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A bstract. Learning by choice of intern al represent ations (CHIR) is a
learning algori thm for a multilayer neural network system, introduced
by Grossman et al. [2, 3], based upon det ermining the internal repre­
sentations of the syst em as well as it s int ernal weights . In a form er
paper [8] we have shown a met hod for deriving the CHIR algorithm
whereby the internal represen ta tions (IR) as well as th e weights are
allowed to be modified via energy minimization consideration . This
met hod is now applied for t raining a feedforward net with binary
weights, supplying a convenient tool for t raining such a net . Comp ut er
simulations show a fast training process for this algorithm in compar­
ison wit h backpropagation [7] and the CHIR [2, 3J algorithms, bo th
used in conjunction with a feedforward net with continuous weights .
These simulations include the restricted cases of parity, symmetry,
and parity-symmetry problems.

1. Introd u ction

Training a feedfo rward net wit h bi nar y weights is an issue of significant im­
por tance, sinc e it a llows implementa tions wit h considerably simpler elements .
T he m ain p roblem in training such a net results from the fact that the mo st
common traini ng method , backprop agation (BP) [7], cannot dir ectly handle
binary weights . An alternative training method , which can handle perc ep ­
trons wit h binary weight s, has been int roduced by Venkate sh [10], while
other attempts tackled the mult ilaye r net probl em differently [3, 1,5] . These
met ho ds ar e based on ran dom weight flips when erroneous output occur, in
a continuously dec reasing number , until a solu t ion is found .

Learning by choice of internal representations (CH IR) [2, 3] is a neural
netw or k learni ng algorit hm based upon introduction of changes in both the
IR of a di scret e binary va lue d mult ilayer sys te m and in it s weights, for an
ensemble of learn ed vector s. T he changes ar e designed to improve the output
value of each layer wit h respect to t he current weight s and th e current IR
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equations (2.4) and (2.5) are thus applicable also for the discrete IR and
discrete weight case. One notes , however , that the derivati ve fun ction f' ,
which is always positive, as well as the coefficient "I, can be omit ted in both
equations since both modifications are of a discrete form, an d therefore we
are interest ed only in sign cha nges of both the IR as well as the weights.

Therefore, for a net with binary weights , the required weight matrix mod­
ificat ion .6.1V iJ - 1,P ha s the form

(2.6)

derived from equation (2.4) afte r eliminati ng the l' function as discussed
above.

Likewise, the mod ification .6.vH- 1,p , assuring the convergence of the en­
ergy func tion , is

.6.vH- 1,p = __ 8"E,-,-"" = _~ (vH,p _ TP) W H
J 8 H l,p 0 ' • ' J

Vj i=l

(2.7)

Allowing discrete changes of the IR and the weight matri x, the energy
funct ion decr eases with each iterat ion and converges to a minimum value. A
flip in the IR or in the weight matrix will be enforced wheneve r the modifi­
cations .6.vf - l ,p and .6.Wif are of opposite sign in relation to th e values of
Vf -1,P and Wif respect ively.

The modifi cat ions in the IR should be performed for each train ing vect or
v H,p taken one at a time, while the weight matrix mod ificat ion shou ld be
performed for all of the vectors in parallel due to the discrete nature of the
weights.

To apply these rul es we start by modifying t he last weight matrix W H ,

accord ing to equation (2.6), by summing up all of the cont ribut ions from
the various input vectors . A bit flip in a weight matri x element is enforced
wheneve r .6. TiVif is of opposite sign in relation to TViY- Since each weight
modificat ion affects the common output in conjunction with other weight s ir
the same layer , we should not mod ify all of th e weights at once. Therefore, W E

change part of th e weights simultaneously in each iteration , choosing th en
randomly from the set of th e most cont ributing weight changes. This als:
inser ts stochas tic ity to the algorit hm. Th e most cont ribut ing weight cha nge
are determined by the value of th e accumu lat ed weight modifi cation .6.W H , a
will be explained later on . Since all weights are mu tu ally rela ted , we perforn
th e TrVlT elements modifi cation several t imes (1-5 in simple prob lems, 10-2
in more complicated problems), whereby the random choice of th e weight
to be modified is different at eachite rat ion .

