Complex Systems 4 (1990) 543-572

A Genetic Learning Algorithm
for the Analysis of Complex Data

Norman H. Packard*
Center for Complex Systems Research, Beckman Institute,
and
Physics Department, University of Illinois,
405 North Mathews Avenue, Urbana, IL 61801 USA

Abstract. A genetic learning algorithm modeled after biological evo-
lution is presented to discern patterns relating one observable that is
taken to be dependent on many others. The problem is reduced to
an optimization procedure over a space of conditions on the indepen-
dent variables. The optimization is performed by a genetic learning
algorithm, using an information theoretic fitness function on condi-
tional probability distributions, all derived from data that has a very
sparse distribution over a very high-dimensional space. We will dis-
cuss applications in forecasting, management, weather, neuroanalysis,
large-scale modeling, and other areas.

Introduction

We consider data obtained from a complex system, i.e., a system with many
degrees of freedom that are highly coupled. Such data are usually beset
with two problems: (i) randomness, from observational errors, from low-
dimensional chaotic dynamics, and from high-dimensional noise, and (ii)
limitations on the amount of data available. We will present a method for
finding patterns in this data, especially applicable when no simple patterns
are readily discernible.
We will assume the data to be a collection of pairs

{@hy"h,--,@"y")}

where each @ = (1,...,2,) is interpreted as a set of independent variables
on which the corresponding y is presumed to be dependent. Observations
of each (Z,y) pair are obtained from a measurement that inevitably has a
finite resolution, so values of these variables will take on one of a discrete set
of values, ”v; e{l,...,K;}and y* € {1,...,Kp}. We will let K; and Kp be

*Electronic mail address: n@complex.ccsr.uiuc.edu.

© 1990 Complex Systems Publications, Inc.

544 Norman H. Packard

the number of states of the independent variable and the dependent variable,
respectively.

For the moment, we need not attach any meaning to the label 7 of each
datum. In some contexts, the data may come from observations of a single
system at different times. In other contexts, the data may come from obser-
vation of many different systems (or subsystems) at a given time. Likewise,
we will also refrain from making assumptions about the interpretations of the
discrete values taken on by both the dependent and independent variables.
They could be discretized versions of continuous variables, in which case they
would inherit a natural order and metric, but the set of possible values may
also represent labels for possibilities that have no particular connection to
each other, as is often the case with “qualitative variables.” No particular
consistency is assumed for the data; there may be two samples, (Z°,y*) and
(#7,y7), for which #* = #? but y* # y’. We consider only the case of one
independent variable y, because this case is rich enough to capture the es-
sential features of the method, and the generalization to high-dimensional
dependent variables is fairly straightforward.

No assumption will be made about the distribution of points, although
the methods we describe will be particularly useful when the distribution
is broad and complex, i.e., when the #* populate large regions of the space
{1,..., K1} with a distribution that is far from uniform. The goal of our
analysis is to discern the nature of the average dependence of y on Z by
learning a pattern from the data. The basic tool to accomplish the task of
learning will be a form of the genetic algorithm [1, 2].

One approach to searching for patterns in data is to try to construct a
model that is “complete” in the sense that for any value of & given as an
input, the model will give as an output its best guess for y. The present
approach is different in the sense that the patterns it seeks to discover in the
data are essentially incomplete. The discovered patterns will take the form of
a set of hypotheses, each of the form, “when some subset of the independent
variables satisfy particular conditions, a certain behavior of the dependent
variable is to be expected.” It may happen that the model has no suggestions
for a wide range of inputs because they do not satisfy the conditions of any
of the discovered hypotheses.

Once the hypotheses are learned, they may be used in a variety of ways,
depending on the context. They could be used to guide the adjustment of
the system being observed, using the information of which variables are most
relevant. They could be used for forecasting, in which case a query would
be made by presenting a mystery point @, and the expected behavior of y
would be specified by the hypotheses satisfied by @ (if any). They could be
used for model building, where the hypotheses would tell which ; were most
important in determining y. We will discuss a range of applications after the
method has been explained.

A Genetic Learning Algorithm 545

Logic and geometry

We will now discuss how statements about the independent variables having
the form specified above may be identified with subsets of the space of inde-
pendent variables. These subsets will be called conditional sets. The space
of conditions explored is exhaustive if the set of all conditional sets is the
same as the set of all possible subsets.

One easy way to formulate conditions for the hypotheses described above
is to require particular coordinates in the space of independent variables to
take on particular values. An example of such conditions is

C = {z;, =c¢1 AND ... AND z;,, = Cp, }
where ¢i,...,c, are m constants. Such conditions specify a set of points,
Xo = &y = €1y ny Bie = € }

For this particular set of conditions, X is a hyperplane in the space of
independent variables, and the co-dimension of the hyperplane is the number
of conditions m. If m < n — 1, the set is sometimes called a “flat” instead of
a hyperplane.

Setting particular coordinates to particular values implements the logical
function AND on elementary propositions of the form z; = ¢. We may also
use an OR function to form conditions (and the corresponding conditional
sets), for example,

C = {(z;;, = c1 OR T;; =c}) AND @;, = ¢y AND ... AND &;, = ¢4}

If we regard conditions for a particular coordinate, {z; = ¢; OR z; = ¢, OR ...}
as elementary propositions £, and represent the logical AND by the usual
symbol for conjunction, A, these conditions on k coordinates may be written
compactly as

C=bAEGA... N (1.1)

Geometrically the set X¢o C {1,..., K} for such conditions is a set of
rectangles in {1,..., Kr}* crossed with {1,...,K;}"7*. The rectangles all
have their boundaries parallel to coordinate axes.

We may obtain more general subsets of {1,..., [} by taking the OR
(disjunction, V) of conditions that have the form of equation (1.1),

G = C1V62V...ch
(EAANEIVENAGIV--V(EA--AE) (12

It is easy to see that the corresponding set X¢ is related to X¢, ... X¢, by
Xo=Xeg, U---UXg,
Noting that

NOT (z; =¢) <= @; = ¢; OR T; = ¢, OR ...(for all ¢; # ¢)

546 Norman H. Packard

because of the finite number of possible values for z;, we see that the propo-
sitions —¢ (NOT €) are contained within the set of possible propositions ¢ as
defined above. In this case, the conditions of the form (2) may be recognized
as being in disjunctive normal form. An elementary theorem in logic [5] tells
us that each possible Boolean expression involving the elementary proposi-
tions is tautologically equivalent to one in disjunctive normal form. Geomet-
rically, this has the interpretation that all possible conditional sets X¢ using
conditions of the form (2) correspond to all possible subsets of the space of
independent variables, {1,..., K }™.

Given a hypothesis specified by conditions C on the independent vari-
ables, we may now ask how well specified the y values are, given those con-
ditions. This question is addressed by examining all the data points in the
conditional set X¢. In particular, we must construct our empirical estimate
of the conditional probability distribution of y values given that ¥ € X¢,

Poly) = —— Yo dy—y)

Ne (Zy'),€Xc

where N¢ is the number of points in X¢ and the sum is taken over all points.
§(y —y')is 1ify =y and 0 otherwise. This distribution may be collected
from the data points directly.

We may now use Pc(y) to evaluate the usefulness of the conditions in
specifying y. This evaluation will allow us to assign a “value” or “fitness”
(foreshadowing a biological analogy to be used below) of any conditional
set X¢.

Intuitively, y is very determined by the conditions that specify C if Pc(y)
is very sharp. If y comes from a discrete measurement of a continuous vari-
able, we may measure the sharpness of Pc(y) simply by using the width,
o = /<y?>— <y >2 The natural measure of sharpness, given o, is
—log o, which is proportional to the information contained in a sharp Gaus-
sian of width o.

