
Complex Systems 4 (1990) 519-541

Learning by CHIR
without Storing Internal Representations

Dimitry N abutovsky
Tal Grossman

E ytan Domany
Department of Electroni cs, Weizmann Instit ute of Science,

Reliovot 76100 Israel

Abstract. A new learning algorithm for feedforward networks, learn­
ing by choice of intern al represent at ions (C HIR), was recently intro­
duced [1,2]. W hereas many algor it hm s red uce th e learning proce ss to
minimizing a cost function over t he weights, our method treats th e
internal representations as the funda ment al ent it ies to be determi ned.
T he algo rithm applied a sea rch procedure in the space of intern al
representations, together wit h coop er ati ve adaptation of the weights
(e.g ., by using perceptron learning). Tentative guesses of the in ter­
nal representations, however , had to be sto red in memory. Here we
present a new version , CHIR2, which eliminates the need to store in­
ternal repr esent at ions and at the same time is fast er than the original
algo rithm . We first describ e a basic version of CI-IIR2, tailored for
networks wit h a single output and one hidden layer. We tested it on
three problems - contiguity, symmet ry, and parity - and compared
its performan ce wit h baekpr opagation. For all these pr oblems our
algorith m is 30- 100 times faster th an backpr opagation , and , most sig­
nifican tly, learning time increases mor e slowly with system size. Next,
we show how to modify the algori thm for networks with many out­
pu t uni ts an d more t han one hid den layer. T his version is tested on
the combine d pa ri ty-l-symm etry problem and on the rand om asso ci­
ations task . A third modification of the new algori thm , suit able for
networks with binary weights (all weight s and thresholds are equal to
±1) , is also described, and t ests of it s performance on the parity and
the ran dom teacher problems are repor ted .

1. Introduction

Studies of different learni ng a lgorithms for feedfon va rd neural networks con­
sti t u te a very active and interes t ing field of resea.rch on co nnection ist models .
The sim p lest im plement a t ion of such a network is the sing le- layer perceptron

© 1990 Complex Systems Publications, Inc.

520 Learning by OHm

int rodu ced by Rosenblatt [3], who also proposed a learn ing algorit hm that
was guaranteed to converge to a solut ion (if one existe d). A related learning
ru le was intro du ced by W idrow and Hoff [4]. However , Minsky and Pap ert [5]
have demonstrated that simple single-layer perce pt rons have very limited ap­
plicabi lit y. On the other hand , it is known that multi layer percep t rons can,
given a sufficient numb er of uni ts, realize any binary inpu t- ou tput relat ion
(predicate) . Backpr opagation is a learni ng algorithm for mult ilayer percep­
t rons, proposed [6] an d more recently investigated by several groups [7,8].
It uses b asic un its with conti nuous variables and a smoot h sigmoid input­
ou tput response fun cti on . An error funct ion , which measur es t he deviat ion
of actual from desired ou tput , is minimized by the algorithm. T here is no
convergence theorem for backpropagation: like any minimi zation procedure,
it may find a local minimu m th at doe s not corre spo nd to a solut ion . Try­
ing to avoid thi s pro blem , by using simulated annealing [9], for example, is
ex tremely t ime-c onsuming .

Grossman, Meir , and Domany introduced an algorithm for net works wit h
binary valued neurons and a single hidd en layer , which learns by choosing
internal represent at ions (CHIR) [1] . CHIR shifts the emphas is of the learni ng
pro cedure from adjusting weights to finding good internal repr esentations
(i .e. , t he states taken by the hid den layer in response to a pr esented input) .
T his basic idea was subse quentl y adopte d and extended by various gro ups .
It was incorporated in pr ocesses that minimize cost funct ions (over intern al
representations) for networks wit h cont inuous [10] as well as discrete [11]
variables. CHIR was also modified to treat mul t iple outputs and more than
one hid den layer [2] and networks with bin ary weight s [12].

T he idea of manipulati ng intern al representat ions, to be followed by ad­
justi ng weights, was ado pted also by groups [13] that study the problem of
learn ing in networks with flexible architect ures . It should be noted that these
algorit hms use a "global control," that is, they need a unit th at "knows" the
state of all neurons, all weights, and the learni ng process requ ires add ing an
uncont rolled numb er of new neurons.

CHIR, on the other hand, works for perceptrons wit h a fixed architecture,
does not use "global cont rol," and does not change th e numb er of neurons
duri ng learning. CHIR (and its variants) outperforms backpropagation , bu t
needs an ex t ra memory of PH bits, where P is the numb er of patterns in
the training set and H is the number of hidden un its. T his need ar ises since
CHIR learns th e weight s by th e perceptron learning ru le (P LR). To adjust
a weight Wij by thi s method , one must know th e st at e of the source neur on
j and the desired state of th e target neuron i . T he corr ect states of th e
hidden layer (i.e., t he intern al representations) are not known. When CHIR
learns the weights that conn ect th e hidd en layer to the output , the cur rent
guess for the internal represent at ion can be genera ted simply by pr esent ing
an inpu t to th e network . T his is not so in th e part of the CI-I IR pro cess t hat
learn s the weights connecting the inpu t to the hidden layer. In th is par t ,
t he intern al repr esentations cannot be recovered simply, using only sto red
weights . T he refore CHIR st ores a table of the "curre nt guess" for intern al

D. Nabutovsky, T. Grossm an, an d E. Dom any 521

(2.1)

represent ations . T his table is mo dified duri ng the learning pro cess. The need
to store the entire table of internal represent atio ns makes CHIR biologically
implausible and may be practi cally limiting.

In this paper we introduce a method for learning by choosing internal
representat ions without storing them. T he cent ral idea is to pr esent the
t raining set patte rn by pattern and, if the answer is wrong, to change the in­
ternal representation of th e curren tly present ed pat tern by changing weights.
T his ensures that even though only cur rent weights are store d, the internal
representat ion can be retrieved .

We may, however , introduce errors into this retrieval process , since the
curre nt change of weights may affect the internal repr esentations of some
pr eviously t reated pattern. We t ry not to disturb the internal representation
for other patterns, by using a minimal dist urbance principle. It is related
to the MRII algorit hm of Widrow and Winter [14] and to the one use d by
Mitchison and Durbin [15]. The main conceptual difference is that all these
algor it hms cha nge weights in a favorabl e dir ection, without ensur ing that the
int ernal rep resentation actua lly changes, whereas we change weights so that
the internal rep rese ntation for the currently presented pattern is cer tainly
modified . Another important difference is a defini tion of minimal distur­
ban ce. In references [14,15], minimal disturbance means a minimal changing
of weights, whereas in our pro cedure it defined as a minimal probabili ty to
change an in ternal representa tion for a random pattern .

