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Abstract. We pr opose a method for predict ing chaotic time series
that can be viewed eit her as a weighted superposit ion of linear maps or
as a neural network whose hidden units have localized receptive fields.
These receptive fields are constructed from the tra ining data by a
binary-tree algorithm. The trainin g of the hidden-t o-output weights
is fast because of the localization of the receptive fields. Numeri­
cal experiments indicat e that for a fixed number of free parameters,
this weighted-linear-m ap scheme is superior to its constant-map coun­
terpart studied by Moody and Darken. We also find th at when th e
amount of data available is limit ed, thi s method outperforms th e local
linear predictor of Farmer and Sidorowich.

1. Introduction

Interest in t he problem of predi cting the evolut ion of ti me series has grown
rapidly over the last few year s [1- 6]. One reason for this is that the problem
is extrem ely general; new results coming from its study have the potential
for application in any field that involves working with sequences of measure­
ments made on nonlinear dynamical processes. The generality of the problem
can be apprec iated from its very statem ent: "learn" the equat ions of motion
for the evolut ion of som e obse rvable of a system given some knowledge of
t hat observable' s past history. If a system undergo ing some motion has an
observable y that is meas ure d in an exper ime nt to produce a time seri es
{y(t;) : i = 1, ... , N }, the problem is to construc t, directl y from t he t ime
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series, a dynamical system th at predicts y(t) for t > t N . As formul ated, this
problem makes no reference to any explicit type of motion, but th e cases
of most int erest involve t ime series generated by chaotic processes [7]. The
reason for this is that chaos represents th e worst case scenario for predic­
tion. Wh en a motion is chaot ic, by definition, long-t erm predictions are
impossible to make, even when th e equat ions of motion are known exactly.
This is because any error in th e specification of an initial condit ion will grow
exponentially fast with ti me on average. Though long time predictions are
impossible to make for such motions, short t ime predictions are possible.
Thus, if a method is capable of predicting chaotic time series, it should also
apply to simpler cases, such as when the underlying motion is periodic or
quasi-periodic.

Not surprisingly, th e recent interest in th e prediction problem originates
in th e study of dissipative nonlin ear syst ems , where th ere has been much
emphasis placed on developing techniques for analyzing experimental, non­
linear syst ems . This emphasis has arisen from the natural desire to make
contact between th eory and expe riment : How can one measure quantities
that characte rize chaotic motion when only sequences of measurements of
a few observables are available? This question led to th e developm ent of a
technique called phase space reconstruction, introduced by Packard et al. [8]
and Takens [9], which can be used to construct a st at e space directly from
observables. The version of this technique most commonly used is formu­
lat ed in t erms of delay coordinates: th e coordinates of the phase space are
th e values of th e observabl es measured at equally spaced time int ervals . The
basic time int erval is called th e delay time 7 , and for an observable y state
vectors have th e form x(t) = (y(t) ,y(t - 7), . . . ,y(t - (dE - 1)7)) where de,
called the embedding dim ension, is th e dim ension of the reconstruct ed phase
space. For a dissipative syst em having an attrac to r of dim ension d one would
expect de to be of the order d, and this turns out to be th e case . Specifically,
Takens [9] proved that de needs at most to be 2d + 1. In this formulation,
th en, our problem is to fit a map th at gives, say, y(t + T) as a function of
x(t) .

An approach to predict ing th e full , nonlinear moti on in a reconstructed
phase space, relevant to this paper is that of Farmer and Sidorowich [1, 2].
They used what they call a "local" approximation scheme [10]. In such a
scheme a number of maps, each corresponding to a different region of the
reconstructed phase space, are built from a set of examples of state vectors
T = {x(tm )} and their images (what the vectors evolve into), as obtained
from the time series. The resulting global map is thus piecewise continuous
and becomes a better and better approximation to th e true map as the
numb er of stored dat a points increases. This method is very effect ive in
terms of computat ion t ime because th e local maps need not all be computed;
those which are needed can be fit "on the fly": Suppose the state of th e
syste m at ti me t is Xo and the value of y at tim e t + T is to be predicted.
The set T is search ed for some prespecified numb er of vectors closest to xo,
and a map is built by least-squares fit ting from th ese neighbors and their
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images. (The choice of functional form or "represent ation" for th e local
maps is arbitrary, though in references [1, 2] th e aut hors worked primarily
with linear and quadratic maps .)

