Complex Systems 4 (1990) 519-541

Learning by CHIR
without Storing Internal Representations

Dimitry Nabutovsky
Tal Grossman
Eytan Domany
Department of Electronics, Weizmann Institute of Science,
Rehovot 76100 Israel

Abstract. A new learning algorithm for feedforward networks, learn-
ing by choice of internal representations (CHIR), was recently intro-
duced [1,2]. Whereas many algorithms reduce the learning process to
minimizing a cost function over the weights, our method treats the
internal representations as the fundamental entities to be determined.
The algorithm applied a search procedure in the space of internal
representations, together with cooperative adaptation of the weights
(e.g., by using perceptron learning). Tentative guesses of the inter-
nal representations, however, had to be stored in memory. Here we
present a new version, CHIR2, which eliminates the need to store in-
ternal representations and at the same time is faster than the original
algorithm. We first describe a basic version of CHIR2, tailored for
networks with a single output and one hidden layer. We tested it on
three problems — contiguity, symmetry, and parity — and compared
its performance with backpropagation. For all these problems our
algorithm is 30-100 times faster than backpropagation, and, most sig-
nificantly, learning time increases more slowly with system size. Next,
we show how to modify the algorithm for networks with many out-
put units and more than one hidden layer. This version is tested on
the combined parity+symmetry problem and on the random associ-
ations task. A third modification of the new algorithm, suitable for
networks with binary weights (all weights and thresholds are equal to
+1), is also described, and tests of its performance on the parity and
the random teacher problems are reported.

1. Introduction

Studies of different learning algorithms for feedforward neural networks con-
stitute a very active and interesting field of research on connectionist models.
The simplest implementation of such a network is the single-layer perceptron

© 1990 Complex Systems Publications, Inc.

520 Learning by CHIR

introduced by Rosenblatt [3], who also proposed a learning algorithm that
was guaranteed to converge to a solution (if one existed). A related learning
rule was introduced by Widrow and Hoff [4]. However, Minsky and Papert [5]
have demonstrated that simple single-layer perceptrons have very limited ap-
plicability. On the other hand, it is known that multilayer perceptrons can,
given a sufficient number of units, realize any binary input—output relation
(predicate). Backpropagation is a learning algorithm for multilayer percep-
trons, proposed [6] and more recently investigated by several groups [7,8].
It uses basic units with continuous variables and a smooth sigmoid input—
output response function. An error function, which measures the deviation
of actual from desired output, is minimized by the algorithm. There is no
convergence theorem for backpropagation: like any minimization procedure,
it may find a local minimum that does not correspond to a solution. Try-
ing to avoid this problem, by using simulated annealing [9], for example, is
extremely time-consuming.

Grossman, Meir, and Domany introduced an algorithm for networks with
binary valued neurons and a single hidden layer, which learns by choosing
internal representations (CHIR) [1]. CHIR shifts the emphasis of the learning
procedure from adjusting weights to finding good internal representations
(i.e., the states taken by the hidden layer in response to a presented input).
This basic idea was subsequently adopted and extended by various groups.
It was incorporated in processes that minimize cost functions (over internal
representations) for networks with continuous [10] as well as discrete [11]
variables. CHIR was also modified to treat multiple outputs and more than
one hidden layer [2] and networks with binary weights [12].

The idea of manipulating internal representations, to be followed by ad-
justing weights, was adopted also by groups [13] that study the problem of
learning in networks with flexible architectures. It should be noted that these
algorithms use a “global control,” that is, they need a unit that “knows” the
state of all neurons, all weights, and the learning process requires adding an
uncontrolled number of new neurons.

CHIR, on the other hand, works for perceptrons with a fixed architecture,
does not use “global control,” and does not change the number of neurons
during learning. CHIR (and its variants) outperforms backpropagation, but
needs an extra memory of PH bits, where P is the number of patterns in
the training set and H is the number of hidden units. This need arises since
CHIR learns the weights by the perceptron learning rule (PLR). To adjust
a weight w;; by this method, one must know the state of the source neuron
j and the desired state of the target neuron i. The correct states of the
hidden layer (i.e., the internal representations) are not known. When CHIR
learns the weights that connect the hidden layer to the output, the current
guess for the internal representation can be generated simply by presenting
an input to the network. This is not so in the part of the CHIR process that
learns the weights connecting the input to the hidden layer. In this part,
the internal representations cannot be recovered simply, using only stored
weights. Therefore CHIR stores a table of the “current guess” for internal

D. Nabutovsky, T. Grossman, and E. Domany 521

representations. This table is modified during the learning process. The need
to store the entire table of internal representations makes CHIR biologically
implausible and may be practically limiting.

In this paper we introduce a method for learning by choosing internal
representations without storing them. The central idea is to present the
training set pattern by pattern and, if the answer is wrong, to change the in-
ternal representation of the currently presented pattern by changing weights.
This ensures that even though only current weights are stored, the internal
representation can be retrieved.

We may, however, introduce errors into this retrieval process, since the
current change of weights may affect the internal representations of some
previously treated pattern. We try not to disturb the internal representation
for other patterns, by using a minimal disturbance principle. It is related
to the MRII algorithm of Widrow and Winter [14] and to the one used by
Mitchison and Durbin [15]. The main conceptual difference is that all these
algorithms change weights in a favorable direction, without ensuring that the
internal representation actually changes, whereas we change weights so that
the internal representation for the currently presented pattern is certainly
modified. Another important difference is a definition of minimal distur-
bance. In references [14,15], minimal disturbance means a minimal changing
of weights, whereas in our procedure it defined as a minimal probability to
change an internal representation for a random pattern.