The outline of this pap er is as follows. In sect ion 2 we describ e the
algor it hm; a brief ou tline of th e st rategy is followed by a det ailed presenta­
tio n of th e single-output version. In sect ion 3 we report tests of its perfor ­
mance on the standard benchmark pro blems of cont iguity, symmetry, an d
pari ty. Sect ion 4 describes a generalized version of an algorithm, suitable for
multiple-output (and multilayered) ne tworks. In secti on 5 we further modify
the algorit hm so it can t rain ne tworks with binar y valued weights . T hese
versions are also tested and th e results are presented. Finally, our work is
summarize d and discussed in section 6.

2. Description of th e algorithm

Consider a two-layer perceptron , with N input , H hidden , and 1 output un it
(see figur e 1). The elements of net work are bin ar y linear th reshold un it s,
whose st ates are det ermin ed according to

N

s, = signXi , Xi = L WijSj

j=O

H

S = signX, X = L WiSi
i=O

(2.2)

Here Wi j are weights assigned to connections from inp ut to hidden layer, the
weight ItVi connects hidden unit i to the output. W iO an d I,Vo are , resp ectively,

522 Learning by CHIR

1 output unit

H hi dden units

N input units

Figure 1: Feedforward network with layered architect ure. State of cell
i at layer l + 1 is determined by the sta tes of layer l , Input patterns
are presented to a bottom layer, output is read out from the top.

biases of the hidden and ou tp ut units, with So = 50 = 1. For i > a the
variables s;/5;/5 denote the states taken by the inpu t /hidden/ output units.
During a t raining sess ion, the inpu t units are set in anyone of f.L = 1 .. . P
patterns , i.e., Sj = e:. In a typical task for such a network, P specified
answers , 51-' = ~ I-' are requ ired in response to the P input patterns .

2.1 A sh ort d escrip t ion of the algorithm

T he learni ng process (desc ribed in det ail in sect ion 2.2) starts out by set t ing
ui, an d W i j randomly. We adopt the basic st rategy of CHIR, in that our
proce dure alter nates between two learning st ages:

Learn23 The hidd en layer serves as sour ce, and th e output as the target
unit of the perceptr on learning rule (PLR) , used to learn the Wi' For
this stage, storage of the intern al representat ions is not req uired . For
fixed W i j we present a patt ern f.L as input (i.e., set Sj = en. T he re­
sult ing state of the hid den layer , as ob tained from (2.1), is the internal
representa tion of pat tern It. T his spec ifies the state of the source uni ts,
used by the P LR to search for appropriate weights Wi , to obtain the
desired ou tputs 5 = ~I-' . If t he PLR find s such Wi, we stop; the com­
plete learni ng pro blem has been solved . Otherwise we stop after 123

D. Nabutovsky, T. Grossman , a.nd E. Dom any 523

learning sweeps, keep the curre nt weights , and turn to t he next stage,
Iearn12 .

Lear n1 2 While the current values of Wi remain fixed , apply a learning pr o­
cess to Wij. Using the PLR at this state is problem at ic, since only the
states of the source units, i.e., the input of network , is known. T he
correspo nding target state (of the hid den layer) is not known . CHIR
overcomes this problem by storing the curren t guess for the internal
represen tations of all pat terns in the tr ain ing set . This is the storage
requirement that we succeed in eliminat ing in the pr esent pap er. Here
we learn the W i j by presenti ng the tr aining set sequ entially, pattern by
pattern. If we get a wro ng an swer, we choose a hidden neuron that gives
a wrong cont ribution to the field act ing on the output unit. This neu­
ron is chosen according to a min imal disturbance principle, described
in the next sect ion. T he state (± 1) of this unit (ob tain ed in response to
the current input) is flipped by modifying the weights Wij incident on it ,
using an Abbott-Kepler linear ru le [16], which ensures that the inter­
nal representation is actually changed . Note that the main difference
between th e present algorithm and CHIR is that here the intern al rep­
resentat ion is modified during the pro cess of learn ing the weights W ij .

We period ically check whether the ne twork has achieved error-free
perform an ce for the entire training set; if it has, learn ing is completed
and a solution of th e problem has been found . If no solution has been
found afte r 112 sweeps of th e t ra ining set , we abort the learn1 2 stage,
rest ar t th e cycle with learn 23, and so on .

2.2 D et a il ed d escription of the algorith m

Initialize - 1 < W i , Wij < 1 randomly, and normalize:

w.- W i..- V'LiW? (2.3)

Learn23: We attempt to find a solut ion for an existing intern al represent a­
tion . Tr aining patterns are pr esented sequent ia.lly. For every tr ain ing pattern
5j = e; we determine the states of th e hidd en an d output units, S, and S,
a.ccording to (2.1,2.2), and change th e weights TtV; (see figur e 1) using a per­
ceptron learni ng rul e:

!:::.H! = _7)_ . 1 - S!I~iJ. . ~iJ.St
• H + 1 2

(2.4)

where ~ iJ. is th e desired output for pat tern It , H is the number of hidden
uni ts, 7) > a is a step size par ameter. Note that th e PLR modifies weights
only when pr esen tation of input It pr oduces an erro neous outp ut SiJ. =f ~ iJ..

When tha t happens, each TIV; is changed, in a I-Iebbi an fashion, toward val ues
that correct the error . After every learning step we norm alize accord ing to
equation (2.3) .

524 Learning by CHIR

Aft er every complete sweep of the t rai ning set we ensur e that the out­
put S actually depend s on the intern al representati on, that is, that IWol <
2::i>0 IWi!. If t his is not satisfied , we set Wo := WI- 2::i>0IWil·

If a solution is found , we stop . Otherwise we stop after 123 learn ing
sweeps, keep the curr ent weights, and go to the next st age.

