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Division Algorithm for Cellular Automata Rules*

Burton Voorhees
Faculty of Science, Athabasca University,
Box 10,000 Athabasca (AB), Canada TOG 2R0

Abstract. Given two cellular automata rules represented as operators
Q@ and X, together with certain natural restrictions on their neighbor-
hood structures, an algorithm is provided which yields two other rules,
A and R, such that Q@ = AX + R. A generalized arithmetic of residues
follows from this.

1. Introduction

Formally, a cellular automata consists of a lattice L containing a finite or
infinite set of sites {s;}; a subset N = {N;} of the power set P({s;}), called
the neighborhood set, which is isomorphic to {s;}; a finite set K of values
that can be assigned to the s;; and an evolution rule @ that yields a value to
each s; at time ¢ + 1 on the basis of values at the sites in the neighborhood
N; at time t.

Assignment of a value from K to each site of L yields a state of the
automaton and the state space, denoted E, is the set K of all possible states.
Thus, the evolution rule @) can be represented as an operator @ : £ — E.

This paper presents a division algorithm which, for given rules @ and X,
determines rules A and R such that Q = AX + R.

For simplicity of presentation, L is taken as one dimensional and K is
taken as {0,1}. It is also assumed that all neighborhoods have a standard
form {si—ry ..., 8iyeeey Sitr} {Sicrye e vy Siverny Sitr1}5 OF {SicrtlyevvySiy-- o
Sitr}, the choice being the same for all 7. If k is the number of sites in a
neighborhood, the neighborhood radius is defined as r = (k — 1)/2. Neigh-
borhoods with an even number of sites will be asymmetric, and this fact
plays a role in the division algorithm.
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Figure 1: Labels for r = 1/2 and r = 1 rules.

000 ToZo
001 Toly
010 T1To
011 X T1x3
100 — oy
101 ToTy
110 T3T9
111 T3x3

Figure 2: 7 = 1 Neighborhood mapping under X = (zoz1z223).

2. Division algorithm

The division algorithm will be illustrated for the simplest case in which Q is
an r = 1 (nearest-neighbor) rule and X is an 7 = 1/2 rule. Conventionally,
the neighborhoods for X will be taken as having the structure {s;,siy1}
although it is equally possible to consider {s;_i, s;} neighborhoods and the
operator A will, in fact, need to be a rule with this neighborhood structure.
The reason for this is that an r = 1 neighborhood, {s;_1, s;, Si41}, is covered
by the two 7 = 1/2 neighborhoods {s;_1, s;} and {s;, s;41}, and is not covered
by the neighborhoods {s;_s,s;_1} and {s;_1, s;}-

Using a labeling scheme first introduced by Wolfram [1], every r = 1/2
rule is specified by a four-digit binary number, and every r = 1 rule by an
eight-digit binary number. These are determined as indicated in figure 1.

Here z; (or ¢;) is 1 if the corresponding neighborhood maps to 1 under
the rule, and is 0 otherwise. This labeling scheme will be termed numeric
labeling since the neighborhoods are listed in ascending numerical order.

Applying the operator designated X = (zoz1z923) to the list of r =
1 neighborhoods shows how these neighborhoods map under X. This is
indicated in figure 2.

We now look for an 7 = 1/2 rule A with neighborhoods {s;_1, s;} such
that @ = AX + R, where R is an 7 = 1 rule which is, in some sense, as small
as possible. Taking A = (apajaga3) and z; = 1 — x;, figure 3 indicates the
action of AX on the set of 7 = 1 neighborhoods.

The idea is to choose the a; so as to fit the third column of figure 3 as
closely as possible to the expression Q = (09192939445d6q7). To do this we
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000
001
010
011 X
100 —
101
110
111

ZoTo
ToT1
T1Z2
x1T3
T2Zo
T2
T3T2
T3T3

(-

apzy + azz

apTyr) + a1z + agzozy

apTixh + a1 T2 + agz1h + agT1Ty
aoT|xh + a13) w3 + a7 + azzixs
apTHTy + a1THTo + agZaTh + azTaTo
aTHT) + a1z + asxax + agrety
ApThTy + a1T5TY + asTsTh + a3T3To
apxh + azxs

Figure 3: Mapping of r = 1 neighborhoods under AX.
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note that the third column in figure 3 can be written as a matrix product

XA where
ag
a
A= k
az
as

.TIO 0 0 Zg

zh ! ! ol /
P:C} $9-’E1 :L.O‘:L'Il ToZ1

1Ty T1T2 T1T9 X172
T / /

1Ty T3 T1T3 T1T3
! ol / /

ToZy ToZo T2Xy T2Zo
! ol / !

