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Abstract. We introduce a new type of cellular automaton, one in
which the link structure is dynamically coupled to the site values. The
automaton structures are altered using simple Boolean rules, while
the sites themselves are assigned values based on the mod 2 rule. We
compare these dynamics to those in which the link structure is altered
randomly and find th at in th e former case stable structures of nonin­
teger dimensionality emerge. Fully exploring this model, we observe
the effects of value rule alteration , initial lat tice structure alter ation ,
and alteration in the initi al value seeding and observe patterns of self­
organization, growth, decay, and periodicity. Finally, we comment on
the relationship between this model and randomly generate d Kauff­
man nets .

1. Introduct ion

In recent years it has been shown that cellular automat a prov ide means
of modelling a wide range of phys ical systems [1]. Typically, automaton
dynamics are determined by an initial value seeding (with site valu es sp ecified
from a certain range) and a set of simple, local transit ion rul es. This behavior
takes place within a fixed lat ti ce st ructure (e.g., each site is linked to two,
four, six, or more neighbors) .

Ilachinski has point ed out the limi tations of these structurally static au­
tomata and has suggested a scheme for structurally dyn amic models [2].
Here, the lat t ice structures are dynamically coupled to the local sit e value
configurations. A preliminary st udy of some of these models was completed
by Ilachinski and Halpern , yield ing evid ence of a wide range of behav ior [3].

In this paper we wish to explore a new sort of topological automaton (TA)
model, one in which lattice dynamics are det ermined by simple Boolean ru les.
In this approach, both the sit e values and th e underlying lattice structures
are treated in a simi lar manner , creating a nonlinear "feedback" mechanism
determining future automata st ates. Thus, one can use topological auto mata
to search for geomet ric self-organization .

© 1990 Complex Systems Publications, Inc.
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Alth ough we wish to present a purely mathematical mod el, possible phys­
ical applications for TAs are numerous. These include schemes for crys­
tal growth , pattern formation, and types of neural network mod els. While
one can readil y model crystal growth using convent ional "value" cellular au­
tomata, topological automata can more precisely define an amorphous crystal
structure determined by local interactions.

In addition, lat tice gas models might be const ructed by use of topological
automata. In particular , schemes might be considered in which t he value
st ructure and link structure of a topological auto maton represent two differ­
ent interactin g subst ances [4J.

Topological automata may also provide a means of describing th e "geo­
metric exciton" program of Wheeler [5], in which all particl es are considered
to be geometric dist urbances, with space itself seen as emerging from a "pre­
geometry" of indetermin ate dimensionality. Since "value st ructure" solitons
have been found in convent ional cellular automaton mod els [6], "link st ruc­
ture" solitons might emerge in a TA scheme for geometrodynamics. TA
models could then describe the generation, transmission, and int eracti on of
topological disturbances.

Finally, there appears to be some relat ionship between TAs and Kauffman
nets used in evolut ionary genet ic theory [7] . We shall briefly comment on
this lat ter applicat ion in our conclusion.

Let us now form ally define a Boolean topological automaton. Consider a
network of N sites. Each of these sites may have value 0 or 1. Therefore at a
given t ime t we define th e value st ructure of an automaton by the matri x vt
(i = 1, N) . We furt her define the link struct ure by the connect ivity matrix
Itj (i = 1, N ; j = 1, N ). Then two sit es i , j can be described as linked if
and only if Itj = 1 (oth erwise I;j = 0) . In this case the sites can be said to
be neighbors .

We may also define the next- nearest neighbors of each sit e by use of the
second ary connectivity matrix m;j. T wo site s i , j are defined as next-nearest
neighbors if and only mlj = 1 (otherwise mlj = 0). The matrix mlj is
completely determined by I;j in the following manner:

(1.1)

Now we can define a set of transit ion rules, which can be grouped into
value transition rules and link t rans it ion rules (coup lers and decoupl ers) .
There are two sorts of value rules that we wish to consider, totalistic and
oute r-totalist ic.

Totalistic value rules may be defined in th e following manner:

Given a set
where

and

[a], then : v:+l = q)[oJ (2:1=0 I;jvj ,v:)
q)[oj(X, a) = 2:0 c5(x + a,a)
c5(x, y) is the kronecker delt a.

(1.2)
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Outer-tot alistic value rules may be defined as follows: In a similar manner
we wish to define a decoupler, which removes a link , and a coupler, which
adds a link . The set of all

Given sets [ao], tal], then: vi+l = <P[ao],[aJ] (l:f=olijvJ, vi)
where <P[ao),[al )(x,a ) = a l:al o(x,al) + (1 - a ) l:ao o(x, ao)

(1.3)

couplers and decoup lers determines our link transit ion rules.
Boolean decoupl ers are defined as follows:

Given
where

(1.4)

T hus, two linked sites i and j are decoupled if and only if th e sum of th eir
site values is zero.

