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Abstract. We introduce a new type of cellular automaton, one in
which the link structure is dynamically coupled to the site values. The
automaton structures are altered using simple Boolean rules, while
the sites themselves are assigned values based on the mod 2 rule. We
compare these dynamics to those in which the link structure is altered
randomly and find that in the former case stable structures of nonin-
teger dimensionality emerge. Fully exploring this model, we observe
the effects of value rule alteration, initial lattice structure alteration,
and alteration in the initial value seeding and observe patterns of self-
organization, growth, decay, and periodicity. Finally, we comment on
the relationship between this model and randomly generated Kauff-
man nets.

1. Introduction

In recent years it has been shown that cellular automata provide means
of modelling a wide range of physical systems [1]. Typically, automaton
dynamics are determined by an initial value seeding (with site values specified
from a certain range) and a set of simple, local transition rules. This behavior
takes place within a fixed lattice structure (e.g., each site is linked to two,
four, six, or more neighbors).

Tlachinski has pointed out the limitations of these structurally static au-
tomata and has suggested a scheme for structurally dynamic models [2].
Here, the lattice structures are dynamically coupled to the local site value
configurations. A preliminary study of some of these models was completed
by Ilachinski and Halpern, yielding evidence of a wide range of behavior [3].

In this paper we wish to explore a new sort of topological automaton (TA)
model, one in which lattice dynamics are determined by simple Boolean rules.
In this approach, both the site values and the underlying lattice structures
are treated in a similar manner, creating a nonlinear “feedback” mechanism
determining future automata states. Thus, one can use topological automata
to search for geometric self-organization.
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Although we wish to present a purely mathematical model, possible phys-
ical applications for TAs are numerous. These include schemes for crys-
tal growth, pattern formation, and types of neural network models. While
one can readily model crystal growth using conventional “value” cellular au-
tomata, topological automata can more precisely define an amorphous crystal
structure determined by local interactions.

In addition, lattice gas models might be constructed by use of topological
automata. In particular, schemes might be considered in which the value
structure and link structure of a topological automaton represent two differ-
ent interacting substances [4].

Topological automata may also provide a means of describing the “geo-
metric exciton” program of Wheeler [5], in which all particles are considered
to be geometric disturbances, with space itself seen as emerging from a “pre-
geometry” of indeterminate dimensionality. Since “value structure” solitons
have been found in conventional cellular automaton models [6], “link struc-
ture” solitons might emerge in a TA scheme for geometrodynamics. TA
models could then describe the generation, transmission, and interaction of
topological disturbances.

Finally, there appears to be some relationship between TAs and Kauffman
nets used in evolutionary genetic theory [7]. We shall briefly comment on
this latter application in our conclusion.

Let us now formally define a Boolean topological automaton. Consider a
network of IV sites. Each of these sites may have value 0 or 1. Therefore at a
given time ¢ we define the value structure of an automaton by the matrix v}
(i =1, N). We further define the link structure by the connectivity matrix
li; (i =1, N; j =1, N). Then two sites 4, j can be described as linked if
and only if Ij; = 1 (otherwise /;; = 0) . In this case the sites can be said to
be neighbors.

We may also define the next-nearest neighbors of each site by use of the
secondary connectivity matrix mfj. Two sites ¢, j are defined as next-nearest
neighbors if and only m}; = 1 (otherwise m{; = 0). The matrix m}; is
completely determined by [j; in the following manner:

my =16 3k: Ll -1] =1 (1.1)

Now we can define a set of transition rules, which can be grouped into
value transition rules and link transition rules (couplers and decouplers).
There are two sorts of value rules that we wish to consider, totalistic and

outer-totalistic.
Totalistic value rules may be defined in the following manner:

Given aset [a], then: vi*! = ¢y (E§v=0 lf]-v},vf)
where  ¢p(,a) = £, 6(z +a,a) (1.2)
and §(z,y) is the kronecker delta.
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Outer-totalistic value rules may be defined as follows: In a similar manner
we wish to define a decoupler, which removes a link, and a coupler, which

adds a link. The set of all

Given sets [@o], ], then: vit! = Blaol ] (E;V:O lfjv;-,vf)
where Qo)) (2,0) = a4, 6(z,a1) + (1 — a) T, 6(z, ag)
(1.3)
couplers and decouplers determines our link transition rules.
Boolean decouplers are defined as follows:
; o 1 _ gt
Given [}; =1, then [ (1), (1.4)

where @ =1 - §(v} +v},0)