Ty ToT1 T2Ty T2y
! ol / ]

T3Ty T3zTy T3To T3T2
.’L‘g 0 0 X3

Taking Q as the column vector with components given by (gog192¢3q4
g59697), we now consider the equation XA = Q. By construction, each row
of X contains only a single 1. Therefore, if ¢; is the ith column vector of
X and clT is its transpose, then ciT * ¢;j = n;0;; where ¢;; is the Kronecker
symbol and n; is the number of 1s contained in ¢;. Thus, multiplying the
matrix equation XA = Q on both sides by X7 yields the set of equations

niq; = Qs

where Q; = ¢! * Q is the number of 1s that ¢; and Q have in common.
The algorithm for choice of the a; and the remainder R is as follows:

1. If Q; =0, set a; = 0.

2. Ifn;=Q; #0, set a; = 1.

3. If n; # Q; # 0, then

(a) if Q; < n;/2, set a; = 0.
(b) if Q; > n;/2, set a; = 1.

(2.1)

This algorithm minimizes R in the sense that the label for R contains the
fewest possible number of ones.
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3. Examples

The nearest-neighbor rule (01011010) (rule 90) has been studied extensively
[2]. We will divide this rule by the r = 1/2 rules (0110) and (0010). For
X = (0110) the X matrix becomes

1000
0100
0001
0010

e 0010 ta1)
0001
0100
1000

Now (2.1) yields the set of equations

2(1.0 =0

2(1.1 = 2

20,2 = 2

2a3 = (32)

This indicates that A = (0110) as well. We note, however, that the neigh-
borhoods for X are {s;, si1}, while for A they are {s;—1,s;}. This is an
important point since, for example, (0011) is the identity operator for the
{si, si+1} neighborhoods while (0101) is the identity for the {s;_1, s;} neigh-
borhoods. Thus, the » = 1 identity, (00110011), is (0101)(0011) rather than
(0011)(0011). (However, if the radii of the X and A rules are whole numbers,
there are an odd number of sites and no problem of neighborhood asymmetry
arises.) With this caveat we can say that (0110) is the “square root” of rule
90.

In general, the neighborhoods for the operator A will need to be deter-
mined from the known neighborhoods of X and @ in such a way that the
composition of X and A neighborhoods exactly covers the @ neighborhoods.

If X = (0010) the X matrix is

1000
1000
0100
1000
0010 (8.8)
0010
0100
1000
Now (2.1) yields the set of equations

4(10 = 2

2(11 = 1

%2, = 1 (3.4)
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The algorithm now determines that A = (1110). However, computation
of AX yields (11111111), so there is a remainder R = 10100101. This second
example illustrates a significant point. In the division algorithm as taken a;
is set to 1 if Q; = n;/2. We could equally well set a; to 0 in this case and
the remainder computed would contain the same number of 1s. When this
situation occurs we will term it a case of equivocation. The choice made
will be called positive equivocation. If a; = 0 when @Q; = n;/2 this will be
said to be negative equivocation. It turns out that this is important in the
arithmetic of residue classes, as will be seen in the next section.

4. Residue arithmetic

A natural question to ask is whether there is an arithmetic of residue classes
similar to that for integers. There is, but the possibility of equivocation
makes it more complicated. Following modular arithmetic, if Q = AX + R
we will say that Q = R mod (X), read @ is congruent to R modulo X.

