Complex Systems 4 (1990) 573-586

Training Feed Forward Nets with Binary Weights via
a Modified CHIR Algorithm

D. Saad
E. Marom
Faculty of Engineering, Tel Aviv University,
Ramat Aviv 69978, Israel

Abstract. Learning by choice of internal representations (CHIR) is a
learning algorithm for a multilayer neural network system, introduced
by Grossman et al. [2, 3], based upon determining the internal repre-
sentations of the system as well as its internal weights. In a former
paper [8] we have shown a method for deriving the CHIR algorithm
whereby the internal representations (IR) as well as the weights are
allowed to be modified via energy minimization consideration. This
method is now applied for training a feedforward net with binary
weights, supplying a convenient tool for training such a net. Computer
simulations show a fast training process for this algorithm in compar-
ison with backpropagation [7] and the CHIR [2, 3] algorithms, both
used in conjunction with a feedforward net with continuous weights.
These simulations include the restricted cases of parity, symmetry,
and parity—symmetry problems.

1. Introduction

Training a feedforward net with binary weights is an issue of significant im-
portance, since it allows implementations with considerably simpler elements.
The main problem in training such a net results from the fact that the most
common training method, backpropagation (BP) [7], cannot directly handle
binary weights. An alternative training method, which can handle percep-
trons with binary weights, has been introduced by Venkatesh [10], while
other attempts tackled the multilayer net problem differently (3, 1, 5]. These
methods are based on random weight flips when erroneous output occur, in
a continuously decreasing number, until a solution is found.

Learning by choice of internal representations (CHIR) [2, 3] is a neural
network learning algorithm based upon introduction of changes in both the
IR of a discrete binary valued multilayer system and in its weights, for an
ensemble of learned vectors. The changes are designed to improve the output
value of each layer with respect to the current weights and the current IR
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of the preceding layer, so that a neural network-based recognition or classifi-
cation system with a faster training convergence rate is obtained. Once the
IR are redefined, the perceptron convergence rule [6] is applied for modify-
ing the weights. In a former paper, Saad and Marom [8] studied an energy
minimization approach for the CHIR algorithm and showed that generating
changes in the IR satisfies an inherently consistent convergence mechanism.
The above-mentioned method can also be easily implemented for training
a net with binary weights, after several modifications are introduced. In
this paper we present a training algorithm for a feedforward net with binary
weights based upon the modified CHIR algorithm. The performance of the
algorithm was tested on standard computer simulation problems, like those
tested by Grossman [2, 3] and Tesauro and Janssen [9].

2. An energy minimization approach for a discrete valued net

We will define an energy function in a similar way as defined in the BP
algorithm [7]:

P NH

E = ZE”—ZZ( ) (2.1)
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where 7P is the desired output vector related to the p vector out of P training
vectors used in the training procedure; v? is a discrete value output vector
of an H layer system, related to the p training input vector, and N* is the
number of neurons in the output layer.

The output vector v is obtained by the following equation:
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The operator f, which represents the neural response, is considered to
be a nonlinear operator acting on the product of the weight matrix W#,
connecting layers H — 1 and H, and the IR of the preceding layer v/=1»,
NH=1is the number of neurons in the H — 1 layer.

As in the BP algorithm, we will search for a procedure to minimize the
energy . However, we will allow at this time direct modifications of the IR
=17 as well as changes in the weights W#.

The derivative of the energy function £ is of the form

dE _ OE dWH n P OE dvH-te
dt — OWH dt g ovH-lr i
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Figure 1: Typical function approximating sgn(z).

where t is the training index and the derivatives are applied to each inter-
connection weight and each neuron of the IR vector. The following changes
in WH and v~1? will ensure a negative contribution to the energy function:

H aE - H,p P ! H,p H-1,p p
Awij = “owH = ~WZ (Ui =0T ) f [ui ] v; (2.4)
1 p=1
NH
A'UJI'[_LP = _—O'U?El’p == 37 (viH‘p - Tf) % {uiH‘p] wi (2.5)
J =1

where 7 is a convergence coefficient and f’ stands for the derivative of f
with respect to the argument in the bracket. Equation (2.4) resembles the
weight matrix modification obtained by the BP algorithm with one change:
the operator f, which represents the neural response, is now defined as the
sgn function (note that applying these equations for a continuous valued
net retrieves BP equations; see Saad and Marom [8]). Since the sgn(z)
function has zero derivative for most of its range, we will approximate it by a
function that has a small, almost constant, positive derivative along most of
its dynamic range.An example of such a function is shown in figure 1. We will
neglect the region near ¢ = 0 by defining the widthof this area to be smaller
than our resolution. The IR and weight matrix modifications, expressed in
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equations (2.4) and (2.5) are thus applicable also for the discrete IR and
discrete weight case. One notes, however, that the derivative function f’,
which is always positive, as well as the coefficient 7, can be omitted in both
equations since both modifications are of a discrete form, and therefore we
are interested only in sign changes of both the IR as well as the weights.