Our expression for the fitness of a conditional set must also include a term
related to the fact that Pr(y) is only an estimation from a finite number
of sample points. For example, if C' only contains a single data point, then
Pc(y) is as sharp as possible, but may be spurious due to statistical sampling
errors. We use a term proportional to —1/N¢ to “devalue” conditional sets
with few points. Thus fitness of a conditional set may be expressed as

a
F(C)=—logo — N

where « is a parameter to adjust the dependence on N¢, the number of points

in h.

If y does not come from a continuous variable, the width ¢ cannot be
used because it depends on a natural ordering and metric for y. In this case,
the extent that y is determined by the conditions may be measured by the
distance of Pg(y) from the best possible a priori guess. In the absence of
any knowledge, the a priori distribution is a flat distribution P(y), where

A Genetic Learning Algorithm 547

P(y) = 1/Kp for all y. An appropriate distance measure is the Kullback—
Leibler function,

d(Pe,P) = 3 Poly)log 5
= Hmax == H(PC)

where H(P¢) = — Y Po(y) log Pc(y) is the entropy of the distribution Pr(y),
which has a maximum value of Hyax = log Kp when the Po(y) is flat.
Thus, we use as the fitness for the conditions C,

F(C) = Hyax — H(Pg) — Ni (1.3)
¢

where we have again subtracted the term o/ N¢ to account for poor statistics.
It should be noted that this fitness function works perfectly well whether y
is completely discrete or is derived from a continuous variable. Also, instead
of using P as the a priori distribution, Po(y), the distribution of y values
with no conditions at all, may be used. In this case, the distance function

would not simplify as above, and the fitness would be

P(C) = X Pols)log 794 ~ 5

The term —a/N¢ is, at this point an ad hoc mechanism to adjust the
dependence of the fitness on N¢. This term actually serves two purposes:
(1) When the entropy-based fitness function is used, @ may be chosen as to
unbias the entropy estimate, where the bias comes from finite statistics [3].
(2) The term devalues the fitness of conditional sets that have small num-
bers of points, and hence have less statistical relevance. This second function
served by the term is crucial, but this may not be the correct dependence on
N to compensate for statistical relevance optimally. A more satisfying ad-
justment might use a calculation based on confidence intervals [4], but such
calculations require an assumption of the distribution. The parameter o may
be set with a recursive empirical procedure: start with an initial value of «,
learn a set of good conditions, compute a confidence interval for each of the
conditional distributions, and then if the statistics are too poor (reflected in
a large confidence interval), raise o and begin again. Of course, the observer
must eventually face the fact that a finite sample inevitably limits the confi-
dence with which a parameter (like H(P¢)) may be estimated. Other fitness
functions that measure statistical relevance more directly (using, for instance
x? measures) are being investigated.

So far we have emphasized the well-determinedness of y, measured by
—H(P¢), in the formulation of the fitness function. Other features may,
however, be selected for, either in addition to or instead of, the determination
of y. The fitness function is, in fact, the way for an observer’s questions
about the data to be encoded. One might, for instance, desire knowledge
of what conditions give high average y values. One might also add a term

548 Norman H. Packard

to enhance the fitness of simple logical conditions by adding a penalty term
proportional to the number of coordinates with conditions, building in an
“Occam’s razor” as a part of the selection criterion. (Note, however, that
there will be an Occam’s razor effect even with the present fitness function,
because an increased number of conditions will generally imply fewer points in
the conditional set, which will consequently penalize the conditions’ fitness.)
In some contexts, one might even want to know what conditions lead to y
being unspecified. Different possibilities will be discussed below in the section
on applications.

Learning algorithm

The learning algorithm that is the crux of the method we describe is a version
of the genetic algorithm [1, 2]. This type of algorithm takes its name from
biology, where there is a straightforward analogy to the process of evolution-
ary learning. We will describe the algorithm first in general terms, then more
specifically in terms of the present problem.

A genetic algorithm always has a population, each member of which is
described with a set of genes § = (g1,...,9n), where we will call each g¢; a
gene and the collection § a genome. Each member of the population may be
assigned a fitness in some way, F'(¢§) € R. The nature and meaning of the
genomes and of the fitness function over the space of genomes depends on the
context. The fitness function typically encodes the problem to be solved. It
must tell how to weight different combinations of genes in order to distinguish
“good” combinations from “bad” combinations. It may be computed directly
from the genes ¢, or it may be obtained only indirectly, perhaps through
the interaction of the genes with another system or systems. Despite the
ambiguity in the interpretation of the genes and the fitness function, the
genetic algorithm may be described independently.

The name “genetic algorithm” refers to the fact that the population of
genomes {¢} changes with time, and each generation is formed from the
previous through a combination of a process of selection, using the fitness
function, and a process of modification of the genes. The genes are modified
in ways analogous to modification of biological genes; the maps that take
old genes to new genes are called genetic operators, and we will consider the
following types:

Mutation: (g1s-+-2Gir---rGn) = (G1y---rGir- -3 9n)
with ¢; # gi.
Crossover: to produce two new genomes from two old ones,
(gl" "7giagi+17"'7gn) i (gla' "7gi7gzl'+17' -'7.(]:71)
(gi, eee 7g£7g$+17 s 7g;n) (_(];, Sz ’ggng—l» v ag‘n)

The most general form of crossover does not depend on any ordering of
the genes; rather, it takes a random subset of genes from one genome and
exchanges them with the corresponding genes of another.

A Genetic Learning Algorithm 549

The dynamics of the genome may now be given by the following sequence
of events:

0. Initialize the population, typically with a random set of genomes {7'}.
1. Calculate the fitness of all genomes using the fitness function.

2. Order the population by fitness.

3. Discard a fraction of the population with low fitness, and replace the
deleted members with alterations of the remaining population, using
the genetic operators.

4. A generation is completed. Go to step 1 and repeat.

Variants of the genetic algorithm perform step 3 in different ways, often using
stochastic removal weighted by fitness.

This evolutionary procedure creates a dynamic on sets of genomes, and
we will use the procedure to perform an optimization over the space of condi-
tional sets. One of its advantages is that it searches as many hyperplanes as
are kept in the population in parallel, analogous to the way nature performs
a parallel search in the space of organisms.

Whether the genetic algorithm works, and how well, are questions that
have no general answers, and instead depend very much on the details of the
fitness function and its relationship to the genetic operators. The genetic op-
erators define a metric on populations; one population is near another if every
member of one may be obtained by few genetic operations on members of the
other. This metric is called an operator-induced metric by Holland [1]. Point
mutation alone corresponds to the metric of Hamming distance. Crossover
makes changes that are very large with respect to the Hamming distance
metric, and it corresponds to a metric of its own, giving a new distance func-
tion between sets of genes. The genetic algorithm will work well if the peaks
of fitness function are continuously approachable with respect to the metric
induced by the genetic operators used.

To use the genetic algorithm, we must identify the “genes” in our problem,
identify a suitable measure of fitness of a given genome, and specify how
genetic operators will operate on them. We will identify a gene vector with
a specification of logical conditions on the z; and use one of the two fitness
functions discussed in the previous section.

We will have as many genes as there are independent coordinates, n,
identifying each of them with one of the coordinates. Each of the genes will
be allowed to take on either a value of #, indicating no condition is set for
the corresponding coordinate, or a sequence of numbers (¢, .. ., ¢;) indicating
OR’ed values for the corresponding coordinate. For example,

(%, (5,9), *, %, T, %, %) ~ Xoc = {T|(z2 =5 OR 22 = 9) AND 25 =7}

550 Norman H. Packard

Crossovers occur as described above, with some subset of the genes g;
switching places. There are several different types of point mutations we
consider separately,

(c1y-vycr) = (C1y- -y ChyCht1)
(e1yeevyer) — (C1yveyCho1)

Note that this set of logical conditions have the form of equation (1.1),
generating X¢ that are rectangles, instead of the more general form of equa-
tion (2), which would generate arbitrary subsets. So far, we have found this
to be adequate, since unions of good rectangles can be obtained anyway by
their separate presence in the population. Application of the genetic algo-
rithm to conditions having the form of equation (2) would require a similar
symbolic representation with its own genetic operators.

