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Abstract . A genetic learning algorith m modeled after biological evo­
lution is pres ente d to discern patterns relati ng one observable that is
taken to be dependent on many others. The problem is reduced to
an optimization pr oced ure over a space of conditions on th e indepen­
dent variables. The optimi zation is performed by a genetic learning
algorithm, using an information theoret ic fitness fun ction on condi­
tional probabil i ty distributions, all derived from dat a that has a very
sparse distribution over a very high-dimensional space. Vole will dis­
cuss applications in forecasting, management , weather , neu roanalysis,
large-scale modeling, and other areas.

Introduct ion

We cons ider da ta obtaine d from a complex sys te m, i .e ., a system wit h m an y
degrees of fr eedom that are highly coupled . Su ch dat a a re usu ally beset
wi th two problems: (i) randomness , from ob servational errors , from low­
dimen sional chaotic dynamics , and from high-di men sional noise, and (ii)
limitations on the amount of data ava ilable. We will presen t a metho d for
finding patterns in t h is data , especially app licable wh en no simple p at terns
are readily d iscernible .

We will assume the dat a to be a collection of p airs

{(Xl, VI), .. . , (x N
, VN

) }

where each x = (Xl ,' . . , x n ) is interp ret ed as a set of indep endent var ia bles
on which t he corresponding y is presumed to b e dependen t. Obser vations
of each (x ,V) p air are ob t ained from a m easurement t hat in evitably h as a
fini te resolution , so values of these var iables will take on one of a discr ete set
of values , x} E {1, .. . , K I} an d Vi E {1, .. . , K D } . vVe will let K 1 an d K D b e
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the number of states of the independent variable and the dependent variable,
respectively.

For the moment, we need not attach any mean ing to the lab el i of each
datum . In some contexts, the dat a may come from observations of a single
syste m at different ti mes. In other contexts, the dat a may come from obser­
vation of many different sys tems (or subsys tems) at a given t ime. Likewise ,
we will also refrain from making assumptions about the int erpretations of the
discrete values taken on by bot h the depend ent and independent variables .
T hey could be discreti zed versions of continuous variables , in which case they
would inh erit a natural order and metric, but th e set of poss ible values may
also represent la bels for poss ibilit ies that have no particular conn ection to
each other, as is often the case wit h "qualitat ive var iabl es." No particular
consistency is assumed for the data; there may be two samples , (xi,Vi ) and
(x J,yi) , for which x ' = x J bu t yi =f yi . We cons ider only the case of one
independent variable y, because thi s case is rich enough to capture the es­
sent ial feat ures of the method, and the generaliza t ion to high- dimension al
dependent variables is fairl y straightforward.

No ass ump tion will be mad e about the distribution of poi nt s, alt hough
the methods we describe will be parti cularl y useful when the distribution
is br oad and complex , i.e. , when the Xi pop ulate large regions of the space
{I , . . . , ](/ } n wit h a distr ibutio n that is far from uniform . The goal of our
analysis is to discern the nature of the average dependence of y on x by
learning a pattern from the data . The basic tool to accomplish the t ask of
learn ing will be a form of the geneti c algor it hm [1, 2].

One approach to searching for pat terns in data is to t ry to construct a
model th at is "complete" in the sense that for any value of x given as an
input , the model will give as an output it s best guess for y . The present
approach is different in t he sense th at the patterns it seeks to discover in the
da ta are essent ially incomplet e. The discovered pattern s will take the form of
a set of hypoth eses, each of the form , "when som e subset of the indepen dent
variabl es satisfy particular conditio ns , a certain behavior of the dep endent
variab le is to be expect ed ." It may happen that the model has no suggest ions
for a wid e range of inp uts because th ey do not satisfy the conditions of any
of the discovered hypotheses.

Once the hypotheses are learn ed, they may be used in a var iety of ways ,
depend ing on the context. They could be used to guide the ad justment of
the system being observed, using th e information of which variables are most
relevan t. They could be used for forecasting, in which case a query would
be made by pr esenting a mys te ry point x, and the expected behavior of y
would be specified by the hypoth eses sat isfied by x (if any). Th ey could be
used for mo del building, where the hypotheses would te ll which :ri were most
importan t in determin ing y. \ iVe will discuss a range of applicat ions afte r the
method has been explained .
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Logic and geometry

We will now discus s how state ments ab out the independent variables having
th e form specified above may be identified with subsets of the space of inde­
pendent variables. T hese subsets will be called conditional sets. The space
of conditions explored is exhaus t ive if the set of all conditi onal sets is the
same as the set of all po ssible subsets .

On e easy way to formulate conditions for the hypotheses described ab ove
is to require particular coordinates in the space of ind ep end ent variables to
take on particul ar valu es. An examp le of such condit ions is

C = {X i! = CI AND . .. AND Xim = Cm}

where CI, . .. , c-« are m constants. Su ch conditions specify a set of points,

X c = {xlxi! = CI, ·· · , Xim = cm}

For this particular set of conditions, Xc is a hyp erplane in the space of
independent vari abl es, and the co-dimension of the hyp erp lan e is the number
of condit ions m. If m < n - 1, the set is someti mes called a "fiat" in st ead of
a hyp erplane.

Setting par ti cul ar coordinates to particular values implements the logical
function AN D on elementary propo sitions of the form Xi = c. We may also
use an OR function to form conditions (and the corres ponding conditional
sets ), for example,

C = {(X i! = CI OR Xi! = C~) AND Xi 2 = C2 A ND . . . AND xik = Ck }

If we regard condi t ions for a particular coordinate, { X i = CI OR Xi = C2 OR . .. }

as elementary pr opositions ~ , and rep resent the logical A ND by the u sua l
symbol for conjunc tion, 1\, these conditions on k coor dinates may be written
compact ly as

C = ~l 1\ 6 1\ ... 1\ ~k (1.1 )

Geometrically the set X c <;;; {1, ... , J{I t for such conditions is a set of
rectangles in {1, .. . , J{I} k crossed with {1, ... , J{I} n- k. T he rect angles all
have their boundaries par allel to coordinate axes.

We may obtain more general subse ts of {1, .. . , J{I} n by taking the OIl

(di sjunction , V) of conditions that have th e form of equation (1.1),

C CI V C2 V .. . V c,
(~~ 1\ . . . 1\ ~t) V W1\ .. . 1\ a,) V ... V (a 1\ ... 1\ ~~p) (1.2)

It is easy to see that th e corresponding set X c is related to X CI ' .. X Cp by

Not ing that

NOT ( X i = c) ¢=? Xi = Cj OR x i = c2 OIl . .. ( for all ci =I c)
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becau se of the finit e number of possible values for Xi, we see that the propo­
sit ions ---,~ (NOT ~) are contained within the set of possible propositions ~ as
defined above. In thi s case , the condi tions of the form (2) may be recognized
as being in disjunctive normal form . An element ary th eorem in logic [5] te lls
us that each poss ible Boolean expression involving the elementar y pro posi­
tions is tautologically equivalent to one in disjunctive normal form. Geomet ­
rically, this has the int erpret ation that all poss ible condit ional sets X c using
condit ions of the form (2) correspond to all possible subsets of the space of
indep endent variables, {I , .. . , J{I }n.

Given a hypothesis spec ified by conditions C on the ind epend ent vari­
ables, we may now ask how well spec ified the V values are, given those con­
di tio ns. This quest ion is ad dressed by examining all the data points in the
conditi onal set X c. In particular, we mu st cons truct our em pirical estimate
of the cond it ional pr obability distribu tion of V values given that x E X c ,

Pc(V) = ~ L 8(V~ Vi)
C (x y') ,EX c

where Nc is the nu mber of points in X c and the sum is t aken over all po ints .
8(V - Vi) is 1 if V = Vi and 0 ot herwise. This distribution may be collecte d
from the data po ints dir ectl y.

