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Abstract. We propose a method for predicting chaotic time series
that can be viewed either as a weighted superposition of linear maps or
as a neural network whose hidden units have localized receptive fields.
These receptive fields are constructed from the training data by a
binary-tree algorithm. The training of the hidden-to-output weights
is fast because of the localization of the receptive fields. Numeri-
cal experiments indicate that for a fixed number of free parameters,
this weighted-linear-map scheme is superior to its constant-map coun-
terpart studied by Moody and Darken. We also find that when the
amount of data available is limited, this method outperforms the local
linear predictor of Farmer and Sidorowich.

1. Introduction

Interest in the problem of predicting the evolution of time series has grown
rapidly over the last few years [1-6]. One reason for this is that the problem
is extremely general; new results coming from its study have the potential
for application in any field that involves working with sequences of measure-
ments made on nonlinear dynamical processes. The generality of the problem
can be appreciated from its very statement: “learn” the equations of motion
for the evolution of some observable of a system given some knowledge of
that observable’s past history. If a system undergoing some motion has an
observable y that is measured in an experiment to produce a time series
{y(t;) : ¢ = 1,..., N}, the problem is to construct, directly from the time
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series, a dynamical system that predicts y(¢) for ¢ > ¢ty. As formulated, this
problem makes no reference to any explicit type of motion, but the cases
of most interest involve time series generated by chaotic processes [7]. The
reason for this is that chaos represents the worst case scenario for predic-
tion. When a motion is chaotic, by definition, long-term predictions are
impossible to make, even when the equations of motion are known exactly.
This is because any error in the specification of an initial condition will grow
exponentially fast with time on average. Though long time predictions are
impossible to make for such motions, short time predictions are possible.
Thus, if a method is capable of predicting chaotic time series, it should also
apply to simpler cases, such as when the underlying motion is periodic or
quasi-periodic.

Not surprisingly, the recent interest in the prediction problem originates
in the study of dissipative nonlinear systems, where there has been much
emphasis placed on developing techniques for analyzing experimental, non-
linear systems. This emphasis has arisen from the natural desire to make
contact between theory and experiment: How can one measure quantities
that characterize chaotic motion when only sequences of measurements of
a few observables are available? This question led to the development of a
technique called phase space reconstruction, introduced by Packard et al. [§]
and Takens [9], which can be used to construct a state space directly from
observables. The version of this technique most commonly used is formu-
lated in terms of delay coordinates: the coordinates of the phase space are
the values of the observables measured at equally spaced time intervals. The
basic time interval is called the delay time 7, and for an observable y state
vectors have the form x(t) = (y(t),y(t — 7),...,y(t — (dg — 1)7)) where dg,
called the embedding dimension, is the dimension of the reconstructed phase
space. For a dissipative system having an attractor of dimension d one would
expect dg to be of the order d, and this turns out to be the case. Specifically,
Takens [9] proved that dg needs at most to be 2d + 1. In this formulation,
then, our problem is to fit a map that gives, say, y(¢t + T') as a function of
x(t).

An approach to predicting the full, nonlinear motion in a reconstructed
phase space, relevant to this paper is that of Farmer and Sidorowich [1, 2].
They used what they call a “local” approximation scheme [10]. In such a
scheme a number of maps, each corresponding to a different region of the
reconstructed phase space, are built from a set of examples of state vectors
T = {x(tn)} and their images (what the vectors evolve into), as obtained
from the time series. The resulting global map is thus piecewise continuous
and becomes a better and better approximation to the true map as the
number of stored data points increases. This method is very effective in
terms of computation time because the local maps need not all be computed;
those which are needed can be fit “on the fly”: Suppose the state of the
system at time ¢ is xg and the value of y at time ¢ + T is to be predicted.
The set T is searched for some prespecified number of vectors closest to xg,
and a map is built by least-squares fitting from these neighbors and their
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images. (The choice of functional form or “representation” for the local
maps is arbitrary, though in references [1, 2] the authors worked primarily
with linear and quadratic maps.)