Thus, two linked sites 7 and j are decoupled if and only if the sum of their
site values is zero.
Boolean couplers are defined in the following manner:

Given lﬁj =0A mfj =1,
then 1 = (] 05
where w = §(vf + u;., 2)

so, two unlinked sites 7 and j become linked if and only if they are next-
nearest neighbors and the sum of their site values is two.

Therefore, a Boolean topological automaton is fully defined by an initial
state vector,

1G)o = o], ..., % {I}) (1.6)

and a set of transition rules linking sequential state vectors:

IG)t+1=H‘I’[a] II ¢ [ «lG) (1.7)

i (4=1) (mt;=1)

representing the operator product of all value transitions, decouplers, and
couplers applied to the state vector at time ¢. Note that all transitions occur
simultaneously.

These link rules have been chosen for their simplicity and applicability. It
is natural to think of systems in which two disconnected but close active cells
(sites of value 1) form a bond and two inactive cells (sites of value 0) lose
their connection (one might keep in mind certain types of molecular bonding,
for instance). We shall comment further on this choice of link rules in the
conclusion.

Let us now consider a simple example of the application of these rules.
Let us assume that our initial lattice state is a two-dimensional 3 x 3 lattice
in which each site (aside from the bordering ones) has four neighbors. We
populate this initial state with values of 0 and 1 in the following manner (see
figure 1):
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Figure 1: A 3 x 3 example of a Boolean topological automaton. This
represents the initial configuration of the lattice, with the darkened
circles representing ones and the other points representing zeroes.

0

v, = vgzvgzvgzl
[ . o__,0__,0__ 0 __
Vg = Yy =Vg =17Ug = VYg = 0 (1.8)

Next, we apply the totalistic “mod 2” value rule, our decoupler rule, and
our coupler rule to this initial state. The mod 2 value rule assigns a new
value to a lattice site based upon a neighborhood sum of the old values (0 if
the sum is even, 1 if odd). The decoupler rule removes all links connected to
sites in which both values are zero. The coupler rule adds links between all
next-nearest-neighbor sites in which both values are one. All of these actions
occur at the same time.

Therefore if we look at the lattice after the first time step (see figure 2)
and compare it to its previous state, we find that the site value configuration
has been altered. Since, before the first time step, the neighborhood sums of
sites 2 and 4 are odd, the values of these sites become 1.

In addition, the decoupler acts to remove the link between sites 6 and 9,
since the values at the endpoints of this link are both zero. For the same
reason, the link between sites 8 and 9 is removed during time step 1.

Finally, let us consider the actions of the coupler. Five links are added
during the first time step. Links are added between sites 1 and 3, 1 and 4,
1and 7, 3 and 5, and 5 and 7, since in each of these cases a set of next-nearest
neighbors has value 1 for both sites.

We should note that in this example and in our studies we have assumed
that the operators w, ¥, and ¢ are applied simultaneously to the automaton
state |G). Alternatively, one might imagine a time-ordering of these opera-
tors, in which the value rule would be applied first, followed by the link rules.
Clearly, this would alter the automaton dynamics.
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7 8 9

Figure 2: The example, following the first time step. Note that two
links have been deleted by decouplers and five links (two not seen)
have been added by couplers.

2. The generation of geometric patterns

We now wish to consider the patterns generated by the application of the
automaton rules to a two-dimensional Euclidean lattice. We consider both
randomly binary seeded lattices and lattices in which the initial value struc-
ture is represented by a 3 x 3 block of site value one surrounded by a “sea” of
zeroes. We assume that each site starts out with four neighbors and further
assume periodic boundary conditions in which the lattice topology starts
out as a 2-torus. For clarity in presentation, we look at lattices of 121 sites
(11 x 11). Our results in this section can readily be generalized to larger
lattices.

