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Abstract. Determining just what tasks are computable by neural
networks is of fundamental importance in neural computing. The
configuration space of several models of parallel computation is es-
sentially the Cantor middle-third set of real numbers. The Hedlund-
Richardson theorem states that a transformation from the Cantor set
toitself can be realized as the global dynamics of a cellular automaton
if and only if it takes the quiescent configuration to itself, commutes
with shifts, and is continuous in the product topology. An analogous
theorem characterizing the realizability of self-mappings of the Cantor
set as net-input global dynamics of neural networks has recently been
established. Here we give a characterization of such realizability as the
more natural activation global dynamics of neural networks. We also
present such a characterization for realizability via global dynamics of
more general automata networks. This dynamical systems approach
to neural computing allows precise formulations of significant prob-
lems about the computational power of neural networks.

1. Introduction

Artificial neural networks (or connectionist models) [9], herein simply called
neural networks, are often thought of as models of massively parallel com-
putation. These neural networks can be naturally considered as dynamical
systems [2]. In this paper, we are concerned with which dynamical systems
can be realized by such neural networks. The motivation for this concern
comes from similar work in cellular automata [5, 8].

Deterministic cellular automata [10-12] can be viewed as discrete dy-
namical systems with local dynamics defined by a single finite state ma-
chine. This local dynamics induces a global dynamics, i.e., a self-mapping of
configuration (i.e., global state) space C. Since not all self-maps of C arise
this way, it is natural to ask what self-mappings of the configuration space
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arise (or can be realized) as the global dynamics associated with some cel-
lular automaton. This question is answered satisfactorily by Richardson’s
theorem [8]: it is necessary and sufficient for the mapping to preserve the
quiescent configuration O, to commute with all the shift operators on the
underlying cellular space, and, most importantly, to be continuous with re-
spect to the product topology on configuration space. A one-dimensional
version of this result follows from earlier work by Hedlund [5]. Since the
set of local states of a cellular automaton is finite and the number of cells
countably infinite, the configuration space in its product topology is home-
omorphic to the Cantor middle-third set of real numbers [6, p. 97]. Thus,
Richardson’s Theorem can be regarded as a characterization of the realiz-
ability of self-maps of the Cantor set in terms of the global dynamics of a
cellular automaton.

Synchronous, discrete neural networks can also be thought of as discrete
dynamical systems with their local dynamics defined by local, nonuniform
activation functions together with a local nonuniform input function consist-
ing of the weighted sum of input values. However, unlike cellular automata,
their local dynamics give rise to global dynamics both on the net-input space
and on the activation space of the network. It is natural to ask again which
self-maps of the net-input space or the activation space arise from such lo-
cal nonuniform dynamics. As before, it would be desirable to characterize
these self-maps in terms of a minimal set of global properties. Since neural
networks also have finitely many local activation values and countably many
cells, their net-input spaces and activation spaces are also homeomorphic to
Cantor sets [6, p. 97). Thus one may ask which self-maps of Cantor sets
are realizable as the global dynamics of some neural network. This ques-
tion has been previously answered for net-input global dynamics [2] (see
theorem 3.1 below). Here we provide an answer for the activation global
dynamics case.

Cellular automata and neural networks are each examples of a more gen-
eral kind of model, automata networks [3, 7]. The analogous question of
which self-maps of Cantor sets are realizable as the global dynamics of some
automata network is also answered.

Viewing the global dynamics of neural networks as self-maps of the Cantor
set leads to precise formulations of important problems about neural networks
which are posed in the last section.

2. Definitions

Intuitively, a neural network consists of cells (also called units, nodes, etc.) or
processors capable of some arithmetic, connected by links bearing weights .
Cells sum their weighted inputs and apply an activation function to calculate
their new activation state.

Formally, this means that a neural network is built on a directed graph,
i.e., a structure consisting of a set of vertices V' (representing the cells of
the network) and arcs (directed edges representing the links of the network).



Global Dynamics in Neural Networks IT 511

Each arc from vertex j into vertex ¢ is labeled with a weight w;;. In order for
the network to be physically realizable, each vertex must have only finitely
many incoming and outgoing arcs, i.e., the graph must be locally finite. In
order to have full computational ability (i.e., that of Turing machines [1])
neural networks must allow for an arbitrarily large number of cells. We
will simply assume a countably infinite number. To enable the necessary
arithmetic, we assume that all activation values and weights come from a
ring with unity. Thus, a neural network over a finite ring with unity R is
built on a countably infinite, locally finite, arc-directed graph D.