A very different approach has been proposed by Lapedes and Farber [5].
They utilized a standard feedforward neural network (a perceptron) trained
with backpropagation to produce a “global” predictor. The method is a
“global” method in the sense that a single function, valid for the entire
reconstructed phase space, is built and composed with itself to predict a
segment of a system’s trajectory. The method yields good predictions using
smaller amounts of training data than the Farmer-Sidorowich method, but
because of the inefficiencies inherent in the backpropagation algorithm it
requires much greater computing time.

Another method, intermediate in spirit between the above two, was in-
troduced by Casdagli [4]. In some implementations it uses an expansion of
the global map in terms of localized radial basis functions. A localized ra-
dial basis function is an isotropic multi-dimensional function that has a peak
at some location in the phase space, called a center, and vanishes as the
distance from this location increases. The global function is expressed as a
linear combination of basis functions centered at different points distributed
around the input space, and the values of the coefficients in the expansion
are determined by least-squares fitting.

Viewed as a neural net, this is a system with a single hidden layer. Each
hidden unit corresponds to one of the localized basis functions; its activation
is the value of that basis function at the point defined by the input vector xq.
There is a single (linear) output unit, and the hidden-to-output connection
weights are just the coefficients in the expansion of the map in the radial
basis functions. One can say that each hidden unit has a “receptive field”
localized in some region of the input space. (Thus such a unit is quite different
from a conventional sigmoidal one, which responds maximally to inputs in a
particular half-space.) A very similar kind of network was also proposed in
another context by Specht [11].

In a modified version of this scheme proposed by Moody and Darken [6],
the centers of the radial basis functions are “learned” from a training set by
an unsupervised learning algorithm (discussed in section 2). Apart from this,
the main difference between their method and Casdagli’s is in the choice of
the form of the basis functions used: the Moody-Darken functions are more
localized in the input space than those used by Casdagli.

In this paper we explore another scheme that utilizes basis functions that
are localized in the input space. It uses elements of the Farmer-Sidorowich
algorithm as well as those of the Moody-Darken method. It can be viewed as
a streamlined extension of the latter, requiring much less time to implement
and yielding much better prediction accuracy. The result is a highly effi-
cient prediction machine implementable on parallel or serial hardware. The
method is described in the following section, which begins with a review of
the Moody-Darken predictor. The results of a number of numerical experi-
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ments comparing its performance to those of other methods are presented in
the succeeding section, which is then followed by our conclusions.

2. Method

The Moody-Darken [6] method employs a set of normalized radial basis func-
tions to build a global mapping f that approximates the dynamics of a time
series. This mapping has the form

_ y:l feR*(x)

f(x) == Zle R"(x) (21)

where
R(x) = exp[—(x — x*)?/20,7], (2.2)

the x* are dg-dimensional vector parameters, and the o, and f* are scalar
parameters. The parameters x* and o, are, respectively, the center and the
width of the response function of the ath hidden unit, and f* is the connec-
tion weight from this unit to the output unit. Bringing the denominator of
the right-hand side of equation (2.1) into the sum of the numerator, we see
that the ath hidden unit has the overall response function

R*(x)
E/ﬁ”:l RA(x)’

In reference [6] the parameters X%, o4, and f* are calculated in three
successive steps. First the M vectors x* are computed using a set of vectors
obtained from a time series. The idea is to distribute the x* according to the
natural measure of the attractor, where the density of data points is high so
is the density of the x*. The authors accomplish this by using an adaptive
formulation of an algorithm called the “k-means clustering algorithm” [6]
to obtain the x, and refer to them as “cluster centers.” (We will use this
terminology throughout the paper.)

Once cluster centers have been constructed, the parameters o, are calcu-
lated by setting

1
O = =
V2

where the average is over the p cluster centers closest to x*. (Note: p is a
new parameter.) Although this is the prescription given, in reference [6] a
uniform, global value of o, is used in all their examples. This value is the
average of equation (2.4) over all cluster centers.