In our pictorial representations of the automaton dynamics, we depict
the links as line segments connecting the sites. Note, however, that these
links may overlap, in which case it may be difficult to discern which sites are
connected. Fortunately, though, this does not alter the qualitative picture
that emerges.

We have found several distinct types of patterns, depending upon the
value rule used and the initial seeding of the lattice. In many cases, when the
lattice was seeded randomly, we found unrestricted growth in the number of
links per site, until all sites were linked. In other cases, we found “clumping”
and decay of the lattice to a simple state. We found examples in which the
final state was stable and others in which it was simply periodic, i.e.:

p

|G) = |Ghisp= H‘I)lal I of I1G) (2.1)

(m:]’=1)
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Figure 3: A graphical depiction of the initial state of a randomly
seeded Cartesian lattice with periodic boundary conditions. Sites of
value one are indicated by darkened circles.

p = 1,2,4 etc. (2.2)

In figures 3—5 we see an example of the application of the mod 2 value
rule to a randomly seeded lattice. We can see in this figure how after time
step 1 a fairly large number of sites are linked and several are decoupled.
By time step 5 there are an enormous number of links between sites, too
numerous to observe in a distinct manner.

In figures 6-11 we see what happens when the mod 2 value rule is applied
to a lattice seeded with a 3 x 3 block of ones surrounded by zeroes. Note
that as the lattice structure evolves, it passes through stages in which it
passes through a number of distinct patterns (one can bear in mind crystal
formation). Finally, after time step 5, the automaton reaches a periodic state
with a periodicity of 2 in the value and lattice structure.

In the last set of geometric images, figures 12-15, we see how the automa-
ton behavior changes when the value rule is altered. Here a step function
value rule is used:

3 T

Wt =0 & Y lol>2 (2.3)
j=1

=1 o Y2 (2.4)
£
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Figure 4: The link rules and the mod 2 value rules have now been
applied. Note that the number of links per site has increased.
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Figure 5: By time step 5, the randomly seeded lattice has so many
connections that it is difficult to discern which sites are connected.
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Figure 6: The value and link rules here are the same as in figure 3.
However, the initial value configuration is now a 3 x 3 block of ones.

Figure 7: After the first time step, much of the lattice structure has
decayed.

In contrast to the previous set of figures, we find that “clumping” takes
place, with the values of the lattice frozen into small regions that are out of
communication. The final state, after time step 4, is stable in both lattice and
value configurations. Thus, we can see from figures 3-15 that there exists a
dependence of pattern formation on both the value rule and the initial value
seeding.
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Figure 8: After the second time step there are few link and value
changes.
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Figure 9: Time step 3 for the mod 2 rule.
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Figure 10: Time step 4 for the mod 2 rule.

Figure 11: By the fifth time step, the link and value structures have
become periodic, with a periodicity of two.
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Figure 12: Here is the step function value rule, applied to a 3 x 3 block
of ones. Note that most of the links have been removed, but almost
all the sites are “frozen” into values of one.
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Figure 13: After time step 2, there are few link or value changes.
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Figure 14: After time step 3, the pattern is almost quiescent.
O 0 0 00 0 0 0 0 00
O 00 0 0 0 00 000
O 0 0 0 0 0 0 00 00
¢ 00 00 I ¢ 00 00
o 06 0 00 000 00
O 0 0 0 0 0 0 00
o0 0 0 0 I O 00 00
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Figure 15: By time step 4, the automaton has reached a stable state.

633
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3. Statistical behavior of topological automata

We shall now examine the long-term behavior of Boolean topological au-
tomata as defined in the first section (equations 1.2-1.7). We have conducted
an extensive survey of a large number of evolving systems (using a Ridge-32
computer) in which we have selected value rules, initial value configurations,
and initial lattice structures and have made observations over a series of
100-10,000 time steps.

We have chosen a set of statistical measures in order to adequately explore
this behavior. These include the value density (average site value)

LS
p==> v (3.1)
N4

the average number of links per site (average number of neighbors per site)

1NN

= a3 2)

i=1j=1
the average number of next-nearest neighbors per site

1NN

p=grdo ) my 3:8)

i=1j=1

and the average link length, computed by embedding the lattice in the two-
dimensional plane and measuring the average size of each link. In addition,
we have computed the total number of links deleted at each time step, the
total number of links added, and the total number of link changes.