One nonstandard feature of the genetic algorithm used here is a “diversity
booster” mechanism. The way it works is that after ordering the population
by fitness in step (2) above, using a fitness function such as equation (1.3),
the fitness of each member of the population is reevaluated, attenuating the
original fitness by a factor 0 < § <1 every time one of the g; for a member
matches a gene in the same location for any member more fit. This refitting
procedure may be repeated and has the effect of devaluing members of the
population that are near (with respect to Hamming distance) to other more
fit members. Note that without this procedure, the fitness of the kth ranked
member of the population will always increase monotonically with time, but
with the procedure this is not true.

After running for some length of time, the genetic algorithm will find con-
ditions that lead to fit conditional distributions. Evaluation of how useful
the patterns actually are, is somewhat subtle, however. They may be fit,
as measured by whatever fitness function is used on the space of conditions,
but the question remains of whether the observed fitness is statistically sig-
nificant. The genetic algorithm is mining the data, and is very effective at
finding statistical flukes.

This question may be answered by comparing the fitness learned from
the data with the distribution of fitnesses of conditions learned from a dis-
tribution of test data sets generated with a particular null hypothesis. For
example, the null hypothesis is commonly no correlation between data sam-
ples, i.e., a distribution that is independent and identically distributed (IID).
Particular realizations from this distribution are easily created by taking the
original data and shuffling it well, destroying correlations while maintain-
ing the original distribution. For each of many realizations, the learning

A Genetic Learning Algorithm 551

algorithm may be run, and a distribution of “fitness of the fittest condition
learned” may be formed. The fitness learned from the original data must
then be compared to this distribution. If it is near the mean (measured in
units of standard deviation of the distribution), the learned pattern is not
very significant. If it is far from the mean, it may be counted as significant.
Unfortunately, this procedure is very time consuming. In the examples be-
low, it is skipped, and only the results of the algorithm applied to the original
data is reported.

In this particular application of the genetic algorithm, fitness is derived
from the conditional probabilities obtained by “filtering” the data through
the conditions specified by the gene vector, accumulating only those data
points that satisfy the conditions to estimate the distribution Pg(y).

In the parlance of machine learning, we might call the z; coordinates of
a high-dimensional feature space and y a classification variable. After many
generations, the learning algorithm learns what features are relevant (i.e.,
those with non- genes), and in forming logical conditions on the relevant
features, it is inducing concepts or hypotheses directly from the data [6-8].

The genetic operators provide creativity in the process of inducing new
concepts. They act blindly, and their action is shaped by the process of
selection in accordance with the fitness function.

Qualitative data

The first example we will consider is a case where the variables are qualita-
tive, in the sense that they are not derived from continuous variables, but
intrinsically discrete.

The data actually comes from the office of management and the budget
of the Regione Lombardia, a state government in Italy, headquartered in
Milano. The government has 730 offices to which it allocates a budget every
year. Each office goes through a decision procedure to decide how to spend
its money and at the end of the year has spent a certain fraction of it. The
director would like to structure the decision procedures so that they lead
to efficiency of the offices. To this end, every year he has all the offices fill
out a questionnaire detailing their decision procedures by breaking them into
nineteen procedural elements, each of which is represented by a variable that
can take up to twelve different values. He would like to look at the data
for the year to discern a pattern that could lead to advice for the offices to
structure their decision procedures for maximal efficiency.

The data may be cast in an appropriate form quite easily. The indepen-
dent variables ¥ are the nineteen procedural elements, and the dependent
variable y is the yearly efficiency (money spent divided by money allocated).
In the 19-dimensional space there will be as many points as offices. The
distribution of data points turns out to be far from uniform; in fact, more
than 60% of the offices spend either all their money or none of it.

552 Norman H. Packard

F(t)

0 t 100

Figure 1: Fitness as a function of time for the eight fittest hyperplanes
learning conditions on the decision procedures for money spent in
many different offices of la Regione Lombardia. A population of 100
conditions was used, with 20 kept each generation.

The evolution of a population of hyperplanes is shown in figure 1, where
the fitness of the top 8 members of the population is shown as a function of
evolutionary time. The learned conditions were

* % 4 *x % 6 *k *x x * * 2 * x x x x * x 4129 19
¥ %k * * * * * * 26*% * 2 * * * * x *x 3976 12
* % 4 % * % % x x % % 23 % * *x x 4 *x *x 3305 16
¥ x x *x *x * % 23 x *x * x x * 1948 x 2 *x J.142 4

* % 232 2 ¥ * 1 * * 2 * * * * *x *x x x 30064 14
4 % %k % % % 34 % x x % x 2 % x % x % % 3052 8§

* % % 4 * * *x * * 26 % * 2 * * * k ok ok 2.898 12

where the occurrence of double digits implies the OR of two states for that
variable and where the two columns on the right are the fitness and the
number of points found in the conditional set. As the figure shows, the
fittest members of the population are robustly so, and there remains a fair
degree of competition in the rest of the population.

Management interprets the data by taking each of the learned conditions
and looking at the resulting distributions of office spending efficiency (the
dependent variable y). For the conditions to have been selected at all, the
distributions must be well determined; the first step of the director is to
see whether the average for the conditional distribution is high or low. If
high, he will observe the corresponding conditions and consider having all
offices use decisional procedural elements specified by the non-* entries in the

A Genetic Learning Algorithm 553

conditions. If low, he will consider having all offices use decisional procedural
elements other than those specified by the non-* entries in the conditions.

The primary alternate method tried on these data was a type of cluster
analysis, and the current method compared quite favorably.

Dynamics

A classical instance of trying to relate one variable to many others is found
in the problem of forecasting. In this context, we will consider raw data in
the form of a time series
AL T

where Z is a vector (z1,...,2,). If the dimensionality of the data is high
enough and the dynamics are complex enough, then we might expect many
or most of the coordinates of 2t to be irrelevant to the value of one particular
coordinate, say 2z, in whose future we might be interested. The task of our
data analysis in this case is to determine conditions on past values of 2 that
are indeed relevant to future values of zg.

The most obvious way to fit this task into the framework outlined above
is to identify the value of zy at some time in the future, z5%", with the
dependent variable, y, and a finite number of past states, (Z*7%,..., Zt), with
the independent variables, £. The learning set is then as many temporally
sampled (Z,y) pairs as are available.

If the observable has only one dimension, using past states to form a
higher-dimensional state—space representation of the dynamics is a common
trick [10]. In this case, 2t7%, ..., 2* would form k independent variables, and
27 would be the dependent variable.

Example: Symbolic dynamics

Here, we use the reconstruction trick in a very simple example. We observe
an orbit of the chaotic logistic map 2! = f(z*) = ra’(1 — 2') with r set to
a value of 3.9, which generates chaos. Our observations are of a particularly
simple form, a' = 1 if 2 > .5 and ¢’ = 0 if ' < 0.5. The independent
variables were taken to be k consecutive symbols, and the dependent variable
taken to be a symbol 7 steps ahead of the last of the & symbols. Thus from
raw data consisting of a string of symbols from a single orbit of the logistic
equation with r = 3.9. The points for the data analysis were taken by moving
a template along the data to obtain the training set.

...01]0010100101 011@010101111...

