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Division Algorithm for Cellular Automata Rules*

Burton Voorhees
Faculty of Science, Athabasca University,
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Abstract . Given two cellu lar automata rules represented as operato rs
Q and X, together with certain nat ural restrictions on their neighbor­
hood st ruct ures , an algor ithm is provided which yields two other rules,
A and R, such that Q = AX +R. A generalized arithmetic of residues
follows from this.

1. Introduct ion

Form ally, a cellular automata consists of a lattice L containing a finite or
infinite set of sites {s.}; a subset N = {Ni } of the power set P({sd ), called
th e neighborhood set, which is isomorphic to { Si }; a finite set J{ of values
that can be assigned to the s.; and an evolution rule Q that yields a valu e to
each s, at t ime t + 1 on the bas is of values at the sites in the neighborhoo d
N, at t ime t.

Assignment of a value from J{ to each site of L yields a st ate of the
automaton and the state space, denoted E, is the set J{L of all possible states.
T hus, the evolut ion rule Q can be represented as an operator Q : E -+ E .

This paper presents a division algorithm which, for given rules Q and X,
determines rules A and R such that Q= AX + R.

For simplicity of presentat ion, L is taken as one dimensional and J{ is
taken as {O, I }. It is also assumed that all neighborhoods have a standard
form {Si - r, . . . ,Si , . . " Si+r } ; { Si-r, . . o,Si, . . " Si+r- l } ; or {Si- r+l , . . "Si , . . "
Si+r }, the choice being the same for all i. If k is the number of sites in a
neighborhood , the neighborhood rad ius is defined as r = (k - 1)/2. Neigh­
borhoods with an even number of sit es will be asymmetric, and this fact
plays a role in the division algori thm.

' Supported by NSERC operating grant OGP-0024817 and a grant from Athabasca
University Research Fund.
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Figure 1: Labels for r = 1/2 and r = 1 rules.

000 X OXo

001 X OX1

010 X 1X2

all x X 1X3

100 --> X2 X O

101 X2 X 1

110 X3 X2

111 x3x 3

Figure 2: r = 1 Neighborho od mapping under X = (XOX 1X2X 3).

2. Division algorithm

The division algorithm will be illustrat ed for the simplest case in which Q is
an r = 1 (nearest-neighbor) rule and X is an r = 1/ 2 rule. Conventi onally,
th e neighborhoods for X will be taken as having the st ructure {s., 8i+d
although it is equally possible to consider {8i-1> 8i} neighborhoods and th e
operator A will , in fact , need to be a rule with th is neighborhood st ruc ture .
The reason for this is th at an r = 1 neighborhood, {8i-1 , 8i , 8i+l }, is covered
by t he two r = 1/2 neighborhoods { 8i-1 , s. ] and [s. , 8i+l }, and is not covered
by the neighb orhoods {8i -2, 8i- d and { 8i- 1> s.] .

Using a lab eling scheme first introduced by Wolfram [1] , every r = 1/2
rule is specified by a four-di git binary numb er, and every r = 1 rule by an
eight -digit binary number. These are determined as indi cat ed in figure 1.

Here Xi (or qi ) is 1 if th e corresponding neighborhood maps to 1 und er
th e rule, and is aotherwise. This lab eling scheme will be term ed num eric
labeling since t he neighb orhoods are listed in ascending num erical order.

Applying th e operat or designat ed X = ( XOX1 X 2X3) to th e list of r =
1 neighborhoods shows how th ese neighborhoods map under X. This is
indicated in figure 2.

We now look for an r = 1/2 rule A with neighborhoods { 8 i-1 ,8;} such
th at Q = AX +R, where R is an r = 1 rule which is, in some sense, as small
as possible. Taking A = (aOa1 a2 a 3) and x ; = 1 - Xi , figure 3 ind icat es the
acti on of AX on th e set of r = 1 neighborhoods.

The idea is to choose th e a i so as to fit th e th ird column of figure 3 as
closely as possible to th e expression Q = ( QOQ1Q2Q3Q4Q5q6 q7) . To do thi s we
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000
001
010
011 X
100 -+

101
110
111

XOXo

XOXl

Xl X2

X lX3 A
X2 XO -+

X2X l

X3 X2

X3X3

aox~ + a 3xO

aox~x~ + a l x~x~ + a 3xOxl

aox~x~ + alx~x2 + a2xlx~ + a3xlx2

aox~x~ + alx~x3 + a2xlx~ + a3 x lx3

aox~x~ + alx~xO + a2x2x~ + a 3x 2XO

aox~x~ + alx~xl + a2x2x~ + a 3x2x l

aox~x~ + alx~x~ + a2x3x~ + a 3x 3x 2

aox~ + a 3x3

Figure 3: Mapping of r = 1 neighbo rhoods under AX.