In addition to the ring R and the graph D, a neural network needs for
each cell 7 an activation function f; : R — R. We assume that each f; satisfies
f:(0) = 0 (in order to avoid spontaneous generation of activation) and that
fi(1) # 0 (to avoid trivial networks). In theorem 3.1 below we further assume
that each f;(1) is a unit in R.

The weighted sum of the inputs to each cell from its neighbors is given
by a function called net;, where ¢ is the index of the given cell. Thinking
of a neural network as a discrete dynamical system, at any time ¢t 4+ 1 (¢ a
nonnegative integer), the net-input at 7 is given by

net;(t+1) = Z'U)ijaj(t) (2.1)

where

a;(t) = fj(net;(t)) (2.2)

is the activation of the cell 7 at time ¢, and the sum is taken over all cells
j supporting arcs into ¢. These equations define the local dynamics of the
network.

There are two possible neural network analogs of the notion of a configu-
ration of a cellular automaton. One might look at the vector of all net-inputs
to individual cells during a particular time step, or one might choose the vec-
tor of all activations of individual cells during that time step. At a fixed time
t, the network has at each cell ¢ its net input net;(¢) and its activation a;(t).
The vector of net-inputs z has in its :th component the net-input x; = net,(é)
of the ¢th cell of D, a value from the ring R, and is thus a member of R".
(Recall that RV is the set of all functions from V to R, or the cartesian
product of R with itself the cardinality of V' times.) Similarly, the vector of
activations (a;(t)) is also a member of RY. In the following we will use C
to refer to activation space and call it the configuration (activation) space of
the network, and we will use RV to refer to the net-input space.

Each of these possibilities gives rise to its own global dynamics. At each
tick of the time clock, the current net-input vector changes, as does the
activation vector. These changes reflect the two distinct global dynamics of
the network.
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More formally, the family of functions f; mapping R into R gives rise to a
product function F': RY — C so that the following diagram commutes under
composition of functions:

F
RV — ¢
il L
R — R
I

where 7; is the projection from RY onto R. This means that for each cell 4
and each net-input vector =z € R, F(z); = fi(z:).

We are now able to define the net-input global dynamics Tyt : RV — RY
of the network. For any net-input vector z € RV put

Thet(z): = net;(F(z)) (2.3)

This gives rise to the following commutative diagram:

Tnet
RV — RY
F| L
C — R
neti

This global dynamics Thet describes the evolution of the entire network via
the net-input vectors.

In a manner similar to the definition of F' above, for each cell ¢, the net-
input function net; maps R into R. This family of functions gives rise to
a product function net: C — RV so that the following diagram commutes
under composition of functions:

net
¢ — RY
id | L
C — R
net,-

where m; is the projection from RY onto R and id is the identity map. This
means that for each cell ¢ and each activation vector z € C, net;j(z) =
mi(net(z)).

In an analogous fashion we now define the activation global dynamics
Tact : C — C of the network. For any activation vector € C put

Tact(x)i = fi(neti(x)) (2.4)
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This gives rise to the following commutative diagram:

Tact
c — C
net; | lm
R — R
b

With these two notions of global dynamics defined for neural networks in
place, we turn our attention to automata networks.

Like cellular automata and neural networks, each automata network is
built on a digraph containing vertices representing the cells of the network
and directed edges representing the links of the network. As in neural net-
works, this digraph can be quite irregular in structure. The processor at
each vertex is a finite-state machine that takes its inputs from its neighbor-
ing cells at adjacent nodes in the network. Again, the network is assumed
to be locally finite and to have a countably infinite number of cells. Also
for physical realizability, we assume that the cardinality of the state sets is
uniformly bounded. Hence one may assume that each @; is contained in a
single finite state ). Also assume that @) contains a common quiescent state
denoted by 0.

Associated to every automata network, there is a configuration space
[1; Q; consisting of all configurations (or total states, or state vectors) of the
space. It is again homeomorphic to the Cantor set [6, p. 97] and will be
denoted by C.