The size of the left part of the template, and hence the dimension of
the space of independent variables, in our examples is £ = 10. Our first
application is for predicting 7 = 1 steps into the future. This run used
10,000 data points.

554 Norman H. Packard

For the first case, 7 = 1; the evolution of the eight fittest conditions is
shown in figure 2. The eight fittest conditional sets of the population for a
particular run, after 40 generations, were

¥ % %k k k %k % x 0 0 0.953 106
% % %k k k % 0 x 0 0 0.739 57
O % % % % % % x 0 0 0.596 55
1% %k % % % % % 00 0.479 51
¥ 0 % % % % % *x 00 0.385 47
¥ 0 % x % x x 100 0.280 47
0% % x 1 % %x 00 0.182 43
* k 0 % k x k % 0 0 0.162 39

The first number after the hyperplane specification is its fitness; the second
number is the number of points in the hyperplane.

For a one-dimensional map, the degree of chaos is given by the Lyapunov
exponent, which is equal to the average spreading rate of nearby trajectories.
This quantity may be interpreted as the rate that initial information is lost,
and as the rate that information is being produced by the dynamics. Under
certain technical assumptions A is equal to the entropy
H{(k)

h = limsup
k—oo

= limsup _71 3" P(s*)log P(s*)
sk

k—co

where H(s*) is the average information per symbol for blocks of size k. In

fact, A ~ H(k)/k ~ H(k + 1) — H(k), and has an observed value of about
0.718 in this case.

To make a connection between the fitness of our learned conditions and
the information production of the system, we can re-express the entropy

h ~ [16]:
h H(k+1)— H(k)

H(s | s%)

= —Z;P(sk)ZP(s | s¥)log P(s | s*)

= —ZP(sk)ZPsk(s)log P (s)

sk

Q

Il

where in the last line we have written the conditional probability to conform
to our previous notation. The best learned conditional distribution is thus
equivalent to a particular block distribution Pg(s), where s? = 00.

From the final expression for the entropy, we see that the inner sum
for a particular block s* has the same form as the first term in the fitness

A Genetic Learning Algorithm 555

0 t 40

Figure 2: Fitness as a function of time for the eight fittest hyperplanes
learning to predict the logistic equation for one time step into the
future with one bit measurements. A population of 100 conditions
was used, with 20 kept each generation.

function (1.3). The learning algorithm is learning combinations of sequences
s¥ whose conditional entropies make small contributions to the average over
all s* in the expression for the entropy h.

Probing the limits of predictability

For the logistic equation with » = 3.9, the Lyapunov exponent is A ~ 0.718,
so one bit degrades by that much on average every iteration [12]. Thus we
expect some predictability one step into the future, but very little afterward.
What we find, however, with the current method, is that there are indeed
some predictable conditions that are learned. The eight fittest conditions
discovered for predicting four time steps into the future after 25 generations
were

¥ % 00 *x 0 x*x 00 % 0.500 10
¥ 001 *xx*x 001 0.328 10
* % 0010*x001 0.157 10
* 0010 %00 * 0.055 10
0 * 0 * % x x 0 0 % 0.040 35
*10**x0x*x 001 0.035 381
*10010x*00 % 0.007 10
* 10 % x x 1 x 0 % 0.006 92

The reason for the existence of conditions that give such high predictabil-
ity is that even though the average information loss is high, the local ex-

556 Norman H. Packard

1.0

0 . 40

Figure 3: Fitness as a function of time for the eight fittest conditions
learning to predict the logistic equation for four time steps into the
future with one-bit measurements. A population of 100 conditions
was used, with 20 kept each generation.

pansion on the attractor is nonuniform [13-15]. There are some pieces of
the observed orbit of the logistic equation that pass over parts of the at-
tractor where orbits are not spreading much, or where the orbits are even
contracting. Thus these particular pieces of orbits are predictable. The con-
ditions defining the conditional probability distribution may be mapped to
subsets of the unit interval containing points whose trajectories satisfy the
conditions, using straightforward techniques from symbolic dynamics [16].
Whether such conditions implying predictability may be found depends very
much on the nature of the attractor being observed and is an aspect that
is not captured in the numerical value of Lyapunov exponents (or metric
entropy). For example, if we were observing symbol sequences from a piece-
wise linear “tent-map” with the same value of the Lyapunov exponent (i.e.,
exactly as chaotic), we would see no predictable conditions learned, because
there are no parts of the attractor where orbits are convergent, as in the case
of the logistic map.

This suggests the use of a new statistic for characterizing the predictabil-
ity of a chaotic dynamical system. The usual measure of predictability, the
Lyapunov exponent, for an iterated map of the unit interval, f, may be
written [12]

A

[P(a)ioglilde
N

lim j\l— > log |f'|pn

/ 7
N—oo A0

A Genetic Learning Algorithm 557

where

df

2= @) | = | =

and the map f is assumed to have an asymptotic probability distribution
P(z) that is assumed to be ergodic and absolutely continuous with respect
to Lesbesgue measure.

The discussion above suggests that rather than simply averaging log |f’|,
over the attractor, one should instead separate contributions to A that come
from orbit segments with different amounts of contraction along the orbit.
To this end, we may define a finite time spreading rate for an orbit starting
at a particular initial condition w:

10g (1111 L)+ 1 lye=s)
T—1

log | '], + >_1og |f'|5ia)
=1

¥-(2)

Following convention, we take the log base two, so that 7, has the units of
bits.

The dynamics of f are predictable for time 7, with observations taken
to have information Iy, if and only if there exist points on the attractor for
which v,-(z) < Io. Such predictability will be useful to a real-world observer
only if the set of such points has positive measure, so that v, < Iy has non-
zero probability of being observed, i.e., if it is possible to localize the systems
to an initial state § such that

(rr(@))s = [12(@)P(@)de < Iy

Following this idea, for any partition A, we can define the net predictabil-
ity of the partition for time 7 into the future to be

Car= > 0I5 — {1:(2))s)

seA

where we have used the function §(z) = 0 when # < 0 and 1 otherwise to
give zero contribution to the terms in the sum that correspond to all the
information in an initial condition Is being lost. We may then say that f
is predictable for time 7 given a measurement partition A if and only if
PA,T Sl

Much of the predictable character of a system is contained in the distri-
bution of v values for a given 7,

Po(y) = [8y = 3(e)) P(z)da

558 Norman H. Packard

The predictability I's , is essentially summing over all parts of the attractor
with v(z) small enough that (v, (z))s is small enough, so that we should have

I
Par~ [9P()dy

for a suitable value of I &~ (Is)a.

The characters of P.(y) and I'a, are clearly discernable for simple ex-
amples. Any map that has a critical point on the attractor that is not an
isolated point will have P.(y) > 0 for v arbitrarily small, and T's , > 0 (i.e.,
the map is predictable) for arbitrarily large times 7. Naturally, for large 7,
the measure of initial conditions that are predictable will be very small. On
the other hand, a map that is uniformly expanding, e.g., the “tent map,”
has a P;(y) that is a delta function, P.(y) = é(y — 7A), where the Lya-
punov exponent, A, is the log of the slope of the tent map. Thus, I'a , is
zero unless Iy > 7A, and we recover the conventional wisdom regarding pre-
dictability [12, 17], since for this example local predictability is identical with
long-term average predictability.

When the learning algorithm is presented with the task of learning to
predict into the future by an amount 7, it learns, through conditions on the
symbol sequences, sets of x that retain information 7 steps into the future.
The net amount of information that can possibly be learned, i.e., a bound for
how well the learning algorithm can perform, is given by I'; ;. Exploration
of this and related measures of predictability will appear in future work.