note that th e third column in figure 3 can be writ ten as a matrix prod uct
XA where

X' 0 0 Xo0

x~A x~x~ xox~ XOXl

h(~ )
x~x~ X~X2 XlX~ Xl X2

X = x~x~ X~X3 XlX~ XlX3

x~x~ x~xo X2X~ X2XO

x~x~ X~Xl X2X~ X2 Xl

x~x~ X~X2 X3X~ X3 X2

x ' 0 0 X 33

Taking Q as th e column vector with components given by (qOql q2q3q4

Q5q6q7) , we now consider th e equatio n XA = Q. By const ruc t ion, each row
of X cont ains only a single 1. Therefore, if c, is the it h column vector of
X and c[ is its transpose, then c[ * Cj = nj Dij where Dij is th e Kronecker
symbol and n j is the number of Is contained in Cj. Thus, multiplying th e
matrix equation XA = Q on both sides by X T yields th e set of equa t ions

(2.1)

where Qi = c[ *Q is the number of Is that c, and Q have in common.
The algorithm for choice of th e a; and the remainder R is as follows:

1. If Qi = 0, set a; = O.

2. If ni = Qi :j:. 0, set c, = 1.

3. If ni :j:. Qi :j:. 0, th en

(a) if Qi < n;j2, set ai = o.
(b) if Qi ~ n;j2 , set a, = 1.

This algorithm min imizes R in the sense that the lab el for R cont ains the
fewest possible number of ones.
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3. Examples

The near est-neighbor rule (01011010) (rule 90) has been st udied extensively
[2]. We will divide th is rule by the r = 1/2 rules (0110) and (0010). For
X = (0110) the X matrix becomes

1 000
o 1 0 0
000 1

X = 0 0 1 0 (3.1)o 0 1 0
000 1
o 1 0 0
1 000

Now (2.1) yields the set of equations

2ao 0
2a1 2

2a2 2

2a3 0 (3.2)

This indicates th at A = (0110) as well. We not e, however, th at th e neigh­
borhoods for X are {Si' sHIl, while for A t hey are {Si-1, sil o This is an
important point since, for example, (0011) is th e ident ity operato r for the
{Si' si+Il neighbo rhoods while (0101) is th e identi ty for th e {Si-1,s.} neigh­
borhoods. Thus, the r = 1 identity, (00110011), is (0101)(0011) rather than
(0011)(0 011). (However, if the radii of the X and A rules are whole numb ers,
th ere are an odd number of sites and no problem of neighborhood asymmet ry
arises.) With th is caveat we can say that (0110) is t he "square root" of rule
90.

In general, th e neighborhoods for the operator A will need to be deter­
min ed from the known neighborhoods of X and Q in such a way that the
composit ion of X and A neighborhoods exactly covers th e Q neighborhoods .

If X = (0010) the X matrix is

1 0 0 0
1 0 0 0
o 1 0 0
1 0 0 0
o 0 1 0
o 0 1 0
o 1 0 0
1 0 0 0

Now (2.1) yields the set of equations

4ao 2

2a1 1

2a2 1 (3.4)
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The algorithm now determines th at A = (1110). However, computation
of AX yields (11111111) , so th ere is a remaind er R = 10100101. This second
example illustrates a significant point . In the division algorithm as taken ai
is set to 1 if Qi = n;j2 . We could equally well set ai to 0 in this case and
th e remainder computed would contain the same numb er of Is. When this
situation occurs we will ter m it a case of equivocation . The choice made
will be called positive equivocation. If a, = 0 when Qi = n;j2 this will be
said to be negat ive equivocation. It turns out that th is is important in th e
arithmetic of residue classes, as will be seen in th e next sect ion.

4. Residue arithmetic

A natural question to ask is whet her there is an arithmet ic of residue classes
simi lar to th at for int egers. There is, but the possibility of equivocat ion
makes it more comp licated. Following modular arithmetic, if Q = AX + R
we will say th at Q == R mod (X) , read Q is congruent to R modulo X.