Having obtained the widths, the weights f* are adjusted by using a set of
input vectors {x; : ¢ =1,..., N} and their known images {y; : i =1,...,N}
to minimize the cost function

1 N
By=3 ;(y; — f(x:))%. (2.5)

Po(x) = (2.3)

(e = %)),/ (2:4)
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The representation defined in equation (2.1) can be thought of as arising
from a weighted combination of “constant maps.” (A constant map is a
mapping whose image has the same value irrespective of its argument.) To
motivate this idea, imagine that a set of N training vectors 7 = {x;} and
their known images have been obtained directly from a time series. Now
suppose that the predicted image of an arbitrary input vector x is taken to
be the image of the vector in 7 closest to x. Such a predictor is a “nearest-
neighbor” predictor. Suppose we don’t want to lug around all N vectors
of 7 with which to make the predictions. We can introduce another set of
M << N vectors C = {x*} distributed according to the natural measure
of the attractor (for example, by using the k-means clustering algorithm of
reference [6]). We can then associate an “image” f* with each x* € C by
searching 7 for some number of nearest neighbors of x* and setting f* equal
to the average of the images of these nearest neighbors. Now the predicted
image of an arbitrary vector x can be defined to be the image f* associated
with the x® closest to x, and we have what we call a “constant” predictor.
This winner-take-all predictor is bound to have difficulties. Suppose, for
example, that x lies between two vectors x?, x7 € C, but is slightly closer
to one than the other. The continuity of the dynamics assures us that the
image of x will be intermediate between f? and f7, so why not incorporate
this into the predictor? Of course, the closer x is to x?, the closer we expect
its image to be to f#, so it makes sense to take the image of x to be some
kind of weighted average of f# and f7. This is what the representation
equation (2.1) accomplishes.

Of course, we could stick with a winner-take-all predictor, but improve
the scheme above by replacing the constant mappings that yield the f* by
something more accurate, like a linear mapping. Thus we could use the
vectors of 7 that are the nearest neighbors of x* to construct a linear map,
in effect making the substitution f* — a® + b® - x for the image associated
with it. Now to make a prediction on an arbitrary vector x we find the vector
of C closest to it, call it x#, and use a? + b? - x as the predicted image of x.
Note that this recipe is similar to that of Farmer and Sidorowich [1, 2]. We
still have a problem when an input vector is in a region between two vectors
of C; neither mapping will achieve the desired result. However, we can again
apply a weighted average as we did for the constant predictor. This time,
though, the average is an average of linear maps. The result of all this is a
representation that looks like

M
f(x) = > (a® +b*-x)P*(x) (2.6)
a=1
where P%(x) is given by equation (2.3). (Note that the choice of replacing the
constants f* by linear maps is arbitrary. Any polynomial, rational function,
or other local representation valid for the Farmer-Sidorowich method can be
used instead.)
We can still view equation (2.6) as arising from a neural network. This
network still has dg linear inputs and one linear output, but now each hidden
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unit is replaced by dg + 1 units, corresponding to the extra terms associated
with the linear map. This interpretation of equation (2.1) shows that it is
possible to implement our prediction algorithm on parallel hardware, thus
making high speed predictions possible. However, the implementation we
now describe, tailored for serial hardware, is also quite fast.

As is the case with the Moody-Darken scheme, we obtain equation (2.6)
in three steps. The cluster centers x* are determined first, and from these
the cluster widths o, are calculated. Finally, the parameters a® and b® are
determined.

We want the distribution of cluster centers x* to be roughly proportional
to the natural measure of the attractor. Suppose we have obtained a set of
vectors 7 from some time series. The vectors in the set represent points on
the attractor, and their density approximates the attractor’s natural measure.
If we cover the attractor with a set of boxes such that all the boxes contain
approximately the same number of vectors there will be many boxes in regions
where the natural measure is high and few boxes in regions where the natural
measure is low. We can then associate a cluster center with each box: set x
equal to the average of all vectors in the ath box. The resulting set of cluster
vectors will have the desired distribution, provided that the partitioning of
T is done in some reasonable way.

The method of partitioning can be crucial: note that there may be several
ways of covering the vectors of 7 in the manner just described. Some of
these “coverings” may be undesirable for our purposes. For example, a given
covering may have a large number of boxes with most of their vectors lying
near their boundaries, with large unpopulated regions in their interiors. Such
boxes would have cluster centers in regions where the natural measure is close
to zero, which is precisely what we don’t want. A more suitable cover would
be one in which the spread of the vectors in each box is kept relatively small.