These results also highlight an aspect of the present method that distin-
guishes it from other approaches to dynamical systems modeling. In other
currently popular approaches, the state-space reconstruction is used to build
a dynamical model that gives a good approximation to the evolution of or-
bits on an attractor that is presumed to be observed [18, 20, 22]. Here, the
learning algorithm does not try to reproduce all orbits, but only to pick out
selected pieces of orbits that are predictable. To make a prediction, one
would present a query sequence to the learned hyperplanes, to see whether
the query satisfies any conditions that make it predictable. For the latter
case above, predicting four steps into the future, the best sequence was in
fact fairly rare, happening only ~ 1% of the time. If the query point does not
satisfy any of the conditions, no prediction could be made from the learned
hyperplanes.

Continuous time dynamics

We will now consider how the analysis may be applied to more general con-
texts; here, the dynamics is an arbitrary continuous time signal. The data
must again be reduced to a series of symbols (though not necessarily bi-
nary). This reduction is accomplished by sampling the signal and requires
two choices: a sample interval, A¢, and a sample resolution, proportional
to I, the number of possible values for a given sample of each continuous
variable.

A Genetic Learning Algorithm 559

So in general, an n-dimensional vector Z* of continuous variables that

change continuously with time, will be sampled to obtain a sequence of n-
dimensional symbols @* € {1,...,K}™
(7= {....d%a

The data for the learning algorithm would then be obtained by identifying
the independent variables Z with a collection of one or more sampled values,
and the dependent variable with a value of a particular coordinate in the
future, y = al*".

The sampling choices are often made using the observer’s intuition, for
example, choosing At just small enough to capture temporal features that
might be relevant. With the sampling resolution fixed, the learning algorithm
will choose from the many possible past samples, those samples (intervals and
sampled values) that specify the future to the greatest degree.

In this dynamical systems context, the learning of optimal samples is
accomplishing the task of choosing coordinates that are most relevant to
determining the system’s future behavior. The z; may be regarded as the
coordinates of a high-dimensional reconstructed state space [10], and in this
state space the learning algorithm performs a dimension reduction task, find-
ing subsets of coordinates that are most important.

Our information theoretic fitness function over possible choices for coor-
dinates is very much like the mutual information criterion for choosing an
an optimal delay time [11]. It is also reminiscent of model criteria based on
discrimination [22].

One difference in the present analysis is that in the computation of the
entropy term in the fitness function, no average is taken over the indepen-
dent variables, ;; rather, the z; are held at particular values in satisfying
specified conditions. Another difference is that the learning algorithm yields
a population of many good sets of conditions on the coordinates x;. Geomet-
rically, if we think of the observed dynamics in the reconstructed state space
as being an attractor (possibly with added noise), each set of conditions cor-
responds to cuts through a projection of the attractor. If a set of conditions
is fit, the corresponding cuts provide a “deterministic view” of a particula
piece of the attractor. If the learning algorithm learns several distinct sets «
conditions, it is telling us that different coordinates are relevant for obtaini
the sharpest view of different deterministic pieces of the attractor.

t+At o424t
,d -

Pyramids in time and space

So far, we have presented the sampling choices as a problem to be handle
the intuition of the observer. It would be nice, instead, to put these ch
under the control of the learning algorithm. One method for accompli
this end is to use the pyramid data structure and to add structure 1
genetic algorithm.
The term “pyramid” comes from the original application in imay
T-a idea of the data structure is to augment the raw «

560 Norman H. Packard

successive stages of averages. For example, in the case of a single time-series
z* (which could be one of the coordinates of the more general z* mentioned
above), the pyramid is formed by

At g gt

P11=
n
Zt—n+1+ "~+Zt_"/2 zt—n/2+l+ "'+Zt
P21= ’P22=
n/2 n/2
t—n41 t—n42 t
Pb1=Z n+5Pb2=z n+7"'7an:Z

where Py, the top of the pyramid, is an average over the past n samples; Py;
(1 <1< 2), the second level of the pyramid, is two averages over n/2 samples;
and so on, till the bottom of the pyramid Py; (b = log,n and 1 <7 < n),
which consists of the past n samples themselves. For convenience, we will
always take n to be a power of 2, n = 2°.

The pyramid values may be used directly as the independent variables,
and a future value 2*7 as the dependent variable, y, as before. The pyra-
mid contains twice as many values as the raw samples, so the number of
independent variables has doubled.

As before, there will be one “gene” for each independent variable:

g11
921 922
931 932 933 G34

Jo1r " Gbm

Since there are twice as many, the search problem is more difficult, but in
return, we have the capability of detecting dependences on structures with
different time scales more straightforwardly.

The genetic algorithm may also be structured to explore different tem-
poral resolutions sequentially. In this case, only the top layers of the gene
pyramid would be available for non-* initialization. Then, rather than al-
lowing any * to mutate to non-* randomly, as before, we can allow finer

A Genetic Learning Algorithm 561

resolution to be explored only if there is a condition on the previous level.
In other words, we allow

Gij =*—"=gi; =¢

only if
9(i—1yij2 F *

This allows us to oversample (i.e., to sample at very fine temporal res-
olution) and have a very large space of independent variables, but to keep
the genetic algorithm from working too hard by ignoring the finely sampled
variables unless they are particularly useful for identifying a feature.

If the data has inherent spatial structure as well as (or instead of) tem-
poral structure, the pyramid technique may also be applied spatially. In
this case, features with fine spatial detail would be selected only when rele-
vant. A genetic learning approach to data analysis using a spatial pyramid
data structure has already met with some success in the context of learning
complex spatial dynamics [24].

Other state variables may also be formed using the pyramid technique.
For example, instead of using simply the averaged values, differences be-
tween the averages on different levels may be used to form the Laplacian
pyramid [23]. For the one-dimensional case, exploring different levels of the
Laplacian pyramid is analogous to adjusting coefficients of a Taylor expan-
sion.

The pyramid structured genetic algorithm is only one example of how
structure may be added to the genetic algorithm in order to attack the basic
problem of representation. The problem is that conventionally the genetic
algorithm is given a fixed space of possibilities (i.e., gene configurations) to
search, and this space depends on a particular representation for the possi-
bilities. One would like, however, the choice of representation to be under
the control of the learning algorithm as well, but this is problematic be-
cause the space of representations is generally much larger than the space
of possibilities using a given representation. The pyramid structured genetic
algorithm is one way to address the problem, by having a very large space of
possibilities, including many possible representations, that is explored only
gradually. Breaking through from one level of the pyramid being represented
in the population to another is an extension from one representation to a
larger one.

Similar representational extensions may be accomplished by exploring
other functions of coordinates besides averages. For example, higher-order
polynomials could be used, again explored gradually, with successively higher
orders becoming available to genetic manipulation only after previous levels
are activated. These tricks enlarge the space of representations available,
but do not solve the problem, which is rooted in the choice of the original
coordinates.

562 Norman H. Packard

Other methods

The task of finding patterns from data, as we have formulated it, has been
addressed by various “standard” statistical techniques, such as principal com-
ponent analysis, factor analysis, projection pursuit, and cluster analysis.
More recently, other different types of learning algorithms have also been
used for similar types of analysis, especially in the realm of pattern recogni-
tion [8, 25, 26]. We are currently in the process of detailed comparisons, but
a few general comments may be made even at this early stage.

The first, most general, comment is that this method should be partic-
ularly useful when the dimension of the space of independent variables X
is very high, and when the patterns being searched for involve dependence
of y on some small subset of the x;. In this case, most previous methods
waste much time considering the irrelevant coordinates, whereas the present
method learns that are relevant and concentrates on them.