We may now use Pc (V) to evaluate the usefulness of the condi ti ons in
specifying V. This evaluation will allow us to assign a "value" or "fitness"
(foreshadowing a biological analogy to be used below) of any conditional
set X c .

In tuit ively, V is very det ermined by the condit ions t hat specify C if Pc( V)
is very sharp. If V comes from a discret e measurement of a cont inuous vari­
able, we may measure th e sharpness of Pc(V) simply by using the width ,
a = J< y2 > - < y >2. The na tural meas ure of sharp ness, given a , is
- log a , which is proportional to th e information contained in a sharp Ga us­
sian of width a .

Our expression for the fitn ess of a conditi onal set must also include a term
related to th e fact th at Pc( y) is only an estimation from a finite number
of sample po ints . For example , if C only contains a single data point , t hen
Pc( y ) is as sharp as possib le, bu t may be spur ious due to statist ical sampling
errors . Vie use a te rm proport ional to - l i Ne to "devalue" cond it ional sets
wit h few po ints . T hus fitness of a condit ional set may be exp ressed as

a
F(C) = - log a - ­

Nc

where a is a parameter to adjust the depend ence on Nc , t he numb er of points
in h.

If V does not come from a cont inuous variable, the wid th a can no t be
used because it depends on a natural ordering and metric for y . In this case ,
the ex tent that y is determin ed by the condit ions may be measured by the
distance of Pc( y) from th e best possible a priQ1'i guess. In the absence of
any knowledge, the a priori distribution is a flat dist ribution P(V ), where
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d(JJc ,P)

P(y) = 1/J(D for all y. An appropriat e distance measure is the Kullback­
Leibler fun ction,

~ JJc (Y)
~JJc (Y)log P(y)

Hm ax - H(JJc )

where H (JJc) = - L JJc(y ) log JJc(y ) is the entr opy ofthe distr ibution JJc( y),
which has a maximum value of Hm ax = log J(D when the JJc (Y) is fla t .

Thus , we use as the fitn ess for the condit ions C ,

a
F( C) = Hm ax - H (JJc ) - N

c
(1.3)

where we have agai n subtracted th e term a/Nc to account for poor statistics.
It should be noted th at this fitness function works perfectly well whet her y

is complete ly discre te or is derived from a cont inuous variable. Also , instead
of using P as the a priori distribution, JJo(y) , t he dist ribution of y values
wit h no conditions at all, may be used. In this case , the dist an ce funct ion
would not simplify as above, and th e fitn ess would be

JJc(y) a
F( C) = L JJc(y) log~( ) - N

y 0 y c

The te rm - a /Nc is, at thi s point an ad hoc mech ani sm to adjust the
dependence of the fitness on Nc . This term actually serves two purposes:
(1) When the entropy-based fit ness fun ction is used , a may be chosen as to
unb ias the entropy estimate, where the bias comes from fini t e statist ics [3] .
(2) T he te rm devalu es the fitness of cond iti onal sets that have small num­
bers of points, and hence have less statis tical relevance. This secon d function
served by the te rm is crucial, bu t this may not be the correct dependence on
N to compensate for statistical relevan ce opti mally. A more satisfying ad­
justment might use a calc ulation based on confidence intervals [4], bu t such
calculat ions require an assumption of the distribution. The par ameter a may
be set with a recursive empirical pro cedure: start with an initial value of a,
learn a set of good conditions, comp ute a confidence interval for each of the
condit ional distributions , an d th en if th e statisti cs are too poor (reflecte d in
a large confidence int erval), raise a and begin aga in . Of course, the obser ver
must eventually face the fact that a finit e sample inevitabl y limits the confi­
dence with which a parameter (like H(JJc)) may be estimated. Other fitn ess
functions th at meas ure statist ical relevanc e more directly (using, for instance
X2 measures) are being investigated.

So far we hav e emphas ized th e well-de terminedness of y , measured by
- H( JJc ), in the form ulation of the fit ness function. Oth er features may,
however , be selected for , either in addit ion to or instead of, the determin ation
of y . T he fitness funct ion is, in fact , the way for an observe r 's questions
about the data to be enco ded . One might , for inst an ce, desire knowledge
of what condit ions give high average y values . One might also add a term
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to enhance the fitness of simple logical condit ions by adding a penalty te rm
proportional to the number of coordinates with conditi ons, bu ilding in an
"Occam 's razor" as a part of the selection crit er ion. (Note, however, that
there will be an Occam 's razor effect even with the pr esent fitn ess funct ion ,
because an increased number of condit ions will generally imp ly fewer points in
the condi tional set , whi ch will consequent ly penalize the condi tions' fitness.)
In some contexts , one might even want to know what conditions lead to y
being unsp ecified. Different possib ilities will be discussed below in the section
on applica tions.

Learning a lgor it hm

The learn ing algor ithm that is the crux of the method we describ e is a version
of the geneti c algorithm [1, 2]. This type of algor ithm takes it s name from
biology, where there is a st raightforward analogy to the pro cess of evolution­
ary learning. We will describe the algorit hm first in general te rms, th en more
specifically in terms of the present problem.

A genetic algorithm always has a population , each memb er of whi ch is
describ ed with a set of genes § = (gl , '" ,gn), where we will call each gi a
gene an d the collect ion § a genome. Each memb er of the population may be
ass igned a fitn ess in some way, F( §) E R. The nature and meaning of the
genomes and of the fitn ess fun ction over the space of genomes depends on the
context. The fitness fun ction typically encodes th e probl em to be solved . It
mu st tell how to weight different combinations of genes in order to distinguish
"good" combinat ions from "bad" comb inations . It may be computed directly
from t he genes § , or it may be obtained only indirect ly, perh aps thro ugh
th e interaction of the genes with another system or systems. Despite the
ambiguity in the interpretation of the genes and the fitn ess function , the
genetic algori thm may be describ ed ind epend ently.

T he name "geneti c algorit hm" refers to the fact that t he population of
genomes {§} changes with time, and each generation is formed from the
pr evious through a comb ination of a pro cess of select ion , using the fitn ess
functio n , and a process of modificati on of th e genes. T he genes are modified
in ways analogous to mo dificat ion of biological genes; the map s that take
old genes to new genes are called genetic op erat ors, and we will consider the
following typ es:

M utatio n : (gl" " ,gi, · · · ,gn) --> (gl" " ,g;, ... ,gn)
with s. =I g;.

C rossover: to pr oduce two new genomes from two old ones,

T he most genera l form of crossover does not dep end on an y orderi ng of
the genes; rath er , it takes a random subset of genes from one genome and
exchanges th em with the corr esponding genes of another.
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The dynamics of the genome may now be given by the following sequence
of events :

O. Init ialize the popula tion , typically wit h a random set of genomes {§T

1. Calculate the fitness of all genomes using the fit ness function .

2. Order the population by fitness.

3. Discard a fraction of the population with low fitness , an d replace the
delet ed members wit h alterations of the remaining po pulati on , us ing
the genetic operators.

4. A generation is complet ed. Go to st ep 1 and rep eat .

Variants of the gene t ic algorithm perform ste p 3 in differen t ways, oft en using
stochastic removal weighted by fitn ess.

This evolut ionary procedure create s a dynamic on sets of genomes, and
we will use the procedure to perform an optimization over the space of condi­
tional sets. One of its advantages is that it searches as many hyp erplan es as
are kept in the population in par allel, analogous to the way nature performs
a parallel search in the space of organisms.

Whether the genetic algorithm works, and how well, are questio ns that
have no general answers, and inst ead depend very mu ch on the details of the
fit ness fun ction and it s relati onship to the geneti c operat ors. The genet ic op­
erators define a metric on populati ons; one popul ation is near another if every
memb er of one may be obta ined by few genetic operations on memb ers of th e
other. This metri c is called an operator-induced metric by Holland [1]. Point
mutation alone corresponds to the metri c of Hamming distan ce. Crossover
makes changes that are very large with respect to the Hamming distance
metric, and it corresponds to a metric of it s own , giving a new distance func­
tion between sets of gene s. The geneti c algorithm will work well if the peaks
of fitn ess fun ction are continuo usly approach abl e with resp ect to the metri c
induced by th e genet ic operators used.