Learn12: In this stage we try to learn the Wij for fixed Wi. Again , we
pr esent input patterns fl one by one and for every pattern det ermine S, and
S according to (2 .1,2.2). If the resulting output S equals the desired output
~ f.L , pr esent the next pattern. If, however, S = _~f.L , we choose one of the
hidden neurons i, an d change it s incident weights and thresho ld. To decide
whi ch neuron to select , we first check how flipping its state (i.e., Sf --t - Sf)
affects the field that acts on the output uni t , XI' = 2:: WjSj. Since the
output for pat tern fl is wrong, X I' has the wrong sign. Flipping the st ate of
some hidden un its will pu ll XI' in the right direction. These hidden un its are
the can didates from which we select the one to be flipp ed. Once we decide
on this unit i, we change its incident weight s Wij to an extent that ensures
that when input fl is pr esent ed , the sign of unit i will be th e opposite of what
it was before. In ord er to achieve this, the size of /::'Wij must be large enough
to flip the sign of the field incident on i , X; = 2::j Wij ~j . Hence the size
of our learning st ep mu st increase with IX;I (see equation 2.6 below). One
sho uld bear in mind, however , that changing Wij may induce an err or to the
response to a pattern that was presented pr eviously, by affecting its intern al
representation . To minimize th e nu mb er of such occurrences, we select the
neuron i according to a minimal disturbance principle.

References [14,15] also use such a princ iple, but they aim at generating
minimal change of weights, (/::'Wi)2 . We, on the ot her hand , define as minimal
disturbance a learn ing st ep that minimizes the probability to change the
in ternal representation for a random input pattern, si = ±1 . For N ~ 1
such a pattern generates on hidden un it i a normally distributed field, with
mean (Xi) = 0 an d variance (T2 = 2::j W;j'

Simi larly, the change of input field , /::, X [, induced by a PLR st ep (which
was taken in response to t raining pattern fl) , is normally distr ibu ted with
mean 0 and st andard deviat ion

Since th e ran dom patte rn r an d the training pattern fl are not corre lated ,
clearly X [and /::, X [are also uncorr elated, an d it is easy to see th at minimal
disturban ce mean s minimal [(/::,Wi)2j/ (tvl).

Suppose now that all w's are norm alized . Then th e minimal dist urbance
pr inciple mean s just a min imal (/::'Wi)2. As explained above, th e size of our
learning step I/::'w;j increases wit h Xi , minimal lzx tzl.] means also minimal Xi,
i.e. , unit s with minimal input field to be chosen to learn .

In this sense our minimal disturbance pr inciple is similar to that applied
in [14,15]. However , equivalence of th e lat ter to our pro ced ure holds on ly
if the weights are indeed norm alized, which, apparently, is not done by the

D. Nabutovsky, T. Grossm an, and E. Domany 525

above-mentioned methods. Note that choo sing the neuron to be modified
on the basis of small field , without normalizing the weights, may cause an
instability that can give rise to exponent ial decrease of the weights incident
on some neurons. The reason is that appli cation of the perceptron learn ing
ru le to neuron i may decrease it s inci dent weights W i j' If, however , WTj

becomes smaller, we are mor e likely to pick neuron i again as the one that
causes minimal dist urbance, and so on . Decisions based on the size of Xi
make sense only if normalization is included in the procedure.

In practice we choos e stochastically the neuron whose weights ar e to be
modified . That is, t he probability of neuron i to be chosen is given by

f) (- W;SiS)e- t3IXil

Pi = Lj f) (- WjSj S)e- t31 Xjl (2.5)

where the f)- funct ion in the numerator ensur es th at we flip only units that
pu ll the output in the wrong direct ion. fJ is an inverse-temperatur e-like
parameter that det ermines how often (2.5) choos es a neuron whose input
field IXI is not minimal. The probabili ty of such an event becomes smaller
as fJ is increased. When fJ -+ 00, (2.5) always chooses the best neuron
according to the minimal dist ur bance pr inciple, but sequ ential presentation
of patterns may cause such a det erministic algorithm to enter a cycle . Such a
cycle may occur when there ar e only a few errors to be corrected, e.g., when
two patterns alternate in changing the same hidden unit ba ck and forth .

Vie choose fJ to equal N ero the number of erro rs in the last sweep. This
means that when there are many errors we usually follow the minimal distur­
bance pr inc iple. But , on the other hand, when N err is small, there is a better
chance to choose a neuron whose IXi I is not minimal. This is the minimal
stochasticity needed to avoid cycles. Note th at initially Nerr is large, and
it decreases duri ng learning. Hence our process realizes a spe cific heating
sched ule, as the effecti ve temperature T = 1/ fJ in creases in the course of
learning.

Once neuron i has been chosen according to (2.5) , the weights W ij are
cha nged. As stated abo ve, th e change has to be large enough to flip the
intern al representation for the cur rently pr esented pattern. This can be done
using an Abbott-Kepler linear ru le [16]:

IXil > k
IXil <» (2.6)

where k is another arbitrary (small) parameter . Finally, we norm alize (lUi)
according to (2.3), for the reason s described above.

This st age is complete d when a solut ion is found. If no solut ion has been
found aft er 112 sweeps of th e training set, we abort this stage and return to
learn 23.

T his is a fai rly comp lete account of our proced ure. There are few details
th at need to be added .

526 Learning by CHIR

2 .3 Choice of parameters

This algorit hm has five ar bit rary parameters:
The impatience param eters 112 (123) are int ro duced to guarantee that

the learn12 (learn 23) stage is aborted if no solution is found. This is nec­
essary since it is not clear that a solution exists for the weights, given the
intern al representati on used . The parameters have to be large enough to
allow learn12 (learn 23) to find a solut ion (if one exist s) with sufficiently high
probabi lity . On the other han d , too large of values are wasteful , since they
for ce the algorithm to execute a long search even when no solution exists .
Therefore the best values of the imp ati ence parameters can be determined
by optimizing the performance of the netwo rk; our experience shows, how­
ever, that once a reasonab le range of values is found, performan ce is fairl y
insensiti ve to the pr ecise choice.

The step size parameter." from (2.4), 0 < ." < 2 was always chosen to be
0.234. The algorithm is quite insensit ive to the pr ecise choice of .", as long
as it is not very large. Choosing very sma ll ." means simply that we mu st
increase 123 ,

The stochasticity parameter (3 in (2.5) , which was used in all the experi­
men ts reported here, was chosen to be Ner r as explained in 2.2. Alt hough this
"heat ing schedule" proved to be the most efficient in most of these expe ri­
ments, ot her choices for (3 (e.g., constant (3) were also tested and functioned
quite well.

The A bbott-Kepler param eter k from (2.6) was usually chosen as k = 0.2,
and in some experiments was set to k = O. T he upda ting scheme (2.6)
it self is not an essential ingredient of the algor ithm. It can be rep laced
by other updating rules without a significant change in the performanc e.
The impor tant thing is to ensure that the state of the chosen hidden un it
will be changed . For this purpose one can use for example rul e (2.4) , wit h
." = (1 + E)IX I.