Previously used methods that are most similar in spirit to the present
method are learning algorithms based on recursively cutting up a feature
space (e.g.,our X = {1,---, K;}"), aiming to maximize classifiability of data
points that lie in X. Here, the class of each data point would be our depen-
dent variable y. The resulting partition of X is usually represented in a tree
data structure sometimes called a “decision tree” or “kd-tree” [7-9,25,26].
Each node represents a hyper-rectangle, and daughter nodes represent the
hyper-rectangles obtained by a cut. The top node of the tree is the whole
space, and the tree is built by a divide-and-conquer algorithm. At each level,
typically all possible cuts are examined and evaluated using some criterion.
In fact, one of the most useful criteria is an information-theoretic one very
much like our fitness, equation (3) [9].

The partition obtained from building the tree is analogous to the con-
ditional sets {X¢,, -+, X¢,} corresponding to the good learned conditions
{C1,--+,Cr}. One difference is that the conditional sets will typically not
cover the entire space, whereas the tree-partition does. Thus the tree-
partition attempts to give a global model rather than simply locating pieces
of the space X¢ that can be well modeled.

Another significant difference is that the tree partition is built by mak-
ing a succession of incremental refinements, and “fitness” is a judgment on
the refinements. In contrast, fitness in the present method is a feature of
a particular partition element X that comes from simultaneously tested
global conditions on the coordinates z;. In some applications it has already
been noted that an incremental approach can miss high-order informational
correlations between coordinates [24].

One other difference is that the task of checking all possible cuts becomes
very {ime consuming in the limit of a high-dimensional feature space. In
this limit, maintaining the population can be less computational work. The
current method will definitely be advantageous when the dimension of X is
very high, and the dependent variable is dependent on only a small subset
of the coordinates.

A Genetic Learning Algorithm 563

Another currently popular class of learning algorithms for pattern recog-
nition problems is artificial neural networks [27]. The inputs to the network
would be our independent variables z;, and the output of the network would
be a classification, i.e., the network’s guess at a y value. Adjustment of the
weights to obtain good classification corresponds to the genetic algorithm’s
search for good conditions.

Omohundro [25] has argued that the geometrical task implemented by
neural network algorithms is quite analogous to cutting up the feature space
as in the tree-partition methods discussed above. The problem is that they
are not as efficient as the tree-partition methods on serial machines, because
many of the nodes may be working needlessly. This general problem is ex-
acerbated in the situation we address, that of a high-dimensional feature
space with many of the features being irrelevant, typically. The neural net-
work would spend needless time computing weights involving the irrelevant
coordinates.

Statistical methods such as principal component analysis, factor analysis,
projection pursuit, and linear discriminant analysis all use the general idea
of trying to find good coordinates for X by a series of transformations of
the original z;. For this reason we will refer to them as “transformational
methods.” “Goodness” is usually measured by how well classification is ac-
complished by a hyperplane cut in the new coordinates.

Hyperplane cuts are well approximated by the conditional sets X, in the
present method, so it should be able to do at least as well as transformational
methods. If the distribution is relatively simple, the present method may
work harder than necessary. If the distribution is complex, the additional
work will pay off in the discovery of richer structure than it is possible to see
with the transformational methods.

Performing the transformations can also be very time consuming in a
high-dimensional space. The genetic algorithm avoids much of this work
by learning which coordinates are relevant and ignoring the rest. Once the
“optimal” transformed coordinates are found, there are usually a few “most
important coordinates,” quite analogous to the collections of relevant coor-
dinates that make up the learned conditions.

More detailed comparisons of this method with other methods will appear
in future work.

Other applications

The method described above is designed to find patterns in data, where
the patterns should address a question formulated by the observer. The
application of the method involves two design issues: (1) putting the data in
an appropriate form, and (2) encoding the question into the fitness function.

The form of the data we have used is that each data point consist of a pair
(Z,y), with all the z; and y being integers. If the data is not immediately
in this form, it must be preprocessed before the algorithm can be applied.
For example, if data comes from “continuous” signals (i.e., signals with very

564 Norman H. Packard

many states per sample), it must be thresholded and binned. A modified
version of the algorithm that is better adapted to continuum variables (using
inequalities for conditions) will be reported in future work.

We have so far concentrated on a particular question to be asked of the
data, that of what logical conditions on the z; lead to well determined dis-
tributions of y values, i.e., Po(y) that have low entropy. The desire to find
such “good” conditions is directly translated into the fitness function of equa-
tion (1.3). However, as mentioned at the end of section 2, the fitness function
may be altered to encode other desires.

Below, several example applications are listed, particularly with an eye
toward how the two design criteria may be easily satisfied. In describing the
applications, the main task will be specifying the form of the data; unless
otherwise noted the fitness appropriate function will be that of equation (2).
The solution of the criteria should not be considered unique; other ways of
posing the data and questions may well exist. Also, the list of applications
is by no means exhaustive. It is rather meant to be suggestive of many other
possibilities.

Policy analysis

The section on qualitative data concerned the analysis of data that came
from a government office, with the aim of using the analysis to make policy
decisions. The development of the analysis for this context involved a fortu-
itous chain of events, but the example is by no means meant to be frivolous.
It is, in fact, an example of a typical policy decision process that is complex
in the sense that many elements must be considered in making the decision.

The first step in applying this method in policy analysis is obtaining the
data. The existence of data for the example cited depended crucially on
the intuition of the director of the office of management and the budget,
G. Giorgi, that such data should be useful for his decision-making process.
The application in other contexts would depend on similar initiative and
commitment to gathering relevant data.

To obtain the data and put it into a computer, the decision process must
be broken into many elements, with each element specified by a finite number
of possibilities, which typically will correspond to different choices of action
at a particular point in implementing the overall decision. The choices for
cach of the elements represents the specification of the independent variables
24, so there are as many variables as elements to the decision process. Given
a particular person’s or group’s decision process, there must be a way of
evaluating the decision’s performance (perhaps averaged over many decisions
where the same process was used). This evaluation would be the dependent
variable y. There will be as many data points as there are people or groups
making decisions.

The independent variables may also be augmented with external con-
ditions, such as weather conditions, etc. In fact, the learning algorithm’s
ability to learn which variables are relevant and which are irrelevant allows

A Genetic Learning Algorithm 565

one to test hypotheses about whether particular external conditions might
be relevant to a decision’s outcome.

The fitness function will usually be simply the usual information theoretic
criterion. It could, however, be modified to give particular evaluation about
the evaluation function for the decision procedure. For example, it could
include a term proportional to the average evaluation for all the points in
the conditional set X, in order to find conditions that led to high evaluations
on average.

The example above, in the Qualitative data section, involved many offices
within a government trying to spend money efficiently. Fiscal policy decisions
play an important role, of course, but the method could be applied to almost
any policy decision. In educational policy, for example, the evaluation func-
tion could be the average student performance, and the dependent variables
could be all the decisions that determine curriculum, class size, integration
level, teacher qualifications, etc.

Neural signals

The method is currently being applied to the analysis of neural signals. In this
case the arena is that of evoked potential experiments. In these experiments,
subjects are presented with different stimuli, for example A and B, and their
electroencephalogram (EEG) is measured from scalp electrodes. From many
sample signals (usually the order of hundreds), one would like to learn to
classify a mystery input, to tell whether it was produced by stimulus A or B.

Here, the independent variables are the samples of the EEG are them-
selves the independent variables, and the dependent variable is the binary
class variable A or B. One waveform is typically 260 samples, 5 milliseconds
apart, so the dimension of the space of independent variables is 260. This is
too high a dimension to search efficiently, so either the dimension must be
reduced (e.g., by averaging over intervals), or the pyramid technique must
be used. Both approaches are currently being tried; results will be reported
in future work.