Finally, we have found the “effective dimension” at each time step, a
discrete analogue of the continuous Hausdorff dimension:

7

D 5 (3.4)

It may be shown [8] that this quantity, especially convenient for discussion

of network properties, is identical to the Hausdorff-dimension in the finite
link-length limit.

We have used these dynamic measures to investigate the evolution of
networks of 15 x 15 sites configured in a two-dimensional square lattice with
periodic boundary conditions. We then compared the results of these mea-
sures for different initial set-ups.

Our first configuration was a Cartesian four-neighbor lattice, seeded ran-
domly (in all cases seeding is with zeroes and ones). The value rule we chose
was the mod 2 mapping considered earlier. We then examined the effects of
the link rules, by comparing evolution with the link rules to a complete up-
dating of all links (adding links between all next-nearest neighbors, deleting
links between all neighbors). In other words, in the “link rule” case, deletion
and addition of links is value dependent, following equations 1.4 and 1.5. In
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Link Rule vs. Tot, Link Change
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Figure 16: Here is a comparison of a topological automaton with
Boolean, value-dependent link rules, to that of a system in which
links are automatically added between all next-nearest neighbors and
deleted between all neighbors after each time step. The value rule
here is mod 2. Note that in the former case the value density has a
period of two, whereas in the latter case the periodicity is 30.

the “complete updating case,” all possible changes are made and there are
no link rules. Thus, the latter serves as a control group to examine whether
or not link rules have a significant effect.

The results of this comparison were quite interesting. Clearly, the link
rules do have an effect: in the complete updating control group, the value
density becomes periodic in later time steps, with a periodicity of 30, but
if the link rules are considered, the value density reaches a periodicity of 2.
In both cases, the links per site becomes periodic with a periodicity of 2,
but for different reasons: in the complete updating case the decouplers and
couplers serve to undo each other’s actions after every two time steps, but in
the link rule case, the periodicity is driven by a periodic value configuration.
Finally, we should comment that the complete updating case evolves into a
stable effective dimensionality of 1, whereas the link rule case never reaches
a stable dimensionality. In figures 16 and 17, we see a comparison between
the two cases.

Next we examined the effects of changing the value rule. We compared
three different value rules and observed the influence of the link rule on the
evolving networks. In the first case we used the mod 2 value rule on a four-
neighbor Cartesian lattice. In the second case we looked at the step function
value rule (equation 4). In the third case we applied Conway’s life rule [9] to
an eight-neighbor Cartesian lattice.
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Link Rule vs., Tot. Link Change

2.4
1.8
1.6]

1.4

B S et O @ b

1.2

SO D0 B

9 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 680 83 %0 95 10
Tine
Link Rule "*- Tot., Change -
Figure 17: The “effective dimension,” which is the number of next-
nearest neighbors divided by the number of neighbors, reaches a stable
state only when all possible link changes are performed, but not in
the case where there are restrictive link rules.

In terms of value density, the behavior for each of these value rules is quite
different. The mod 2 rule leads to long-term periodicity, oscillating between
value densities of 0.68 and 0.06. On the other hand, the step function rule
leads to long-term stability, with a final value density of one. Finally, the
value density in the life rule reaches a stable value of 0.01. These are three
qualitatively distinct sorts of evolution.

The link structure also evolves differently for the three rules. The mod 2
rule leads to a periodicity in lattice structure, oscillating between 103 and 12
links per site. The effective dimension is also periodic, oscillating between
0.89 and 0.01. However, for both the life and step function rules, there is a
steady decay to a final state, which is almost completely disconnected (with
average link length close to zero) and having a near-zero effective dimension-
ality. We can examine these behaviors in figures 18-20.

We also explored the effects of altering the initial lattice structure from
a four-neighbor per site Cartesian pattern (or eight in the case of life) to a
randomly connected network in which each pair of sites has a 50% chance
of being connected in the initial state. For this comparison, we assumed a
random initial site value configuration and a mod 2 value rule.