To use th e genetic algor ithm, we must identify the "genes" in our prob lem ,
identify a suitable measure of fitn ess of a given genome, and specify how
geneti c op erators will op erate on them . We will identify a gene vecto r with
a spec ificat ion of logical cond it ions on the Xi an d use one of the two fitn ess
fun ct ions discusse d in the previous sect ion .

We will have as many genes as th ere are indep end ent coordinates, n ,
ident ifying each of them with one of th e coordinates. Each of th e genes will
be allowed to take on either a value of *, ind icating no condition is set for
the corresponding coordinate, or a sequence of numbers (Cl ' . .. ,Ck ) indi cating
oa'ed values for th e corr esponding coordinate. For example,
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Crossovers occur as described above, wit h some subset of the genes 9i
switching places. There are several different types of point mutations we
consider separately,

c --> c'

( CI, .. . , Ck) --> (CI ' ... , Ck , Ck+ I )

Note that this set of logical cond itions have the form of equation (1.1) ,
generat ing X c that are rectangles, instead of the mor e general form of equa­
tion (2) , which would generat e arbitrary subset s. So far , we have found this
to be ad equate, sinc e unions of good rectangles can be obtained anyway by
their separa te pr esence in the population. Application of the genetic algo­
rithm to condit ions having the form of equat ion (2) would requ ire a similar
symbolic representation with its own genetic op erators .

One nonstandard feat ure of th e genetic algor ithm used here is a "diversity
boo st er" mechanism . The way it works is that after ordering the population
by fitn ess in st ep (2) above, using a fitn ess function such as equat ion (1.3) ,
the fitn ess of each member of th e popul ati on is reevaluated , attenuating the
or iginal fitn ess by a factor 0 :::; (3 :::; 1 every time one of the gi for a member
matches a gene in the same location for any member mor e fit . This refitting
pro cedure may be repe ated an d has the effect of devaluing memb ers of the
population that are near (with resp ect to Hamming distance) to other more
fit members. Not e that without this procedure, the fitn ess of the kth ranked
member of the population will always increase monotonically with time, but
with the pr ocedure thi s is not true.

Aft er running for some length of time, the genet ic algorithm will find con­
ditions that lead to fit condit ional distributions. Evaluation of how useful
the pat terns act ually are, is somewhat subt le, however. They may be fit ,
as measured by whatever fitn ess function is used on th e space of cond itions,
but the question remains of whether the observed fitn ess is statistically sig­
nifican t. The geneti c algorithm is minin g the data, and is very effecti ve at
finding stat ist ica l flukes.

This question may be answered by comp aring th e fitn ess learned from
the data wit h th e distribution of fitn esses of condit ions learned from a dis­
tribution of test data sets generated with a par ticular null hypothesis. For
example, the null hypothesis is common ly no corre lat ion between data sam­
ples, i.e., a distribution that is ind epend ent and identically distributed (lID) .
P articular realizat ions from this distr ibution ar e easily created by taking th e
original data and shuffling it well, destroying correlations while main tain­
ing th e original dist ribu tion . For each of man y realizations, th e learning
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algor ithm may be run, and a dist ribution of "fitn ess of the fittest condition
learn ed" may be formed . T he fitn ess learned from the orig inal data mu st
then be compared to this distribut ion. If it is near the mean (meas ured in
uni ts of standard deviation of the distribution) , th e learn ed pattern is not
very significant. If it is far from the mean, it may be counted as significant .
Unfortunately, this procedur e is very time consuming. In th e examples be ­
low, it is skipped, and only the res ults of the algorithm applied to the original
data is reported.

In this particular application of th e genetic algorithm, fit ness is derived
from the condit ional probabiliti es obtained by "filtering" the dat a through
the conditions specified by the gene vector, accumulating only those data
points that satisfy the con ditions to estimate the dist ribu tion Pc(y).

In the parlance of machine learni ng, we might call the Xi coordinates of
a high-dimensional feature space an d y a classificat ion variable. After many
generations , the learning algor ithm learn s what fea tur es are relevant (i .e. ,
those with non -« genes ), and in forming logical conditions on the relevant
features, it is in du cing concepts or lJyp oth eses directly from the data [6- 8].

The genetic operators pro vide creativity in the process of ind ucing new
concepts. They act blindly, and their action is shap ed by the process of
selection in accordance wit h the fitness funct ion.

Qualitat ive data

The first example we will consider is a case where the variables are qu alita­
tive, in the sense that they are not derived from cont inuous variables, but
int rinsically discrete.

The dat a actua lly comes from the office of management and the budget
of th e Regione Lom bardia, a state government in Italy, headquartered in
Milano. The government has 730 offices to which it allocates a bu dget every
year. Each office goes through a dec ision pro cedure to decide how to spend
its money and at the end of the year has spe nt a cer ta in fraction of it . The
director would like to struct ure the decision procedures so that th ey lead
to efficiency of the offices. To th is end , every year he has all the offices fill
out a questionnaire detailing their decision procedures by breaking them into
nineteen procedural elements , each of which is represented by a variable that
can take up to twelve different values. He would like to look at th e data
for the year to discern a pattern that could lead to advice for th e offices to
structure their decision procedures for maximal efficiency.

T he data may be cast in an appropriate form quite easily. T he indepen­
dent variab les if are the nineteen proced ural elements, and the dep end ent
var iable y is th e yea rly efficiency (money spent divided by mon ey allocated).
In th e 19-dimension al space there will be as many po int s as offices . The
distribution of data po int s turns out to be far from uniform ; in fact , mor e
than 60% of the offices spend eit her all their mon ey or none of it .
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F(t)

o
o 100

Figure 1: Fitness as a function of time for the eight fittest hyperplanes
learning condit ions on the decision procedures for money spent in
many different offices of la Regione Lombardia. A popul ation of 100
condit ions was used, wit h 20 kept each generat ion.

The evolution of a population of hyperplanes is shown in figure 1, where
th e fitness of the top 8 members of th e po pula tio n is shown as a function of
evoluti onary t ime. T he learned condit ions were

* * 4 * * 6 * * * * * 2 * * * * * * * 4.129 19

* * * * * * * * * 26 * * 2 * * * * * * 3.976 12

* * 4 * * * * * * * * 23 * * * * 4 * * 3.305 16

* * * * * * * 23 * * * * * * 19 48 * 2 * 3.142 4

* * 23 2 2 * * 1 * * 2 * * * * * * * * 3.064 14
4 * * * * * 34 * * * * * 2 * * * * * * 3.052 8

* * * 4 * * * * * 26 * * 2 * * * * * * 2.898 12

where the occurrence of double digit s implies the OR of two states for that
variable and where th e two columns on th e right ar e th e fitness and the
number of p oints found in the condit ional set. As the figur e shows, the
fit test members of the population are robust ly so, and there remains a fair
degree of compe ti t ion in the rest of th e populat ion .

Management int er pret s the data by taking each of the learned condit ions
and looking a t the resulting dist ributions of office sp ending efficiency (the
dependent variable y). For th e condit ions to have been select ed at a.ll, t he
distribut ions mu st be well determined ; th e first step of th e dir ector is to
see whet her the average for th e condit iona l dist ribu t ion is high or low. If
high , he will observe th e corr esponding condit ions and consider having all
offices use decisional procedu ral elements sp ecified by t he non- " entries in the
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condit ions . If low, he will consider havin g all offices use decisional pro cedural
elements other than those specified by the non-* entries in the condit ions .

The primary alternate method tried on these data was a type of clust er
analysis, and the curre nt method compared quite favorably.