Lemma 1. Congruence modulo X satisfies

1. Q == Q mod (X)

2. Q == R mod (X ) {:> R == Q mod (X)

Thus congr uence mod ulo X has the reflexive and symmetric properties,
but trans itivity may not hold. To see this consider Q == R mod (X) and
R == S mod (X ). Then there are rules A and B such that Q = AX + R
and R = BX + S. This allows us to write Q = AX + B X + S mod (X) =
(A +B)X + S mod (X). Formally this looks as if Q == S mod (X) . Suppose,
however, th at Q = (00101110) and X = (0110) . T hen by equa t ion (3.1) and
th e division algorit hm Q = (0111)(0110) + (01010000) so the remainder is
(01010000). T he remainder R can be writ ten 01010000 = (0110)(0110) +
(00001010). Thus we can write Q =[(0111) + (0110)](0110) + (00001010) =
(0001)(0110) + (00001010). This equation is true, but it does not follow from
th e division algorit hm unless we choose the ai = 0 for Qi = n;j2. If equiva­
lence classes of equivocat ion are defined by saying th at th e equivocat ion class
of a rule Q is th e set of all rules congruent to Q under all poss ible combi­
nat ions of positive and negative equivocation, then congruence mod ulo X is
transitive across equivocat ion classes, but not across residue classes alone.

Let k(X) be the numb er of columns of th e X matrix that do not contain
all zeros. Let e(Q,X) be the numb er of columns that are equivocal for an
operator Q = AX + R.

Lemm a 2. Let X be given as a rule of radius r . Th e numb er of rules
of radius s > r that are congruent to 0 modulo X is given by 2k(X ) wit h
1 :s; k(X) :s; 22(8- r )+ 1 . Tlle set of all Q congruent to 0 mod (X ), denoted
{Oi}, is a group with respect to component-wise addition .



592 Burton Voorhees

Proof. If Q is congruent to 0 mod (X) th en th ere is an A such that Q = AX.
That is, the bin ary lab el of Q decomp oses exact ly into a sum of columns of the
X matrix. Since k(X) is th e number of nonzero columns of this matrix th ere
are 2k(X ) possibl e combinati ons of columns. The to tal number of columns in
the matrix is 22(. - r )+l .

To see that {Oil is a group note that Oi = AiX and the re is no equiv­
ocation in these products. Thus Oi + OJ = (Ai + Aj) X simply corres ponds
to another combination of columns of the X matrix, hence is also in {Od.
Each element is its own inverse, and the zero element is 00 , which is rule 0
in Wolfram' s lab eling scheme. •

Lemma 3. Let X be given. Th e number of residu e classes modulo X in
the equivoca tion class of an operator Q is 2e(Q,X). Th ere will be 2k(X)- e(Q,X)
distinct values of A for this class.

Proof. If th e equivocation of an operator Q when div ided by X is e(Q, X),
this means there are e(Q,X ) columns of th e X matrix th at are equivocal.
For each of these columns it is possibl e to choose ai = 0 or a i = 1 with ­
out changing th e number of Is in th e remainder. On th e other hand , each
such choice det ermines a distinct rule A and a distinct remainder. Thus th e
equivocat ion class of Q will contain 2e(Q,X) different residu e classes and th e
number of dis tinct rules A will be given by 2k(X)- e(Q ,X). •

Theorem 1. Let {OiIO ::; i < 2k(X ) } be the set of rul es of given radius that
are congruent to 0 mo dulo X . Let Q be a given rule of the same radius.
Th en the full equivoca tion class of Q is the set eq(Q) = {SIS = Q + Oi for
some i }.

Proof. Q = AQX+R and O, = AiX. Hence Q+Oi = (AQ+Ai)X +R. Write
AQ as UQ + EQ where UQ is th e part of AQ for which Q is unequivo cal and
EQ is that part that is equivoca l. Not e th at the remainder R comes entirely
from the EQX contribution: th ere will be a 1 in a given position of Reither
to compensate for an ext ra 1 in EQX, or to include a 1 th at is contained
in Q but not in EQX. We also not e th at Ai is complet ely unequivocal.
Thus, if addit ion of Ai to AQ changes only UQ there will be no change in
th e remainder R. If it causes a change in EQ, however , this corresponds to a
change in equivocat ion. Since th e set of O, contains all possibl e combinat ions
of columns of the X matrix, th ey will also exhaust th e possible combinat ions
of equivocat ion that can occur for Q. •
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As an example of th eorem 1 consider th e 2-sit e rule X = (0010). T he
matrix for th is rule is given by equat ion (3.3). k(X) = 3 so the set {Oil has
eight members. Listing these together wit h the corresponding Ai gives

Ai
(0000)
(0010)
(0100)
(0110)
(1000)
(1010)
(1100)
(1110)

o,
(00000000)
(00001100)
(00100010)
(00101110)
(11010001)
(11011101)
(11110011)
(11111111)

There are 31 addit ional equivocation classes. These are list ed , in terms
of th eir component residue classes and th e associa ted A matrices, in table 1.