Such a partitioning of 7" is accomplished as follows. At the first stage of
construction we divide 7 into two disjoint subsets £ and R. The vectors in
T have components labeled by an index j, which runs from 1 to dg. For a
fixed value of j we put the vectors of 7 in ascending order according to the
values of their jth components. Denoting the reordered vectors by X7 with
7 an ordering index and letting X7 be the jth component of X7, the ordering
is defined by X~ g X7 < X'hLl Now, for some integer n between 1 and
N we divide T into two subsets deﬁned as £ = {X? :y=1,...,n} and
Ri ={X":y=mn+1,...,N}. The vectors in £ and R will e fsane
(X) ci and (X)R,, respectlvely, and the sum of the correspondmg mean-
square deviations from these means will be & = (X — (X) 1))z + (X -
(X)RJ )2)s - We choose £ and R to be the sets £, and R/, for which & is a
minimum over all values of j and n. Next, we d1v1de the daughter sets £ and
R of T in the same manner as we did 7 to produce two new daughters a piece.
These daughters are then divided, and so on, until the resulting subsets have
less than some prespecified number of vectors in them, whence the process is
stopped. Such a partitioning of 7" can be accomplished recursively by using a
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binary tree structure appropriate for ordering and storing multi-dimensional
objects. Such a structure is called a “k-d tree” [12, 2]. (The term “k-d tree”
stands for k-dimensional tree. In our case k= dg, the embedding dimension.)
The desired subsets of 7 are stored in the terminal nodes of the tree called
buckets.

Once the partitioning of 7 has been done we calculate the mean vector
for each of its subsets as stored in the buckets. The ath cluster center is
stored in the ath bucket. We then apply equation (2.4) to obtain the widths
that, like the x®, are stored in their respective buckets. Note that the search
for nearest neighbors can be accomplished quickly and efficiently since the
cluster centers are stored in a binary tree.

All that remains now is to determine the parameters a® and b® of equa-
tion (2.6) by adjusting them in order to minimize the cost function given
by equation (2.5). To do this we replace equation (2.6) by the following,
equivalent form

f(x) = aﬁ; <a°‘ +b° (x‘—"a)) P (x) (2.7)

(a3

in equation (2.5). The reason for this change is that we have found that
it results in more stable numerics during the iterative minimization of the
training process.

Having a good initial guess for the values of the parameters ao, b, will
reduce the amount of training necessary. It is natural to think of these
parameters as being associated with the ath cluster center, or, equivalently,
the ath bucket of the tree. By associating a linear map with the ath bucket,
we initialize the parameters of the ath bucket by fitting a linear map to the
subset of 7 associated with that bucket and its corresponding images. Thus,
a4, b, are initialized by minimizing

A o8

Oa

where the sum is taken over the vectors of 7 in the bucket. The local linear
method of references [1, 2] are thus used to initialize our predictor.

The usual way of minimizing the cost function equation (2.5) is by using
the method of gradient descent. Let us collectively relabel the parameters
a® and b® by ¢ so that if there are M cluster centers the index k runs from
1 to (dg + 1)M. In each iteration the ¢; are changed by an amount

Af(x:)

Aci = n(yi — f(x:)) e,

(2.9)

where 7 is some small number called the learning rate. We have found that
this method converges very slowly.
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Instead we use a method where the full energy function is used in each
iteration step. The functions P*(x) and Q‘_ir_‘_'_lpa(x) are collectively rela-
beled as ®,(x) where the index k runs again from 1 to (dg+1)M. Rewriting
equation (2.7) as

) = Y cxdi(x) (2.10)

the cost function equation (2.5) is the quadratic form

[% ;yf] - Xk:Ck [X,: yi(I)k(Xi)] + %%Ckcl [Z @k(xi)tb,(x,-)] (2.11)

K

Note that the sums over 4 in the three terms of expression (2.11) form a
constant, a vector, and a matrix, respectively. These parameters need only
be computed once for a fixed training set. There is no further need to store
the training data. Also, if more training data become available they can sim-
ply be added. Thus the training scheme is adaptive. Most of the computer
resources in terms of speed and storage are spent on the matrix during train-
ing. But the matrix is symmetric, and most of its elements are negligible, so
it is necessary to store and compute only a small fraction of them.