Dynamics

A classical ins tance of trying to relat e one variable to many others is found
in the problem of forecasting. In this context , we will consider raw dat a in
the form of a time series

~ t ~t+l ~t+2... ,z ,z ,z , . ..

where i is a vecto r (Zl" ' " zn)' If the dimensionality of the data is high
enough and the dynamics are complex enou gh, t hen we might expect many
or most of the coordinates of it to be irr elevant to t he value of one particular
coordinate, say zb, in whose future we might be interested. T he task of our
data an alysis in this case is to determine conditions on past values of i that
are indeed relevant to future values of zoo

The most obvious way to fit this t ask into the framework outlined above
is to identify the value of Zo at some t ime in the fut ure, zb+T

, with the
dependent variable, y , and a finit e number of past st ates, (i t- k , • . . , i t) , wit h
the independen t varia bles, x. The learning set is then as many temporally
sampled (x, y) pairs as are available.

If the observabl e has only one dimension , using past st ates to form a
higher-dimensional state-space rep resentation of the dynamics is a common
trick [10]. In this case, zt - k , . . . , zt would form k ind ep endent var iables, and
Z k+ T would be the depend ent variable.

Example: Symbolic dynamics

Here, we use the reconstruction trick in a very simp le example. We observe
an orbit of th e chaotic logistic map xt+1 = f( x t) = Tx t ( l - xt) wit h T set to
a value of 3.9, which gener ates chaos. Our observations are of a par ti cularly
simple form, at = 1 if x' > .5 and at = 0 if x' :::; 0.5. T he independent
variables were taken to be k consecut ive symbols, and th e dep end ent variable
t aken to be a symbol T ste ps ahea d of the last of th e k sym bols. T hus from
raw data cons ist ing of a st ring of symbols from a single orbi t of the logistic
equation wit h T = 3.9. The points for the dat a analysis were taken by moving
a template along the da ta to obtain the training set .

. . . 0 110 0 1 0 1 0 0 1 0 1 10 11 [Q] 0 1 0 1 0 1 1 1 1 .. .

The size of the left part of th e tem plate, an d hence the dimension of
the space of ind ependen t variables, in our examples is k = 10. Our first
ap pli cation is for pr edicti ng T = 1 ste ps int o th e future. T his run used
10,000 dat a points.
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For the first case, T = 1; t he evolution of the eight fittest conditions is
shown in figure 2. The eight fittest conditional sets of the populati on for a
particular run , aft er 40 generations , were

* * * * * * * * 0 0 0.953 106
* * * * * * 0 * 0 0 0.739 57
o * * * * * * * 0 0 0.596 55
1 * * * * * * * 0 0 0.479 51
* 0 * * * * * * 0 0 0.385 47
* 0 * * * * * 1 0 0 0.280 47
o * * * 1 * * * 0 0 0.182 43
* * o * * * * * 0 0 0.162 39

The first number after the hyperplan e spe cificat ion is it s fitness; th e second
number is the number of po ints in the hyperplane.

For a one-dimensional map , the degree of chaos is given by the Lyapunov
exponent , which is equal to the average spreading rate of nearby tra jectories.
This quant ity may be interpreted as the rat e th at ini ti al information is lost,
an d as the rate that information is being produced by the dynamics. Under
certain techn ical ass umptions A is equ al to the ent ropy

h =
. H(k )

bm su p -
k
-

k_<:X:l '"

lim sup ~1 L p (sk) log p (sk)
k--+ oo sk

where H(s k) is the average information per symbol for blocks of size k. In
fact , A >::::: H(k)/k >::::: H(k + 1) - H (k), and has an observed value of about
0.718 in this case .

To make a connect ion between th e fitn ess of our learned condit ions an d
the information production of the system , we can re-exp ress th e ent ropy
h", [16]:

h >::::: H (k+ 1) -H(k)
H(s I Sk)

- L p(sk) L P (s I sk) log P (s I sk)

- L P (sk) L Psk(S) log Psk(S)
sk

where in the last line we have writ ten the condit ional probabil ity to conform
to our pr evious no tation. T he best learned condit ional distr ibution is thus
equivalent to a parti cular block distribu tion Ps2(S), where S2 = 00.

From the final expression for th e ent ropy, we see that the inner sum
for a part icu lar block Sk has the sa me form as t he first term in the fitness
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F(t)

o
o 40

Figure 2: Fitn ess as a function of time for the eight fit test hyperplanes
learning to predict the logistic equation for one time step into the
future with one bit measurements. A popula tion of 100 conditions
was used, with 20 kept each generation.

function (1.3). T he learning algorit hm is learning combination s of sequences
s k who se conditional entropies make small contributions to the average over
all s k in the expression for the ent ropy h.

Probing th e limits of predictability

For the logisti c equation with r = 3.9, the Lyapunov exponent is .\ ~ 0.718,
so one bit degr ades by that mu ch on average every iter ation [12J . T hus we
expe ct some predict abi lity one st ep into the future, but very lit tle aft erw ard .
What we find , however , wit h the current method, is th at th ere are indeed
some pr edi ct able conditions that are learn ed . The eigh t fit test conditions
discovered for pr ed icting four t ime st eps into the fu tur e after 25 gene rations
were

* * 0 0 * 0 * 0 o * 0.500 10
* * 0 0 1 * * 0 0 1 0.328 10
* * 0 0 1 0 * 0 0 1 0.157 10

* * 0 0 1 0 * 0 o * 0.055 10
0 * 0 * * * * 0 o * 0.040 35
* 1 o * * 0 * 0 0 1 0.035 31
* 1 0 0 1 o * 0 o * 0.007 10
* 1 0 * * * 1 * 0 * 0.006 92

The reason for th e existence of condit ions that give such high pr edict abil­
ity is that even though th e average information loss is high , the local ex-
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40o
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F(t)

Figure 3: Fitness as a fun ction of time for the eight fittest conditions
learning to predict the logistic equation for four time steps into the
future wit h one-bit measurement s. A popul at ion of 100 conditions
was used, with 20 kept each generation.

pansion on the at t ractor is nonuniform [1 3-1 5]. T here are some pieces of
the obser ved orbit of t he logisti c equation t ha t pass over parts of the at ­
tract or whe re or bits are not spr eading mu ch, or where the orb its are even
cont ra ct ing. T hus these parti cular pieces of orbits are predictab le. The con­
ditions defining the condit ional probability dist ribu t ion may be mapped to
subsets of the uni t interval containing p oints whose traj ectories sa tisfy the
conditions, using st raightforwa rd techn iques from symbolic dyn amics [16].
Whether such condit ions implyin g pr edict ab ility may be fou nd depends very
much on the nat ure of the at t ractor being observed and is an asp ect th at
is not captur ed in the numerical value of Lyapunov exponents (or met ric
ent ropy). For example, if we were observing symbol sequences from a piece­
wise linear "te nt -map" with th e same value of the Lyap uno v exponent (i.e. ,
exact ly as chaotic) , we would see no pr ed ictab le condit ions learn ed , because
there are no par t s of the attractor where orbi t s ar e convergent , as in the case
of the logist ic map .

This sugges ts t he use of a new statistic for char act er izing the pr edi ct ab il­
ity of a chaot ic dyn amical system. T he usual measure of predi ct abil ity, the
Lyapunov expo nent, for an iterated ma.p of th e uni t inter val , I , may be
writ ten [1 2]

A = JP( x) log I f~ 1 dx

lim ~ t log Iflx »
N - oo 1\ n =O
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and the map f is assumed to have an asymptotic probabilit y distri bution
P(x) that is assumed to be ergodic and abs olutely continuous with respect
to Lesbes gue measure.

T he discussion ab ove suggest s that rather than simply averaging log 1f' lx
over the attractor, one should inst ead sep arate contributions to A t hat come
from orbit segments with different amounts of contraction along the orbit .
To this end , we may define a finit e t ime sprea ding rate for an orbit starti ng
at a particular ini tial condition x :

I r (X) = log (1f'lx!f'l j(x) " ' 1f' lr-,(x))
r-l

log 1f'lx+ I: log 1f' lji(x)
i = l

Following convention, we take the log base two, so that "[r has the units of
bi ts.