Medical diagnosis

Medical diagnosis is a classical pattern recognition problem, and the identi-
fication of the independent and dependent variables is quite straightforward.
The independent variables are all the patient data, some of which will be
entire time traces (e.g., how body temperature changes over a week). This
data could also include patient information like sex, race, and other non-
disease specific information that could, nevertheless, be relevant in finding
a correlation with the disease. The dependent variable would be a discrete
class variable indicating what disease actually occurred, as determined by
pathology analysis, for particular set of symptoms (and personal informa-
tion).

The list of possible diseases is large, and the set of possible symptoms is
large, so large amounts of data are needed. Hopefully, the computer revolu-

566 Norman H. Packard

tion will result in eventual automatic computer compilation of all symptoms,
so that statistical tools like this one can achieve widespread use.

Visual pattern recognition

In visual pattern recognition, the usual formulation of the problem is to
classify spatial patterns. The independent variables are obtained from a dig-
itized image, and the dependent variable is the class to which the image
belongs. The data should almost certainly be encoded in some way, such as
the spatial pyramid discussed in the Dynamics section, with the correspond-
ing structured genetic algorithm.

It may be that prior knowledge about the class of patterns being ob-
served provides some information about what might be appropriate features
for use as independent variables. For example, total power in different spatial
frequency bands may be appropriate for classifying textures, and line-based
features may be appropriate for optical character recognition. Additional fea-
tures such as these could either substitute or supplement the original pyramid
variables.

Weather

Weather analysis is probably the most prominent application in the wide
realm of spatial dynamics. The problem can be seen as a special case of
spatial pattern recognition discussed above. Weather data from satellites
represents one of the largest data sets for any physical system, and this
seems ripe for the application of these methods.

Global circulation models perform an essential role in weather prediction,
but there are still many phenomena that lie outside its purview. One exam-
ple is the sudden occurrence of mesoscale storm systems [30]. The learning
approach presented here could provide a way to link preconditions with the
occurrence of such storm systems.

The essential problem, as in all dynamical applications, is one of fore-
casting. One would like to take patterns of spatial data (temperature, etc.),
and predict, for example, whether a mesoscale storm system will develop.
The independent variables would be the space time data encoded in pyra-
mid form. The dependent variable would be a binary classification variable
denoting the occurrence or lack of a storm system.

In order to discern a pattern, there must be enough data to contain many
examples of situations where storms both do and do not develop. Pg(y) for
this application will have only two entries, one for each value of y (storms or
no storms). The uncertainty in the estimate of each of these probabilities is
roughly 1/\/N, where N is the number of points in the probability histogram
bin. Thus, to estimate the likelihood of a storm to within 10%, at least ~ 100
storm events must be available in the data.

A Genetic Learning Algorithm 567

Speech and language

Speech recognition -is an area where learning algorithms have been applied
with fair success; the current champion speech recognition system appears
to be one based on a hidden Markov learning procedure [28].

The raw data for this problem is the digitized audio signal. The depen-
dent variables could ultimately be considered to be actual words, though it
is often conventional to break the recognition process into two parts, from
signal to phonemes and phonemes to words. The phoneme-to-word problem
has been successfully tackled by a neural-network-based learning scheme [29].
For the signal to phoneme application, the raw data in one-dimensional pyra-
mid form (cf. the Dynamics section, above), would be appropriate as the
independent variables, though these variables could be supplemented with
other types of data derived from the raw samples, e.g., power-spectral com-
ponents over finite windows. The dependent variable would be the phoneme
present at a particular place in the wave form. One of the main problems for
such applications is obtaining good learning data, since the identification of
phonemes in natural speech is painstaking and often ambiguous. To reduce
ambiguity, learning might be best applied to phoneme groups that have clear
sonic boundaries.

The problem of learning language requires an even bigger leap between
the data and the learned “dependent variables.” Bigger than the leap {rom
signal to phoneme, or signal to word, it requires the leap from signal to
actions, from which an inference might be made from signal to mental state.
The language problem involves not only the signal as raw data, but also
the environmental context within which the signal was produced. Variables
specifying environmental context could supplement the independent variables
derived directly from the audio signal.

The most appropriate context for applying this method to the problem
of language learning might be the problem of deciphering cetaceous speech.
Dolphins, for instance, are known to have complex sonic interactions, and it
has been hypothesized that some of the interactions might correspond to a
linguistic interaction.

The problem of interspecies language learning immediately poses inter-
esting problems in understanding the nature of language itself. One aspect
of the problem is clear by realizing that many animals use sound for commu-
nication, e.g., a certain bird-call to indicate the presence of a predator, but
one would probably not want to classify these as examples of language.

The bird-call does contain one element essential to language: symbolic
representation. It does not, however, contain an essential richness of using
linguistic symbols to build arbitrarily complex structures. The application
of a learning-algorithm-based analysis could provide an empirical procedure
to distinguish between linguistic and non-linguistic sonic interaction. For
non-linguistic interactions, a relatively small set of simple patterns should
be discovered, and for linguistic interactions, the discovered patterns should

568 Norman H. Packard

be arbitrarily many, increasing as the space of independent and dependent
variables is enlarged.

Large-scale modeling

For many large complex systems with many interacting nonlinear compo-
nents, it is useful to construct large-scale models. The models may be used
both for gaining a fundamental understanding of the mechanisms that gen-
erate particular features of the glohal dynamics, and also for practical pur-
poses, to obtain a sense of what happens to the global dynamics when control
parameters are changed. Such models have been constructed for ecological
systems [31, 32] and economic systems $3].

Large-scale models all face a difficult problem: the system being mod-
eled has very many degrees of freedom. To make the model as faithful as
possible, model makers would like to include as many of these degrees of free-
dom as possible (some of the large-scale economic models have thousands of
variables). On the other hand, the more variables in the model, the more
difficult it is to decide on which variables should be included and how they
should be coupled to the rest of the variables.

Thus, to build a model it would be useful to know which variables are
most relevant to the changes of another. The analysis method outlined here
could be used to determine which variables are relevant to which others,
and hence what coupling schemes should be considered in the network of all
variables.

To ascertain coupling schemes based on empirical relevance, the method
should be applied in essentially the same way as outlined in the dynamics
section, separately to every variable. Using the notation of the Dynamics
section, z'¢ would represent the value of all the model variables at time ¢. For
cach of them, z;, the analysis should be done separately, using z; 't" as the
dependent variable, and all the variables, 2 = (24, ..., z%), as the indepen-
dent variables. For each variable, z;, the learned conditions would yield a list
of independent variables (non-* entries in the genome) that are particularly
relevant to z;. In building the model, the equations of motion should then
contain terms for the time dependence of z; with explicit couplings to the
learned relevant variables. For example, if 213 were found to have dependence
on itself, z12, 217, and 223 (only), the equations of motion in the model should
have an equation of the form

213 = F13(212, 2135 217, Z23)

More sophisticated modeling and map fitting techniques could possibly be
used to help approximate Fy3 [25, 21].

A Genetic Learning Algorithm 569

Discussion

We have presented a method for discovering patterns in sparse, high-dimensional
distributions using a genetic learning algorithm. The method is a nonpara-
metric statistical method, in the sense that it makes no assumptions about
the underlying distribution, and in the sense that it assumes no (parameter-
ized) functional relationship between the dependent variable and the inde-
pendent variables. The learned patterns take the form of conditions C' on the
independent variables z; that lead to a well-determined distribution Pg(y)
for the dependent variable y.

As always in statistical analysis, one must be careful about inferring
causality from the learned patterns, i.e., that y is caused by z; satisfying
conditions C. The patterns merely represent statistical correlations. In some
contexts, the lack of causality is manifest; in the analysis of neural patterns,
for instance, the dependent variable y represents a classification of the stim-
ulus that caused the observed EEG signal. For the case of observing the
dynamics, it is much more tempting to infer causality, since the dependent
variable is taken to be in the future with respect to the dependent vari-
ables. In fact, this type of inference of causality is exactly what is used to
build up networks of couplings between variables for the example application
of large-scale modeling. It is possible, however, that the correlation is due
to an indirect coupling; the method has no way of discerning this type of
indirectness.