The outline of this paper is as follows. In section 2 we describe the
algorithm; a brief outline of the strategy is followed by a detailed presenta-
tion of the single-output version. In section 3 we report tests of its perfor-
mance on the standard benchmark problems of contiguity, symmetry, and
parity. Section 4 describes a generalized version of an algorithm, suitable for
multiple-output (and multilayered) networks. In section 5 we further modify
the algorithm so it can train networks with binary valued weights. These
versions are also tested and the results are presented. Finally, our work is
summarized and discussed in section 6.

2. Description of the algorithm

Consider a two-layer perceptron, with N input, A hidden, and 1 output unit
(see figure 1). The elements of network are binary linear threshold units,
whose states are determined according to

N
Si = Sianz', X, = Z’LUU.SJ' (21)
=0
H
S =signX, X =) WS (2.2)
1=0

Here w;; are weights assigned to connections from input to hidden layer, the
weight W; connects hidden unit 7 to the output. w;y and Wy are, respectively,

522 Learning by CHIR

Figure 1: Feedforward network with layered architecture. State of cell
it at layer [+ 1 is determined by the states of layer [. Input patterns
are presented to a bottom layer, output is read out from the top.

biases of the hidden and output units, with sg = Sp = 1. For ¢ > 0 the
variables s;/5;/S denote the states taken by the input/hidden/output units.
During a training session, the input units are set in any one of p = 1... P
patterns, ie., s; = ££. In a typical task for such a network, P specified
answers, S* = £* are required in response to the P input patterns.

2.1 A short description of the algorithm

The learning process (described in detail in section 2.2) starts out by setting
w; and W;; randomly. We adopt the basic strategy of CHIR, in that our
procedure alternates between two learning stages:

Learn23 The hidden layer serves as source, and the output as the target
unit of the perceptron learning rule (PLR), used to learn the W;. For
this stage, storage of the internal representations is not required. For
fixed w;; we present a pattern p as input (i.e., set s; = £). The re-
sulting state of the hidden layer, as obtained from (2.1), is the internal
representation of pattern p. This specifies the state of the source units,
used by the PLR to search for appropriate weights 1V;, to obtain the
desired outputs S = &*. If the PLR finds such W;, we stop; the com-
plete learning problem has been solved. Otherwise we stop after Ins

D. Nabutovsky, T. Grossman, and E. Domany 523

learning sweeps, keep the current weights, and turn to the next stage,
learn12.

Learn12 While the current values of W; remain fixed, apply a learning pro-
cess to w;;. Using the PLR at this state is problematic, since only the
states of the source units, i.e., the input of network, is known. The
corresponding target state (of the hidden layer) is not known. CHIR
overcomes this problem by storing the current guess for the internal
representations of all patterns in the training set. This is the storage
requirement that we succeed in eliminating in the present paper. Here
we learn the w;; by presenting the training set sequentially, pattern by
pattern. If we get a wrong answer, we choose a hidden neuron that gives
a wrong contribution to the field acting on the output unit. This neu-
ron is chosen according to a minimal disturbance principle, described
in the next section. The state (£1) of this unit (obtained in response to
the current input) is flipped by modifying the weights w;; incident on it,
using an Abbott-Kepler linear rule [16], which ensures that the inter-
nal representation is actually changed. Note that the main difference
between the present algorithm and CHIR is that here the internal rep-
resentation is modified during the process of learning the weights w;;.

We periodically check whether the network has achieved error-free
performance for the entire training set; if it has, learning is completed
and a solution of the problem has been found. If no solution has been
found after I3, sweeps of the training set, we abort the learnl12 stage,
restart the cycle with learn23, and so on.

2.2 Detailed description of the algorithm

Initialize —1 < W, w;; < 1 randomly, and normalize:
I’V, . wi;

I/Vi = W) wy; 1= m (23)

Learn23: We attempt to find a solution for an existing internal representa-
tion. Training patterns are presented sequentially. For every training pattern
s = ¢ we determine the states of the hidden and output units, .S; and S,
according to (2.1,2.2), and change the weights W; (see figure 1) using a per-
ceptron learning rule:
L
AW, = 1. 1 Smer
FoA it 2

where & is the desired output for pattern p, H is the number of hidden
units, 7 > 0 is a step size parameter. Note that the PLR modifies weights
only when presentation of input p produces an erroneous output S* # £~
When that happens, each W; is changed, in a Hebbian fashion, toward values
that correct the error. After every learning step we normalize according to

equation (2.3).

gnsp (24)

524 Learning by CHIR

After every complete sweep of the training set we ensure that the out-
put S actually depends on the internal representation, that is, that |W;| <
Yiso |Wil. If this is not satisfied, we set Wo := IZVT% Yiso | Wil

If a solution is found, we stop. Otherwise we stop after I3 learning
sweeps, keep the current weights, and go to the next stage.

Learn12: In this stage we try to learn the w;; for fixed W;. Again, we
present input patterns g one by one and for every pattern determine S; and
S according to (2.1,2.2). If the resulting output S equals the desired output
&#, present the next pattern. If, however, S = —&#, we choose one of the
hidden neurons z, and change its incident weights and threshold. To decide
which neuron to select, we first check how flipping its state (i.e., S{' — —S¥)
affects the field that acts on the output unit, X* = Y W;S%. Since the
output for pattern p is wrong, X* has the wrong sign. Flipping the state of
some hidden units will pull X* in the right direction. These hidden units are
the candidates from which we select the one to be flipped. Once we decide
on this unit ¢, we change its incident weights W;; to an extent that ensures
that when input p is presented, the sign of unit ¢ will be the opposite of what
it was before. In order to achieve this, the size of Aw;; must be large enough
to flip the sign of the field incident on 7, X! = Y, w;;¢f'. Hence the size
of our learning step must increase with |X/| (see equation 2.6 below). One
should bear in mind, however, that changing w;; may induce an error to the
response to a pattern that was presented previously, by affecting its internal
representation. To minimize the number of such occurrences, we select the
neuron ¢ according to a minimal disturbance principle.