The dynamics of f are predictable for time T , wit h observations t aken
to have information 10 , if and only if there exist points on the attractor for
which Ir( x) < 10 . Such predict abi lity will be useful to a real-world ob server
only if the set of such points has po siti ve measure, so that Ir < 10 has non­
zero probabilit y of being obser ved , i.e., if it is po ssible to locali ze the systems
to an initial st ate fj such that

br(x))" = 10 Ir (x )P (x )dx < 10

Followin g this idea , for any parti t ion fl., we can define the ne t predi ct abil­
ity of th e partition for ti me T into the future to be

f"',r = I: e(I"- br(x )),, )
"E'"

where we have used th e function e(x) = 0 when x < 0 and 1 otherwise to
give zero cont ribut ion to the terms in the sum th at correspond to all th e
information in an init ial condit ion I" being lost. We may then say that f
is predict able for time T given a measurement part ition fl. if and only if
f""r > O.

Much of the pr edi ct abl e characte r of a system is contained in the distri ­
bution of I values for a given T ,
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The predictability r 6. ,,. is essent ially summing over all parts of the attractor
with I'(x ) small enoug h that (,.,. (X))6 is small enough, so that we should have

for a suitable value of 10 ~ (16 ) 6. .

The characters of P1' (, ) and r 6. ,1' are clearly discernable for simple ex­
amples. Any map that has a crit ical point on the attractor that is not an
isolated point will have P1' (, ) > °for I' arb itrarily small, and r 6. ,1' > °(i.e. ,
the map is predictable) for arbitrari ly large t imes T. Naturally, for large T ,

the measure of initi al conditions that are predictable will be very small. On
the other han d, a map that is un iformly expanding , e.g., the "tent map,"
has a P1' (, ) that is a delta function, P1' (, ) = 5(, - T),), where the Lya­
puno v exponent, )" is the log of the slope of the tent map. T hus , r 6.,1' is
zero unless 10 > T)" and we recover the convent ional wisdom regarding pre­
dictability [12, 17] , since for this example local pr edictabili ty is identica l with
long-t erm average predi ct ability.

When the learning algorithm is pr esent ed with the t ask of learning to
pr edict into the future by an amount T , it learns , through conditions on the
symbol sequences, sets of x that retain information T st eps into the future.
T he net amount of informati on that can poss ibly be learn ed , i.e. , a bound for
how well the learn ing algor ithm can perform, is given by r 1',IO' Exploration
of thi s and related measures of predictability will appear in fut ur e work.

These results also highl ight an aspect of the pr esent method that disti n­
gu ishes it from other approaches to dynamical systems modeling . In other
current ly popular approaches, the st at e-space reconstruction is used to bui ld
a dyn ami cal mo del that gives a good approximation to th e evolut ion of or­
bit s on an at tractor that is presumed to be observed [18, 20, 22]. Here , the
learning algorithm does not t ry to reproduce all orbits, bu t onl y to pick ou t
selected pieces of orbit s th at are pr edictable. To make a predi ction, one
would pr esent a query sequ ence to the learned hyperplanes, to see whether
the query satisfies any cond it ions that make it predict able. For the la tter
case above, pr edict ing four ste ps into the fut ure, the best sequence was in
fact fairly rare, happening only ~ 1%of the time. If the query point does not
sa t isfy any of the conditions, no prediction could be made from th e learned
hyp erp lanes.

Continuous time dynamics

We will now consider how the ana lysis may be applied to more genera l con­
texts; here, the dyn ami cs is an arbitrary continuous time signa l. The da ta
must again be redu ced to a series of symbols (though not necessarily bi­
nary) . T his reduction is accomp lished by sampling the signal and requ ires
two choices: a samp le int erval, 6.t , and a sample resolution , p ropor tional
to 1( , t he numbe r of poss ible values for a given sample of each continuous
variable.
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So in gene ra l, an n-dimensional vector it of continuous variables that
change continuously with time, will be sampled to obtain a sequence of n­
dimensional symbols iit E {I , .. . , In n:

{ ~ t } { « t ~ t+Ll. t iit+2L1. t }
Z ---t • • • , G ,a, ,...

T he data for the learn ing algorit hm would the n be obtained by identifying
the ind ependent var iab les x wit h a collection of one or more sampled values,
an d the dependent variable wit h a value of a par ti cular coordinate in th e
future, y = a;+'T .

T he sampling choices are often made using the obs erver's intuition, for
example, choos ing !::It just small eno ugh to capture temporal featur es that
might b e relevant. With the samp ling reso lution fixed, the learn ing algorithm
will choose from the many poss ible past samples, those samples (intervals and
sampled values) that sp ecify the future to the grea test degree.

In this dynamica l systems context , t he learni ng of optimal samples is
accomplish ing the task of choo sing coor dinates that ar e mo st relevant to
determining the system's future behavior . The X i may be regarded as the
coordinates of a high-dimensional reconst ru cted state space [10], and in thi s
state space the learni ng algorithm performs a dimension red uction task , find­
ing subsets of coordi nates that are most impor tan t.

Our information theo retic fitness fu nct ion over po ssib le choices for coor­
dinates is very much like the mutual information criterion for choosing an
an optimal delay time [11]. It is also reminiscent of mo del criteri a based on
discrimination [22].

On e difference in the present analysis is that in the computation of th e
entropy te rm in the fitness functi on , no average is taken over the indepen­
dent variables, Xi; rather , t he X i are held at particular values in sa tisfying
sp ecified con dit ions . Another differen ce is that the learn ing algorit hm yields
a po pulation of many goo d sets of conditions on the coordinates Xi . Geomet ­
rically, if we think of the observed dynamics in the reconstructed state space
as being an attractor (possibly wit h added noise), each set of conditions cor­
responds to cuts through a projection of the attractor. If a set of condi tion:
is fit , the corresponding cuts provide a "de terministic view" of a parti cula
piece of the attractor. If the learn ing algor ithm learn s several distinct sets (
conditions, it is telling us that differ ent coordinates ar e relevant for obtainii
the sharpest view of differe nt deterministic pieces of the at t ractor.

Pyramids in t im e and space

So far , we have presented the sampling choices as a problem to be hand le
the intuition of the observer. It would be nice, instead , to put th ese ch
under th e control of the learning algorithm. One method for accompli
th is end is to use the pyramid data st ructure and to add st ruct ure j

genetic algorithm.
The term "pyramid" comes from t he or iginal applica ti on in ima.

• '1"'1'0 idea of the data st ruct ure is to augment th e raw (
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successive stages of averages . For example, in the case of a single time-series
z t (which could be one of the coordinates of the more general zt mentioned
above), the pyramid is formed by

zt-n+l +...+ z'
Pn = ----- - -

n

z t - n +1 + . . . + z t - n / 2 zt-n/ 2+ 1 + .. . + z t

P21 = n /2 , P22 = n/2

P t -n+ 1 p t -n+ 2 p t
b1 = Z ,b2 = Z , . . . , bn = z

where Pn, the top of th e pyramid, is an average over the past n samples; P2i

(1 ::; i ::; 2), the second level ofthe pyramid, is two averages over n/2 samples ;
and so on, ti ll t he bot tom of the pyramid Pb i (b = log2nand 1 ::; i ::; n),
which consists of the past n samples th emselves . For convenience, we will
always take n to be a power of 2, n = 2b

•

The pyramid values may be used direct ly as th e independent var iab les,
and a future value zt+T as the dependent var iable, y, as before. The pyra­
mid contains twice as many values as the raw samples, so th e nu mb er of
independ ent variables has doubl ed.