Boolean coupl ers are defined in th e following mann er:

Given
then

where
(1.5)

so, two unlinked sites i and j bec ome linked if and only if they are next­
nearest neighbors and t he sum of their site values is two.

Therefore, a Boolean topological automaton is fully defined by an init ial
state vecto r,

and a set of t ransit ion rules linking sequential st ate vectors:

IG)t+l = II <P Ia) II w II wiG)!
i (lij=l ) (mlj = l )

(1.6)

(1.7)

representing th e operator produ ct of all value transitions, decoupl ers, and
coup lers applied to th e st ate vector at t ime t . Note th at all transitions occur
simult aneously.

These link rules have been chosen for th eir simplicity and applicability. It
is natural to think of systems in which two disconnected but close active cells
(sit es of value 1) form a bond and two inact ive cells (sit es of value 0) lose
their connection (one might keep in mind certain typ es of molecular bonding,
for instance). We shall comm ent fur ther on this choice of link rules in th e
conclusion.

Let us now consider a simple example of the application of th ese rules.
Let us assume that our initial lat tice state is a two-dimensional 3 x 3 lattice
in which each sit e (aside from th e bordering ones) has four neighbors. We
pop ulate this initial state with values of 0 and 1 in th e following mann er (see
figure 1):
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Figure 1: A 3 x 3 example of a Boolean topological automaton. This
represents the initi al configur ation of the lattice, with the darkened
circles represent ing ones and the other points repr esenting zeroes.

vg = vg= v~ = 1

v~ = vg = vg= vg = 0 (1.8)

Next, we apply the tot alistic "mod 2" value rule, our decoupler rule , and
our coupler rul e to this ini t ial st ate. The mod 2 value rule assigns a new
valu e to a latti ce sit e based upon a neighborhood sum of the old values (0 if
the sum is even , 1 if odd). The decoupl er rule removes all links connected to
sit es in which both values are zero. The coupler ru le adds links between all
next-nearest-neighb or sit es in which both values are one. All of these act ions
occur at the same ti me.

Therefore if we look at the lat tice after th e first time step (see figure 2)
and compare it to its previous st at e, we find th at t he site value configurat ion
has been altered. Since , before the first t ime st ep, th e neighborhood sums of
sites 2 and 4 are odd, th e values of th ese sit es become 1.

In addit ion, th e decoupler acts to remove th e link between sit es 6 and 9,
since the values at the endpoints of this link are both zero. For the same
reason, th e link between sites 8 and 9 is removed during tim e st ep 1.

Finally, let us consider th e act ions of th e coupler. Five links are added
during th e first time st ep. Links are added between sites 1 and 3, 1 and 4,
1 and 7, 3 and 5, and 5 and 7, since in each of these cases a set of next -near est
neighbors has value 1 for both sit es.

We should note that in this example and in our studies we have assumed
that th e operators w, W, and q> are applied simu ltaneously to th e automaton
st ate IG). Alt ern atively, one might imagine a tim e-ordering of these opera­
tors , in which th e valu e rule would be applied first , followed by the link rules.
Clearly, this would alte r the automaton dyn amics.
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Fi gure 2: The example, following the first t ime step . Not e that two
links have been deleted by decouplers and five link s (tw o not seen)
have been added by couplers .

2. The generation of geometric patterns

We now wish to consider th e patte rns generated by the applicat ion of the
automaton rules to a two-dimensional Eucli dean lat tice. We consider bo th
randomly binary seeded lattices and lattices in which th e initial value struc­
ture is repr esent ed by a 3 X 3 block of site valu e one surrounded by a "sea" of
zeroes. We assume th at each site start s out with four neighbors and further
assume periodic boundary condit ions in which th e lattice topology star ts
out as a 2-torus. For clarity in presentation, we look at lat tices of 121 sit es
(11 x 11). Our results in this sect ion can readily be generalized to larger
lat t ices.

In our pictorial representations of th e automaton dynamics, we depict
the links as line segments connecting th e sites. Note, however , th at th ese
links may overlap , in which case it may be difficult to discern which site s are
connected. Fortunately, though , this does not alter the qua litative picture
that emerges.