References [14,15] also use such a principle, but they aim at generating
minimal change of weights, (Aw;)?. We, on the other hand, define as minimal
disturbance a learning step that minimizes the probability to change the
internal representation for a random input pattern, s! = +1. For N > 1
such a pattern generates on hidden unit ¢ a normally distributed field, with
mean (X7) = 0 and variance 0% = 3; w?

Similarly, the change of input field, A 7, induced by a PLR step (which
was taken in response to training pattern p), is normally distributed with
mean 0 and standard deviation

> (Dwy;)?

J
Since the random pattern r and the training pattern p are not correlated,
clearly X7 and AX] are also uncorrelated, and it is easy to see that minimal
disturbance means minimal [(Aw;)?]/(wW?).

Suppose now that all 1 ’s are normalized. Then the minimal disturbance
principle means just a minimal (Aw;)%. As explained above, the size of our
learning step |A;| increases with X;, minimal |[Aw;| means also minimal X,
i.e., units with minimal input field to be chosen to learn.

In this sense our minimal disturbance principle is similar to that applied
in [14,15]. However, equivalence of the latter to our procedure holds only
if the weights are indeed normalized, which, apparently, is not done by the

D. Nabutovsky, T. Grossman, and E. Domany 525

above-mentioned methods. Note that choosing the neuron to be modified
on the basis of small field, without normalizing the weights, may cause an
instability that can give rise to exponential decrease of the weights incident
on some neurons. The reason is that application of the perceptron learning
rule to neuron ¢ may decrease its incident weights w;;. If, however, wfj
becomes smaller, we are more likely to pick neuron ¢ again as the one that
causes minimal disturbance, and so on. Decisions based on the size of X;
make sense only if normalization is included in the procedure.

In practice we choose stochastically the neuron whose weights are to be
modified. That is, the probability of neuron ¢ to be chosen is given by

 O(-WiSiS)eAIxd
T TS, 8)e R

(2.5)

where the f-function in the numerator ensures that we flip only units that
pull the output in the wrong direction. f is an inverse-temperature-like
parameter that determines how often (2.5) chooses a neuron whose input
field | X| is not minimal. The probability of such an event becomes smaller
as B is increased. When f — oo, (2.5) always chooses the best neuron
according to the minimal disturbance principle, but sequential presentation
of patterns may cause such a deterministic algorithm to enter a cycle. Such a
cycle may occur when there are only a few errors to be corrected, e.g., when
two patterns alternate in changing the same hidden unit back and forth.

We choose to equal Ny, the number of errors in the last sweep. This
means that when there are many errors we usually follow the minimal distur-
bance principle. But, on the other hand, when N, is small, there is a better
chance to choose a neuron whose |X;| is not minimal. This is the minimal
stochasticity needed to avoid cycles. Note that initially N, is large, and
it decreases during learning. Hence our process realizes a specific heating
schedule, as the effective temperature 7' = 1/ increases in the course of
learning.

Once neuron ¢ has been chosen according to (2.5), the weights w;; are
changed. As stated above, the change has to be large enough to flip the
internal representation for the currently presented pattern. This can be done
using an Abbott-Kepler linear rule [16]:

-1
Awij = ——:;TSZ Sy {

21 X;l, X >k ‘
Xil+ b, 1] <k (28)
where k is another arbitrary (small) parameter. Finally, we normalize ()
according to (2.3), for the reasons described above.

This stage is completed when a solution is found. If no solution has been
found after I, sweeps of the training set, we abort this stage and return to
learn23.

This is a fairly complete account of our procedure. There are few details
that need to be added.

526 Learning by CHIR

2.3 Choice of parameters

This algorithm has five arbitrary parameters:

The impatience parameters I}, (Ip3) are introduced to guarantee that
the learnl2 (learn23) stage is aborted if no solution is found. This is nec-
essary since it is not clear that a solution exists for the weights, given the
internal representation used. The parameters have to be large enough to
allow learn12 (learn23) to find a solution (if one exists) with sufficiently high
probability. On the other hand, too large of values are wasteful, since they
force the algorithm to execute a long search even when no solution exists.
Therefore the best values of the impatience parameters can be determined
by optimizing the performance of the network; our experience shows, how-
ever, that once a reasonable range of values is found, performance is fairly
insensitive to the precise choice.

The step size parameter 7 from (2.4), 0 < n < 2 was always chosen to be
0.234. The algorithm is quite insensitive to the precise choice of 7, as long
as it is not very large. Choosing very small n means simply that we must
increase [ps.

The stochasticity parameter f in (2.5), which was used in all the experi-
ments reported here, was chosen to be N, as explained in 2.2. Although this
“heating schedule” proved to be the most efficient in most of these experi-
ments, other choices for 3 (e.g., constant 3) were also tested and functioned
quite well.

The Abbott-Kepler parameter k from (2.6) was usually chosen as k = 0.2,
and in some experiments was set to £ = 0. The updating scheme (2.6)
itself is not an essential ingredient of the algorithm. It can be replaced
by other updating rules without a significant change in the performance.
The important thing is to ensure that the state of the chosen hidden unit
will be changed. For this purpose one can use for example rule (2.4), with
n=(1+ X

3. Performance of the CHIR2 algorithm

The task of learning in the type of networks we have been discussing is to
produce couplings and thresholds that yield the desired input—output rela-
tions. In our algorithm, as in many others, there are several parameters that
affect the performance. For a specific learning task and a set of parameters
(denoted by A), complete characterization of the learning algorithm’s perfor-
mance is given by P(t, A), the probability that the algorithm finds a solution
in less than ¢ “time” steps. One can estimate this function by plotting the
distribution histogram of the “time” needed to reach a solution (see figure 2).
This can be obtained by performing the learning process many times, each
run starting with different initial weights. For any practical application of
a learning algorithm, a time limit must be externally specified. Thus, a
quantity of interest is the probability of an algorithm to converge within the
given time limit. Of course when the success rate is 100%, the calculation of
average learning time is sufficient.