As before, there will be one "gene" for each ind ependent variable:

911
921 922
9 31 9 32 9 33 9 34

9 b1 ... 9 bn

Since there are twice as many, the sea rch pro blem is more difficult , b ut in
ret urn , we have the capability of detectin g dep end ences on st ruct ures wit h
different t ime scales more st raightforwardly.

The genet ic algorithm may also be st ruct ured to explore different tem­
poral resolu tions sequent ially. In t his case, on ly the top layers of the gene
pyr amid would be ava ila ble for non-* init ializat ion. T h-en, rather than al­
lowing any * to mu tate to non-* rand omly, as before, we can a llow finer
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resolution to be explored only if there is a conditi on on the pr eviou s level.
In other words, we allow

gij = * -----t g i j = C

only if

9(i - 1)j/2 =I *

This allows us to oversample (i.e., to sample at very fine t emporal res­
olution) and have a very large sp ace of independent variables, but to keep
the genetic algorithm from work ing too hard by ignoring the finely sampled
variables unl ess they are particularly useful for identifying a feature.

If the data has inherent spatial st ruct ure as well as (or inst ead of) tem­
poral structure, the pyramid technique may also be applied spat ially. In
this case, feat ures with fine spatial det ail would be selected only when rele­
vant. A genetic learning approach to data analysis using a spatial pyr amid
data structure ha s already met with some success in the context of learn ing
complex spat ial dyn ami cs [24].

Ot her st at e vari ab les may also be formed using the pyramid technique.
For example, inst ead of using simply th e averaged values, differenc es be­
tween the averages on different levels may be used to form the Laplac ian
pyr amid [23J. For the one-dimensional case , exploring different levels of the
Laplacian pyr amid is analogous to ad ju sting coefficients of a Taylor expan­
sicn.

The pyramid structured genetic algor ithm is only one example of how
struct ure may be added to the genetic algorithm in order to attack t he basic
probl em of representation. The problem is that conventionally the geneti c
algorithm is given a fixed space of possibilities (i.e., gene configurations) to
search , and this space depend s on a parti cular representation for the possi­
bilities. One would like, however , the choice of representation to be under
the contro l of the learn ing algorithm as well, but this is problemati c be­
cause the space of represent ations is generally mu ch larg er than the space
of possibi lit ies using a given representation. The pyramid structured genetic
algorithm is one way to address th e problem , by having a very large space of
possibilities, including ma ny possible represent ations, that is exp lored only
gradually. Breaking through from one level of the pyram id being represe nted
in the population to another is an extens ion from one representat ion to a
larger one.

Similar representational extensions may be accomp lished by explor ing
other fun cti ons of coordinates besides averages . For example, higher-order
po lynomials could be used , aga in explored gradu ally, with successively higher
orders becoming available to geneti c manipulation only after previou s levels
are act ivated. These tri cks enlarge the space of representat ions available,
but do not solve the problem , whi ch is rooted in the choice of the orig inal
coor dinates .
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Other methods

Norman H. Packard

The task of findin g pattern s from data, as we have formulat ed it , has been
addressed by var ious "st anda rd" statist ical tec hniques , such as principal com­
ponent analysis, factor analysis, projecti on pursui t , an d clust er analysis .
More recentl y, other different types of learning algorit hms have also been
used for similar types of analysis, especially in the realm of pattern recogni­
t ion [8, 25, 26]. We are current ly in the pro cess of detailed comparisons , but
a few genera l comments may be made even at this early stage.

The first, most general, comment is that this method should be partic­
ularly useful when the dimension of the space of independent variables X
is very high , and when the pat te rns being searched for involve dependence
of y on som e small subset of the X i . In th is case, most previous methods
was te much t ime considering the irr elevan t coordinates , whereas the pr esent
method learn s that are relevan t an d concent rates on them .

P reviously used me thod s that are most similar in spirit to the pr esent
method are learning algorit hms based on recur sively cut ting up a fea tur e
space (e.g., our X = {I,· · · , K, }n), aiming to maximize classifiability of dat a
point s t hat lie in X . Here, the class of each data point would be our dep en­
dent variable y . The resul tin g parti tion of X is usually represented in a t ree
da ta st ruct ure somet imes called a "decision tr ee" or "kd-t ree" [7-9,25,26].
Each no de represe nt s a hyper-rectangle, and daughter nodes repr esent the
hyp er-rect angles obtained by a cut . The top no de of th e t ree is the whole
space, and th e tr ee is built by a divide-and-conquer algorithm. At each level,
typically all possibl e cuts are examined and evaluated using som e crit erion .
In fact , one of the most useful criteria is an information-theoretic one very
much like our fitn ess, equa t ion (3) [9].

T he partition obtained from bui lding th e tr ee is analogous to the con­
dition al set s { X c, , , . . , X C k } corr espo nd ing to th e good learned condit ions
{ C l , " ' , Ck } . One difference is that th e condit ional sets will typically not
cover the entire space, whereas the tree-part it ion does. T hus the tree­
partiti on at te mpts to give a global model rath er than simply loca ting pieces
of th e space X c t ha t can be well modeled .

Another significant difference is that th e tr ee part it ion is built by mak­
ing a succession of incremental refinements , and "fitness" is a judgment on
the refinemen ts. In cont ras t , fitn ess in t he present met ho d is a feature of
a par ticul ar par t it ion element X c that comes from simultaneo usly tested
global condit ions on the coordinates Xi . In some applications it has alr ead y
been noted t hat an incremen tal approach can miss high-ord er informational
correla t ions between coord inat es [24].

One oth er difference is that th e task of checking all possible cuts becomes
very t ime consuming in the limit of a high-di mensional fea ture space. In
th is limit , mainta ining th e popu lat ion can be less computat ional work. T he
current method will defin itely be advantageous when the dimension of X is
very high, and t he depend ent va riable is depend ent on only a small subset
of the coord ina tes.
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Another currently popular class of learning algor it hms for pattern recog­
nition problems is artificial neural networks [27]. The inputs to the network
would be our independent vari abl es X i, and the output of the network would
be a classification, i.e., the network's guess at a y valu e. Adjustmen t of the
weights to obtain good classification corres ponds to the geneti c algorithm's
search for good conditions.

Omohundro [25] has argu ed that th e geometrical task implemen ted by
neural network algorithms is quite an alogou s to cutting up th e feature space
as in th e tr ee-partition met hods discussed above. T he problem is that they
are not as efficient as the t ree-parti tion methods on serial machines, becau se
many of the nodes may be work ing needlessly. T his general pro blem is ex­
acerb at ed in the sit uation we address, that of a high-dimensional feature
space with many of the featur es being irr elevant, typically. T he neural net­
work would spend needless t ime computi ng weight s involving the irr elevant
coordi nates.

Statist ical met ho ds such as pr incipal com ponent analysis , fac tor an alysis,
pro ject ion purs uit, and linear discriminan t analysis all use the general idea
of tr ying to find good coordinates for X by a series of transformations of
the original X i. For this reason we will refer to them as "t ran sformational
met hods ." "Goodness" is usu ally measur ed by how well classification is ac­
complished by a hyperplane cut in th e new coordinates .

Hyp erp lan e cuts are well approximat ed by the cond itional sets X c in the
pr esent met hod, so it should be able to do at least as well as tr an sformat ional
methods. If th e distribu tion is relat ively simple, the pr esent metho d may
work harder th an necessary. If the distribution is complex , the ad ditio nal
work will payoff in the discovery of richer st ructure th an it is possible to see
wit h the transformat ional meth ods.

Performing the transformations can also be very time consuming in a
high -d imension al space. The geneti c algorit hm avoids mu ch of this work
by learn ing wh ich coordinates are relevant and ignoring the rest . On ce the
"opt imal" tran sformed coordinates are found , there are usually a few "most
impor tant coordinates ," quite analogous to the collections of relevant coor­
dinat es th at make up the learned conditi ons .

More detai led comparisons of this method wit h ot her methods will appear
in futu re work.