A very different approach has been proposed by Lap edes and Farber [5].
T hey utilized a st andard feedforward neural network (a perceptron) t rained
with backp ropagation to produce a "global " predictor. The method is a
"global" method in the sense th at a single functio n, valid for th e ent ire
reconstructed phase space, is built and composed with its elf to predict a
segment of a system's traj ectory. The method yields good predictions using
smaller amounts of training data than th e Farmer-Sidorowich met hod , but
becaus e of th e inefficiencies inherent in the backprop agat ion algorithm it
requires much greater comput ing tim e.

Another method, intermediate in spirit between th e above two, was in­
troduced by Casdagli [4]. In some imp lementations it uses an expansion of
the global map in terms of localized radial basis functions. A localized ra­
dial bas is function is an isotropic multi -dim ensional function that has a peak
at some locat ion in the phase space, called a center, and vanish es as th e
distance from this location increases. The global function is expressed as a
linear combinat ion of basis functions centered at different points dist ributed
around the input space , and th e values of th e coefficients in th e expansion
are determined by least-squares fitting.

Viewed as a neural net , th is is a syst em with a single hidd en layer. Each
hidden unit corresponds to one of the localized basis functions ; its activation
is the value of that basis function at the point defined by th e inpu t vector xo.
There is a single (linear) output unit, and th e hidd en-to-output conn ection
weights are just the coefficients in the expansion of th e map in th e radial
basis funct ions . One can say that each hidd en unit has a "recept ive field"
localized in some region of th e inp ut space. (T hus such a unit is quite different
from a conventional sigmoidal one, which responds maximally to input s in a
particular half-space.) A very similar kind of network was also proposed in
another context by Specht [11].

In a modified version of this scheme proposed by Moody and Darken [6],
th e centers of th e radial bas is funct ions are "learned" from a training set by
an unsupervised learning algorithm (discussed in section 2). Apart from thi s,
the main difference between their method and Casdagli's is in th e choice of
th e form of th e basis functions used : th e Moody-Darken functions are more
localized in the inp ut space th an thos e used by Casdagli.

In this paper we explore another scheme th at uti lizes basis functions that
are localized in th e input space. It uses elements of th e Farmer-Sidorowich
algor ithm as well as those of the Moody-Darken method. It can be viewed as
a streamlined extension of th e latter , requiring much less time to imp lement
and yielding much better prediction accur acy. The result is a high ly effi­
cient prediction machi ne implementable on parallel or serial hardware. The
met hod is described in th e following section, which begins with a review of
the Moody-Darken predictor. T he results of a numb er of num erical experi-
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(2.1)

ments comparing its performance to those of other methods are present ed in
th e succeeding section, which is then followed by our conclus ions.

2. Method

The Moody-Darken [6] meth od employs a set of norm alized radial basis func­
t ions to bui ld a global mapping f th at app roximates th e dynamics of a time
series. This mapping has the form

f(x) = L~=;J f'"RC>(x )
L c>=l Rc>(x)

where

(2.2)

(2.3)

(2.4)

th e x" are dE-dimensional vector parameters, and the (Jc> and f C> are scalar
parameters . The parameters x? and (Jc> are, respecti vely, the cente r and th e
width of th e response function of th e oth hidden unit , and I " is th e connec­
t ion weight from this uni t to th e output unit . Bringing th e denominator of
th e right -hand side of equa tion (2.1) into the sum of th e num erator, we see
th at th e o th hidden unit has th e overall respo nse functi on

C> RC> (x)
P (x) = M f3( ) '

L f3=lR x

In reference [6] the parameters x" , (Jc>, and i " are calculated in three
successive steps. First the M vectors x" are computed using a set of vectors
obtained from a time series. The idea is to distribute the x" according to th e
natural measure of th e at t ractor, where th e density of data points is high so
is the density of the x" . The authors accomplish t his by using an adaptive
formulati on of an algorithm called the "k-means clustering algorithm" [6]
to obtain th e x", and refer to them as "cluste r cent ers." (We will use this
term inology throughout th e paper.)