Lemma 1. Congruence modulo X satisfies

1. Q = Q mod (X)
2. @ =Rmod (X) 4 R=Q mod (X)

Thus congruence modulo X has the reflexive and symmetric properties,
but transitivity may not hold. To see this consider @ = R mod (X) and
R = Smod (X). Then there are rules A and B such that Q = AX + R
and R = BX + S. This allows us to write @ = AX + BX + S mod (X) =
(A+ B)X + S mod (X). Formally this looks as if Q = S mod (X). Suppose,
however, that @ = (00101110) and X = (0110). Then by equation (3.1) and
the division algorithm @ = (0111)(0110) + (01010000) so the remainder is
(01010000). The remainder R can be written 01010000 = (0110)(0110) +
(00001010). Thus we can write @ = [(0111) + (0110)](0110) + (00001010) =
(0001)(0110)+ (00001010). This equation is true, but it does not follow from
the division algorithm unless we choose the a; = 0 for Q; = n;/2. If equiva-
lence classes of equivocation are defined by saying that the equivocation class
of a rule @ is the set of all rules congruent to @ under all possible combi-
nations of positive and negative equivocation, then congruence modulo X is
transitive across equivocation classes, but not across residue classes alone.

Let k(X) be the number of columns of the X matrix that do not contain
all zeros. Let e(Q, X) be the number of columns that are equivocal for an
operator Q = AX + R.

Lemma 2. Let X be given as a rule of radius r. The number of rules
of radius s > r that are congruent to 0 modulo X is given by 2¥X) with
1 < k(X) < 2%s=m+1 | The set of all ) congruent to 0 mod (X), denoted
{0;}, is a group with respect to component-wise addition.



592 Burton Voorhees

Proof. If @ is congruent to 0 mod (X)) then there is an A such that Q = AX.
That is, the binary label of @ decomposes exactly into a sum of columns of the
X matrix. Since k(X) is the number of nonzero columns of this matrix there
are 2¢(X) possible combinations of columns. The total number of columns in
the matrix is 22(s—7)+1,

To see that {0;} is a group note that 0; = A; X and there is no equiv-
ocation in these products. Thus 0; + 0; = (A4; + A;)X simply corresponds
to another combination of columns of the X matrix, hence is also in {0;}.
Each element is its own inverse, and the zero element is Oy, which is rule 0
in Wolfram’s labeling scheme. H

Lemma 3. Let X be given. The number of residue classes modulo X in
the equivocation class of an operator Q is 2¢(@X)_ There will be 2KX)=¢(@:X)
distinct values of A for this class.

Proof. If the equivocation of an operator @ when divided by X is e(Q, X),
this means there are (@, X) columns of the X matrix that are equivocal.
For each of these columns it is possible to choose a; = 0 or a; = 1 with-
out changing the number of 1s in the remainder. On the other hand, each
such choice determines a distinct rule A and a distinct remainder. Thus the
equivocation class of Q will contain 2¢9-X) different residue classes and the
number of distinct rules A will be given by 2HX)—¢@.X) &

Theorem 1. Let {0;|0 < i < 2¥()} be the set of rules of given radius that
are congruent to 0 modulo X. Let Q be a given rule of the same radius.
Then the full equivocation class of Q is the set eq(Q) = {S|S = Q +0; for
some i}.

Proof. Q = AgX+Rand 0; = A;X. Hence Q+0; = (Ag+A;)X+R. Write
Aq as Ug + Eq where Uy, is the part of Ag for which @ is unequivocal and
Eq is that part that is equivocal. Note that the remainder R comes entirely
from the EgX contribution: there will be a 1 in a given position of R either
to compensate for an extra 1 in EgX, or to include a 1 that is contained
in @ but not in EgX. We also note that A; is completely unequivocal.
Thus, if addition of A; to Ag changes only Uy there will be no change in
the remainder R. If it causes a change in Eg, however, this corresponds to a
change in equivocation. Since the set of 0; contains all possible combinations
of columns of the X matrix, they will also exhaust the possible combinations
of equivocation that can occur for ). B
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As an example of theorem 1 consider the 2-site rule X = (0010). The
matrix for this rule is given by equation (3.3). k(X) = 3 so the set {0;} has
eight members. Listing these together with the corresponding A; gives

A 0;

(0000) (00000000)
(0010) (00001100)
(0100) (00100010)
(0110) (00101110)
(1000) (11010001)
(1010) (11011101)
(1100) (11110011)
(1110) (11111111)

There are 31 additional equivocation classes. These are listed, in terms
of their component residue classes and the associated A matrices, in table 1.