The literature on methods to minimize quadratic forms is extensive. We
have chosen a conjugate gradient descent method [13], which we have found
to be very effective. The CPU time needed to find the minimum of E; using
this method is of the order of the time spent on calculating the matrix part
of the cost function of expression (2.11).

The method of building the function of equation (2.6), just described,
can also be applied to the representation of equation (2.1). To save space
in writing, henceforth we will call the representation of equation (2.6) the
Weighted Linear Predictor (WLP) and the representation of equation (2.1)
the Weighted Constant Predictor (WCP).

3. Numerical Results

In this section we present the results of some numerical experiments used
to test the representation equation (2.7). The first set of experiments are
done to compare the performance of the WLP with that of the WCP. The
WCP is a streamlined version of the method of Moody and Darken [6]; both
methods utilize the same functional representation equation (2.1) and nearly
the same distribution of the cluster centers x*. Thus, direct comparisons of
the WLP and the WCP yield indirect, but meaningful comparisons of the
WLP and the Moody-Darken algorithm, except when computational speeds
are involved (the WCP is roughly 2 to 3 times faster than the Moody-Darken
algorithm). Of course, to make the comparisons fair we will always use the
same number of free parameters for the WLP and the WCP.

The second set of numerical experiments compare the WLP with the local
linear predictor (LLP) of Farmer and Sidorowich [1, 2]. The purpose of these
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Figure 1: The graph of the logistic map equation (3.2) for A = 4.

experiments is to check whether the WLP is a reasonable alternative to the
LLP when the amount of data available is limited. (Although the LLP may
be the “method of choice” when large amounts of data are available, it can
break down when this is not the case.)

In all of the experiments presented below, we generate a time series from
some dynamical system and divide it into two parts. One part, called the
training set, is used to build the predictors. The second part, called the
test set, is used to test the performance of the resulting predictors. The
prediction accuracies are measured in terms of the mean normalized error,
or simply the prediction error, defined as

g2 (Wt +T) = F(x(®)?)
(y(®) — (w(®))*)
where the averages are over the test set. To obtain good statistics, we will

always use 1000 input-output pairs to evaluate this quantity.

We begin with a study of a one-dimensional mapping, the logistic map,
defined by

(3.1)

Tng1 = 9(Tn) = Aza(l — z,) (3.2)

where A is a parameter. The graph of equation (3.2) is a parabola, and A
controls its height. When A = 4 for almost any initial condition xy in the
interval [0, 1) the iterates of equation (3.2) form a chaotic sequence confined
to that interval. The graph of equation (3.2) for this case is shown in figure 1.

Can the WLP approximate the graph of figure 1 better than the WCP? To
answer this, we picked an initial condition at random from the unit interval,



612 K. Stokbro, D. K. Umberger, and J. A. Hertz

0.2

/
// \
- / / \ 7 N / \
/ ’ / & .7 % \ N
Eoci . ¥ 4 L x 7% iy % s 2z o7
.

¥ 4 -
0.0 Rl I S Tl B e (S o e S

0.0 Q.2 C.4 0.6 0.8 1.0

Figure 2: The WCP of equation (2.1) that results from training on a
set of 200 input-output pairs that were produced by iterating equa-
tion (3.2). Ten cluster centers were used, and a prediction error of
0.118 was obtained. The dashed curves represent the individual terms
in equation (2.1)

iterated the map until transients died out, then produced a time series of
200 elements to obtain the training set. For simplicity, we chose dg = 1 and
the cluster centers to be equally spaced in the interval. Also, the widths
of the Gaussians were taken to be the distance between the cluster centers.
Figure 2 shows the function produced by the WCP (solid curve) when 10
cluster centers are used. Each dashed curve in the figure corresponds to a
single term in equation (2.1). Note that the function learned by this predictor
is “bumpy.” This should be compared to figure 3, which shows the function
learned by the WLP when only five cluster centers are used. The “bumps”
do not appear. This suggests that the WLP yields a smoother interpolation
between the points of the training set.

To see how well the WCP approximates equation (3.2) we superimpose
the function of figure 2 on its graph. This is shown in figure 4. This should
be compared with figure 5, which is for the WLP of figure 3. The prediction
errors corresponding to the figures were found to be 0.118 and 0.005, respec-
tively. Thus, with the same number of free parameters the WLP makes a
one-step prediction that is more than an order of magnitude better than the
WCP.