D. Nabutovsky, T. Grossman, and E. Domany 527

£ lllllllIll||||I|||IIIT‘l‘l,ll_

l||lllll|llllllllll

| P | A ¢ I bkl I) O T T l) O 1 1
50 100 150 200 250
Number of sweeps

Figure 2: Parity: Histogram of the number of training sweeps for 7-
14-1 network. The fraction of cases solved within each time interval
f versus the number of sweeps of the training set. We present results
for 123 = 7, I12 = 60, n= 0234, k= 0.2

The question now arises as how to measure time in our (and similar)
algorithms. Since learning usually takes place by presenting the network
with patterns to be learned, a possible definition of “time” is just the number
of times the training set has been presented. In our algorithm, there are
L5 + I3 such pattern presentation sweeps in each training cycle. One should
remember, however, that various algorithms perform different computations
during each presentation, and therefore this characterization is not the best
possible. However, it does eliminate the need to introduce ad-hoc measures
that may bias the result in various ways.

Since, however, learning algorithms sometimes do not converge to a so-
lution within the specified time limit, the question arises how to take this
fact into account in evaluating performance. Clearly, calculating averages
(and in general higher moments) that take into account only the cases where
the algorithm succeeded in finding a solution is not satisfactory. Another
possibility is to calculate the inverse average rate 7, defined in [17] as

; (3.1
T=-—— -
(r)
where
e { 1/t; if run i. is successful (3.2)
0 otherwise

528 Learning by CHIR

In (3.2), t; is the time needed to solve the problem, i.e., the total number of
pattern presentations, as discussed above. Such a measure will be dominated
by the small, lucky runs, even when they are rare; the penalty for long
unfruitful search is small. In what follows we call “successful runs” only
cases in which the learning algorithm found a weight vector that gives a
100% performance on the training set and within a given time limit, fmax
(the maximal number of training sweeps). It seems to us that a better
characterization of the success of the algorithm is the median time taken to
solve the problem. The median measures the time needed for a success rate
of 50%. However, a success rate of at least 50% is required. In all cases below
we really had success rates of more than 50%. The success rate is simply
defined as the fraction of successful runs.

Turning now to describe our results, we present our findings for three
problems.

3.1 Contiguity

This extensively studied problem [1,8,18] is suitable for a network that makes
binary decisions; a string of N digits is presented to the input layer, and the
system has to distinguish between inputs according to the number of clumps
(i-e., contiguous blocks) of +1’s. This problem has a simple “human” or geo-
metric solution, based on edge detection. When the network receives “hints”
in the form of spatially limited receptive fields of the hidden units, learning
time decreases significantly [8,18]. Here we report results obtained for the
harder problem of fully connected networks using an exhaustive set of inputs
as the training set. We wanted to compare performance of CHIR2, measured
as explained above, with backpropagation and with CHIR. In particular, we
were interested in the manner that learning time scales with the problem
size.

We trained the network to solve the “2 versus 3” clumps predicate. For
this problem we used all possible inputs that have 2 or 3 clumps as our
training set. Keeping N fixed, we varied H and plotted t,,, the median
number of training passes needed to learn, as a function of A in figure 3.
We used 100 cases for each data point at 5 < N < 7 and 50 cases for
N > 8. For comparison we present results obtained by CHIR along with
results reported by Denker et al. [18], who studied the same problem using an
efficient cost function for backpropagation. First we note that our algorithm
learns 20-40 times faster than backpropagation and about 10 times faster
than CHIR. More important is the dependence of ¢,, on H. Our algorithm
exhibits decrease of t,, with increasing H; adding (possibly unnecessary)
hidden units does not hinder learning. Backpropagation exhibits increasing
t,, with hidden layer size.

To further investigate the size dependence we also studied the 2-versus-3
predicate for networks with N = H units, in the range 5 < N < 10. We
always found a solution, that is, the success rate was always 100%. Results
for the median number of passes needed to solve are given in figure 4.

D. Nabutovsky, T. Grossman, and E. Domany 529

tﬂ lllllllnl||||lrv'rr]||||-

| +-BP
X —CHIR
102 | ¢ —CHIR2

T
L Illlll‘

|

1 |||||1|

10!

100Illlllllllllllllllllllll

Figure 3: 2 versus 3 clumps problem: Median number of sweeps t,,
needed to train a network with V = 6 input units, over an exhaustive
training set, plotted against the number of hidden units /. Results
for backpropagation (4) [18], old CHIR algorithm (x) [1], and this
work (<) are shown. The parameters used were I3 = 1, I;2 = 15,
n = 0.234, k = 0 (see section 2.3).

3.2 Symmetry

The second problem we investigated was symmetry [19]. Here the output
should be 1 if the input pattern is symmetric around its center and —1
otherwise. The minimal number of hidden layer units needed to solve this
problem is H = 2.

We present in figure 5 the median number of pattern presentations needed
to solve the problem as a function of N, the number of input units. The num-
ber of hidden units was fixed at H = 2. The system was trained over the
complete set of 2V inputs patterns, and the results were averaged over 100
cases. It is interesting that for CHIR2, at large values of N, the median
learning time becomes independent of N (and equals 11 & 1), whereas both
for an old version of the CHIR algorithm and for backpropagation learning
time increases with N very fast. In [19], Rumelhart et al. report that back-
propagation found a solution after 1208 learning steps, and in [6], after 1425
steps. Even if these are typical results (which is unlikely), our algorithm is
100 times faster than backpropagation for N = 6. Of course, this ratio in-
creases with V. It is also interesting that the success rate, shown in table 1,
increases with N for N > 2. The reason is that at large N most (1 —27V/2)

530 Learning by CHIR

N 21 4 6 |[8]10
Successrate | 1 [0.85 [0.98 | 1| 1

Table 1: Success rate for the symmetry problem with N : 2 : 1 archi-
tecture (tmax = 50).

desired answers are —1. In such a case the internal representations that map
onto —1 as output contain 3 (of the possible 4) points, and hence the output
must represent an AND-like function, which is found with a high success

rate.