Inference of causality is just one example of the more general problem
of extracting meaning from the learned patterns. The learning algorithm
works blindly to find patterns, in the sense that it has no concern about
what the variables actually represent. Meaning that an observer infers from
the data inevitably involves interpreting the pattern based on the meaning
of the variables (i.e., what quantities they actually represent). Nevertheless,
the structure of the patterns represents a component of intrinsic meaning
implicit in the observed data. The meaning extracted by the observer is a
combination of this intrinsic meaning and interpretation-dependent meaning.

The structure discovered by the learning algorithm also gives one ap-
proach to quantifying complexity. The intrinsic complexity of the data may
be equated with the number of conditions learned for the fittest logical con-
ditions. This measure has the desirable properties of having a low value
when the data are either completely random or very structured, and high
for intermediate cases where randomness coexists with structure. Another
example of measuring complexity using a learning algorithm is Crutchfield
and Young’s construction of e-machines from symbolic data [34]. Both that
method and the present one might be said to suffer from the fact that they
are dependent on representation of the data, i.e., on the reduction from the
raw data to symbols, and hence not a measure of intrinsic complexity of the
data. It may be, however, that intrinsic complexity of data must, in prin-
ciple, depend on representation, and that only if the representations used

570 Norman H. Packard

by the learning algorithm are sufficiently rich, the learned complexity might
approach a representation-independent bound.

Acknowledgments

I would like to acknowledge the stimulus and hospitality of G. Giorgi, diri-
gente del I’Uficcio di Gestione, Regione Lombardia, and B. Dente, who pro-
vided the data analysis problem that stimulated the original development
of this method. An invitation by L. Galgani to lecture at the University of
Milano was instrumental in stimulating the application to dynamics. For
many subsequent ideas and help on writing the current version of PROPHET,
the program that implements this method, I am indebted to T. Meyer. I
have also had helpful conversations with A. Barron, M. Bedau, D. Farmer,
L. Rendell, O. Réssler, and R. Shaw. The work has also been stimulated by
many interactions at the Santa Fe Institute Economics Program. This work
was supported by the Sloan Foundation, the National Science Foundation,
Grant No. NSF Phy 86-58062 and the Office of Naval Research, Grant No.
N00014-88-IK-0293.

References

[1] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelli-
gence (1975).

[2] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning (Addison-Wesley, Reading, MA, 1989).

[3] W. Li, “Mutual Information versus Correlation Functions,” Center for Com-
plex Systems Research Technical Report CCSR-89-1, University of Illinois
(1989).

[4] Cramer Mathematical Methods of Statistics (Princeton University Press,
1946).

[5] H.B. Enderton, A Mathematical Introduction to Logic (Academic Press,
New York, 1972).

[6] R.S. Michalski, “A theory and methodology of inductive learning,” Artificial
Intelligence, 20 (1983) 111; reprinted in Machine Learning: An Artificial
Intelligence Approach I, R.S. Michalski, T.M. Mitchell, J.G. Carbonell, eds.,
(Tioga, 1983) p. 463.

(7] L. Rendell, “A general framework for induction and a study of selective
induction,” Machine Learning, 1 (1986) 177.

[8] J.R. Quinlan, “The effect of noise on concept learning,” in Machine Learn-

ing: An Artificial Intelligence Approach II, R.S. Michalski, J.G. Carbonell,
T.M. Mitchell, eds. (Morgan Kaufmann, 1986).

A Genetic Learning Algorithm 571

[9]

(10]

(11]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

J.R. Quinlan, “Learning efficient classification procedures and their appli-
cation to chess end games,” in Machine Learning: An Artificial Intelligence
Approach, R. Michalski, T.M. Mitchell, J.G. Carbonell, eds. (Tioga, 1983)
p- 463.

N. Packard, J. Crutchfield, D. Farmer, and R. Shaw, “Geometry from a time
series,” Phys. Rev. Lett., 45 (1980) 712.

A. Frazer, “Using mutual information to estimate metric entropy,” in Di-
mensions and Entropies in Chaotic Systems, G. Mayer-Kress, ed. (Springer,
Berlin, 1985).

R. Shaw, “Strange attractors, chaotic behavior, and information flow,” Z.
Naturforschung, 36a (1981) 80.

J. Nicolis, G. Mayer-Kress, and G. Haubs, Z. Naturforsch, 38a (1983)
p. 1157.

R. Deissler and J.D. Farmer, “Deterministic noise amplifiers,” Preprint, Cen-
ter for Nonlinear Studies, Los Alamos, NM (1985).

J.M. Nese, “Quantifying local predictability in phase space,” Physica D, 35
(1989) p. 237.

J.P. Crutchfield and N.H. Packard, “Symbolic dynamics of noisy chaos,”
Physica, 7D (1983) 201.

D. Ruelle, “Sensitive dependence on initial condition and turbulent behavior
of dynamical systems,” Ann. NYAS, 316 (1978) 408.

A.J. Cremers and A. Hiibler, “Construction of differential equations from
experimental data,” Z. Naturforsch, 42a (1986) 797.

P. Grassberger, “Information content and predictability of lumped and dis-
tributed dynamical systems,” Technical Report WU-B-87-8, University of
Wuppertal (1987).

J.D. Farmer and J.J. Sidorowich, “Predicting chaotic time series,” Phys.

Rev. Lett., 59 (1987) 845-848.

J.D. Farmer and J.J. Sidorowich, “Exploiting chaos to predict the future
and reduce noise,” Preprint LA-UR-88-901 of the Theoretical Division and
Center for Nonlinear Studies, Los Alamos National Laboratories (March
1988).

J.P. Crutchfield and Bruce S. McNamara, “Equations of motion from a data
series,” Complex Systems, 3 (1987) 417-452.

P.J. Burt, “Fast filter transforms for image processing,” Computer Graphics
and Image Processing, 16 (1981) 20.

T.F. Meyer, F.C. Richards, and N.H. Packard, “A learning algorithm for the
analysis of complex spatial data,” Phys. Rev. Lett., 63 (1989).

572

[25]

(26]

27]

28]

(29]

[30]

(31]

Norman H. Packard

S. Omohundro “Efficient algorithms with neural network behavior,” Com-
plex Systems, 1 (1987) 273.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Re-
gression Trees (Wadsworth, Belmont, CA, 1984).

D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, Vol. 1: Foundations (MIT
Press, 1986).

K.-F. Lee, Ph.D. Thesis, Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA (1988).

T. Sejnowski and C.M. Rosenberg, “Parallel networks that learn to pro-
nounce English text,” Complex Systems, 1 (1987) 145.

R.A. Maddox, D.M. Rodgers, and K.W. Howard, “Mesoscale convective com-
plexes over the United States during 1981,” Monthly Weather Review, 110
(1982) 1501.

M. Conrad and H.H. Pattee, ”"Evolution experiments with an artificial
ecosystem,” J. Theo. Bio., bf 28 (1970) 393; also, M. Conrad and M. Strizich,
“Evolve II: A computer model of an evolving ecosystem,” BioSystems, 17
(1985) 245.

C.E. Taylor, D.R. Jefferson, S.R. Turner, and S.R. Goldman, “RAM: Artifi-
cial life for the exploration of complex biological systems,” in Artificial Life,
C. Langton, ed. (Addison-Wesley, 1989).

S.A. Bremer, Potentials of Globus and Related World Models.

J. Crutchfield, “Inferring statistical complexity,” Phys. Rev. Lett., 63 (1989)
105.