On ce the W H weights have stabilized , we perform the IR modifi cati or
according to equation (2.7) in a similar manner , i.e ., an IR bit flip will l;

enforced whenever the IR modi ficati on .6.vJ!-l ,Pis of opposit e sign in relatio
to vt I- l ,p. As in th e weight matrix modification case, we cannot modify a
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of the neurons at once since this might create a too rest rictive set of IR
th at cannot always be implemented via the weight matrix of the former layer
W H

-
1

. T herefore, we select only part of the neur ons in each IR , the most
cont ributing ones, .to be changed and then allow the sys tem to ad apt to the
new IR via minor modifi cat ions in the W H - 1 mat rix (here as well , the criteria
for choosing the most contributing neurons will be the accumulated vector
modification over all of the training vectors , as explained later on).

For implementing the modification rules to a pr eceding layer , we define a
new energy function similar to the earlier definition (equation 2.1) . However ,
for an int ernal layer the target vector for the learn ing procedure will be the
modified IR as computed from the pr evious correcti on (equ ation 2.7)

P P N H- l

E = L EPL L (VH-1,P- V;;;;~,l ,P):
p = l p = l , =1

(2.8)

One should note that the difference between the old IR VH-1,p and the new
one v;;,,;:,!'P is actually the former discret e modificat ion of the IR , i.e. , !::.VFr- 1,p
obt ained by equat ion (2.7) and the rule described in the following par agraph.
The output vector of the H - 1 layer VH- 1,p can now be expressed in terms
of the previous weight s W H - 1 and IR V H - 2

,p as shown below:

(2.9)

Applying the same procedure for obt aining the required modifications for th e
weight matrix and the IR in thi s layer , one gets

!::.Wlf-1 = DE = _ (VH- 1,P_ vH- 1,p) VH-2,p
'J DWH -1 new i J

'J

(2.10)

DE
DVH- 2,p ­

J

N H- l

""' (VH-1,p _ H-1,P) WH -1
·L Vn e w i vs
£= 1

(2.11)

We then apply the same procedure for all remaining layers and examine
the performance of th e system for th e exhaust ive set of input vectors . If the
syst em does not succeed fully in the classification task , we rep eat th e t ra ining
epoch unti l the training procedure iscompleted.

3. Complete learning algorithm

Up until now we described the main lines of the trainin g algorithm. We will
now follow in det ai l th e algorithm, st ressing its main computational steps .



(3.2)

(3.3)

578 D. Saad and E . Marom

3 .1 Modifying the we ight matrix W H

Addressing the randomly ini tialized system with various input vectors, one
rece ives a set of corresponding output vectors as well as a set of internal
representations. Based on the desired outputs, by applying equation (2.6)
one obtains a set of weight matrix possible modi fications I:::..WiJ. In order to
det ermine which weigh ts should be modified , we exam ine the energy cont ri­
bution of the possible flips . T he energy cont ribut ion du e to a weight flip is

I:::..E = ~E[I (~~' (WiJ + I:::..WiJ)vf-
1,p) - Tfr

- [I (~~l WiJVf -1,p) -Tfr (3.1)

Taking in account the fact that th e vectors are discret e, one can expand I:::..E
aro und uH,p (as defined in equation 2.2) to obtain

P NH N H-l

I:::..E ~ -I:I: I: f'{u~,p}I:::..WiJvf- 1 'PTf
p= l i= l j=l

Since I' is a positi ve constant, as ind icated earlier, equation (3.2) becomes
P N H N H- l

I:::..Erv - " " " I:::..WHvH-1,PTP- ~ 0 L..-J 1J J t

p= li= l j = l

Thus, the weight matri x flips with maximal cont ribut ion will be those for
which express ion (3.3) is minimal; we shall therefore modify only these neu­
rons, having the maximal !I:::..WiJ I. Note that the decrease of the energy
function is guarant eed by the change rul e of I:::..W H defined in equ at ion (2.6)
and the exp lanation given following equation (2.7).

In ord er to insert stochas t icity into the algorit hm, out of th e 1/3 most
contributi ng connect ion flips we randomly cho ose one quarte r of th e weight
matrix elements to be mo dified .

We also foun d that a certain modification of the change rule (equ a tion 2.6)
is useful. In the continuous case it was reasonable to assume that proper
output vectors do not cont ribute to weight modification , as indeed resul ts
from equation (2.6). However ,in the discrete weight case, a proper output
should enhance the current st ate of th e weight and counte rbalance the need
for a flip as perhaps demanded by other te rm s. Thus a certain fract ion
of the curre nt weight polarity ((3Wi jI) sho uld be added to the summ ation
(equation 2.6) for each proper outpu t vector. T he value of (3 was 1 in our
simulations, although it can be varied.