Once clust er centers have been const ructed , th e paramete rs (Jc> are calcu­
lat ed by setting

1
(Jc> = y'2( (x c> - xf3? )~/2

where th e average is over the p cluster centers closest to x" . (Note: p is a
new param eter.) Although this is th e prescription given, in reference [6] a
uniform , global value of (Jc> is used in all their examples. This value is th e
average of equa t ion (2.4) over all cluster cente rs.

Havin g obtained th e widths, th e weights f'" are adjusted by using a set of
input vectors {Xi: i = 1, . .. , N} and their known images {Yi : i = 1, . . . , N}
to minimize the cost function

(2.5)
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(2.6)

The representation defined in equation (2.1) can be thought of as arising
from a weight ed combination of "constant maps ." (A constant map is a
mapping whose image has th e same value irrespecti ve of its argument. ) To
motivat e th is idea , imagine th at a set of N training vectors T = {Xi} and
their known images have been obtained directl y from a tim e series. Now
suppose th at th e predicted image of an arbit ra ry inp ut vector X is taken to
be the image of the vector in T closest to x . Such a predictor is a "nea rest­
neighbor" predictor. Suppose we don 't want to lug around all N vectors
of T with which to make the predictions. We can introduce another set of
M « N vectors C = {x l>} distributed according to th e natural measure
of the attractor (for example, by using the k-means clustering algorithm of
reference [6]). We can th en associate an "image" [" with each x" E C by
searching T for some numb er of nearest neighb ors of x? and setting f l> equal
to the average of the images of these nearest neighbors. Now th e predicted
image of an arbitrary vector x can be defined to be th e image i " assoc iat ed
with the x? closest to x , and we have what we call a "const ant" predictor.
T his winner-take-all predictor is bound to have difficulties. Supp ose, for
example, th at x lies between two vectors x f3, x" E C, but is slight ly closer
to one th an th e other. The continuity of th e dynamics assures us th at the
image of x will be int ermediate between f f3 and i", so why not incorp orate
this int o th e predic tor? Of cours e, the closer x is to x f3

, the closer we expect
its imag e to be to ff3 , so it makes sense to take th e image of x to be some
kind of weighted average of f f3 and [" , This is what th e representation
equat ion (2.1) accomplishes.

Of cours e, we could st ick with a winner-t ake-all predictor, bu t imp rove
th e scheme above by replacing th e constant mappings that yield th e r by
something more accurate, like a linear mapping. T hus we could use th e
vectors of T that are the nearest neighbors of x? to const ruct a linear map,
in effect making the substitution r ---> al> + b ? . x for the image associated
with it . Now to make a prediction on an arbit rary vector x we find th e vecto r
of C closest to it, call it x f3, and use af3 + b f3 . x as the predict ed image of x .
Not e that this recipe is similar to that of Farm er and Sidorowich [1, 2J. We
st ill have a problem when an input vector is in a region between two vectors
of C; neither mapping will achieve th e desired result . However , we can again
apply a weight ed average as we did for th e const ant predictor. This t ime,
though, th e average is an average of linear maps. The result of all this is a
represent ation that looks like

M

f(x) = L ) al> + bl> · x)pl>(x)
l>=1

where p l>(x) is given by equat ion (2.3). (Note th at th e choice ofreplacing th e
constants f l> by linear maps is arbitrary. Any polynomial, rational function,
or other local represent at ion valid for th e Farrner-Sidorowich met hod can be
used inst ead.)