In table 1 an X in a given A column indi cat es that the value of A is
a coefficient in the equation Q = AX + R. The residue classes in each
equivocation class are listed und er Eq(Q), together with a label for each
class . Thus, for example, class D3 = (20,24) ind icates that residu e classes
R = 20 and R = 24 (in Wolfram's notation) are contained in the sam e
equivocation class. The total numb er of rules in each equivocation class is
eight since th ere are eight elements in {Oil. Thus th ere are four rules in each
of th e residue classes 20 and 24.

The most t ra nsparent list ing of equivocation classes in a group table is
given by taking the ordering (A, C), (E ,G), (B, F ), (D, H ). Each of the pairs
contained in parentheses contains eight equivocation classes, hence 64 rules.
The sets C = (CI,C2,C3) , (A,C) = (Ao,AI,A2,A3,A4,CI,C2,C3 ), and
(A ,C, E ,G) = (Ao, AI ,A2,A3,A4,CI , C2,C3, EI, E2,E3,E4,E5 , Gl, G2,G3)
are sub groups und er component-wise bin ary addit ion. If (A , C ) is taken
as th e identity element then the sets (A,C), (E,G), (B,F) , and (D,H)
form a four-element grou p wit h group table isomorphic to the group table
of {00,01 ,10,11} , while the sets (A,C, E,G) and (B,F,D ,H) form a two
element group wit h tabl e isomorphic to {O, I} .

If rules Q and Q' are in the same equivocation class we will say that
Q == Q' emod (X). This is the relat ion that is analogous to congruence in the
case of integers.

Theorem 2. If Q == R emod(X) and Q' == S emod(X ) then Q + Q' ==
R+ Semod(X). Also, if Q == R emod (X ) and R == S emod (X) then Q ==
S emod (X) .

5. G eneralizations

It should be clear that this division algorithm can be applied for any pair of
auto mata rules Q, X so long as th e neighborhood st ructure of X is such th at
a table like th at of figure 2 can be const ructed. For examp le, if Q is a rule
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Eq(Q) 0000 0010 0100 0110 1000 1010 1100 1110
Ao 0 X X X X X X X X
A1 1 X X X X X X X X
A2 16 X X X X X X X X
A3 128 X X X X X X X X
D1 (4,8) X X X X
D2 (5,9) X X X X
D3 (20,24) X X X X
D4 (68,72) X X X X
D5 (132,136) X X X X
B1 (2,32) X X X X
B2 (3,33) X X X X
B3 (18,48) X X X X
B4 (66,96) X X X X
B5 (130,160) X X X X
E 1 (6,10,36,40) X X
E2 (7,11,37,41) X X
E3 (22,26,52,56) X X
E4 (70,74,100,104) X X
E5 (134,138,164,168) X X
C1 (17,192) X X X X
C2 (65,144) X X X X
C3 (80,129) X X X X
H 1 (21,25,196,200) X X
H 2 (69,73,148,152) X X
H 3 (84,88,133,137) X X
F1 (19,49,194,224) X X
F2 (67,97,146,176) X X
F3 (82,112,131,161) X X
G1 (23,27,53,57