3 . P erformance of the CHIR2 a lgor it h m

The task of learn ing in the typ e of networks we have be en discus sing is to
prod uce coupl ings and th resholds that yield the desired input-output rela­
tion s. In our algorit hm, as in many ot hers, there are several parameters that
affect the pe rformance. For a specific learn ing task and a set of par ameters
(denoted by A), complete characterization of the learn ing algorithm's perfor­
mance is given by P(t , A), the probab ility th at the algorithm finds a solut ion
in less than t "time" steps . One can est imate this fun cti on by plot ti ng the
distribution histogram of the "time" needed to reach a solut ion (see figure 2) .
T his can be obtained by performing the learning pro cess many t imes, each
run starti ng with differen t initial weights . For any pr act ical application of
a learni ng algorithm, a t ime limit must be extern ally spe cified . Thus , a
quant ity of interest is the probability of an algor it hm to converge wit hin the
given ti me limit . Of cour se when the success rate is 100%, th e calcula t ion of
average learning time is sufficient.

D. Na butovsky, T . Grossman, and E. Domany 527

f
0 .4

0.3

0 . 2

0 .1

50 100 150 200
Number of sweeps

250

(3.1)

Figure 2: Parity: Histogram of th e numb er of training sweeps for 7­
14-1 network . The fraction of cases solved within each tim e interval
f versus the number of sweeps of the training set . vVe present results
for Iss = 7, I12 = 60, 1] = 0.234, k = 0.2.

The question now arises as how to measure t ime in our (and similar)
algorit hms . Since learn ing usually t akes place by presen ting the network
with patterns to be learn ed , a possible defin it ion of "t ime" is just t he numbe r
of times the training set has been pr esented . In ou r algorithm, t here are
I 12 + I 23 such pattern presentation sweeps in each training cycle. One should
rememb er , however , that various algorit hms perform differen t computations
during each presentation, an d therefor e this characteriza tion is not th e best
pos sib le. However , it does eliminate the need to introduce ad -ho c measures
t hat m ay bias t he resu lt in var ious ways.

Since, however , learning algorithm s some time s do not con verge to a so­
lu tion wit h in the specified t ime limi t , the question arises how to take t his
fact in to acco un t in eva lua ting perfor man ce. Clearly , calcula t ing averages
(and in general high er moments) th a t take into account only the cases where
the algor it hm succeeded in findin g a solution is not sati sfactory. Another
po ssib ilit y is to ca lcula te the inverse averag e rate T , defined in [17] as

1
T=01

whe re

Ti = { ~/ ti if run i is success fu l
other wise

(3.2)

528 Learning by CHIR

In (3.2), t, is the time needed to solve the pro blem , i.e., the total numb er of
pattern pr esentations , as discussed above. Such a measur e will be dominat ed
by the sm all, lucky runs, even when they are rare; the penalt y for long
unfruitful search is small. In what follows we call "successful runs" only
cases in which the learni ng algorithm found a weight vector that gives a
100% performance on the tr aining set and within a given t ime limit , tm ax

(the maximal number of training sweeps). It seems to us that a bet ter
charact erization of the succes s of the algorit hm is t he m edian time t aken to
solve t he problem . T he median measur es the t ime needed for a success rate
of 50%. However , a success rate of at least 50% is required . In all cases below
we really had success rates of more than 50%. The success rate is simply
defined as the fracti on of successful ru ns.

Turning now to describe our result s, we present our findings for three
problems.

3 .1 Contiguity

This exte ns ively studied problem [1,8,18] is suitable for a network that ma kes
bin ary decisions ; a st ring of N digit s is pr esented t o the input layer , and the
system has to dist inguish between inputs according to the number of clumps
(i.e., cont iguo us blocks) of + l 's . T his problem has a simple "human" or geo­
metric solution, based on edge det ectio n. When the net work receives "hints"
in the form of spatially limited recept ive fields of the hidden units, learning
t ime decreases significant ly [8,18]. Here we report resul ts obtained for the
harder problem of fully connected networks using an exhaus tive set of inputs
as the t raining set. We wanted to compare pe rform ance of CHIR2 , measured
as expla ined above, wit h backprop agation an d with CHIR . In par ti cular , we
were interested in the manner th at learning time scales wit h the prob lem
size ,

We tr ained t he network to solve th e "2 versus 3" clump s pr edi cat e . For
this problem we used all poss ible inputs that have 2 or 3 clump s as our
train ing set. Keeping N fixed , we var ied H and plot ted tm , the median
number of training passes needed to learn , as a fun ct ion of H in figur e 3.
We used 100 cases for each data po int at 5 :::; N :::; 7 an d 50 cases for
N ~ 8. For compari son we present results obtained by CHIR along with
result s reported by Denker et al. [18], who studied the same prob lem using an
efficient cost function for backpropagation. First we note that our algorithm
learn s 20-40 t imes faster than backpropagation and about 10 ti mes fast er
than CHIR. More importan t is th e depen dence of t-; on H. Our algorithm
exhibits decrease of tm wit h increasing H ; adding (pos sibly unn ecessary)
hidden uni ts does not hind er learning. Backpropagation exhibits increasing
t", with hid den layer size.

To fur th er investi gate the size dependence we also st udied the 2-versus-3
predicat e for networks wit h N = H units, in the range 5 :::; N :::; 10. We
always found a solut ion, tha t is, the success rate was always 100%. Results
for the median number of passes needed to solve are given in figur e 4.

D. Na but ovsky, T. Grossm an, an d E. Dom any 529

+ -BP

x - CHI R

102 0 - CHI R2

o 2 4
H

6 8 10

Figure 3: 2 versus 3 clumps p roblem: Median number of sweeps tm ,

needed to train a network with N = 6 input units , over an exhaust ive
training set , plotted against the number of hidden units H . Results
for backpropagation (+) [18], old CHIR algorithm (x) [1], and this
work (0) are shown. Th e parameters used were h 3 = 1,112 = 15,
TJ =0.234, k =0 (see section 2.3).