We can st ill view equa tion (2.6) as arising from a neur al network . T his
network sti ll has de linear inpu ts and one linear output , but now each hidden
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unit is replaced by dE + 1 units, corresponding to th e extra terms associated
with the linear map. This interpret ation of equat ion (2.1) shows th at it is
possible to implement our prediction algorithm on parallel hardware, thus
making high speed predict ions possible. However, the impl ementation we
now describe, t ailored for serial hardware, is also quite fast .

As is the case with th e Moody-Darken scheme, we obtain equation (2.6)
in three st eps. The cluster centers x? are determined first, and from these
th e cluster widths C>Q are calculated. Fin ally, the parameters a'" and b" are
determined.

We want the distributio n of clust er cent ers x" to be roughly proportional
to th e natural measure of the at t ractor. Suppose we have obtained a set of
vectors T from some time series. The vectors in th e set represent points on
t he att rac to r, and th eir density approximates the at t ractor 's natural measure.
If we cover the at t ractor with a set of boxes such th at all the boxes cont ain
approximately th e sam e numb er of vectors th ere will be many boxes in regions
where th e natural measure is high and few boxes in regions where th e natural
measure is low. We can then associate a clust er center with each box: set x"
equal to th e average of all vectors in the nth box. The resulting set of clus ter
vectors will have th e desired distribution, provided th at th e par titioning of
T is done in some reason abl e way.

The method of partitioning can be cruci al: not e th at there may be several
ways of covering the vectors of T in th e mann er just described. Some of
these "coverings " may be undesirable for our purposes. For example, a given
covering may have a large numb er of boxes with most of th eir vectors lying
near their boundaries, with larg e unp opul ated regions in th eir int eriors . Such
boxes would have cluster cente rs in regions where the natural measure is close
to zero, which is precisely what we don't want . A more suitable cover would
be one in which th e spr ead of th e vectors in each box is kept relatively small .

Such a partitioning of T is accomplished as follows. At the first stage of
construction we divide T into two disjoint subsets .c and R . The vectors in
T have components labeled by an index j, which runs from 1 to de . For a
fixed value of j we put the vectors of T in ascending order according to the
values of th eir jth components. Denoting th e reordered vectors by X, with
I an ordering index and letting Xl be th e jth component of X,, the ordering
is defined by X;-l < X] < x;" . Now, for some integer n between 1 and
N we divid e T into two subsets defined as .c~ = {XI : I = 1, . .. , n} and
R~ = {XI: I = n + 1, .. . , N }. The vectors in .c~ and R~ will have means
(X)ci; and (X)n~ ' respectively, and the sum of the corresponding mean­
square deviati ons from th ese means will be ~~ = ((X - (X) £J2) £~ + ((X ­
(X)n~ )2)n~ · We choose c and R to be th e sets .c~ and R~ for which ~~ is a
minimum over all values of j and n . Next , we divid e th e daughter sets .c and
R of T in the same mann er as we did T to produce two new daughters a piece.
These daughters are th en divided, and so on, until th e resulting subsets have
less than some prespecified numb er of vectors in th em, whence the proc ess is
stopped. Such a partitioning of T can be accomplished recursively by using a
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binary tree structure appropriate for ordering and storing multi-dimensional
obj ects . Such a structure is called a "k-d tree" [12, 2]. (The term "k-d t ree"
stands for k-dim ensional tree. In our case k= de , th e embedding dimension.)
The desired subsets of T are stor ed in the terminal nodes of the t ree called
buckets.

Once th e partitioning of T has been done we calculate the mean vector
for each of its subsets as sto red in th e buckets. The o t h cluster center is
stored in the oth bucket. We then app ly equation (2.4) to obtain th e widths
that , like the x" , are sto red in th eir respective bucket s. Note that th e search
for nearest neighbors can be accompli shed quickly and efficient ly since the
cluster centers are stor ed in a binary tree.