198,202,228,232) X
G2 (71,75 ,101,105

150,154,180,184) X
G3 (86,90,116,120

135,139,165,169) X

Table 1: Equivocation classes for three-cite rul es divided by (0010).
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00 01 02 10 11 12 20 21 22
Po 0 0 0 Po 0 0 0 P~
PoP~ POPI POP~ POP~ POPI POP~ P~P~ P~PI P~P~
POP~ PoP2 POP~ POP~ POP2 POP~ P~P~ P~P2 P~P~
P~P; P~P3 P~P~ PIP; PIP3 PIP~ P~P; P~P3 P~P~
P~P~ P~P4 P~P~ PIP~ PIP4 PIP~ P~P~ P~P4 P~P~
P~PS P~PS P~P~ PIPS PIPS PIP~ P~PS P~PS P~P~
P~P~ P~P6 P~~ P2P~ P2P6 P2P~ P~P~ P~P6 P~P~
P~P~ P~P7 P~P~ P2P~ P2P7 P2P~ P~P~ P~P7 P~P~
P~P~ P~Ps P~~ P2P~ P2PS P2P~ P~P~ P~PS P~P~
P;PO P;PO P;P~ P3Po P3PO P3P~ P~PO P~PO P~P~
P;P~ P;PI P;P~ P3P~ P3PI P3P~ P~P~ P~P I P~P~
P;P~ P;P2 P;P~ P3P~ P3P2 P3P~ P~P~ P~P2 P~P~
P~P; P~P3 P~P~ P4P; P4P3 P4P~ P~P; P~P3 P~P~
P~ 0 0 0 P4 0 0 0 P~
P~Ps P~PS P~P~ P4Ps P4PS P4P~ P~PS P~PS P~P~
PSP~ PSP6 P5P~ PSP~ PSP6 PSP~ P~P~ P~P6 P~P~
PSP~ PsP7 P5P~ PSP~ PSP7 PSP~ P~P~ P~P7 P~P~
PSPS PSPS PSPS PSPS PSPS PSPS P~PS P~PS P~PS
P~PO P~PO P~P~ P6PO P6PO P6P~ P~PO P~PO P~P~
P~P~ P~P I P~P~ P6P~ P6PI P6P~ P~P~ P~PI P~P~
P~P~ P~P2 P~P~ P6P~ P6P2 P6P~ P~P~ P~P2 P~P~
P~P~ P~P3 P~P~ P7P; P7P3 P7P~ P~P; P~P3 P~P~
P~P~ P~P4 P~P~ P7P~ P7P4 P7P~ P~P~ P~P4 P~P~
P~PS P~PS P~P~ P7PS P7PS P7P~ P~PS P~PS P~P~
PSP~ PSP6 P8P~ PSP~ PSP6 PSP~ PSP~ PsP6 PSP~
P8P~ PSP7 PSP~ PSP~ PSP7 PSP~ PSP7 PSP7 PSP~
Ps 0 0 0 Ps 0 0 0 Ps

Figure 4: X -matrix for division of three-site rule by two-site rule over
Z3·

of radius r and X is a rule of radius m < r then A will be a rule of radiu s
r - m . Even if m 2:: r division is possible by first ext end ing Q to a rule of
radius r' > m. Extension is carried out by mapping neighborhoods of rad ius
r to neighbo rhoods of radius r' by adjo ining neighborhoods of radius r' - r ,
in ascending num erical order, to th e right side of th e radius-r neighborhoods.
T he division algorit hm can also be extended to more general sets K, and to
high er-dimensional lattices.

In figure 4 we show t he X matrix for division of nearest -neighbor one-
dim ensional rules defined over Z3. The rule X is now a two-site rule defined
by the table

00 01 02 10 11 12 20 21 22
Xo Xl X2 X3 X4 Xs X6 X7 Xs
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00·.','..
Q Neighborhood

Possible X and A Neighborhoods

~
tfj

Figure 5: Som e two-dimension al neighborhoods compat ible with a
Moore neighborhood.

The not ation used is P; = (1 + xi)(2 + xi) / 2; Pi = xi(1 + xi )/ 2; and
p;' = xi(2 + xi) / 2. The PiCa) are the simpl est polynomials in the Xi having
t he property that Piea) is one if Xi = a and zero otherwise.

Figure 5 shows examples of compatible neighborhood structures for two­
dim ension al lattices.

We will say that a rule Q is prime if it is congru ent to 0 only mod ulo its elf
and the ident ity. For cellular automata rules, however , there is a difference
from integers: almost all ru les are prime.

A rough est imate of th e percentage of composite rules can be gained for
one-dimensional cellular automata. If a one-dimensional rule has radius r
then it can be divid ed by any rule of radius s such that 1/ 2 ~ s < r. There
are 2r - 1 such possible radii, each having 22' + 2 rules. Each rule of radius s
will multiply with a rule of radius r - s to give a rule of radius r. Ignoring
cases in which rules commute, or in which two different factors yield the sam e
product, there are

r - 1/2z= 2 22.+1+22(r- . )+1

. =1/2
(5.1)

possible combinat ions. On the oth er hand for radius r th ere are a total of
2

22r
+

1
ru les. Dividing this into the sum of (4.1) gives an upper bou nd of

r-1 / 2z= 2 - 22r+1[1_ 2- "_2-2(r- . )]

. =1/2
(5.2)

for th e fracti on of composed rules. The actual numb er of composite rules
will be less th an this. For example, for s = 1/2, r = 1 (4.2) equals 1 but
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in fact only 61 of the 256 r = 1 rules are composite. Further, as r increases
this number decreases dramatically. For example, for r = 3/2 it is 1/8 and
for r = 2 it is 2- 11 +2- 16 . Thus it is not surprising that th e rule for the well
known Game of Life turns out to be prime.
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