Therefore, for a net with binary weights, the required weight matrix mod-
ification AVV;;-{—I”’ has the form

AI/VH . 0E _ = H,p P H-1p
i —_3I/V,-§I ——I;(vi —Ti)vj (2.6)

derived from equation (2.4) after eliminating the f’ function as discussed
above.

Likewise, the modification Av# =1 assuring the convergence of the en-
ergy function, is

ApH-tr _ __OF —I\f (vH”’ - T»”) wH (2.7)
j av;{_lvp t ¢ o ’

=1

Allowing discrete changes of the IR and the weight matrix, the energy
function decreases with each iteration and converges to a minimum value. A
flip in the IR or in the weight matrix will be enforced whenever the modifi-
cations Av]H_l’p and AI/V,? are of opposite sign in relation to the values of
vf] ~b2 and I/Vf respectively.

The modifications in the IR should be performed for each training vector
vH? taken one at a time, while the weight matrix modification should be
performed for all of the vectors in parallel due to the discrete nature of the
weights.

To apply these rules we start by modifying the last weight matrix WH,
according to equation (2.6), by summing up all of the contributions from
the various input vectors. A bit flip in a weight matrix element is enforced
whenever AVV;’ is of opposite sign in relation to T’Vz-';l . Since each weight
modification affects the common output in conjunction with other weights ir
the same layer, we should not modify all of the weights at once. Therefore, we
change part of the weights simultaneously in each iteration, choosing themr
randomly from the set of the most contributing weight changes. This alsc
inserts stochasticity to the algorithm. The most contributing weight change
are determined by the value of the accumulated weight modification AWH  a
will be explained later on. Since all weights are mutually related, we perforn
the W elements modification several times (1-5 in simple problems, 10-2
in more complicated problems), whereby the random choice of the weight
to be modified is different at eachiteration.

Once the WH weights have stabilized, we perform the IR modificatior
according to equation (2.7) in a similar manner, i.e., an IR bit flip will L
enforced whenever the IR modification Avf{—l”’ is of opposite sign in relatic
to v/~ As in the weight matrix modification case, we cannot modify a
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of the neurons at once since this might create a too restrictive set of IR
that cannot always be implemented via the weight matrix of the former layer
WH=1 Therefore, we select only part of the neurons in each IR, the most
contributing ones, to be changed and then allow the system to adapt to the
new IR via minor modifications in the W#~! matrix (here as well, the criteria
for choosing the most contributing neurons will be the accumulated vector
modification over all of the training vectors, as explained later on).

For implementing the modification rules to a preceding layer, we define a
new energy function similar to the earlier definition (equation 2.1). However,
for an internal layer the target vector for the learning procedure will be the
modified IR as computed from the previous correction (equation 2.7) :

E = i EP i (UH"I”" — vH'l”’)z (2.8)

One should note that the difference between the old IR v»~** and the new
one v-17 is actually the former discrete modification of the IR, i.e., AvH =1
obtained by equation (2.7) and the rule described in the following paragraph.
The output vector of the H — 1 layer v¥ 2% can now be expressed in terms

of the previous weights W1 and IR v"~2? as shown below :
NH=2
g f{ > w;ﬁ.’“luf‘“} (2.9)
=1

Applying the same procedure for obtaining the required modifications for the
weight matrix and the IR in this layer, one gets

or
g5 H = H-1, H-2,
AWU = —'a—m—zfjf—_f =— ('U L ’Unew1 p)i"’j B (2.10)
NEH-1
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We then apply the same procedure for all remaining layers and examine
the performance of the system for the exhaustive set of input vectors. If the
system does not succeed fully in the classification task, we repeat the training
epoch until the training procedure iscompleted.

3. Complete learning algorithm

Up until now we described the main lines of the training algorithm. We will
now follow in detail the algorithm, stressing its main computational steps.
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3.1 Modifying the weight matrix W

Addressing the randomly initialized system with various input vectors, one
receives a set of corresponding output vectors as well as a set of internal
representations. Based on the desired outputs, by applying equation (2.6)
one obtains a set of weight matrix possible modifications AVVg In order to
determine which weights should be modified, we examine the energy contri-
bution of the possible flips. The energy contribution due to a weight flip is

AE = i%[f (NZ UERIN D ) —n”}z

p=11:=1 a=1

NH-1 2
= [f ( > Wil 1"’) —Tf} (3.1)

Taking in account the fact that the vectors are discrete, one can expand AFE
around uf"? (as defined in equation 2.2) to obtain

P NH NH—I
AE = =35 3 f{uff?} AWHOT1Prp (3.2)
p=13=1 j=1
Since f’ is a positive constant, as indicated earlier, equation (3.2) becomes
P NH NH-1
AB~3.3 35 MWfe ¥ (3.3)
p=1i=1 j=1
Thus, the weight matrix flips with maximal contribution will be those for
which expression (3.3) is minimal; we shall therefore modify only these neu-
rons, having the maximal |AVV£I| Note that the decrease of the energy
function is guaranteed by the change rule of AW defined in equation (2.6)
and the explanation given following equation (2.7).