Our results can be seen in figures 21 and 22. Though starting out with
a large number of connections (about 112 per site), a randomly connected
lattice rapidly decays to the null lattice (no links, all values zero) within 15
time steps, in contrast to the Cartesian lattice, which as we have seen reaches
periodicity.
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Figure 18: This graph shows how the choice of value rule strongly
influences the long-term behavior of these systems. Here, the link
structure “dies out” for the step function rule, but is periodic for the
mod 2 rule.
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Figure 19: Here is another comparison, this time between Conway’s
life rule and mod 2. The life value rule causes the lattice structure to
completely decay.
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Figure 20: A comparison of the effective dimensionality for the mod 2
rule and life rule. Note that, unlike the mod 2 rule, the life rule leads
to final stability.
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Figure 21: Here is a depiction of the evolution of the number of links
per site for-two systems, one which starts off with a four-neighbor
Cartesian lattice, the other with a randomly connected network. The
link rules and value rules are the same for both, but still there is a
qualitative behavioral difference. The initially random lattice decays
from over 100 connections per site to 0.
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Figure 22: For the random lattice, the effective dimensionality also
decays.

Finally, we examined the results of applying purely a coupler or purely a
decoupler. In figure 23 we compare the results of the mod 2 and step function
value rules on an initially Cartesian lattice for a pure coupler (no decoupler).
Here we find that the mod 2 rule leads to rapid expansion until all of the sites
are coupled. The value density assumes a periodicity of four (in contrast to
two when the decoupler is added). For the step function rule, a stable state
is reached with less than half of all sites connected. The value density decays
to zero. In figure 24, the mod 2 rule is compared to life. Life also leads to a
final stable state, but yet simpler, with only 70 connections per site.

In figure 25, the question of the effect of the choice of initial value seed
is considered. A random initial distribution of vales is compared to a set of
three ones (a “blinker”) for the value rule life. In the former case, there is
an expansion to a much larger number of links per site, whereas in the latter
case the lattice structure remains stable with eight links per site.

In figures 26 and 27 a pure decoupler is utilized, with the effects of the
link rule compared. Note here that the link rule prevents complete decay of
the lattice down to zero links per site.

In figure 28, a pure decoupler is utilized and the mod 2 and life rules are
compared. Note that both rules allow for decay to a stable state, though
in the case of life there is an early period of growth in dimensionality and a
final effective dimensionality of 3 and in the mod 2 case there is pure decay
of effective dimensionality down to a value of less than 1. Thus, life induces
final lattice structures that are far more complex.
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fod 2 vs. Step (Pure Coupler)

242
220 e

1 3

i 198

n !

k 1761 :

S 154

P 132

e

?

s

i

t

e

Figure 23: Here we consider the case of a pure link coupler, without
a decoupler. We compare the mod 2 and step function rules, and find
that, though both lead to a stable state, in the step function case the
stable state is much simpler.
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Figure 24: Comparing mod 2 versus life for a pure coupler, we find
that the stable state reached by life has far fewer connections.
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Figure 25: Here we see that even the choice of initial value seed can
affect the final outcome. For the value rule life we compare the evo-
lution of a random configuration of ones and zeroes to a “blinker”:
three ones in a row. There is a sharp difference in the final results for
links per site.

Link Rule vs. Total Decoupler
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Figure 26: We compare the use of a link rule decoupler to that of
complete decoupling of all links. Note that the link rule provides
stability in the link structure.
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Link Rule vs. Total Decoupler
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Figure 27: Similarly, the final effective dimension is different for a link
rule versus a complete decoupler.
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Figure 28: Comparing the evolution of the effective dimension for
both the mod 2 rule and life for a pure decoupler, we see a substan-
tial difference; for mod 2, the dimension exhibits monotonic decay,
whereas for life there is a period of dimensional growth.
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4. Effects of changing probabilities

It is interesting to examine how the introduction of link rules alters the dy-
namics of an ordinary cellular automaton. One way to study this transition is
to introduce the link couplers and decouplers in a probabilistic manner. Then
by increasing the probability of these lattice altering events, one can observe
a continuous transformation of the system from one cellular automaton to
another.