3.3 Parity

In the parity problem one requires S = 1 for even number bits in the input,
and S = —1 otherwise. This problem is computationally harder than the
previous two, since the output is sensitive to a change in the state of any
single input unit. In order to compare performance of our algorithm to that
of backpropagation (BP), we studied the parity problem, using networks with
an architecture of N : 2N : 1, as chosen by Tesauro and Janssen [17].

tm T T T T T T T 1 T T T T] T T]
+-BP i
103 |—x -CHIR -
E o -CHIR2 E
102 - —
10l - sl

100 1 1 1 1 I 1 1 L 1 | 1 1 1 1 l 1

4 6 8 10
N

Figure 4: 2 versus 3 clumps problem: Median number of sweeps ,,,
needed to train a network with N input and H = N hidden units,
over an exhaustive training set, plotted against the number of input
units V. Results for old CHIR algorithm (x) [1] and this work (<)
are shown. We present results for n = 0.234, £ = 0.2.

D. Nabutovsky, T. Grossman, and E. Domany

tm T T T T I T T T T I T T T T I T T T T T T : (R 5 l o §
108 * .
r + —BP 3
[X —CHIR]
| o —CHIR2 i
10? - =
10! — /-‘\9—/—0\9 —
100 ik sl L 1 l 1 1 1 1 I 1 1 1 1 l ! 1 1 1 I 1 L =4] 1 1

0 2 4 6 8 10

N

Figure 5: Symmetry problem: Median number of sweeps t,,, needed
to train a network with N input and H = 2 hidden units, over an
exhaustive training set, plotted against the number of input units N.
Results for backpropagation (+) [19], old CHIR algorithm (x) [1],
and this work (<) are shown.

531

N | Median | Average | Inv. Rate 7 | tjyax | ({23, [12) | # of experiments
2 6 6 6 15 (2,5) 100
3 7 8 8 20 (3,10) 100
4 10 13 11 40 (4,20) 100
5 16 20 15 120 | (5,40) 100
6 31 42 27 180 | (6,50) 100
7 53 63 42 250 | (7,60) 100
8 130 130 80 400 | (8,100) 50
9 210 240 150 500 | (9,120) 35

Table 2: Parity with N : 2N : 1 architecture. The success rate was 1
for all experiments. Parameters: & = 0.2, n = 0.234.

532 Learning by CHIR

T T =t J I T T T I T T T T ' T T T 7T l LI O T
| +-BP
108 X -CHIR -
E © —CHIR2 E
102 | -
ol -
100 T l I A T I I l T l T T |
0 2 4 6 8 10

Figure 6: Parity problem: Median number of sweeps t,,, needed to
train a network with N input and H = 2N hidden units, over an
exhaustive training set, plotted against the number of input units N.
Results for backpropagation (4) [17], old CHIR algorithm (x) [1],
and this work (©) are shown. The point IV = 8 uses 50 cases; others
use 100 cases. 7 = .234, k = 0.2. See table 2 for more information.

For this problem, at large V our algorithm is 40 times faster than BP. The
results are presented in figure 6 and in table 2. For the sake of comparison
with BP, we also present the performance criterion used by Tesauro and
Janssen [17]: the inverse average rate 7, defined in equations (3.1,3.2). For
all choices of parameters (1;2, I53) that are mentioned in the table, our success
rate was 100%. Namely, the algorithm did not fail even once to find a solution
in less than the maximal number of training sweeps tp,.x, as specified in the
table. Note that BP does get caught in local minima, but the percentage of
such occurrences is not reported. In addition to inverse rate, we give also the
average and the median number of presentations needed for learning. When
compared with a new and improved version of BP [20], which is tested on
the same problem with N = 2, 3, 4, CHIR2 is more than 4 times faster.

When H = N (instead of 2N), the problem becomes much harder. In
fact, N is the minimal number of hidden units needed to solve the problem.
Performance of the algorithm for this architecture is given in table 3. The
success rate here is lower, as shown in the table.

D. Nabutovsky, T. Grossman, and E. Domany 533

N | Median | Inv. Rate 7 | Success rate | tmax | (f23, [12) | # of experiments
3 25 18 0.95 500 (2,10) 100
4 67 45 0.99 1000 | (3,20) 100
5 374 90 1.00 3000 | (4,40) 100
6 1500 330 0.88 6000 | (5,60) 50

Table 3: Parity with N : N : 1 architecture. Parameters: k& = 0.2,
n = 0.234.

4. Multiple-output CHIR2

In the previous sections we described the basic version of CHIR2. That
version is tailored for a single-output network. In this section we present a
way to generalize the algorithm, so that it can train networks with many
output units and more than one layer.

4.1 Description of the multiple-output algorithm

It is clear that when generalizing the single-output CHIR into a multiple-
output algorithm, we must change the way we choose the hidden unit to be
flipped, in the learn12 procedure. The learn23 procedure works as before, by
applying the PLR (or any single layer learning rule) for each of the output
units independently.

Here, as in the single-output version, the learn12 procedure presents each
pattern to the input, and the output of the network is evaluated. If the
output is correct, no changes are made. If, however, there is an error, i.e., at
least one bit is wrong, one of the hidden units is selected, and its incoming
weights are updated in such a way that its state flips its sign.

With one output unit, it is always possible to identify a hidden unit
whose contribution to the output field is “wrong.” When we have more than
one output unit, however, it might happen that an error in one output unit
cannot be corrected without introducing an error in another unit. Therefore
we take a simple “flip and check” approach (which is similar to the way by
which the old CHIR was generalized for multiple-output architectures [2]).