In order to stabilize the system, one should repea t the weight mod ification
pro cedu re several times . Conforming to Gros sman 's [2J notation we call 123

the number of t imes the weight s are mod ified before attempting to modify the
IR. For some of our simula t ions we carr ied this procedure only on ce while
for oth er cases we used several repet ition s, as indica ted in the par agraph
concerning compute r simulat ions.
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3 .2 Modifying the IR
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Once the weights are det ermined , one can modify all the IR according to
equation (2.7) and the following rule . As with the weight modifications,
we do not apply the modifi cat ion pro cess to all neurons but only to those
that will contribute the most . T he selection of such neurons is obtained
via the energy expression (equat ion 2.1), which pro vides an esti mate of th e
contribution result ing from an IR bit flip :

6.E

(3.4)

Here , too , we use the fact th at the vecto rs ar e discret e and expand 6.E
around uH,p to obtain

P N H N H - 1

6.E ~ - L L L l' {u?,'p} Wi1 6.vY - l ,PT[
p= li=l j = l

(3.5)

Since t ' is a positive const an t , as indicated earl ier , equation (3.5) becomes

(3.6)

The decrease of the energy function is guaranteed by the change rule of
6.vH - 1 (equat ion 2.7 an d the following paragr aph ) . T he neural flips wit h
maximal cont ribut ion will be those for which expression (3.6) is minim al or
l6.vI is maximal; we will therefore modify only theseneuron s.

The nu mber of neurons to be modified in the IR seems to have a minor
effect upon the rate of convergence and the percen tage of converging cases.
The "thumb ru le" chosen by us is 1/3 of the number of neurons in the hidde n
layer .

3 .3 Modifying the weight matrix W H - 1

Once the IR of the H - 1 layer have been defined one can modify the weight
mat rix W H - 1 according to similar ru les as those applied for the W H matr ix.

To perform the changes in any specific layer h, the network is addressed
wit h the same set of learn ing vectors. If th e output vector differs from the
desired one, we first update the IR of layer h with the value defined in th e
former stage and then apply the weight matrix modification 6.1IV h. If, on th e
ot her han d , the out put is correct , we ad op t th e current IR as the proper one
and go on to the other vectors .
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T he modification of the W H - 1 matrix will be handled in a similar way
to that used for the weight matrix W H ; here too we apply the mo dification
of the change rule (equation 2.6) , so th at a proper IR contributes to the
enhancement of the current weight po larity when evaluating the summation
of ~Wh . T he value of this cont ribut ion used in our simulations is indicated
below as ex in the paragraph concern ing computer simu lations.

Another mo dification that has been considered is to strengthen the weight
matrix modification ~W h with a coefficient of the current weight sign when­
ever a proper ou tp ut vector is obtained. Our simulat ions show that the
system pe rforms better without such a coefficient.

In order to stabilize the system one should repeat this pr ocedure several
times (112 pe r previously mentioned notation). The number of rep etitions
used for each problem is indi cated in the computer simulations section.

It seems that an impr ovement in the convergence rate can be ach ieved by
optimization of the free par ameter s described above. However no optimiza­
tion has been carr ied out for these par ameter s.

4 . Computer simulations

To compare the performan ce of this pro cedure wit h those provided by BP
and the CHIR mechanism (wit h cont inuous weights), we examined some of
the toy problems also used by Grossman et al. [2, 3J and by Tesauro and
J anssen [9] under the same condit ions. T he problems examined are parity,
symmetry, an d pari ty- symmet ry.

Before discussing the simulations carried out , we will exp lain the vari­
ous method s of rep resenting the resu lt s so that consistency with the data
presented by Grossman et al. an d Tesauro and J an ssen is preserved .

T he uni t use d for measur ing convergence rates is t ime st eps (or sweeps).
T his unit , used by Grossman et al. [2, 3], measures each internal iterat ion or
IR modification as one t ime step .t herefore each overall cycle equals 112+123 +1
ti me steps (using Gr ossman's notation , 112 for the W 2 matr ix an d 123 for the
W 3 matrix) . Two other conventions th at we use are t n" which represents th e
median number of time steps required for convergence, and T , t he average
inverse par ameter defined as

[
1 n 1]-1

T - - 2:-
n k= l tk

(4.1)

where t k is the nu mber of iterations requi red for a successful learning proce­
dure with certain in it ial cond itions (nonconverg ing ca.ses are rega rded as if
T k is infini te).

4 .1 Parity

The definit ion of the parity criterion is to provid e an output 1 when the
number of + 1 bits in the inpu t vector is even and - 1 ot herw ise. In our
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Figure 2: Pari ty: The average inverse of the number of sweeps re­
quired for training a network of the form N : 2N : 1 and N : 3N : 1
to solve the parit y problem (even number of +1 neurons), using an
exhaustive training set.