Physically, the idea is to mimic the effect of random but value dependent
lattice alterations. In a lattice gas, for instance, components might, with
some probability, lose contact or gain contact. In other words, next-nearest
neighbors might have a certain chance of becoming neighbors if they are
“aligned,” but have no chance if they are not “aligned.” In the case of
genetic networks, new connections might be made (with a given probability)
only if both genes are active, while connections might be severed if both sites
are inactive.

With these ideas in mind, we define new probabilistic couplers and de-
couplers: Probabilistic Boolean decouplers are defined as follows:

Given If; =1, then Iif' = ¥, (%)),
where ¥, =1 - §(v} +v},0)[P(D) > 7],
P(D) is the decoupler probability,
and r is a random number between 0 and 1.

(4.1)

Therefore, two linked sites 7 and j are decoupled with probability P(D)
if and only if the sum of their site values is zero.
Boolean couplers are defined in the following manner:

Given [; =0Am{; =1,
then I = w(l}),
where  w = §(v; +v},2)[P(C) > 1], (4.2)
P(C) is the coupler probability,
and r is a random number between 0 and 1.

Thus, two unlinked sites ¢ and j have the probability P(C) of becoming
linked if and only if they are next-nearest neighbors and the sum of their site
values is two.

Let us now see how changing the probability of linking or delinking affects
automata dynamics. In figures 29-31, we see an example of how a probabilis-
tic decoupler changes the lattice and value dynamics of a randomly seeded,
randomly connected lattice with mod 2 value rule. By altering the probabil-
ity of decoupling from 0% to 50% to 100%, the final behavior of the value
density is altered from that of small fluctuations about 0.5 to a decay to a
small static value (around 0.5). Thus changing P(D) causes a qualitative
change to take place in the automaton dynamics.

We have investigated a wide range of probabilistic topological automata,
altering the value rule, initial lattice structure, initial value seeding and the
probabilities P(D) and P(C). We have utilized the mod 2, step function and
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Figure 29: Here is a probabilistic automaton in which the probability
of decoupling is set to be zero. Note the random fluctuations in value
density.
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Figure 30: After changing the probability of decoupling to 50%, the
value density behavior exhibits monotonic decay.
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Figure 31: When the probability of decoupling is set to 100%, there
is a rapid decay in the value density.

life value rules, Cartesian and random lattices, and random and designated
seeding for 0 < P(D) <1 and 0 < P(C) < 1. Our results are summarized in
figures 32—-39 for the value density, links per site, and effective dimension of
these automata. We have found a large variety of behavior including lattice
growth, decay to a stable state, growth followed by decay, decay to a periodic
state, and small fluctuations about a stable lattice.

It is interesting to examine, for instance, the application of probabilistic
decouplers and couplers to a Cartesian four-neighbor lattice, seeded randomly
and altered with the mod 2 value rule. If one starts off with a standard (no
link changes) cellular automaton and gradually increases P(C), one finds that
a significant transformation takes place. When P(C) is zero, the value struc-
ture oscillates between 30 configurations. However, when P(C) increases
from 0.5 to 0.75 to 1, a bifurcation in the value behavior takes place with
the final value density altering from stable to having a periodicity of 2 to
having a periodicity of 4. The lattice structure itself experiences more and
more rapid growth, while the effective dimension approaches zero.

Then, if one increases P(D), the value behavior becomes altered. The
final value density first experiences small alterations. Then, as P(D) ap-
proaches 1, the final value density decays to 0. Meanwhile, the lattice growth
slows down. Eventually, for 0 < P(C) < 0.5, 0.5 < P(D) < 1, the lattice
structure decays while the effective dimension reaches a state in which it
undergoes small fluctuations. Thus, the lattice structure approaches a final
decayed state with a small final effective dimension.

One can compare this behavior to that for other value rules. In each of
the cases there is a different qualitative sort of behavior, as one can see in
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Figure 32: Here are the results for the links per site behavior for a
purely probabilistic update. The probability to couple is presented
horizontally; the probability to decouple, vertically. Note that for a

pure decoupler there is complete decay; for a pure coupler, growth to
a stable state, and for a mixed set of couplers, slower growth.