For each hidden unit ¢, we check the effect of flipping its state (S} — —SY)
on the total output error, i.e., the number of wrong bits, for this pattern, v.
The change in the error is denoted by Aerror(z, v) (which is negative when
the error is reduced). This information about the influence of each hidden
unit on the output is now used by the selection procedure in the following
manner.

For each hidden unit 7 evaluate an “energy change,” ALY, that includes
two terms

AE! = | X!+ pAerror(i, v) (4.1)

The first term is the absolute input field induced on unit z, when pattern v is
presented, and the second is the change in the output error (for the current

534 Learning by CHIR

pattern v) if this unit is flipped. We then choose one of the hidden units with
a probability proportional to exp(—SAE?) and change its incoming weights
according to equation (2.6). In principle, the parameter x, which determines
the relative strength of the error term in this decision, is a new parameter to
be optimized. In practice, however, it was just taken to be unity, and 3 is the
same as before (see section 2.3). All experiments reported here were done
with this combination, which was found to be successful (see, however, a few
changes in the binary weights version that is described in the next section).

After one of the hidden units is chosen and the weights incident on it
from the input are updated and normalized, the learn12 procedure goes on
to the next pattern. Since the single-output version also checks all the hidden
units for candidates to be flipped, this modification of the algorithm does not
increase significantly the amount of computations. Nevertheless, it allows it
to handle multiple-output networks.

The single- and multiple-output versions of CHIR2 decide on the hidden
unit to be selected for a learning step in slightly different ways, which we
would like to emphasize and explain. The value taken by X;, the field in-
coming to hidden unit ¢, affects the selection decision in a similar fashion
for the two versions. The difference lies in the manner in which the effect of
flipping the state (S; — —S;) on the output affects the selection decision. In
the single-output version unit z was accepted as a candidate for flipping if the
condition W;S;S < 0 was satisfied; that is, if the flip pulled the output field
in the right direction. The multiple-output version, on the other hand, takes
into account only the actual effect of the flip on the state of the output units.
For example, if flipping does pull output unit 7 in the right direction, but
Wij is too small and hence the flip does not actually change the state 57 of
output unit 7, hidden unit ¢ is treated the same way as if flipping S; pulled
the output in the wrong direction. Therefore the multiple-output version
does not probe the weights of the output units, but rather only their output
state, and the only information that is fed back to the network is the single
scalar AFE. This feature makes the multiple-output version more plausible
biologically (like the simpler reinforcement algorithms, see e.g. [21]).

CHIR2 can be further generalized for multilayered feedforward networks
by applying the last learn12 procedure to each of the hidden layers, one by
one, proceeding from the hidden layer that is closest to the output toward
the first hidden layer (which is connected to the input).

4.2 Testing the algorithm

The multiple-output version of CHIR2 was tested on two learning tasks that
were studied before with the old CHIR algorithm [2]: (1) the combined parity
and symmetry problem and (2) the “random associations” task.

In the combined parity and symmetry problem the network has two out-
put units, both connected to all hidden units. The first output unit performs
the parity predicate on the input, and the second performs the symmetry
predicate. The network architecture was N : 2N : 2 with an exhaustive

D. Nabutovsky, T. Grossman, and E. Domany 535

N | Median | Average | Inv. Rate 7 | (Ia3, [12) | tmax | # of experiments
4 20 29 18 (8,16) 240 100

5 105 120 83 (12,24) 360 100

6 150 210 93 (20,40) | 1200 100

7 335 470 290 (30,60) | 2700 100

8 5800 8600 970 (40,80) | 48000 33

Table 4: Combined parity and symmetry with N : 2N : 2 architecture.

N | Median | Average | Inv. Rate 7 | (23, 12) | tmax | # of experiments
4 60 110 41 (6,12) 360 200

8 120 140 110 (12,24) | 720 100

16 220 240 210 (12,24) | 720 100

32 650 710 620 (30,50) | 4000 37

Table 5: Random problem with N : N : N architecture and P = 2N
patterns.

training set, and the results for 4 < N < 8 are given in table 4. Our choices
of the impatience parameters 12, I3, and n, the number of independent runs
for each N, are also given there. The parameters k£ and 1 were 0.1 and 0.2,
respectively, in all the experiments reported here. With these parameters,
success rate was 1.00 for every N in the table.

We consider these as good results, much faster (about a factor 20) com-
pared to the results obtained earlier by CHIR [2].

As a second test for the new version we used the “random problem” or
“random associations,” in which one chooses P random patterns as input and
the network is required to learn P random patterns as the desired output. In
our test we used an architectureof N : N : N, and the number of patterns was
P = 2N. For each run, the components of the input and output patterns were
chosen randomly and independently to be +1 or —1 with equal probability.
The results, with the typical parameters, for N = 4, 8, 16, 32, are given in
table 5. Again, it is evident that in addition to the large memory saving,
CHIR2 also yields a significant improvement in learning time. Comparison
between the old CHIR and CHIR2 on this test problem is plotted in figure 7.

5. CHIR?2 for binary weights

In this section we describe how CHIR2 can be used in order to train feed-
forward networks with binary weights. According to this strong constraint,
all the weights in the system (including the thresholds) can be either 41 or
—1. The way to do this within the CHIR framework is simple [12]: instead
of applying the PLR (or any other single layer, real weights algorithm) for
the updating of the weights, we can use a binary perceptron learning rule.

536 Learning by CHIR

104 T T T T r T L] T T I T T T T I T l:
t, | x - CHIR.]
" o - CHIR2. T
108 —
108 - —
101 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I L 1

0 10 20 30

N

Figure 7: Random problem: Median number of sweeps t,, needed to
train a network with N input and N hidden units, plotted against the
number of input units N. Results for the old CHIR algorithm (x) [2]
and this work (<) are shown.