An automata network operates as follows. Synchronously, the finite-state
machine M; occupying a vertex ¢ of D looks up its input in the states

Tiy, ..., i, its neighbor cells and its own state z;, then changes its state
according to a prespecified local dynamics 6;. Also, each §; preserves qui-
escent states, i.e., §;(0,0,...,0) = 0. The automata network performs its

calculation by repeating this atomic move any (possibly very large) number
of times.
These local functions induce a global dynamics

T:C—=C

T () = Oel s fous vino 5 %iy) (2.5)
V.vhere i1,...,14 are the cells adjacent to ¢, and z; is the current state of cell
7-
3. Results

The realizability of a self-map of C as net-input global dynamics is charac-
terized by the following theorem, which was proven in [2] for R a field. The
same proof applies to the slightly more general case stated next.
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Theorem 3.1. A self-map T : C — C is realizable as the net-input global
dynamics of a neural network with activation functions {f; : R — R} (where
R is a finite ring with unity and each f;(1) is a unit) if and only if

1. T(0) = 0;
2. T is continuous;

3. T(e*) has finite support for each pixel configuration e*; and

4. T and {f;} are related, for all z; in R, by
T Exjej — Z MT(ej)i
j i j(l)

Here ¢ denotes the pixel configuration with activation 1 at the kth cell and
quiescent elsewhere.

While the net-input space of a neural network and its associated global
dynamics are technically easier to handle, the activation space of the network
and its associated dynamics are more natural objects of study. One normally
thinks of the “current configuration” of a neural network as its vector of
activation values at the given time. The following theorem characterizes the
realizability of self-maps of the Cantor set as activation global dynamics of
a neural network. Again R is a finite ring with unity.

Theorem 3.2. A self-map T : C — C is realizable over a finite ring R with
unity as an activation global dynamics of a neural network if and only if

2. T is continuous;
3. T(e*) has finite support for each pixel configuration €*; and

4. T = F o L, where L is a linear self-map of C and F is strictly local.

Here, F is strictly local if F(z); = F(z;e'); for all z and 1.

In this case, we say that such a self-map T is implemented by or real-
ized on the corresponding network. Note that condition 4 holds with linear
activation map F' if and only if 7" is linear.

In each of these two theorems, condition 1 disallows spontaneous gener-
ation within the network. Condition 2 allows the recovery of the underlying
network structure. Condition 3 reflects the local finiteness of the network.
Condition 4 mirrors the local dynamics of the network. Thus, as one would
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expect, the first two conditions are two of those from Richardson’s theorem,
while the other two result from the less regular type of architecture of the
network and from the characteristic form of its local dynamics. (It follows
from conditions 1 and 2 that the sum in the right-hand side of condition 4
in theorem 3.1 is finite.)

Theorem 3.2 makes it easy to find common self-maps of the Cantor set
that are not neurally computable. The mapping defined by T'(z) = 1 —z
reflects the Cantor set about z = 1/2. It fails to satisfy condition 1. The
mapping defined by T(z) = 3z mod 1 simply shifts left the digits in the
ternary representation of & (except for = 1/2, 2/3, 1), then dropping the
left-most.! Since T'is not continuous at = = 1/3, it fails to satisfy condition 2.
Finally, the self-map that converts from ternary to binary representation of
points of the Cantor set fails to satisfy condition 3 since 1/3 is a ternary pixel
1000. .. with an infinite binary representation 010101.. ..

A characterization of global dynamics of automata networks is given next.
Here we let C = [[;cv @; be an encoding of the Cantor set. Each Q; is a finite
set of states contained in a common finite set @ and V is a countably infinite
index set.

Theorem 3.3. A self-map T : C — C is realizable as the global dynamics of
an automata network if and only if

1. T(O) =0;
2. T is continuous;

3. each j € V T-influences only finitely many i € V.

Here j T-influences i (for 7,5 € V) if for some = € C there is some y € C so
that yx = xy for all k different from j and T(y); # T(z);.

4. Proofs

Proof of theorem 3.3. It is easy to see that each of the three conditions
is necessary. The first is immediate since each §; sends quiescent input to
0. The continuity of T' follows from that of each 7; 0o T = §; since T is the
product of the é;. (§; can be considered to be a function on the larger domain
C by computing its value at an arbitrary @ € C by extending 2 to be quiescent
elsewhere.) For the third condition note that unless j is a vertex indexing
the domain of §; it cannot T-influence 7. Since j has finite out-degree, it can
contribute to the definition of only finitely many such domains.

For the sufficiency suppose that 7' : C — C satisfies the three conditions
under the encoding C = [[;ey @; as above. Let V be the vertex set and Q;
the state set of the 7th finite-state machine.