3 .2 Symmetry

The seco nd problem we invest igated was sym m etry [19]. Here the outp ut
should be 1 if the inp u t pat tern is symmetric around it s center and - 1
otherwise. T he minimal number of hid den layer uni t s need ed to solve this
prob lem is H = 2.

vVe pr esent in figure 5 the median nu mber of pat tern presenta t ions needed
to solve t he problem as a functi on of N , the number of inpu t units . The n um­
ber of hidden units was fixed at H = 2. T he sys tem was traine d over the
complete se t of 2N in pu ts patterns, and the results were averaged over 100
cases . It is interesting tha t for CI-IIR2, a t lar ge values of N, the median
leaming time becom es indepen den t of N (a nd equals 11 ± 1), whereas both
for an old vers ion of the CHIR algorithm and for backpr opagati on learning
tim e increases with N very fast . In [19], R um elhar t et al. repor t t ha t back­
propaga t ion found a solut ion afte r 1208 learni ng ste ps, and in [6], aft er l L125
steps . Even if t hese are typ ical results (which is unl ikely), our algorith m is
100 times fast er t han backpropagation for N = 6. Of cour se, this ra tio in­
creases with N . It is also inter est ing tha t the success ra te, shown in table 1,
in creases wit h N for N > 2. The reason is that at lar ge N mo st (1 - 2- N

/
2

)

530 Learning by CHIR

N
Success rate

Table 1: Success rat e for the symmet ry problem with N : 2 : 1 ar chi­
tecture (tm ax = 50).

desired answers are - 1. In such a case the internal representa t ions that m ap
onto - 1 as output contain 3 (of the possible 4) points , and hence the output
must represen t an AND-like function, which is found with a high succ ess
rate .

3.3 P a r ity

In t he parity problem on e requires S = 1 for even numbe r bits in t he inpu t,
and S = - 1 otherwise. T his problem is com putationally h ard er than the
prev ious two, since the ou tput is sensit ive to a change in the state of any
single input un it . In order to compare performance of our algorit hm to that
of b ackprop agation (BP), we st udied t he parit y problem, using networks with
an architect ur e of N: 2N : 1, as chosen by Tesauro and J anssen [17J.

+-BP

103 x - CHIR

o - CHIR2

4 6
N

8 10

Figure 4: 2 versus 3 clumps problem : Median number of sweeps tm ,

needed to train a network with N input and H = N hidd en units,
over an exhaustive training set , plotted against the number of input
units N . Results for old CHIR algorit hm (x) [1] and this work (0)
are shown. vVe present result s for I) = 0.234, l: = 0.2.

D. Na butovsky, T. Grossman, and E. Dom any

+

531

+ - BP

x -CHIR

o -CHIR2

o 2 4
N

Fig ure 5: Symmetry p roblem : Median number of sweeps t« , needed
to t rain a network wit h N input an d H = 2 hidden uni ts, over an
exhaustive t raining set , plotted against the nu mber of input units N .
Results for backpropagation (+) [19], old CHIR algorit hm (x) [1],
and this work (<» are shown .

N Med ian Average Inv. Rate T tmax (/23, 112) # of expe riments
2 6 6 6 15 (2,5) 100
3 7 8 8 20 (3,10) 100
4 10 13 11 40 (4,20) 100
5 16 20 15 120 (5,40) 100
6 31 42 27 180 (6,50) 100
7 53 63 42 250 (7,60) 100
8 130 130 80 400 (8,100) 50
9 210 240 150 500 (9,120) 35

Tabl e 2: Parit y with N : 2N : 1 architect ure . The success rate was 1
for all expe rime nts . Par am eters: k = 0.2, 7] = 0.23/1.

532 Learning by CHIR

T

+ -BP

103 x - CHI R

<> - CHI R2

o 8
N

10

Figure 6: Parity probl em: Median number of sweeps t« , needed to
train a network with N inpu t and H = 2N hidden units, over an
exhaust ive trai ning set, plotted against the number of input units N .
Results for backpropagation (+) [17], old CHIR algorithm (x) [1],
and tills work (0) are shown. The point N = 8 uses 50 cases; others
use 100 cases. 'I] = .234, k = 0.2. See table 2 for more information.

For th is problem, at lar ge N our algorit hm is 40 times faster than BP. The
results are presented in figure 6 an d in table 2. For the sa ke of comparison
with BP, we also present th e pe rformance criterion used by Tesauro an d
J anssen [17]: the inverse average rate T, defined in equat ions (3.1,3.2). For
all choices of parame te rs (112, 123) that are mention ed in the tabl e, our success
rate was 100%. Namely, the algorithm did not fai l even once to find a solution
in less than th e maximal number of training sweeps t m ax , as specified in the
table. Note that BP does get caught in local minima, but th e perc entage of
su ch occurrences is not reported. In addition to inverse rate, we give also th e
average and the median num ber of presentations needed for learn ing. W hen
compared wit h a new and improved version of BP [20], which is tested on
the sa me problem wit h N = 2, 3,4, CHIR2 is mor e than 4 times faster.

When H = N (inst ead of 2N), the problem becomes m uch harder. In
fact , N is the minimal number of hidd en uni ts needed to solve the problem.
Perfor mance of the algorithm for this ar chitecture is given in table 3. The
succes s rate here is lower , as shown in th e table.

D. Na but ovsky, T. Grossm an , and E. Dom any 533

N Median Inv. Rate T Success rate trn a x (123,]12) # of experiments
3 25 18 0.95 500 (2,10) 100
4 67 45 0.99 1000 (3,20) 100
5 374 90 1.00 3000 (4,4 0) 100
6 1500 330 0.88 6000 (5,60) 50

Table 3: Parity with N : N : 1 architectu re. Parameters: k = 0.2,
7J = 0.234.

4 . Multiple-output CHIR2

In the pr evio us sections we describe d the bas ic ver sion of CHIR2. That
version is tailor ed for a sing le-out put network . In this sect ion we present a
way to gener alize the algorithm, so that it can train networks wit h many
outp ut un its and more than one layer.

4.1 D escription of t he m u lt ip le -o utput algorithm

It is clear that when gener alizing the sing le-output CH IR into a multiple­
output algor it hm, we must change the way we choose the hidden unit to be
flippe d, in the learn12 procedure. The learn 23 procedure works as before, by
applying the PLR (or any single layer learning rule) for each of the ou tput
uni t s independently.

Here, as in the single-out put vers ion , the learn 12 proc ed ure presen ts each
pattern to th e in put , an d the out put of the net work is evaluated . If t he
output is correct, no chang es are made. If, however , th ere is an err or , i.e., at
least one bit is wrong, one of the hidden units is selected , and it s incoming
weights are updat ed in such a way that its state flips it s sign.

Wi th one output un it , it is always possible to identify a hidd en unit
whose contribut ion to the output field is "wrong ." When we have more th an
one ou t put unit , however , it might hap pen that an error in one output un it
can not be corrected without int rodu cing an error in anoth er unit. Therefore
we take a simple "flip and check" approach (which is simi lar to the way by
which the old CHIR was generalized for mul tip le-output ar chit ectures [2]) .