All that remains now is to determine the parameters a" and b? of equa­
tion (2.6) by adjust ing th em in order to minimize the cost function given
by equation (2.5) . To do th is we replace equation (2.6) by th e following,
equivalent form

(2.7)

in equa t ion (2.5) . The reason for this change is that we have found th at
it results in more stable num erics during the iterative minimization of th e
t ra ining process.

Having a good init ial guess for th e values of th e parameters a", b., will
reduc e the amount of t raining necessary. It is natural to think of these
parameters as being associated with th e o th clust er cente r, or , equivalent ly,
th e a th bucket of th e tree. By associating a linear map with th e oth bucket,
we initialize th e parameters of the o th bucket by fitting a linear map to the
subset of T associated with that bucket and its corresponding images. Thus,
a", b., are init ialized by minimizing

(2.8)

where th e sum is taken over the vectors of T in th e bucket . The local linear
method of references [1, 2] are thus used to initialize our predictor.

T he usual way of minimizing th e cost function equation (2.5) is by using
the method of gradient descent . Let us collect ively relab el th e parameters
a" and b? by Ck so that if there are M cluster centers the index k runs from
1 to (dE + l )M. In each it eration the Ck are changed by an amount

(2.9)

where TJ is some small numb er called the learning rate. We have found th at
this method converges very slowly.
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Instead we use a metho d where th e full energy funct ion is used in each
iteration st ep . The functions P"'(x ) and (x-x") P"'(x ) are collect ively rela­
beled as <h(x) where th e index k runs again r;om 1 to (dE + l)M. Rewrit ing
equat ion (2.7) as

(2.10)

the cost function equat ion (2.5) is th e quadratic form

Note that the sums over i in th e three terms of expression (2.11) form a
constant, a vector, and a matrix, respectively. These parameters need only
be computed once for a fixed training set . There is no further need to store
the t raining dat a . Also, if more training dat a become available they can sim­
ply be added. Thus th e training scheme is adaptive. Most of the computer
resources in terms of speed and storage are spent on the matrix during train­
ing. But th e matrix is symmetric, and most of its elements are negligible, so
it is necessary to store and compute only a small fraction of them.

The literature on methods to minimize quadratic forms is extensive. We
have chosen a conjugate gradient descent method [13], which we have found
to be very effective. The CPU time needed to find the minimum of Ef using
this method is of the order of the time spent on calculating the matrix part
of the cost func tion of expression (2.11).

The method of building the funct ion of equation (2.6) , just described,
can also be applied to the representat ion of equation (2.1). To save space
in writi ng, henceforth we will call the representation of equation (2.6) the
Weighted Linear Predictor (W LP) and th e repre sentat ion of equation (2.1)
t he Weighted Constant Predictor (WCP).

3. N u mer ical Results

In this section we present the results of some numerical experiments used
to test the representation equation (2.7). The first set of experiments are
done to compare the performance of the WLP with that of the WCP. The
WCP is a streamlined version of the method of Moody and Darken [6] ; both
meth ods uti lize the same functional representation equation (2.1) and nearly
the same distribution of the cluster centers x", Thus, direct comparisons of
the WL P and the WCP yield indirect , but meaningfu l comparisons of the
WLP and th e Moody-Darken algorithm , except when computational speeds
are involved (the WCP is roughly 2 to 3 times faster than the Moody-Darken
algorithm). Of course, to make the comparisons fair we will always use the
same number of free parameters for the WLP and the WCP.

The second set of nume rical expe riments compare th e WL P with the local
linear predictor (LLP) of Farmer and Sidorowich [1, 2]. The pur pose of th ese
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Figure 1: T he graph of the logisti c map equat ion (3.2) for >' = 4.

expe riments is to check whet her the WLP is a reason able alternat ive to the
LLP when the amount of dat a available is limited. (Although the LLP may
be the "method of choice" when large amounts of data are availab le, it can
break down when this is not the case.)