Figures 6 and 7 are similar to figures 2 and 3 except that the number of
cluster centers used for the WCP and the WLP have been increased to 60 and
30, respectively. For this case the prediction error for the WLP is 6.8 x 1075,
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Figure 3: Similar to figure 2, but using the WLP of equation (2.6)
with five cluster centers. A prediction error of 0.005 was obtained,
showing that with the same number of parameters the WLP beats
the WCP by more than an order of magnitude in the prediction error.
The dashed curves represent the individual terms in equation (2.6).
Note: we have not drawn portions of them that are below f(z,) = 0.
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Figure 4: The graph of the logistic map superimposed on the WCP
of figure 2.
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Figure 5: Similar to figure 4, but with the WLP of figure 3.
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Figure 6: Similar to figure 2, except that 60 cluster centers were used
in the WCP. The prediction error is 1.3 x 102,

which is two orders of magnitude better than the value of 1.3 x 10~2 for the
WCP.

In the previous section equation (2.6) was viewed as a weighted average of
linear maps, where each map was interpreted as approximating the dynamics
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Figure 7: Similar to figure 3, except that 30 cluster centers were used
in the WLP. The prediction error is 6.8 x 1075, which is more than
two orders of magnitude better than the WCP with the same number
of parameters.

in the vicinity of its cluster center. If this is the case, we expect that the
derivatives of the function being approximated will be closely correlated with
the slopes of the individual linear maps forming the distribution. Figures 8
and 9 show the graph of equation (3.2) together with the linear maps corre-
sponding to figures 3 and 7, respectively. The validity of the interpretation
appears to get better as the cluster centers become more numerous. Ex-
periments on other one-dimensional maps support this conclusion. However,
it is important to note that in cases where we have used small numbers of
cluster centers we have observed instances where the derivatives and slopes
fail to support this interpretation, although the WLP approximates the cor-
responding mappings well.

To make further comparisons between the WCP and the WLP, we con-
sider time series generated by the somewhat less trivial Mackey-Glass delay-
differential equation:

z(t — At)

1+ 2(t — ADDO (3.3)

dz

7 (t) = —1z(¢t) + .2
where At is a parameter. This system has an infinite-dimensional phase
space; its initial state must be specified over an interval of time. However, it
does have low-dimensional attractors whose dimensions increase with At [14].
This system has been used to test a number of previously proposed prediction
algorithms.
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Figure 8: The graph of the logistic map with the individual linear
maps of the WLP for the situation of figure 3. Note that the slopes
of the linear maps match the derivatives of the logistic map to some
extent.
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Figure 9: Similar to figure 8, but with 30 cluster centers. Note that
slopes and derivatives match better when more cluster centers are
used.
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Figure 10: The prediction error, using time series from equation (3.3)
with At = 17, for predicting T' = 7 = 6 into the future as a function
of the number of training points used.

We consider the case of At = 17, for which the system has an attractor
with a fractal dimension of about 2.1 [14]. Following other published results
we have chosen 7 = 6 and dg = 4 for the reconstructed phase space [2, 5, 6].
To set up the WCP and the WLP we have to decide how many cluster centers
to use for a given amount of training data. We have no criterion for deciding
what the “optimal” number should be. However, in all of the examples below
we have chosen it in such a way that the number of free parameters is one-
fourth the number of training points used. (This choice is arbitrary and
definitely not optimal with regard to prediction accuracies.) Thus, for the
WCP there are 4 training vectors per cluster center, and for the WLP there
are 20 per cluster center.

Figure 10 shows the prediction error E (see equation (3.1)) for predicting
the time series T' = 7 into the future as a function of the number of training
points N. The WLP performs better than the WCP for all values of N
investigated.