We have found severa l dist inct types of patterns, dep end ing upon th e
value rule used and the initial seeding of th e lattice. In many cases, when th e
lattice was seeded randomly, we found unrestri cted growt h in th e numb er of
links per site, until all sites were linked. In other cases, we found "clumping"
and decay of the lat tice to a simple state. We found examples in which th e
final st ate was stable and others in which it was simply periodic, i.e.:

IG) (2.1)
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Figure 3: A graphical depiction of the init ial state of a randomly
seeded Cartes ian lattice with periodic boundary conditions. Sites of
value one are indicated by darkened circles.

p = 1, 2, 4, etc. (2.2)

In figures 3-5 we see an exam ple of the app licat ion of the mod 2 value
rule to a randomly seeded lat tice. We can see in this figure how after t ime
step 1 a fairly large number of sites are linked and several are decoupled.
By time ste p 5 there are an enormo us number of links between sites, too
numero us to observe in a disti nct manner.

In figures 6-11 we see what happens when the mod 2 value rule is applied
to a lat t ice seeded with a 3 x 3 block of ones surrounded by zeroes. Note
that as the lat t ice structure evolves, it passes th rough stages in which it
passes through a number of dist inct patterns (one can bear in mind crystal
form ation). Fin ally, after t ime step 5, the automaton reaches a periodic state
with a periodicity of 2 in the value and lat ti ce st ructure.

In t he last set of geometric images, figures 12-1 5, we see how the automa­
ton behavior changes when t he value rule is altered. Here a st ep function
value rule is used:

n

v:+1 = a +-7 2:Z:jv: > 2
j =l

(2.3)

(2.4)
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Figure 4: The link rul es and the mod 2 value rul es have now been
applied . Not e that the number of links per site has increased .

Figure 5: By time step 5, the ran domly seeded lat tice has so many
connections that it is difficult to discern which sites are connected.
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Figure 6: The value and link rules here are the same as in figure 3.
However, the initial value configuration is now a 3 x 3 block of ones.

Figure 7: After the first time step, much of the lattic e structure has
decayed.

In contrast to th e previous set of figures , we find th at "clumping" t akes
place, with the values of the lat t ice frozen into small regions th at are out of
communication. The final st at e, afte r t ime st ep 4, is st able in both lattice and
value configurat ions. Thus, we can see from figures 3-15 th at th ere exists a
dependence of pattern form ation on both th e value rule and t he initial value
seeding .
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Figure 8: After the second time st ep there are few link and value
changes.

Figure 9: Time step 3 for the mod 2 ru le.

Figure 10: Time st ep 4 for the mod 2 rule.

F igure 11: By the fifth time step, the link and value structures have
beco me periodic, with a periodicity of two.
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• • • • • • • •• • •Figure 12: Here is the step function value rule, applied to a 3 x 3 block

of ones . Note that most of the links have been removed, but almost
all the sites are "frozen" into values of one .
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• • • • • • • • • • •Figure 13: After time step 2, there are few link or value changes.
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• • • • • • • • • • •Figure 15: By time step 4, the automaton has reached a stable state.
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3. Statistical behavior of topological automata

We shall now examine the long-term behavior of Boolean topological au­
tomata as defined in the first section (equations 1.2- 1.7). We have conducted
an extensive survey of a large number of evolving systems (using a Ridge-32
computer) in which we have selected value rules, initial value configurations,
and initial lat tice structures and have made observat ions over a series of
100-1 0,000 time steps.

We have chosen a set of statistical measures in order to adequately explore
this behavior. These include the value density (average site value)

1 N
P = - LVi

N i=1
(3.1)

(3.2)

the average number of links per site (average number of neighbors per site)

1 N N

't > - LL 1ij
N i=1j=1

the average number of next-n earest neighbors per site

1 N N

j),= - L L mij
N i=1 j=1

(3.3)

and the average link length, computed by embedding the lattice in the two­
dimensional plane and measuring the average size of each link. In addition,
we have computed the total number of links deleted at each time step, the
total number of links added, and the total number of link changes.

Finally, we have found the "effective dimension" at each t ime step, a
discrete analogue of the cont inuous Hausdorff dimension:

D =!!:., (3.4)

It may be shown [8J that this quantity, especially convenient for discussion
of network properties , is ident ical to the Hausdorff-dimension in the finite
link-length limit.

We have used these dynamic meas ures to investi gate the evolution of
networks of 15 x 15 sites configured in a two-dimensional square lat t ice with
per iod ic boundary cond itions. We then compared the results of these mea­
sures for different init ial set -ups.