MOD 2 RULE

Links per site
COUPLE

mrwconmyg

Decay

Growth
Stable

&

Ay Periodic

Figure 33: For the mod 2 rule, for a probabilistic topological au-
tomaton there are four distinct phases: growth to stability, decay to
stability, incomplete growth, and incomplete decay. Note that unlike
the pure probabilistic case, these decaying structures reach a stable
(not null) final state.
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Figure 34: This chart represents the same value and link rules as
figure 33. However, here tbe initial lattice structure is random, not
Cartesian. Note that this makes a strong difference in the phase
structure of the chart. Also note that for coupler probability 25% and
decoupler probability 25%, there exists a new phase- small oscillations
about a fixed structure.
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Figure 35: This chart depicts the results when the coupler and decou-
pler probabilities are altered for the life value rule. Note that most of
the end states are stable, with the rest decaying to stability.
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Figure 36: Here is the phase structure for the step function value
rule. Note the rich variety of behaviors for very small alterations in
the decoupler and coupler probabilities.
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Figure 37: This is the value density behavior for a purely probabilistic
updating.
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Figure 38: Here is a depiction of the value density behavior for the
probabilistic link rules and the mod 2 value rule. Note the differences
with the previous diagram. In this diagram, one can examine the bi-
furcation of the value structure as the coupler probability is increased
(with the decoupler probability set to zero.) The value density starts
out stable, bifurcates to period 2, then further bifurcates to period 4.
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Figure 39: Here is the range of final effective dimensionalities for the
mod 2 rule. Note that by altering the link rule probabilities one can
cause a sort of “dimensional reduction,” decreasing the final dimen-
sionality by as much as 2.
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figures 32-39. Thus there is a strong dependence of the dynamics on the
value rule.

5. Conclusion

In this preliminary survey, we have found a wide range of topological automa-
ton behavior for our Boolean link rules. This behavior includes long-term
growth, decay, growth followed by decay, and decay to a simpler state of lower
dimensionality. We have found that this behavior is strongly influenced by
the choice of initial value configuration, initial link structure, and the value
rules.

We have also explored a modified version of this model, in which the link
couplers and decouplers are applied in a probabilistic manner. It is of interest
to note that by altering one of these probabilities as a parameter one can force
a cellular automaton to experience bifurcation from stability to periodicity
(and perhaps even to chaos). One can also induce a dimensionality altering
transition for a cellular automaton.

This result lends itself to speculation on physical and biological appli-
cations. The fact that link rules can alter automaton dimensions suggest
use of these models to depict compactification in a cellular automaton based
quantum field theory, such as the one developed by Svozil [10].

In theoretical biology, there are some parallels between topological au-
tomata and genetic network theory, such as that developed by Kauffman [7].
Both involve nodes, connections, and a changing link dynamics.

In Kauffman’s scheme, an idealized chromosome is considered in which
genes, depicted as points, regulate each other through connections presented
in a “wiring diagram.” This “wiring diagram” model serves as a cellular
automaton in which site values are either 0 or 1 (inactive or active) and the
value rules represent a simple Boolean dynamics. However, unlike conven-
tional cellular automata, the link structure of these networks is dynamic.
Genetic mutations, represented as random fluctuations, can alter the net-
work structure. Kauffman considers, as a first approximation, that these
link changes are purely random, but states [11]:

“Fully random directed graphs constitute a beginning point
for studies of the connectivity features of mutating genetic sys-
tems, but are only a background. The actual ways chromosomal
mutations ‘scramble’ the genetic regulatory system are not fully
random in an equivalent sense. For example, a major mechanism
creating novel regulatory connections presumably involves dupli-
cation of a sequence and its dispersion. ..to new positions in the
genome. The probabilities of generating a new duplication are
almost certainly not independent of the number and sequence of
that sequence already present.”

Perhaps Boolean topological automaton theory, particularly the proba-
bilistic automata considered earlier, could play a part in realizing this goal.
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Thus mutations (read: decouplers and couplers) could be both probabilistic
and value dependent (as in the link rules considered earlier). Probabilistic
link rules could then model the evolution of genetic regulatory systems.

Other applications for TAs might also be considered. Kauffman has sug-
gested that it may be of interest to explore applications for these models
in economic theory [12]. Hopefully, further study of topological automata
will yield more information on these connections. A computer study of the
application of TAs to genetic nets is currently in progress.
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