In order to insert stochasticity into the algorithm, out of the 1/3 most
contributing connection flips we randomly choose one quarter of the weight
matrix elements to be modified.

We also found that a certain modification of the change rule (equation 2.6)
is useful. In the continuous case it was reasonable to assume that proper
output vectors do not contribute to weight modification, as indeed results
from equation (2.6). However,in the discrete weight case, a proper output
should enhance the current state of the weight and counterbalance the need
for a flip as perhaps demanded by other terms. Thus a certain fraction
of the current weight polarity (ﬁVVg should be added to the summation
(equation 2.6) for each proper output vector. The value of f was 1 in our
simulations, although it can be varied.

In order to stabilize the system, one should repeat the weight modification
procedure several times. Conforming to Grossman’s [2] notation we call I3
the number of times the weights are modified before attempting to modify the
IR. For some of our simulations we carried this procedure only once while
for other cases we used several repetitions, as indicated in the paragraph
concerning computer simulations.
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3.2 Modifying the IR

Once the weights are determined, one can modify all the IR according to
equation (2.7) and the following rule. As with the weight modifications,
we do not apply the modification process to all neurons but only to those
that will contribute the most. The selection of such neurons is obtained
via the energy expression (equation 2.1), which provides an estimate of the
contribution resulting from an IR bit flip:

NH-1

P NH 2
s = FE[(E wr e ar9) ]
NH-1 2
- [f ( > Wi ) —Tf} B4

i=1

Here, too, we use the fact that the vectors are discrete and expand AE
around u? to obtain

P NH NyH-1

ZZ > 7 {uft P} WAoo (3.5)

p=11i=1 3=1
Since f’ is a positive constant, as indicated earlier, equation (3.5) becomes

P NH NyH-1

=33 ¥ Wine e (3.6)

p=1i=1 =1

The decrease of the energy function is guaranteed by the change rule of
Avf=1 (equation 2.7 and the following paragraph). The neural flips with
maximal contribution will be those for which expression (3.6) is minimal or
|Av| is maximal; we will therefore modify only theseneurons.

The number of neurons to be modified in the IR seems to have a minor
effect upon the rate of convergence and the percentage of converging cases.
The “thumb rule” chosen by us is 1/3 of the number of neurons in the hidden
layer.

3.3 Modifying the weight matrix W

Once the IR of the H — 1 layer have been defined one can modify the weight
matrix WH=1 according to similar rules as those applied for the W matrix.

To perform the changes in any specific layer h, the network is addressed
with the same set of learning vectors. If the output vector differs from the
desired one, we first update the IR of layer » with the value defined in the
former stage and then apply the weight matrix modification AW™". Tf, on the
other hand, the output is correct, we adopt the current IR as the proper one
and go on to the other vectors.
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The modification of the W#~! matrix will be handled in a similar way
to that used for the weight matrix W ; here too we apply the modification
of the change rule (equation 2.6), so that a proper IR contributes to the
enhancement of the current weight polarity when evaluating the summation
of AW". The value of this contribution used in our simulations is indicated
below as « in the paragraph concerning computer simulations.

Another modification that has been considered is to strengthen the weight
matrix modification AW" with a coefficient of the current weight sign when-
ever a proper output vector is obtained. Our simulations show that the
system performs better without such a coeflicient.

In order to stabilize the system one should repeat this procedure several
times (I;, per previously mentioned notation). The number of repetitions
used for each problem is indicated in the computer simulations section.

It seems that an improvement in the convergence rate can be achieved by
optimization of the free parameters described above. However no optimiza-
tion has been carried out for these parameters.

4. Computer simulations

To compare the performance of this procedure with those provided by BP
and the CHIR mechanism (with continuous weights), we examined some of
the toy problems also used by Grossman et al. [2, 3] and by Tesauro and
Janssen [9] under the same conditions. The problems examined are parity,
symmetry, and parity-symmetry.

Before discussing the simulations carried out, we will explain the vari-
ous methods of representing the results so that consistency with the data
presented by Grossman et al. and Tesauro and Janssen is preserved.