Other a p p licat ions

T he met ho d describ ed above is designed to find patterns in dat a , where
the patterns should address a quest ion formul ated by the observer. The
applica t ion of the method involves two design issues: (1) put ting the data in
an appropriate form , an d (2) enco ding th e question into th e fitn ess function.

The form of th e da ta we have used is that eac h da ta point consist of a pair
(x ,y), with a ll the Xi and y being integers. If th e data is not immediately
in this form, it must be preprocessed before the algori thm can be applied.
For exam ple, if dat a comes from "cont inuous" signals (i.e. , signals with very
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many states pe r sample) , it mu st be thresho lded and binned . A mo dified
version of the algori thm that is bet ter adapted to cont inuum variables (using
inequ alities for conditions) will be reported in fut ure work.

We have so far concent rate d on a par ti cular quest ion to be asked of the
data, that of what logical cond itions on the X i lead to well det ermined dis­
tributions of y values, i.e., Pc (y) th at have low ent ropy. The desire to find
such "good" condit ions is directly trans lated into the fit ness fun ct ion of equ a­
t ion (1.3). However , as mentioned at the end of sect ion 2, the fitness function
may be altered to encode other desires.

Below, several example app licat ions are listed, particular ly with an eye
toward how the two design crit er ia may be easily satisfied. In describing the
applications, the m ain task will be specifying the form of the dat a; unless
oth er wise noted the fitn ess appropri ate funct ion will be that of equat ion (2) .
The solution of th e crit eria should not be considered unique; ot her ways of
posing the data and quest ions may well exist . Also, the list of app lications
is by no means exhaustive. It is rather meant to be suggest ive of many other
po ssibilit ies.

Policy a nalysis

T he sect ion on qualitative data concern ed the analysis of data that came
from a govern ment office, with th e aim of using th e analysis to make policy
decisions . T he development of the analysis for this context involved a fortu­
itous chain of event s, but the example is by no mean s mean t to be frivolous ,
It is, in fact, an example of a typ ical policy decision process that is complex
in the sense that many elements mu st be conside red in making the dec ision ,

T he first step in app lying this method in policy analysis is obtaining the
da ta. The existe nce of data for the examp le cit ed depend ed cr ucially on
the intuit ion of the director of the office of management and the budget ,
G. Giorgi, t hat such data should be useful for his decision-making pro cess.
T he application in ot her contexts would depend on similar init iative and
commitment to gathering relevant data .

To obtain the data and pu t it into a compu ter , the decision process must
be broken into many element s, wit h each element spec ified by a fini te number
of po ssibil iti es, whi ch typically will correspond to different choices of act ion
at a part icular point in implementi ng the overall decision. T he choices for
eac h of th e elements represents the specificat ion of the ind epend en t variables
Xi, so there are as ma ny variables as element s to th e decision process, Given
a part icular person's or group 's decision pr ocess, t here must be a way of
eval uating th e decision 's performan ce (perhaps averaged over ma ny decisions
where the same pro cess was used). T his evaluat ion would be the depend ent
variable y . T here will be as many da ta poin ts as there are people or groups
making decisions.

T he independent var iables may also be au gmented with exte rnal con­
d it. ions, such as weather condit ions, etc. In fact" the lea rning algori thms
ability to lea rn which variables arc relevan t and which arc i rrc lcvaul. allows
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one to te st hypotheses about whether particular ex ternal conditions might
be relevant to a decision's outcome.

The fitness function will usually be simply the usual information theoreti c
criterion. It could', however , be modifi ed to give parti cular evaluation about
the evaluation function for the decision procedure. For example, it could
include a term proportional to th e average evaluat ion for all the points in
the condit ional set Xr) , in order to find conditions that led to high eva luations
on average.

The example above, in the Qualitative data sect ion , involved many offices
within a government trying to spend mon ey efficient ly. Fiscal policy decision s
play an important role, of course, but the method could be applied t o almo st
any po licy decision. In educational poli cy, for example, the evaluat ion func­
t ion could be the average student performan ce, and the dependent variables
could be all the decisions that det ermine curr iculum , class size, int egration
level, teacher qualifications , etc .

Neural signals

The method is curre nt ly being applied to the analysis of neural sign als. In this
case the arena is that of evoked potential expe riment s. In these expe riments,
sub jects are presented with different stimuli, for example A an d B, and their
elect roencephalogram (EEG) is measured from scalp electrodes. From many
sample signals (usually the order of hundreds) , one would like to learn to
classify a myst ery input , to tell whether it was produced by stimulus A or B.

Here, the independ ent var iables are the samples of the EEG are them­
selves the indep end ent variables, and the depend ent variable is the bin ar y
class variable A or B. One waveform is typically 260 samples, 5 milliseconds
apart , so the dimension of the space of ind ependent variables is 260. T his is
too high a dimens ion to search efficient ly, so either the dimension mu st be
reduced (e.g., by averaging over intervals) , or th e pyramid technique must
be used. Bot h approaches are current ly being t ried ; results will be reported
in fut ure work.

Medical diagnosis

Medical diagnosis is a classical pattern recognition problem , and th e identi­
fica tion of the indep end ent and dep end ent variables is quite straightforward.
The ind epend ent variables are all t he patient dat a , som e of which will be
ent ire time t rac es (e.g., how body temp erature changes over a week) . T his
data could also incl ude patient informat ion like sex, ra ce, and oth er non ­
disease specific information that could , never theless, be relevant in find ing
a correlat ion wit h th e disease. The depend ent varia ble would be a discret e
cla ss variab le indi cating what disease actually occ urred , as determined by
pathology analysis, for particular set of symptoms (and personal informa­
tion ).

T he list of possible diseases is large, and the set of possible symp toms is
large, so large amounts of data are needed. Hop efu lly, the compute r rcvolu-
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tion will res ult in event ual automatic comp uter comp ilation of all symptoms,
so that statist ical tools like this one can achieve widespread use.

V isual p att ern recognit io n

In visual pattern recogni tion, the usual formu lation of th e problem is to
classify spatial patterns. The ind ep end ent variables are obtained from a dig­
iti zed image, and the depend ent variable is the class to whi ch the image
belong s. The data should almost cert ainly be encoded in some way, such as
the spat ial pyramid discussed in th e Dynamics section, with the correspond­
ing struct ure d genetic algorithm.

It may be that prior knowledge about the class of patterns being ob­
served provides some informat ion about what might be appropriate features
for use as independent var iables. For example, tot al power in different spatial
frequency bands may be appropriate for class ifying textures, and line-based
features may be ap propria te for optica l character recogni t ion . Add itional fea­
tur es such as these could eit her subs t itute or supplement the original pyrami d
var iables .

W eather

Weather analysis is probably the most pro minent ap plication in the wide
realm of spatial dynamics. The problem can be seen as a spec ial case of
spatial pattern recognition discussed above . Weather data from sate llites
represents one of the largest data sets for any physical sys tem, and this
seems rip e for the application of th ese met hods.

Glob al circulation models perform an essential role in weather pr ediction ,
bu t there ar e still many phenomena that lie outside it s purview. One exam­
ple is the sudden occurrence of mesoscale storm systems [30]. The learning
approach pr esented here could pro vide a way to link pr econditions with the
occ urre nce of such storm syste ms.

The essenti al problem , as in all dynamical applications , is one of fore­
casting. One would like to take patterns of spatial data (temperature, etc .),
and pr edict, for example, whether a mesoscale sto rm system will develop.
The indep endent variab les would be the space time data encoded in pyra­
mid form . T he dep endent var iable would be a bin ary classification variable
denoting th e occurre nce or lack of a sto rm system.