Several ways to solve the learning problem in the binary weight percep-
tron were suggested recently [22,23]. The one that we used is a modified
version of the directed drift algorithm introduced by Venkatesh [22,12]. Like
the standard PLR, the directed drift algorithm works on-line, namely, the
patterns are presented one by one, the state of a unit 7 is calculated according
to (2.1,2.2), and whenever an error occurs the incoming weights are updated.
When there is an error it means that

&Ry <0

Namely, the field hY = 3; W;;£¥ (induced by the current pattern &) is
“wrong.” If so, there must be some weights that pull it to the wrong direction.
These are the weights for which

§Wiéi <0

Here ¢! is the desired output of unit ¢ for pattern v. The learning process
consists of simply flipping (i.e., W;; — —W;;) at random [of these weights.

The number of weights to be changed in each learning step, f, can be a
pre-fixed parameter of the algorithm, or, as suggested by Venkatesh, can be
decreased gradually during the learning process in a way similar to a cooling
schedule (as in simulated annealing). We take f = |X|/2 + 1, making sure,

D. Nabutovsky, T. Grossman, and E. Domany 537

like in relaxation algorithms, that just enough weights are flipped in order to
obtain the desired target for the current pattern. Several tests have shown
that this modification makes the directed drift algorithm significantly faster.
As was done with the modification of CHIR for binary weights, this simple
and local rule is “plugged” into the learn12 and learn23 procedures instead
of (2.4) and (2.6), and the initial weights are chosen at random to be +1 or
—1. We use the multiple-output version of the algorithm, as described in the
previous section, with the following changes:

(a) We do not normalize the binary weights; instead, we divide the
input fields X; in equation (4.1) by N + 1. Note that this scaling
with NV differs from the one used in the continuous weights version
(where we normalize the weight vector). Nevertheless we use the
same schedule for 3 as before.

(b) We do change the p parameter in equation (4.1). It was found that
larger p values are needed. The performance of the algorithm is
not sensitive to the exact value, as long as it is large enough. In
the experiments that are reported here we used p = 3.0. Note,
however, that the two learning parameters n and k, are not needed
in this version.

We tested the binary version of CHIR2 on two problems. The first is
the parity problem with the N : N : 1 architecture. This architecture is
known to be the smallest layered network that can solve the parity problem
with continuous weights. Moreover, in the well known continuous weights
“human” solution, the hidden units perform the task of counters and their
weights scale linearly with N. Therefore it was interesting to realize that
this problem can be solved by a network with the same architecture but only
+1 weights. A typical solution for NV = 6 is given in table 6. It can be easily
generalized to any (even) N. Because of the network and task symmetries,
many other solutions can be generated from this one by various transfor-
mations (e.g., permutations of the hidden units or inverting all the weights
that are incident on and leaving any hidden unit). Yet more solutions, apart
from this class of equivalent ones, exist. Note also that different binary solu-
tions may represent disconnected solution regions in the space of continuous
weights. One other comment about binary weights perceptrons is that when
the number of inputs (including the bias) of such a unit is even, the input
field can be zero. In such cases we set the output of this unit to —1 (which
is equivalent to a small offset in the bias).

Results for learning times, obtained for 4 < N < 7 with typical param-
eters, are given in table 7. Success rate was 1.00 for all cases. It is also
interesting to find that (at least for these small networks) solution times are
shorter than those of the continuous weights algorithm. A different algorithm
for feedforward networks with binary weights, which is also based on the old
CHIR, together with an error minimization approach, was recently presented
by Saad and Marom [25]. Tt was tested on this problem with N =5, and it
seems that it is much slower than CHIR2.

538 Learning by CHIR

Wiy

(=)
w
g
&
g
(=}

| ++ +|
| + 4+ |
l
|

|+ + + |

+ |+

OO W N |
I+ 4+ + + +|§
|

Wiz
+
- | +
+
+

++ + |
+ 4+ A+

w

-+

Table 6: A solution for the parity problem with binary weights and
6:6:1 architecture.

N | Median | Average | Inv. Rate 7 | (I23,[12) | tmax
4 19 26 19 (8,16) 480
5 23 60 29 (25,50) | 750
6 215 370 130 (25,50) | 3750
7 225 330 130 (25,50) | 7500

Table 7: The parity problem with binary weights and N : N : 1
architecture.

The second test problem is the “random teacher” task [24,12]. In this
problem a “teacher network” is created by choosing a random set of +1/—1
weights for the given architecture. The training set is then created by pre-
senting P input patterns to the network and recording the resulting output
as the desired output patterns. In what follows we took P = 2V (exhaustive
learning) and an N : N : 1 architecture. For each network size N we gen-
erated an ensemble of 50 independent runs, with different random teachers
and starting with a different random choice of initial weights.

The results, with the typical parameters, for N = 3, 4, 5, 6, are given in
table 8. The binary weights version of the old CHIR was also tested on this
task [12]. The improvement in the learning times of CHIR2 on this problem
is again about a factor of 10.

6. Discussion

The recently introduced CHIR learning algorithm works by combining per-
ceptron learning with a search in the space of internal representations. The

N | Median | Inv. Rate 7 | Success rate | ([y3,[19) | tmax
3 17 4 1 (15,30) 450
4 25 13 1 (20,42) 620
5 38 21 1 (25,50) | 15000
6 2000 220 0.88 (30,60) | 81000

Table 8: The random teacher problem with binary weights and N :
N : 1 architecture.

D. Nabutovsky, T. Grossman, and E. Domany 539

algorithm was demonstrated to work as well or better than backpropagation
for a variety of simple “toy” problems, defined for networks with a single hid-
den layer and one output unit. Subsequently, CHIR was extended to handle
multilayer and multiple-output networks, as well as networks with binary
weights.

An immediately obvious shortcoming of CHIR was the necessity to store
at all stages a complete table of internal representations, i.e., the state of
every hidden unit obtained in response to all training patterns. While this
requirement poses no real difficulty, neither for software nor hardware appli-
cations, it is aesthetically unappealing and biologically implausible.