The unit used for measuring convergence rates is time steps (or sweeps).
This unit, used by Grossman et al. [2, 3], measures each internal iteration or
IR modification as one time step;therefore each overall cycle equals 154 I3+1
time steps (using Grossman’s notation, I;; for the W? matrix and I»; for the
W? matrix). Two other conventions that we use are ¢,,, which represents the
median number of time steps required for convergence, and 7, the average
inverse parameter defined as

- Hgﬂ—l (4.1)

where ¢, is the number of iterations required for a successful learning proce-
dure with certain initial conditions (nonconverging cases are regarded as if
7k 1s infinite).

4.1 Parity

The definition of the parity criterion is to provide an output 1 when the
number of +1 bits in the input vector is even and —1 otherwise. In our
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Figure 2: Parity: The average inverse of the number of sweeps re-
quired for training a network of the form N : 2N : 1 and N : 3N : 1
to solve the parity problem (even number of +1 neurons), using an
exhaustive training set.

simulations, we used a configuration of N = 3, 4, 5, 6, 7, 8 input neurons, a
2N and 3N neuron hidden layer and a single output neuron. The maximal
number of over all sweeps was 300, each iteration carried over the exhaustive
ensemble. The weight update repetition parameters are I, = 1,1,3,3,3,3
and Iz = 1,1,1,3,3,3 respectively for the N values mentioned above. The
enhancement factors v that we used for the N : 3N : 1 and N : 2N : 1 config-
urations were a = 0.6,0.6,0.8,1.3,1.5,1.8 and « = 0.1,0.1,0.8,1.5,1.5,0.05
respectively. A comparison between the performance of our simulations, BP,
and continuous CHIR appears in figure 2.

We then used a specific parity problem (with five input neurons) to esti-
mate the effect of changing the number of neurons in the hidden layer upon
convergence rates and percentage of converging cases. The results of these
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Figure 3: The average inverse of the number of sweeps required for
solving the parity-5 problem using various number of hidden neurons.

simulations appear in figures 3 and 4. In these simulations all parameters
remain fixed as for the N = 5 case mentioned above.

4.2 Symmetry

In this case the desired output is +1 if the input vector is symmetric around
its center and —1 otherwise. The learning procedure was tested for N = 2,
4, 6, 8, 10 input neurons, N hidden neurons, and a single output neuron.
The maximum number of over all iterations was 200, each iteration carried
over the exhaustive ensemble. The repetition parameters used for this set
are I, = 3,3,5,5,5 and I3 = 1,1,3,3,3 and the enhancement factors a =
0.05,0.05,0.08,0.1,0.1.

This problem cannot be solved by a net of the above mentioned con-
figuration with all thresholds and weights of a binary form. Therefore, we
allowed the threshold of the output neuron to be continuous. Note that this



Training Feed Forward Nets 583

J

1]
u1]
]
(u]

PERCENTAGE OF CONVERGENCE
0.0 40.0 50.0 60.0 70.0 80.0° 0.0 100.0

10.0 20.0 30.0
1

0.0

T T T T T T T T 1
3.0 S.0 7.0 9.0 11.0 13.0 15.0 17.0 18.0 21.0

No. OF HIDDEN NEURONS

Figure 4: The percentage of converging cases for the parity-5 problem
using various number of hidden neurons.

compromise results from the inherent limitations of a net with binary weights
and not from limitations of the learningprocess.

Figure 5 compares the median number of pattern representations required
for a fully successful learning based on this algorithm versus the results ob-
tained by Grossman et al. [2].

4.3 Parity—-Symmetry

The parity-symmetry problem combines the two problems discussed above
into one system, providing a two-neuron output: one represents the parity
of the input vector and the other its symmetry. The simulations included
N = 4, 5, 6 input neurons, 3N hidden neurons, and two output neurons.
The repetition parameters used here are I, = 7, 11, 30, I»3 = 3, 3, 9, and
a = 0.1, 0.05, 0.07.
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Figure 5: Symmetry: Median number of sweeps required for training
a network of the form N : 3N : 1 to solve the symmetry problem using
an exhaustive training set.

Here, too, we cannot solve the problem using a net with both weights
and thresholds of a binary form; we therefore allowed the thresholds to be
continuous while the weights remain binary.

Tigure 6 compares our results to those presented by Grossman [3] for
the continuous value weight CHIR configuration. Our results show poorer
learning rate than the continuous CHIR but one should remember that binary
networks are much more economical for implementation.

5. Conclusion

We applied in this work a modified version of the CIHIR algorithm for train-
ing a feedforward neural network consisting of binary weights, whereby both
the IR and the interconnection weights are simultancously modified. The
convergence procedure and the simulation results seem very promising, rais-
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Figure 6: Parity—Symmetry: The average inverse of the number of
sweeps required for training a network of the form N : 3N : 2 to solve
the parity—symmetry problem using an exhaustive training set.

ing the possibility of using feedforward neural networks with binary weights
trained by a rapidly converging learning algorithm.
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