For each hidden un it i, we check the effect of flipping it s state (Sr ---> -Sn
on the total out put error , i.e., t he numb er of wrong bit s, for th is pattern , v .
T he change in the err or is denoted by ,0.err or (i , 1/) (which is negative when
th e err or is redu ced) . Th is information abo ut the influence of each hidden
unit on the out p ut is now used by the select ion procedure in the following
manner.

For each hidden uni t i evalua te an "energy change ," ,0.Er , that includes
two te rms

,0.Ei = IXii + J.L,0.error(i, v) (4.1)

T he first term is the abso lute input field induced on unit i, when pat tern v is
presented , and the second is the change in the out put err or (for th e curr ent

534 Learning by CHIR

pattern 1/) if this un it is flipp ed . We then choose on e of t he hidden units wit h
a probabilit y proportional to exp(- f3 !1Ei) and change its incoming weights
according to equation (2.6). In principle, the parameter f.L , which determines
the relat ive str ength of the err or te rm in this decision , is a new par am eter to
be opt imized. In pr actice , however , it was just taken to be un ity, and f3 is the
same as before (see section 2.3). All experiments reported here were done
with this combinat ion, which was found to be success ful (see, however , a few
changes in the binar y weights vers ion that is describ ed in the next sect ion).

After one of the hidd en units is chosen and the weight s incident on it
from the input are updated and normalized , the learn1 2 pr ocedure goes on
to the next pat tern. Since the single-output vers ion also checks all the hidden
uni ts for candida tes to be flipped, this modifi cation of the algorithm does not
increase significant ly the amount of comput at ions. Nevertheless , it allows it
to handle multiple-output networks .

T he single- and mult iple-output versions of CHIR2 decide on the hidden
uni t to be select ed for a learni ng step in slight ly different ways, which we
would like to emphasize an d explain . The value t aken by X i, the field in­
coming to hidden un it i , affects th e selection decision in a similar fashion
for the two versions. The difference lies in the man ner in which the effect of
flippin g the state (Si -+ - Si) on the output affects th e select ion decision. In
the single-output vers ion unit i was accepted as a candidate for flippi ng if the
condition W iSiS < 0 was sa tisfied; that is, if the flip pulled t he output field
in the right dir ection. The multi ple-output vers ion , on the other hand, takes
into account only the actual effect of the flip on the state of the out put un its.
For example, if flipping does pull ou tp ut unit j in the righ t dir ection , but
W i j is too small and hence the flip does not act ually change the state S jut of
ou tpu t unit i , hidden unit i is t reate d the same way as if flipping S, pulled
the ou tp ut in the wrong directi on . T herefore the mu lti ple-ou tput version
does not probe t he weights of the ou tput un it s, but rather only their ou tput
state , and the only information that is fed back to the network is the single
scalar !1E . T his feature makes th e multiple-output version more plausible
biologically (like the simp ler reinforcement algorithms , see e.g. [21]).

CHIR2 can be further generalized for multilayered feedforward networks
by applying the last learn12 pro cedure to each of the hidden layers, one by
one, pr oceedi ng from th e hidden layer that is closest to the output toward
th e first hidden layer (wh ich is connect ed to the input) .

4 .2 T esting t h e algorithm

The multiple-outpu t vers ion of CHIR2 was test ed on two learn ing tasks that
were studied before with the old CHIR algorithm [2]: (1) the combined pari ty
and symmetry problem an d (2) the "ra ndom assoc iations" task.

In the combined parity and symmetry problem the net work has two ou t­
pu t unit s, bo th connect ed to all hidden units. The first outp ut unit pe rforms
the pari ty predi cat e on the input , and th e second perfor ms the symmetry
pr ed ica te. T he network architecture was N : 2N : 2 with an exhaus tive

D. Nabutovsky, T. Grossman , and E. Dom any 535

N Median Average Inv. Rate T (123,Id t m a x # of expe riments
4 20 29 18 (8,16) 240 100
5 105 120 83 (12,24) 360 100
6 150 210 93 (20,40) 1200 100
7 335 470 290 (30,60) 2700 100
8 5800 8600 970 (40,80) 48000 33

Table 4: Combined parity and symmetry with N : 2N : 2 architecture.

N Median Average Inv. Rate T (123,112) tm ax # of expe riments
4 60 110 41 (6,12) 360 200
8 120 140 110 (12,24) 720 100
16 220 240 210 (12,24) 720 100
32 650 710 620 (30,50) 4000 37

Table 5: Random problem with N : N : N architecture and P = 2N
patterns.

t raining set , and the results for 4 ::; N ::; 8 are given in table 4. Our choices
of the impatience par ameters 112 , h 3, an d n , the number of independent run s
for each N , are also given there. The par ameters k and T/ were 0.1 and 0.2,
respect ively, in all the experiments reported here. With these par ameters,
success rate was 1.00 for every N in the table.

We consider these as good resul ts, mu ch faster (ab out a factor 20) com­
pared to the results obtained earlier by CHIR [2J.

As a second test for the new vers ion we used the "random pr oblem " or
"ra ndom associations," in which one chooses P random patterns as input and
the net work is requ ired to learn P random pattern s as the desired ou tpu t. In
our test we used an architecture of N : N : N, a.nd th e number of patte rn s was
P = 2N . For ea ch run , the components of the inpu t and outp ut pat terns were
chosen rand omly and independ ent ly to be + 1 or -1 with equal probability.
The results , wit h the typical parameters, for N = 4, 8, 16, 32, are given in
tabl e 5. Again, it is evident that in addit ion to the lar ge memory saving,
CHIR2 also yields a significant impro vement in learn ing time. Comp arison
bet ween th e old CHIR and CHIR2 on thi s test problem is plotted in figure 7.

5. CHIR2 for binary weights

In this sect ion we describ e how CHIR2 can be used in ord er to t rain feed­
forward networks wit h binary weights . According to t his st rong const raint ,
all the weight s in th e system (including the th resholds) can be either +1 or
- 1. T he way to do this within the CHIR fram ework is simple [1 2J: instead
of applying the PLR (or any ot her single layer , real weight s algorithm) for
the upd ating of the weight s, we can use a binary perccp tron learn ing rul e.

536 L earning by CHIR

N

Figure 7: Random problem: Median number of sweeps t-« needed to
train a network wit h N input and N hidden uni ts, plotted against the
number of input uni ts N. Results for the old CHI R algorithm (x) [2]
an d this work (0) are shown.