In all of the experiments presented below, we generate a tim e series from
some dynamical system and divide it into two parts. One part, called the
t raining set , is used to build the predicto rs. The second part , called the
test set, is used to test the performance of th e resultin g predictors. The
prediction accuracies are measured in terms of the mean normalized error,
or simply th e predicti on error, defined as

E2 = ((y(t +T) - f(x( t)?)
(y(t) - (y(t)))2)

(3.1)

where the averages are over the test set . To obtain good statist ics, we will
always use 1000 inpu t-output pairs to evaluate this quant ity.

We begin with a study of a one-dimensional mapping, th e logisti c map,
defined by

Xn+ l = g(xn ) = >.xn (1 - xn ) (3.2)

where>. is a parameter. The graph of equation (3.2) is a parabola, and >.
controls its height. Wh en >. = 4 for almost any initi al condit ion X Q in the
interval [0,1) the iterates of equat ion (3.2) form a chaot ic sequence confined
to th at int erval. The graph of equat ion (3.2) for this case is shown in figure 1.

Can the WLP approximate the graph of figure 1 better than th e WCP? To
answer this, we picked an initial condition at random from the unit interval ,



612 K. Stokbro , D. K. Umberger, and J. A. Hertz

0.6

0 .4

0.2

I

/

1.00 .80 .6C.4.0 .2
o.o '--~-=-_'-"'--"L.--''''''::''~---'''~L......"",,,--~--''~--l...."''-'.o_",--~---.J=-~~~~..J

0.0

Figure 2: The WCP of equat ion (2.1) that results from training on a
set of 200 input-output pairs that were produced by iter ating equa­
tion (3.2) . Ten cluster cente rs were used, and a predicti on error of
0.118was obt ained. The dash ed curves represent the individual t erms
in equation (2.1)

it erated the map until tr ansients died out , then produced a time series of
200 elements to obtain the tr aining set . For simpli city, we chose de = 1 and
the clust er centers to be equally spaced in the int erval. Also, the widths
of th e Gaussians were taken to be the dist ance between th e clust er centers.
Figure 2 shows the function produced by the WCP (solid curve) when 10
cluster centers are used. Each dash ed curve in th e figure corresponds to a
single term in equatio n (2.1). Note th at the function learned by this predictor
is "bumpy." This should be compared to figure 3, which shows the function
learned by the WLP when only five cluster centers are used. The "bumps"
do not appear. This suggests that the WLP yields a smoother interpolati on
between the points of the training set .

To see how well the WCP approximates equation (3.2) we superimpose
th e function of figure 2 on its graph. This is shown in figure 4. This should
be comp ared with figure 5, which is for the WLP of figure 3. The predi ction
errors corresponding to th e figures were found to be 0.118 and 0.005, respec­
tively. Thus, with the same number of free parameters th e WLP makes a
one-st ep prediction th at is more than an order of magnitude better than the
WCP.

Figures 6 and 7 are similar to figures 2 and 3 except that the numb er of
cluster cente rs used for th e WCP and the WLP have been increased to 60 and
30, respectively. For this case the prediction error for the WLP is 6.8 x 10- 5,
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Figure 3: Similar to figure 2, but using the WLP of equation (2.6)
with five cluster centers. A prediction error of 0.005 was obtained,
showing that with the same number of par ameters the WLP be ats
the WC P by more than an order of magnitude in the prediction error.
The dashed curves represent the ind ividual terms in equat ion (2.6) .
Note: we have not drawn portions of them that are below f( x n) = O.
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Figur e 4: The graph of the logistic map sup erimposed on the WCP
of figure 2.
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Figure 5: Similar to figure 4, but with th e WLP of figure 3.

Figure 6: Similar to figure 2, except th at 60 cluster centers were used
in the wep. The prediction err or is 1.3 x 10-2.

which is two orders of magnitude bet ter than the valu e of 1.3 x 10-2 for th e
WCP.