581

simulations, we used a configuration of N = 3, 4, 5, 6, 7, 8 input neurons, a
2N and 3N neuron hidden layer and a single output neuron. The maximal
number of over all sweeps was 300, each iterati on carr ied over the exhaust ive
ensemble. T he weight update repetition paramet er s are 112 = 1, 1, 3, 3, 3, 3
and h 3 = 1,1 ,1 , 3,3 ,3 resp ectively for the N values mentioned abov e. The
enhancement factors 0' that we used for th e N : 3N : 1 and N : 2N : 1 config­
urations were 0' = 0.6, 0.6, 0.8, 1.3, 1.5, 1.8 and 0' = 0.1 , 0.1 , 0.8,1. 5, 1.5, 0.05
respect ively. A comparison between the performan ce of our sim ulat ions , BP ,
and cont inuous CHIR appears in figur e 2.

We then used a specific parity problem (with five inpu t neu rons ) to esti­
mate the effect of changing the number of neurons in th e hidden layer up on
converg enc e rates and per centage of converg ing cases . T he result s of these
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Figure 3: The average inverse of the number of sweeps required for
solving the parit y-5 problem using various number of hidden neurons.

simulations appear in figures 3 and 4. In these simulations all paramet er s
remain fixed as for the N = 5 case men tioned above.

4 .2 Symmetry

In this case the desir ed output is +1 if th e input vector is symmetric around
its center and -1 other wise. The learning procedure was tes te d for N = 2,
4, 6, 8, 10 input neurons , N hidden neurons, and a sing le output neuron .
T he max imum number of over all iter ations was 200, ea ch iter ation carried
over th e exhau stive ensemble. The repetition parameters used for this set
are 112 = 3, 3, 5,5, 5 and 123 = 1,1 ,3 ,3 ,3 and the enhanceme nt facto rs C\' =
0.05,0 .05,0.08,0.1 ,0.l.

T his pr oblem cannot be solved by a net of the above mentioned con­
figur ation with all thresho lds and weights of a binary form. Therefore, we
allowed the thres hold of the output neuron to be continuous. Not e that this
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Figure 4: The percentage of converging cases for th e pari ty-5 problem
using various number of hidden neurons.

compromise results from the inh eren t limi tations of a net wit h bin ar y weights
and not from limitations of the learn ingprocess.

F igure 5 compares the med ian number of pat tern represent ations req uired
for a fully successful learn ing bas ed on thi s algorithm versus the results ob­
tained by Grossman et al. [2] .

4 .3 Pari ty-Symm etry

T he parity- symmet ry problem combines the two problems discussed above
in to one sys tem, providing a two-neuron out put : one rep resents th e p arity
of the input vect or and th e o ther it s symmetry. The simulations included
N = 4, 5, 6 input neurons, 3N hidden neurons, and two output neurons.
The repe tition par ameter s used here are 112 = 7, 11, 30, 123 = 3, 3, 9, an d
Q = 0.1, 0.05, 0.07.
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Figure 5: Symmetry: Median number of sweeps requir ed for training
a network of the form N : 3N : 1 to solve the symmetry problem using
an exhaustive training set .

Here, too , we canno t solve the problem using a net wit h both weights
and thresholds of a binar y form; we therefore allowed the thresho lds to be
conti nuous while th e weights remain binary.

F igure 6 compares our results to those pr esented by Gross man [3] for
th e continuo us value weight CHIR configuration . Our results show po orer
learning rate than the cont inuo us CHIR but one should remember that binary
networks are m uch more economical for implementation.

5 . Conclusion

We appl ied in t his work a modified version of the CI-IIR algorit hm for train­
ing a feedforward neural netwo rk consist ing of bina.ry weigh ts, whereby both
th e IR and the illtercolllledioll weight s are simult aneously modified . T he
convergence procedure and the simulat ion resu lts seem very promising, rai s-



Training Feed Forward Nets

_.-0-.- Binary CHIR

-0---- Bin ary CHIR
n -(s_- Cont inuous CHIR

N: 2N: I

N:3N:1
N:2N:1

585

oz ooo

"
,

,
,

,
II

-O+ - --; ~----__r----___._--

4 5 6
Na. Or NEUR ONS -N

7

Figure 6: Parity- Symmetry: The avera ge inverse of th e number of
sweeps required for t raining a network of th e form N : 3N : 2 to solve
th e parity-symm etry probl em using an exha ustive t rain ing set .

ing the possib ility of using feedforward neural networks with binary weights
trained by a rapidly converging learni ng algorithm.
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