Several ways to solve the learni ng pro blem in the binary weight percep­
tron were suggested recently [22,23]. The one that we used is a modified
version of th e directed dr ift algorithm int roduced by Venkatesh [22,12]. Like
the standard PLR, the directed drift algorithm works on-line, namely, th e
patterns are presented one by one , th e state of a uni t i is calcu lated according
to (2.1,2.2), and whenever an error occurs the incoming weight s are updated.
Wh en there is an error it means that

~ihi < 0

Namely, the field hi = Lj Wij~j (induced by the current pattern ~j) is
"wrong." If so, there must be some weights that pull it to the wrong direct ion.
These are the weights for which

~i Wij ~j < 0

Here ~i is th e desired out put of unit i for pattern 1/. The learn ing pr ocess
cons ists of simply flippin g (i.e., T,1!ij ---+ - Wij) at rand om f of these weights .

The number of weights to be changed in each learni ng step, f , can be a
pre-fixed parameter of t he algorit hm, or, as suggested by Venkat esh , can be
decreased gradua lly dur ing the learn ing process in a way similar to a cooling
schedule (as in simulated ann ealing). Vi e take f = IXI/2+ 1, making sure,

D. Nab utovsky, T. Grossm an, and E. Dom any 537

like in relaxat ion algorithms, that just enough weights are flipp ed in order to
obtain the desired target for the current pattern. Sever al test s have sho wn
that this modi fication makes the directed dr ift algorithm significant ly faster.
As was don e wit h the mo dificati on of CHIR for binary weights, this simp le
an d local rul e is "plugge d" into the learn1 2 an d learn23 proc edures inst ead
of (2.4) and (2.6), and the initial weights are chosen at random to be +1 or
- 1. We use the multi ple-output version of the algorithm, as described in the
previous section , with the following changes:

(a) We do not normalize the bin ary weights; instead, we divid e the
input fields X i in equation (4.1) by N + 1. Note that thi s scaling
with N differs from the one used in the continuous weights version
(where we normalize th e weight vect or) . Nevertheless we use the
same schedule for f3 as before.

(b) We do change th e J-l parameter in equa t ion (4.1). It was foun d that
larger J-l values are needed . The performance of th e algorithm is
not sens itive to th e exact value, as long as it is large enough . In
the experiments that are reported here we used /-t = 3.0. Note,
however , that th e two learning par am eters TJ an d k; are not needed
in thi s version .

We tested th e binary version of CHIR2 on two problems. The firs t is
the par ity problem with the N : N : 1 architect ure. This architect ure is
known to be the smallest layered network that can solve th e par ity problem
with continuous weights. Moreover , in the well known cont inuous weights
"human" solut ion , the hidden units perform th e tas k of counters an d th eir
weights scale linearl y with N. T herefore it was interesti ng to realize that
this problem can be solved by a netwo rk with the same ar chitecture but only
±1 weights. A typ ical solution for N = 6 is given in table 6. It can be easily
generalized to any (even) N . Because of the netwo rk and task symmet ries,
many ot her solut ions can be generated from this one by various tr an sfor­
mations (e.g. , permutations of the hidden units or invertin g all the weights
that are incident on and leaving any hidden uni t). Yet more soluti ons, apart
from this class of equivalent ones, exist. Note also th at different bin ary solu­
tions may represent disconnected solution regions in th e space of continuo us
weights. One other comment about bin ary weights perceptrons is that when
th e number of inputs (including the bias) of such a unit is even, th e input
field can be zero . In such cases we set the output of this unit to -1 (which
is equivalent to a small offset in th e bias).

Result s for learni ng times, obtained for 4 ::::; N ::::; 7 wit h typi cal param­
eters , are given in tab le 7. Success rate was 1.00 for all cases . It is also
interesting to find th at (a t least for th ese small networks) solution times are
shorter than those of t he cont inuous weights algorit hm . A different algorithm
for feedfor ward network s with bin ar y weights, which is also based on the old
CI-IIR, together with an erro r minimization approac h, was recentl y presented
by Saad and Marom [25]. It was tes ted on this prob lem with N = 5, an d it
see ms that it is mu ch slower tha n CHIR2.

538 Learning by CHIR

i WiQ Wi1 Wi2 W i 3 Wi4 Wi5 W i6

1 + + + + - - -

2 + - + + + - -

3 + - - + + + -
4 + - - - + + +
5 + + - - - + +
6 + + + - - - +

W - + + + + + +

Table 6: A solut ion for the parity problem wit h binary weight s and
6 : 6 : 1 ar chitecture .

N Median Average Inv. Rat e T (123,112) tm ax

4 19 26 19 (8,16) 480
5 23 60 29 (25,50) 750
6 215 370 130 (25,50) 3750
7 225 330 130 (25,50) 7500

Tab le 7: The parity problem wit h binary weights and N N 1
ar chiteeture.

T he second test problem is the "ran dom teacher" task [24,12]. In this
problem a "teacher network" is created by choosing a random set of + 1/ -1
weights for the given architect ure. The tra ining set is then created by pre­
senting P input pattern s to th e network and recording the result ing output
as the desired output patterns . In what follows we too l} P = 2N (exhaustive
learning) and an N : N : 1 architect ure. For each network size N we gen­
era ted an ensemble of 50 independent run s, with different random teachers
and start ing with a different random choice of ini tial weights.

The results, wit h the typ ical parameters, for N = 3, 4, 5, 6, are given in
table 8. T he binary weights version of the old CHIR was also tested on th is
tas k [12]. The improvement in th e learni ng t imes of CHIR2 on thi s prob lem
is again about a factor of 10.

6 . Disc ussion

The recently int roduced CHIR learning algorit hm works by combining per­
cept ron learning with a search in the space of internal representations. The

N Median Inv. Rate T Success rate (123,112) tm ax

3 17 4 1 (15,30) 450
4 25 13 1 (20,42) 620
5 38 21 1 (25,50) 15000
6 2000 220 0.88 (30,60) 81000

Tabl e 8: T he random teacher problem with binary weights and N :
N : 1 architecture .

D. Nabutovsky, T. Grossm an, and E. Domany 539

algorithm was demonstrated to work as well or better than backpropagation
for a variety of simple "toy" problems, defined for net work s with a single hid ­
den layer and one output unit. Subsequently, CHIR was ex tended to handle
multil ayer and multiple-output network s, as well as networks wit h binary
weights .

An immedi ately obvious shortcoming of CHIR was the necessit y to store
at all stages a complete table of internal repr esentations, i.e. , the state of
ever y hidden unit obtained in response to all training patterns. While thi s
requirement poses no real difficulty, neither for software no r hardware app li­
cat ions, it is aesthe ti cally unappealing and biologically implausible.