In the previous section equa tion (2.6) was viewed as a weighted average of
linear maps, where each map was interpreted as approximating th e dynamics
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Figure 7: Similar to figure 3, except that 30 cluster cent ers were used
in the WLP. The prediction error is 6.8 x 10- 5 , which is more than
two orders of magnitude better than the wep with the same number
of parameters .

in the vicinity of its cluster center. If this is the case, we expect that th e
derivatives of the function being approximated will be closely correlated with
the slopes of th e individual linear maps forming the distribution. Figures 8
and 9 show the graph of equation (3.2) together with the linear maps corre­
sponding to figures 3 and 7, respectively. The validity of th e interp ret ation
appears to get better as the cluster cent ers become more num erous . Ex­
periments on other one-dimensional maps support this conclusion. However,
it is important to note that in cases where we have used small numbers of
cluster centers we have observed instances where the derivatives and slopes
fail to support this int erpretation, although th e WLP approximates th e cor­
responding mappings well.

To make further comparisons between the wep and th e WLP, we con­
sider time series generated by the somewh at less trivial Mackey-Glass delay­
differential equat ion:

dx x(t - t:.t)
-d (t) = - .l x (t ) + .2 ( t:. )10

t l+ xt- t
(3.3)

where t:.t is a parameter . This system has an infinite-dimensional phase
space; its initial st ate must be specified over an int erval of time. However, it
does have low-dim ensional attractors whose dim ensions increase with t:.t [14] .
This system has been used to test a numb er of previously proposed predi ction
algorithms.
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0.0 02 0.4 0 .5 0 .8 1.0

Figure 8: The graph of th e logistic map with the individual linear
maps of the WLP for the situa t ion of figur e 3. Note th at the slopes
of the linear maps match th e derivatives of the logisti c map to some
extent .

1.0

Figure 9: Simil ar to figure 8, bu t with 30 cluste r centers . Not e that
slopes and derivatives match bet t er when mor e cluster centers are
used .
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Figure 10: The prediction error, using time series from equation (3.3)
with D.t= 17, for predicting T = T = 6 into the future as a function
of the number of training points used.

We consider th e case of b.t = 17, for which th e system has an at t rac tor
with a fractal dim ension of about 2.1 [14]. Following other published results
we have chosen T = 6 and de = 4 for th e reconstructed phase space [2, 5, 6].
To set up th e WCP and the WLP we have to decide how many cluster centers
to use for a given amount of training data. We have no criterion for deciding
what the "optimal" numb er should be. However , in all of th e examples below
we have chosen it in such a way th at th e numb er of free param eters is one­
fourth the number of tr aining points used. (T his choice is arbit rary and
definitely not optimal with regard to predicti on accuracies.) Thus, for the
WCP there are 4 training vectors per clust er center, and for th e WLP th ere
are 20 per cluster cente r.

Figure 10 shows th e prediction error E (see equation (3.1)) for predict ing
the time series T = T into th e future as a function of the numb er of t raining
points N. The WLP performs better th an th e WCP for all values of N
investigated .

How much slower is the WLP compared to the WCP? Both algorithms
require time to set up and train, and thi s t ime increases with th e amount of
training data used. In figure 11 we plot E versus th e CPU time needed to set
up and train the two predictors. The training was done by going through the
training set 200 tim es. This was enough to get within 0.001 of the minimum
of Ef (defined in equation (2.5)) . The training could have been sto ppe d
several steps earlier without affecting th e predicti on errors noti ceably, so th e
CPU times in th e figure repr esent upper bounds . Figure 11 shows th at when
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Figure 11: The predicti on error as a function of the CPU time needed
to set up and train the WCP and the WLP. The calculations are for
the same cases as those of figur e 10.

high accuracy predictions are desired using the smallest amount of computing
time we should use the WLP rather than the WCP. With this in mind, we
now abandon th e WCP in favor of the WLP for th e rest of this section.