IRecall that the points in the Cantor set are precisely those real numbers is the unit
interval that admit a ternary representation containing no 2s.
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The continuity of T will allow the recovery of the links between the ver-
tices in V, completing the underlying digraph. For each vertex : € V and
for each state ¢ € Q;, let X" = {z € Clz; = ¢}. The set X" is both
open and closed in the product topology. Since 7" is continuous 7'~ 1(X*?) is
open and hence the union of basic open sets of C, i.e., sets that restrict only
finitely many components. Since C is compact and T~1(X™?) is closed, it is
the union of finitely many such basic open sets. Let V% be the set of ver-
tices indexing the restricted components. Assume also that each restricted
coordinate is necessary in the sense that making it unrestricted would drive
its basic neighborhood outside of 771(X*?). Let V! = U{V%|q € Q;}. For
each i € V, V' is a finite set. For each j € V* include a link form j to ¢ in
the underlying digraph. Thus each ¢ € V has finite in-degree.

If j T-influences 7, there is an z € C satisfying the defining condition
above. If T'(z); = ¢, then z € T~(X"?), and thus z belongs to some one of
the finitely many basic neighborhoods covering T-1(X%?). If none of these
basic neighborhoods restrict 7, the condition would be contradicted. Thus
there is a link from j to 7. Likewise, if there is such a link, j € V%' and
thus is restricted in some basic neighborhood B C T~(X"). Any = € B
will serve to show that 7 T-influences :. Thus 7 T-influences 7 just in case
there is a link from j to ¢. The third condition of the theorem now implies
that each vertex has finite out-degree, and the underlying digraph is locally
finite.

Take V' to define the domain of §;. Given any input states to 7 extend
them with zeros to a configuration = and define the value of §; to be T'(z);. It
is easy to see that the choice of z does not affect the value. This defines, for
each ¢, a finite-state machine in such a way as to yield 7" as global dynamics
of the network.

Proof of theorem 3.2. We first show the necessity of the four conditions.
The first three follow immediately from theorem 3.3 since every neural net-
work is an automata network. For the fourth condition, let L = net. L
is clearly linear and T' = F o L, where F' is the product of the activation
functions as defined above. One readily checks that F' is strictly local.

For the sufficiency, suppose that the four conditions are satisfied. Choose
a countably infinite set V to serve as the vertices of the underlying digraph.
The continuity of 7" along with T(O) = O provides the links in the digraph
as in [2]. Links constructed in this way yield a graph of finite in-degree. Con-
dition 3 implies finite out-degree, and thus the digraph is locally finite. To
completely specify the neural network, it remains to determine the weights on
the links and the activation functions. F' will supply the activation functions
and L the weights. Define the weight on the link from vertex j to vertex 4
by w;; := L(e?);. Finally, define the activation function for each vertex 4 by
fi(r) :== F(re');. Clearly f;(0) = 0 by conditions 1 and 4, so that each f;
is an activation function. It remains only to be shown that 7' is the global
dynamics of this neural network. The following calculation uses successively
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the definitions of w;; and f;, the linearity of m; o L, and the strict locality
of F.

S [Z z;(m; o L(ej))]

fiomolL {Z xjejjl

(+(5=)) 4
rer(ze)]

= T (XJ: xjef) |

1

Il

mioF

5. Open problems

Clearly few neural networks are cellular automata, although both are par-
ticular cases of automata networks. Viewing the dynamics of any of these
three types of networks as a self-map of the Cantor set makes possible the
comparison of their computational power. It is relatively easy to show that
neural networks are at least as powerful as cellular automata [4]. The most
interesting problem thus becomes whether or not these three computational
models are equivalent in the sense that they realize, or compute, the same
self-maps of the Cantor set.

A related problem that seems to be of fundamental importance in both
computer science and cognitive science is the encoding problem. Intuitively,
the images of a pattern of activation under various bijective (or just injective)
neurally computable maps are just encodings of the given pattern. A first step
in characterizing just what tasks are computable by neural networks would
be to determine equivalent reformulations (encodings) of the given task. In
the view taken here, this problem precisely asks for a characterization of the
bijective neurally computable self-maps of the Cantor set.

A more general problem concerns a characterization of injective global
dynamics and their relation to the class of surjective dynamics. It is well
known that for a cellular automaton, injectivity of its global dynamics auto-
matically implies surjectivity [8].

The characterizations given above of the neurally computable self-maps
of the Cantor set are strongly dependent on the encoding of C. It would be
of interest to find an encoding-independent characterization of self-maps of
the Cantor set.

Finally, the examples following theorem 3.2 suggest the following problem.
Consider self-maps f of the full real interval [0,1]. Represent points in [0,1]
by binary expansions, and regard them as ternary representations of elements



518

Max Garzon and Stan Franklin

of the Cantor set. Thus f can be considered as a self-map of the Cantor set.
Under this encoding, what exactly are the neurally computable functions on
the unit interval?
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