In table 1 an X in a given A column indicates that the value of A is
a coefficient in the equation @ = AX + R. The residue classes in each
equivocation class are listed under Eq(Q), together with a label for each
class. Thus, for example, class D3 = (20,24) indicates that residue classes
R = 20 and R = 24 (in Wolfram’s notation) are contained in the same
equivocation class. The total number of rules in each equivocation class is
eight since there are eight elements in {0;}. Thus there are four rules in each
of the residue classes 20 and 24.

The most transparent listing of equivocation classes in a group table is
given by taking the ordering (A, C), (E, G),(B, F),(D, H). Each of the pairs
contained in parentheses contains eight equivocation classes, hence 64 rules.
The sets C = (01,02,03), (A,C) = (Ao,Al,AQ,Ag,A,;,Cl,Cz,Cg), and
(A7 Ca E7 G) = (AD, Ala A27 A3a A4) Cl) C27 C37 Eh E?a E3’ E47 E5) Gla G?, G3)
are subgroups under component-wise binary addition. If (A4,C) is taken
as the identity element then the sets (A4,C), (E,G), (B, F), and (D, H)
form a four-element group with group table isomorphic to the group table
of {00,01,10,11}, while the sets (4,C, E,G) and (B,F,D,H) form a two
element group with table isomorphic to {0,1}.

If rules Q and Q' are in the same equivocation class we will say that
Q@ = Q' emod (X). This is the relation that is analogous to congruence in the
case of integers.

Theorem 2. If Q = Remod (X) and Q' = Semod(X) then Q + Q'
R + Semod (X). Also, if @ = Remod (X) and R = Semod (X) then Q
Semod (X).

5. Generalizations

It should be clear that this division algorithm can be applied for any pair of
automata rules @, X so long as the neighborhood structure of X is such that
a table like that of figure 2 can be constructed. For example, if @Q is a rule
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Eq(Q) 0000 0010 0100 0110 1000 1010 1100 1110

Ay O

A 1

Ay 16

Ay 128

Dl (478)

Dy (5,9)

D3 (20,24)

Dy (68,72)

Ds (132,136)

B, (2,32)

By (3,33)

By (18,48)

By (66,96)

Bs (130,160)

Ey (6,10,36,40)

B, (7,11,37.41)

E3 (22,26,52,56)

Es (70,74,100,104)

Es (134,138,164,168)

C (17,192)

Cy (65,144)

Cs (80,129)

H; (21,25,196,200

H, (69,73,148,152

H; (84,88,133,137

Fy (19,49,194,224

F, (67,97,146,176)

F3 (82,112,131,161)

G, (23,27,53,57
198,202,228 ,232)

G, (71,75,101,105
150,154,180,184)

Gs (86,90,116,120
135,139,165,169)