We now compare the WLP with the LLP of references [1 , 2]. In figure
12 we have used the Mackey-Glass time series with t:::.t = 17, using the same
phase space reconstruction as above. We constructed maps th at predict
T = 6 into th e future using 100 and 500 tr aining-points, respectively. The
figure shows the results of iterating th e resulting maps . For th e 100 data­
point case, th e LLP is not capable of producing a valid map; the prediction
error blows up almost from the start . The WLP does not have this problem;
the prediction error grows smoot hly as the map is iterated. When 500 data
points are used instead, the LLP produces a valid map. Now the error is
comparable to the one obtained wit h the WLP.

To st udy a higher-dimensional case, we now consider t he Mackey-Glass
equation with t:::.t = 30. At this paramet er value, the syste m has an attractor
with a fractal dimension of 3.6 [14]. We reconstructed a phase space using
7 = 6 and de = 6. Because the dimensionality of the attractor is larger
th an tha t of the t:::.t = 17 case , we use 1000 and 5000 training points to
set up the predictors, which predict T = 6 into the future. The result s of
iterating the result ing maps are shown in figure 13. As can be seen from
the figure, even 5000 training points are not enough to enable the LLP to
make predict ions. The predict ion error increases dramatically if one tries to
forecast beyond a certain time. For both the 1000 and 5000 training points
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Figure 12: T he pr edict ion erro r as a function of the prediction t ime T
for the WL P and the LLP using time series from equat ion (3.3) wit h
b.t = 17. The predictions were made by iterat ing maps built with 100
and 500 training points that pr edict T = 6 into the future .

cases, the W LP produces a map with a pred ict ion error that is well-behaved
when the map is iterated. Fur thermore, th e error in the first iteration is one
order of magnitude less than th e one obtained wit h the LLP.

Recall that local linear predictions can be done "on-t he-fly." This means
that to make a single predicti on, the local map must be built and evaluated.
Thus, making a single predict ion with the LLP requires slight ly more t ime
th an a global method that uses a function th at has already been construc ted.
However, all th e time needed to set up such a global predictor is avoided
by th e LLP. If one is concerned with comp utational speed, the choice of
method should depend on how many predict ions will be made. If only a
few predictions are desired, a global approach will be slower than a local
one; whi le a global approach might be faster when a lot of predict ions are to
be made. For exam ple, on a Sun-4 computer for th e 500-data-point case of
figure 12, which involves a total of 100,000 predict ions, th e WLP took 160
seconds to set up, while 766 seconds were requi red to make the predict ions.
Thus, it took our scheme a total of 926 Sun-4 CPU seconds for the ent ire
calculation, while the LLP too k 1811 Sun-4 CPU seconds.

4. Conclusions

In this paper we have proposed a fast and accurate method for predictin g
chaotic t ime series. The meth od incorporates a representation based on basis
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Figure 13: Similar to figur e 12, except that time series from equa­
tion (3.3) with ~t = 30 was used. The number of t raining points was
inc reased to 1000 and 5000, respectively.

functions localized in the input space. T he representat ion can be viewed as
a neural network or simply as a weighted superposition of linear maps. T he
efficiency of the algorithm has been obtained by exploiting the localizat ion
prop erties of the basis funct ions through the use of certain data structures.
The resulting predictor is superior to that of Moody and Darken, which can
be seen as a weighted sup erposition of constant maps. Wh en the amou nt
of dat a is limited, the short tim e predictions resulting from our scheme are
superior to those obtained by th e local linear predictor of references [1, 2].

Our technique might be improved upon by incorporating even higher­
order terms. We have investigated the use of quadratic terms in the scheme.
In a number of cases, the prediction accuracies thus obtained have been
better than those obtained with the linear terms. However, since the numb er
of free parameters increases substantially when quadratic terms are added,
the tr aining time required to const ruct th e corresponding network increases
dr amati cally. Thus, we do not believe that using higher-order polynomials
is th e way to go. Perhaps some other representat ion of the local map pings,
such as ration al funct ions, is more appropriate. In fact we believe that any
representation that will work in the local scheme of references [1 , 2] will also
work in our scheme.
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