus the digr aph is locally finit e. To
complete ly specify the neural network, it remains to determine the weights on
the links an d the ac tiva tion funct ions. F will supply the activation functions
and L the weights. Define the weigh t on th e link from vertex j to vertex i
by Wij := L(ej)i' Finally, define the act ivat ion function for each vertex i by
l i(r ) := F(r ei);. Clearly Ji(O) = 0 by cond iti ons 1 and 4, so that each Ii
is an act ivat ion funct ion. H remains on ly to be shown th at T is th e global
dynami cs of this neural network. T he following calc ulat ion uses success ively
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the definit ions of Wi j and Ii, t he linearity of 1ri 0 L, an d the st rict locality
of F .

Ii [Z;> j(1ri 0 L(e
j
))]

Ii 0 1ri 0 L [;;= xje
j
]

1ri 0 F [ ( L ( ;;= xje
j
) ) i e

i
]

[F OL ( ;;= xjej) ]i

T ( ;;= xje
j
) i •

5 . Open problems

Clearly few neural networks are cellular automata, although both are par­
ticular cases of automata networks. Viewing the dyn amics of any of these
three types of networks as a self-map of th e Cantor set makes possible th e
comparison of their comp utational power. It is relati vely easy to show that
neural network s are at least as powerful as cellular automata [4]. T he most
interesting prob lem thus become s whether or not these three compu tational
models are equivalent in the sens e that they realize, or compute, the sa me
self-maps of the Cantor set.

A related problem that seems to be of fundamental impor tance in both
com pu ter science and cogn itive science is the encoding pro blem. Int uitively,
the images of a pat tern of ac tivation under various bijective (or just inject ive)
neurally computable maps are ju st enco dings of the given pattern . A first ste p
in characterizing ju st what tasks are computable by neural ne tworks would
be to det ermine equivalent reformulat ions (encodings ) of the given tas k. In
the view taken here, this prob lem precisely asks for a characterization of tile
bijective ne urally com putable self-maps of th e Cantor set.

A more general problem concerns a charact el'ization of injective global
dynamics and th eir relation to the class of sUl je ctive dynamics. It is well
known that for a cellular automa to n, injecti vity of its global dynamics aut o­
matica lly imp lies surject ivity [8].

The characterizations given abo ve of the neurally computable self-maps
of the Cantor set are st rongly dependen t on the encoding of C. It would be
of interest to find an enco ding-independent characterization of self-m aps of
the Cant or set .

Finally, the examples following theorem 3.2 suggest the following prob lem .
Consider self-m aps I of th e full real interval [0, 1]. Represent po ints in [0, 1]
by binary expansions, an d rega rd them as ternary represen tations of elements
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of the Cant or set . T hus f can be consid er ed as a self-map of the Cantor set.
Under t h is encoding, wh at ex actly are th e neurally computable fun ctions on
th e unit interval?
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