In this manuscrip t we presented CHIR2, a mo dified version of the CHIR
algorithm, that works wit hout storing int ernal representat ions. The essence
of our modification is a successful incorporation of the ideas on which anot her
learn ing algorithm, MRII, is based into the general CHIR scheme and phi los­
ophy. T hat is, instead of st oring intern al represent at ions dir ect ly, we follow
presentation of a training pattern that (drew wrong response) by a learning
st ep whi ch ensures that a mod ified int ernal repr esentation is embe dded in the
network. The dan ger with this process is that when a new pattern is learn ed,
the new learning step may cause unlearning of a pr eviou sly pr esented t ra in­
ing pat tern. The probabil ity of thi s occurring is min imized by choosing the
hidden un it to be subjected to learning according to a minimal disturbance
principle. Our version of this principle minimizes the likelihood of flipping
the internal representation associat ed with a random input pat tern .

We te ste d CHIR2 on the same problems as was done for CHIR. To our
surprise we found that CHIR2 works significantly bet ter that CHIR. It s learn­
ing times, measured in the number of sweeps of the trai ning set needed to
achieve perfect learning of the tr ain ing set, are smaller than backpropaga­
tion by factors that rang e from 10 to 100. More important is th e fact th at
for some problems CHIR2 exhibits learni ng times that do not increa.se with
th e number of inpu t uni ts, whereas backpropagat ion (and CHIR) exhibit
expone nt ial learning times.

Next we demon str ated an extension of the basic CI-IIR2 algorithm to net­
works with mor e than one ou tput and mor e than one hidden layer. VIle also
found a way to modify the basic algorithm so that it can be applied to net­
works with bin ar y weights, and we test ed it on a number of learn ing tasks.
Networks with binary weights are relatively easy for hard ware implementa­
tion, which makes this modifi ed version particularly interesting.

An appealing feature of th e CHIR algorit hm is the fact th at it does not
use any kind of "global cont rol" that mani pulates the internal representa­
tions (as is used for example in [13]). T he mechanism by which the intern al
representation s are changed is local , in the sense that changes are mad e for
each uni t and each pat tern without conveying information from ot her pat­
terns (representat ions) . Information from other units, for th e sam e pattern,
is used only indirect ly, via the probab ilisti c select ion p rocedure. T he on ly
feedb ack from the "teache r" to th e system is a single sca la r quant ity, namely,

540 L earning by CHIR

what is t he to tal output error (in cont ras t to BP, for example, where one in­
forms each and every output unit about its individu al error).

O ther advantages of our algor ithm are the simp licity of the calcu lations ,
t he need for only integer , or even binary weights an d binary un it s, and high
success rate in find ing solutions . In addit ion one should bea r in mind the fact
that a CHIR training sweep involves many fewer computations than that of
backpropagation . It seems that further research will be need ed in order to
st udy the practical differences and the relative advantages of the CH IR2 and
the MRII algorithms.

R eferences

[1] T . Grossman, R. Meir, and E. Domany, Complex Systems, 2 (1988) 555.

[2] T. Grossman, Complex Sy st em s, 3 (1989) 407.

[3] F. Rosenblatt , Psy ch.R ev ., 62 (1958) 386; Principles of Neurodynamics
(Spartan, New York, 1962).

[4] B. Widrow and M.E . Hoff, WESCON Conv. R ecord IV (1960) 96.

[5] M. Minsky and S. Papert , Perceptrons (MIT Press, Cambridge, MA, 1969).

[6] D. Rumelhart , G. Hinton, and R. Williams, Nat ure, 32 3 (1986) 533;
D.B. Parker, MIT Technical Report TR-47 (1985); Y. LeCun, Proc. Cogni­
tiva, 85 (1985) 599.

[7] D.C. Plaut , S.J. Nowlan , and G. E. Hinton, Technical Repo rt CMU-CS-86­
126, Carnegie Mellon University (1986).

[8] S.A. Solla , E. Levin , and M. Fleisher, Complex Syst em s, 2 (1988) 625.

[9] S. Kirkpatrick, C.D. Gelatt , and M.P. Vechi, Science, 229 (1984) 4598.

[10] R. Rohwer, in A dvances in Ne ural In form ation Pro cessing Syst ems 2,
D. Touretzky, ed. (Morgan Kaufmann, San Mat eo, 1990) p. 558; A. Krogh,
G.I. Thorbergsson, and J.A. Hert z, ibid. , p. 733.

[11] D. Saad and E. Marom , Complex Systems (to be published).

[12] T . Grossman , in A dvanc es in Ne ural In form ation Pro cessing Systems 2,
D. Touretzky ed. (Morgan Ka ufmann, San Mateo, 1990) p. 516.

[13] M. Mezard and J.P . Nadal, J. Pliys . A, 22 (1989) 2191; J.P. Nadal, IntI . J.
Ne ural Sy stems, 1 (1989) 55; P. Rujan and M. Marchand , Comp lex Sys tems,
3 (1989) 229.

[14] D. Wid row and R. Winter, Comp uter, 21 (3) (1988) 25.

[15] G.J . Mitchison and R.M. Durbin, Biological Cy bernetics, 60 (1989) 345; see
also N. Nillson, Learning Machines (McGraw Hill, New York , 1965) p . 97.

[16] L.F . Abbott and T .E . Kepler, J. Phy s. A , 22 (1989) L711.

D. Nabutovsky, T. Grossman , and E. Dom any 541

[17] G. Tesauro and H. Janssen, Complex Systems, 2 (1988) 39.

[18] J. Denker , D. Schwartz , B. Wittner, S. Solla, J .J. Hopfield, R. Howard , and
L. Jackel , Complex Sys tems , 1 (1987) 877.

[19] D.E. Rumelhar t and J .L. McClelland, Parallel Distributed Processing: Ex­
plorations in the Microstructure of Cognition , Vol. 1 (MIT Press, Cambridge,
MA, 1986) p. 318.

[20] R. Battiti, Comp lex Sy stems, 3 (1989) 331.

[21] A.G. Barto , R.S. Sut ton, and P.S. Brouwer , BioI. Cyb ern. , 40 (1981) 201.

[22] S. Venkatesh , preprint (1989) .

[23] E. Amaldi and S. Nicolis, J. P hys. France, 50 (1989) 2333; I-I. Kohler, S. Dei­
derich, W. Kinzel, and M. Opp er , Z. Phys. B , 78 (1990) 333; G.A. Kohring,
KFA Juli ch preprint (1990).

[24] E. Gard ner and B. Derrida, J. PllYS. A , 22 (1989) 1983.

[25] D. Saad and E. Marom , preprint (1990).