In this manuscript we presented CHIR2, a modified version of the CHIR
algorithm, that works without storing internal representations. The essence
of our modification is a successful incorporation of the ideas on which another
learning algorithm, MRII, is based into the general CHIR scheme and philos-
ophy. That is, instead of storing internal representations directly, we follow
presentation of a training pattern that (drew wrong response) by a learning
step which ensures that a modified internal representation is embedded in the
network. The danger with this process is that when a new pattern is learned,
the new learning step may cause unlearning of a previously presented train-
ing pattern. The probability of this occurring is minimized by choosing the
hidden unit to be subjected to learning according to a minimal disturbance
principle. Our version of this principle minimizes the likelihood of flipping
the internal representation associated with a random input pattern.

We tested CHIR2 on the same problems as was done for CHIR. To our
surprise we found that CHIR2 works significantly better that CHIR. Its learn-
ing times, measured in the number of sweeps of the training set needed to
achieve perfect learning of the training set, are smaller than backpropaga-
tion by factors that range from 10 to 100. More important is the fact that
for some problems CHIR2 exhibits learning times that do not increase with
the number of input units, whereas backpropagation (and CHIR) exhibit
exponential learning times.

Next we demonstrated an extension of the basic CHIR2 algorithm to net-
works with more than one output and more than one hidden layer. We also
found a way to modify the basic algorithm so that it can be applied to net-
works with binary weights, and we tested it on a number of learning tasks.
Networks with binary weights are relatively easy for hardware implementa-
tion, which makes this modified version particularly interesting.

An appealing feature of the CHIR algorithm is the fact that it does not
use any kind of “global control” that manipulates the internal representa-
tions (as is used for example in [13]). The mechanism by which the internal
representations are changed is local, in the sense that changes are made for
each unit and each pattern without conveying information from other pat-
terns (representations). Information from other units, for the same pattern,
is used only indirectly, via the probabilistic selection procedure. The only
feedback from the “teacher” to the system is a single scalar quantity, namely,

540 Learning by CHIR

what is the total output error (in contrast to BP, for example, where one in-
forms each and every output unit about its individual error).

Other advantages of our algorithm are the simplicity of the calculations,
the need for only integer, or even binary weights and binary units, and high
success rate in finding solutions. In addition one should bear in mind the fact
that a CHIR training sweep involves many fewer computations than that of
backpropagation. It seems that further research will be needed in order to
study the practical differences and the relative advantages of the CHIR2 and
the MRII algorithms.

References
[1] T. Grossman, R. Meir, and E. Domany, Complex Systems, 2 (1988) 555.
[2] T. Grossman, Complex Systems, 3 (1989) 407.

[3] F. Rosenblatt, Psych.Rev., 62 (1958) 386; Principles of Neurodynamics
(Spartan, New York, 1962).

[4] B. Widrow and M.E. Hoff, WESCON Conv. Record IV (1960) 96.
[6] M. Minsky and S. Papert, Perceptrons (MIT Press, Cambridge, MA, 1969).

(6] D. Rumelhart, G. Hinton, and R. Williams, Nature, 323 (1986) 533;
D.B. Parker, MIT Technical Report TR-47 (1985); Y. LeCun, Proc. Cogni-
tiva, 85 (1985) 599.

[7] D.C. Plaut, S.J. Nowlan, and G. E. Hinton, Technical Report CMU-CS-86-
126, Carnegie Mellon University (1986).

[8] S.A. Solla, E. Levin, and M. Fleisher, Complex Systems, 2 (1988) 625.
[9] S. Kirkpatrick, C.D. Gelatt, and M.P. Vechi, Science, 229 (1984) 4598.

[10] R. Rohwer, in Advances in Neural Information Processing Systems 2,
D. Touretzky, ed. (Morgan Kaufmann, San Mateo, 1990) p. 558; A. Krogh,
G.I. Thorbergsson, and J.A. Hertz, ibid., p. 733.

[11] D. Saad and E. Marom, Complex Systems (to be published).

[12] T. Grossman, in Advances in Neural Information Processing Systems 2,
D. Touretzky ed. (Morgan Kaufmann, San Mateo, 1990) p. 516.

[13] M. Mezard and J.P. Nadal, J. Phys. A, 22 (1989) 2191; J.P. Nadal, Intl. J.
Neural Systems, 1 (1989) 55; P. Rujan and M. Marchand, Complex Systems,
3 (1989) 229.

[14] B. Widrow and R. Winter, Computer, 21(3) (1988) 25.

[15] G.J. Mitchison and R.M. Durbin, Biological Cybernetics, 60 (1989) 345; see
also N. Nillson, Learning Machines (McGraw Hill, New York, 1965) p. 97.

[16] L.F. Abbott and T.B. Kepler, J. Phys. A, 22 (1989) L711.

D. Nabutovsky, T. Grossman, and E. Domany 541

[17] G. Tesauro and H. Janssen, Complex Systems, 2 (1988) 39.

[18] J. Denker, D. Schwartz, B. Wittner, S. Solla, J.J. Hopfield, R. Howard, and
L. Jackel, Complex Systems, 1 (1987) 877.

[19] D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, Vol. 1 (MIT Press, Cambridge,
MA, 1986) p. 318.

[20] R. Battiti, Complex Systems, 3 (1989) 331.
[21] A.G. Barto, R.S. Sutton, and P.S. Brouwer, Biol. Cybern., 40 (1981) 201.
[22] S. Venkatesh, preprint (1989).

[23] E. Amaldi and S. Nicolis, J. Phys. France, 50 (1989) 2333; H. Kohler, S. Dei-
derich, W. Kinzel, and M. Opper, Z. Phys. B, 78 (1990) 333; G.A. Kohring,
KFA Julich preprint (1990).

[24] E. Gardner and B. Derrida, J. Phys. A, 22 (1989) 1983.
[25] D. Saad and E. Marom, preprint (1990).