In order to discern a pattern , th ere must be enough da ta to contain ma ny
examples of situations wher e sto rms both do and do not develop . Pc(y ) for
this applica tion will have only two ent ries, one for each value of y (storms or
no storms). T he uncer tainty in the est imate of each of th ese probabilities is
rough ly 1/!N, where N is the number of points in the p robab ilit y histogram
bin. T hus, to estimate t he likelihood of a storm to within 10%, at least ~ 100
storm events must be avai labl e in th e da ta.
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Speech recognit ion is an area where learni ng algor ithms have been applied
with fair success; the current champion speech recognition system appears
to be one based on a hidden Markov learn ing pr ocedu re [28].

The raw data for this problem is the digit ized au dio signal. T he depen­
dent var iables could ultimately be considered to be actual words , though it
is often conve ntional to break the recognition process into two parts, from
signal to ph onemes and phonemes to words. T he phoneme-to-word prob lem
has been successfully t ackled by a neur al-network-based learning scheme [29].
For the signal to phoneme application, the raw data in one -dimensional pyra­
mi d form (d. t he Dyn ami cs section, above) , would be appropriate as the
indepen dent variab les, t hough these var iab les could be supplemented with
ot her types of data der ived from th e raw samples, e.g., power-spectral com­
po nents over finite windows. T he dependent variable would be the phoneme
present at a part icular place in the wave form. One of the main problems for
such applicati ons is obtaining good learn ing data, since the identification of
ph onemes in natural speech is painstaking and often amb iguous. To red uce
ambigui ty, learn ing migh t be best app lied to phoneme groups that have clear
son ic boundaries.

The problem of learning language req uires an even bigger leap between
the dat a and the learn ed "dependent var iab les." Bigge r than the leap from
signal to phoneme, or signa l to word, it req uires the leap from signal to
actions, from which an inference might be made from signal to mental state.
The language problem involves not only the signal as raw data , bu t also
the enviro nmental context wit hin which the signal was produced. Variables
specifying environmental context could supplement the independent var iab les
derived directly from the audio signaL

T he mos t ap prop ria te context for applying this method to the prob lem
of language learning might be the problem of deciphering cetaceous speech.
Dolphins, for instan ce, are known to have complex son ic interacti ons, and it
has been hyp oth esized that some of the interactions migh t correspond to a
lingui sti c interacti on .

T he problem of interspecies language learning immedi ately poses inter­
esting problems in under standing the na tur e of language it self. One aspect
of th e pro blem is clear by realizing that many an imals use sound for commu­
nica tion, e.g ., a cer tain bird -call to indicate the presence of a predator, but
one would prob ab ly no t want to classify these as examp les of language.

T he bird-call does contain one element essentia l to language: symbo lic
repr esentati on. It does not, however, contain an essentia l richness of us ing
linguisti c symbols to build arbitrarily complex structures . The application
of a learning-algorit hm-b ased analysis cou ld provide an empirical procedure
to dist inguish between lingui sti c an d non- ling uistic son ic inter action . For
non-lingui sti c interactions, a relati vely small set of simple patterns should
be discovered , and for lingui stic inter acti ons, t he discovered pat te rns sho uld
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be arbitrarily many, increasing as the space of independent and depend ent
variab les is enlarged.

Large-scale modeling

For many large complex syst ems with many int eracting nonlinear compo­
nents, it is useful to cons truct large-scale models. The models may be used
both for gaining a fundament al und erst anding of th e mechan isms that gen­
erate particu lar features of the glo l.al dynamics, and also for pr actical pur ­
pos es, to obtain a sense of wh»t happu-, to t he global dynamics when cont rol
parameters are changed. Such model- have been constructed for ecological
systems [31, 32J and economic syste ms , nJ.

Large-sc ale models all face a difficult problem : the system being mod­
eled has very many degrees of freedom . To make the model as faithful as
poss ible, model makers would like to include as many of these degrees of free­
dom as possible (some of the large-scale economic models have thousands of
variab les) . On the ot her hand , th e mor e varia bles in the model, th e more
difficult it is to decide on which vari ab les should be included and how they
should be coupled to the rest of the var iab les.

Thus , to build a model it would be useful to know which variables are
most relevant to the changes of anoth er . T he analysis method ou tlined here
could be used to determine which vari ables are relevant to which oth ers ,
and hence what coupling schemes should be considered in the net work of all
variables.

To ascertain coupling schemes based on empirical relevan ce, the method
should be applied in essentially the sa me way as outlined in the dyn ami cs
section, sep arately to every variable. Using the notation of the Dyn ami cs
sect ion, zt would represent the value of all the mod el varia bles at t ime t . For
each of th em, zi, th e analys is should be done separately, using z, t+T as the
dep endent variable, and all th e variables, zt = (zi,. · · , z~ ), as the ind epen­
dent varia bles. For each vari ab le, Zi, t he lea rned conditions would yield a list
of independent variables (non-* ent ries in the genome) that are particul arly
relevant to Zi . In buil ding the model , the equations of motion should then
contain te rms for the time dependence of Zi with explicit couplings to the
learned relevant var iab les. For example, if Z13 were foun d to hav e dependence
on itself, Z12, Z J7, and Z23 (only), the equa t ions of motion in the mod el should
have an equat ion of the form

More sophis ticated modeling and map fitt ing techniques could possibly be
used to help approx ima te F13 [25, 21J.
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We have pr esented a method for discovering patterns in sparse, high-dimensional
dis tributions usin g a geneti c learning algorithm. The method is a nonpara­
metric statistical method, in the sense that it makes no assumpt ions about
the underlyin g dist ribution , and in the sense that it assumes no (parameter­
ized) functional relationship between the dependent variable and the inde­
pendent vari ab les. The learned pat terns take the form of conditions C on the
independent variables X i that lead to a well-dete rmined dist ribution Pc( y)
for the depend ent variable y.

As always in stat ist ical analysis, one mu st be careful about inferring
causalit y from the learned patterns, i.e. , that y is cau sed by Xi sat isfying
conditions C . The pattern s merely represent stat ist ica l correlat ions . In some
context s, the lack of causality is manifest ; in the analysis of neural patterns,
for instance, the depend ent variable y represents a classification of the stim­
ulus that caused the observed EEG signal. For the case of observ ing the
dynamics, it is mu ch mor e temp ting to infer causality, since the dep end ent
variable is taken to be in th e future wit h respe ct to the depe nden t vari­
ables. In fact , this type of inference of causality is exact ly what is used to
build up net works of couplings between variables for the examp le application
of large-scal e modeling. It is possible, however , that the corr ela t ion is due
to an indirect coupling ; the method has no way of discerning this ty pe of
indirectness.

Inference of causality is just one example of the mor e general problem
of extract ing meaning from th e learned pat terns. T he learning algorit hm
works blindly to find pa t tern s, in the sense that it has no concern about
what the variables actually represent. Meanin g that an observer infers from
the data inevitably involves interpreting the pattern based on the meaning
of the variables (i.e. , what quant ities they act ually represent). Nevertheless ,
the structure of t he patterns represents a component of in trinsic meaning
impli cit in the obser ved data. The meaning ext rac ted by the ob server is a
combination of thi s intrinsic meaning an d interp ret ation-dep end ent meaning .

The st ru ct ure discovered by the learning algor ithm also gives one ap­
proach to quantifying complexity. T he int rin sic comp lexity of the da ta may
be equate d with the number of condit ions learned for the fit test logical con­
ditions. This measur e has th e desirabl e propert ies of having a low value
when the dat a are either completel y random or very st ruct ured, an d high
for int ermediat e cases where randomness coex ists with st ruct ure. Another
example of measuring complexity using a learn ing algorithm is Crutchfield
and Young's construction of e-machines from symbolic data [34]. Both that
method and the pr esent one might be said to suffer from the fact that th ey
are dep endent on representation of the data , i.e. , on the redu ction from the
raw dat a to symbols, and hence not a measure of intri nsic complexity of the
data. It may be, however , that intrinsic complexi ty of dat a must , in prin­
ciple , depend on rep resentation , and that only if the represe ntations used
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by the learn ing algorithm are sufficient ly rich , the learned complexity might
ap proach a representation-independent bound.
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