How much slower is the WLP compared to the WCP? Both algorithms
require time to set up and train, and this time increases with the amount of
training data used. In figure 11 we plot E versus the CPU time needed to set
up and train the two predictors. The training was done by going through the
training set 200 times. This was enough to get within 0.001 of the minimum
of E; (defined in equation (2.5)). The training could have been stopped
several steps earlier without affecting the prediction errors noticeably, so the
CPU times in the figure represent upper bounds. Figure 11 shows that when
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Figure 11: The prediction error as a function of the CPU time needed

to set up and train the WCP and the WLP. The calculations are for
the same cases as those of figure 10.

high accuracy predictions are desired using the smallest amount of computing
time we should use the WLP rather than the WCP. With this in mind, we
now abandon the WCP in favor of the WLP for the rest of this section.

We now compare the WLP with the LLP of references [1, 2]. In figure
12 we have used the Mackey-Glass time series with At = 17, using the same
phase space reconstruction as above. We constructed maps that predict
T = 6 into the future using 100 and 500 training-points, respectively. The
figure shows the results of iterating the resulting maps. For the 100 data-
point case, the LLP is not capable of producing a valid map; the prediction
error blows up almost from the start. The WLP does not have this problem;
the prediction error grows smoothly as the map is iterated. When 500 data
points are used instead, the LLP produces a valid map. Now the error is
comparable to the one obtained with the WLP.

To study a higher-dimensional case, we now consider the Mackey-Glass
equation with At = 30. At this parameter value, the system has an attractor
with a fractal dimension of 3.6 [14]. We reconstructed a phase space using
T = 6 and dg = 6. Because the dimensionality of the attractor is larger
than that of the At = 17 case, we use 1000 and 5000 training points to
set up the predictors, which predict 7" = 6 into the future. The results of
iterating the resulting maps are shown in figure 13. As can be seen from
the figure, even 5000 training points are not enough to enable the LLP to
make predictions. The prediction error increases dramatically if one tries to
forecast beyond a certain time. For both the 1000 and 5000 training points
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Figure 12: The prediction error as a function of the prediction time 7"
for the WLP and the LLP using time series from equation (3.3) with
At = 17. The predictions were made by iterating maps built with 100
and 500 training points that predict 7" = 6 into the future.

cases, the WLP produces a map with a prediction error that is well-behaved
when the map is iterated. Furthermore, the error in the first iteration is one
order of magnitude less than the one obtained with the LLP.

Recall that local linear predictions can be done “on-the-fly.” This means
that to make a single prediction, the local map must be built and evaluated.
Thus, making a single prediction with the LLP requires slightly more time
than a global method that uses a function that has already been constructed.
However, all the time needed to set up such a global predictor is avoided
by the LLP. If one is concerned with computational speed, the choice of
method should depend on how many predictions will be made. If only a
few predictions are desired, a global approach will be slower than a local
one; while a global approach might be faster when a lot of predictions are to
be made. For example, on a Sun-4 computer for the 500-data-point case of
figure 12, which involves a total of 100,000 predictions, the WLP took 160
seconds to set up, while 766 seconds were required to make the predictions.
Thus, it took our scheme a total of 926 Sun-4 CPU seconds for the entire
calculation, while the LLP took 1811 Sun-4 CPU seconds.

4. Conclusions

In this paper we have proposed a fast and accurate method for predicting
chaotic time series. The method incorporates a representation based on basis
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Figure 13: Similar to figure 12, except that time series from equa-
tion (3.3) with A¢ = 30 was used. The number of training points was
increased to 1000 and 5000, respectively.

functions localized in the input space. The representation can be viewed as
a neural network or simply as a weighted superposition of linear maps. The
efficiency of the algorithm has been obtained by exploiting the localization
properties of the basis functions through the use of certain data structures.
The resulting predictor is superior to that of Moody and Darken, which can
be seen as a weighted superposition of constant maps. When the amount
of data is limited, the short time predictions resulting from our scheme are
superior to those obtained by the local linear predictor of references [1, 2].

Our technique might be improved upon by incorporating even higher-
order terms. We have investigated the use of quadratic terms in the scheme.
In a number of cases, the prediction accuracies thus obtained have been
better than those obtained with the linear terms. However, since the number
of free parameters increases substantially when quadratic terms are added,
the training time required to construct the corresponding network increases
dramatically. Thus, we do not believe that using higher-order polynomials
is the way to go. Perhaps some other representation of the local mappings,
such as rational functions, is more appropriate. In fact we believe that any
representation that will work in the local scheme of references [1, 2] will also
work in our scheme.
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