el ol ol
R R R el i
el ol
Rl ols
el aRa R st
e Ralals

ks aR el

el ool
PAPA P PSP A G K A K R K K K R K KR

>4 A
R el
el el

PR A

T B B R i e i i T I il i i i e S e

Table 1: Equivocation classes for three-cite rules divided by (0010).
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00 01 02 10 11 12 20 21 22
Dh 0 0 0 Do 0 0 0 2
PPy Pop1 PPl popy pop1 popi Popl popr  popY
DoPy DoP2 DoPs Doy PoP2 PoPs DePh Pip2  Popbh
s Pips Pips piph pips s pips Pips  piph
Py pipa Pipi ppy ppa pipi Pivy pips piDj
PPy Pips Dk pwps pips by Pips pips  pip§
PhDt DhDe  DhDE  Dols DaDe Dol PPy PhDe  DaD§
hDy  DhDT  DhDY Dol DaDr Daby PPy Phpr  DhDY
PhDy  DhDs  DhDR Dol DaPs  DaPy  PaPy  Phbs  DhDg
Papy PiPo DiPg P3Py PsDo P3Py DPipy P3Po P3py
phpy php php{ pspl pspr pspl  phPy pipr pEpY
Paph Pip2 Daph P3Py PaP2 P3Py DPiph DPipe DD
PP DyPs DD PaDy paps  pap3  Pipy  Pips  pips
Y, 0 0 0 p O 0 0 p!
PuPs Dhps PPy paDy PaDs paDy  Pips Pips  Piph
PiDs PiPe DsDe DsPs Psbe DsPy DPipg Dipe DPEDE
Pspy  Dspr PPy PsDhy Pspr PsDh  Pipy  Dspr DDy
DD DsPs DsD§ PsPy PsPs DPsPs  PiDs Dips  Dipd
DPePy  PgPo DPePy PPy PePo DPePy Pelo PgPo PP
PePy Py pepi pep) pepr pep| PEPy pepr PP
Py DeD2 DDy DeDy DeP2 Dels Delh Pgp2  Dgbs
PPy PP Dhps  PiP3  DiPs Db Pips  pips Dbl
DYy Dypa DR pipy Pipa Db PRvy pips DYDY
DDy DYDs  DhDs DPiDs DiDs Db DiPs  Pips  DyDs
DiPs DiPe DsDe DsPs DsPé DsPe DeDg Pube Pibi
DDy Pipr DDY psph  Pspr Dspy  DRD:  DEpr DDy
s 0 0 0 pg O O O pl

Figure 4: X-matrix for division of three-site rule by two-site rule over

Z3.
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of radius 7 and X is a rule of radius m < r then A will be a rule of radius
r —m. Even if m > r division is possible by first extending @ to a rule of
radius 7' > m. Extension is carried out by mapping neighborhoods of radius
r to neighborhoods of radius r’ by adjoining neighborhoods of radius ' — r,
in ascending numerical order, to the right side of the radius-r neighborhoods.
The division algorithm can also be extended to more general sets K, and to

higher-dimensional lattices.

In figure 4 we show the X matrix for division of nearest-neighbor one-
dimensional rules defined over Z3. The rule X is now a two-site rule defined

by the table

00 01 02 10 11 12 20 21 22

Ty I

Ty X3 T4

T5 g

T7

Zg
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Q Neighborhood

Possible X and A Neighborhoods

::l B

Figure 5: Some two-dimensional neighborhoods compatible with a
Moore neighborhood.

The notation used is p; = (1 + z;)(2 + 2:)/2; pi = z:(1 + z;)/2; and
p! = z;(2 + z;)/2. The p;(a) are the simplest polynomials in the z; having
the property that p;(a) is one if z; = a and zero otherwise.

Figure 5 shows examples of compatible neighborhood structures for two-
dimensional lattices.

We will say that a rule @ is prime if it is congruent to 0 only modulo itself
and the identity. For cellular automata rules, however, there is a difference
from integers: almost all rules are prime.

A rough estimate of the percentage of composite rules can be gained for
one-dimensional cellular automata. If a one-dimensional rule has radius r
then it can be divided by any rule of radius s such that 1/2 < s < r. There
are 2,_; such possible radii, each having 22°*2 rules. Each rule of radius s
will multiply with a rule of radius r — s to give a rule of radius r. Ignoring
cases in which rules commute, or in which two different factors yield the same
product, there are

7'—1/2 2s+1 2| 1
3 FrEw (5.1)
s=1/2

possible combinations. On the other hand for radius r there are a total of

22" rules. Dividing this into the sum of (4.1) gives an upper bound of
r—1/2
Z 2_22r+1 [1_2—2.__2—2(r-.)] (52)
s=1/2

for the fraction of composed rules. The actual number of composite rules
will be less than this. For example, for s = 1/2, 7 = 1 (4.2) equals 1 but
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in fact only 61 of the 256 r = 1 rules are composite. Further, as r increases
this number decreases dramatically. For example, for r = 3/2 it is 1/8 and
for r = 2 it is 2711 42716, Thus it is not surprising that the rule for the well
known Game of Life turns out to be prime.
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