Our first configuration was a Cartesian four-neighbor lat t ice, seeded ran­
domly (in all cases seeding is with zeroes and ones). The value rule we chose
was the mod 2 mapping considered ear lier . We then exam ined the effects of
the link rul es, by comparing evolution with the link rules to a complete up­
dating of all links (adding links between all next -nearest neighbors, deleting
links between all neighbors) . In other words, in the "link rule" case , deletion
and addition of links is value dependent, following equations 1.4 and 1.5. In



Behavior of Topological Cellular Au tomata

Unk &t Ie us I rot I link CMnge

635

v

u II.
e

II.

e
n
s
i
t
y

9.

9 .

i i i

9 5 111 15 29 25 311 35 49 45 59 55 611 65 79 75 89 85 911 95 111

TiO!
Link Rul. ..... Tol . Chon........

Figure 16: Here is a comparis on of a topolo gical automaton with
Boole an , value-dependent link rules, to that of a system in which
links are automat ically added between all next-nearest neighbors and
deleted between all neighbors after each t ime step. The valu e rule
here is mod 2. Note that in the former case the value density has a
p eriod of two , whereas in the lat t er case the periodicity is 30.

th e "complete updating case," all possible changes are made and there are
no link rules. Thus, th e latter serves as a cont rol group to examine wheth er
or not link rules have a significant effect .

The results of this comp arison were quite interesting. Clearly, the link
rul es do have an effect : in th e complete updatin g control group, the value
density becomes periodi c in later time ste ps, with a periodi city of 30, bu t
if the link rules are considered, the value density reaches a periodicity of 2.
In both cases, the links per sit e becomes period ic with a periodicity of 2,
but for different reasons: in the complete updating case the decoupl ers and
coupl ers serve to undo each other' s act ions after every two tim e steps, but in
th e link rul e case, the periodicity is driven by a period ic value configuration.
Finally, we should comment that th e complete updati ng case evolves into a
stable effect ive dime nsionality of 1, whereas the link rule case never reaches
a stable dimensionality. In figures 16 and 17, we see a comparison between
the two cases.

Next we examined the effects of changing the value rule. We compared
three different value rules and observed the influence of the link rule on th e
evolving networks. In the first case we used th e mod 2 valu e rule on a four­
neighbor Car tesian lattice. In th e second case we looked at th e st ep function
value rule (equation 4) . In the third case we applied Conway' s life rule [9] to
an eight-neighbor Cartesian lattice.
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Figure 17: The "effective dimension ," which is the number of next­
nearest neighb ors divided by the number of neighbors, reaches a st able
st at e only when all possible link changes are performed, but not in
the case where there are restrictive link rules.

In te rms of value density, the behavior for each of th ese value rules is quite
different . The mod 2 rule leads to long-term periodi city, oscillat ing between
value densiti es of 0.68 and 0.06. On the ot her hand, the step function rule
leads to long-term stability, with a final value density of one. Finally, the
value density in the life rule reaches a stable value of 0.01. These are three
qualit ati vely disti nct sorts of evolution.

The link structure also evolves differently for the three rules. The mod 2
rule leads to a periodicity in lattice structure, oscillating between 103 and 12
links per site. The effect ive dimension is also periodic, oscillating between
0.89 and 0.01. However, for both the life and st ep function rules, there is a
st eady decay to a final st ate, which is almost completely disconnected (with
average link length close to zero) and having a near-zero effect ive dimension­
ality. We can examine these behaviors in figures 18-20.

We also explored th e effects of alte ring th e initi al lattice structure from
a four-n eighb or per site Cartesian pattern (or eight in the case of life) to a
randomly connected network in which each pair of sit es has a 50% chance
of being connected in th e init ial stat e. For thi s comparison, we assumed a
random initial site value configurat ion and a mod 2 value rule.

Our results can be seen in figures 21 and 22. Though starting out with
a large number of connections (about 112 per sit e) , a randomly connected
lattice rapidly decays to the null lattice (no links, all values zero) within 15
time steps, in contrast to t he Car tesian lat tice, which as we have seen reach es
periodicity.
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Figure 18: This graph shows how the choice of value rul e st rongly
influences the long-t erm behavior of these systems. Here, the link
structure "dies out" for the st ep functi on ru le, but is p eriodic for the
mod 2 rule.
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Figure 19: Here is another comparison, this time between Conway's
life ru le and mod 2. The life value rule causes the lattice structure to
complet ely decay.
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to final st ability.
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Figure 21: Here is a depict ion of the evolut ion of th e numb er of links
per sit e for two systems, one which starts off with a four-nei ghbor
Car tesian lattice, the ot her with a rand omly connected network. The
link rules and value rul es are the same for both, but still there is a
qualit ative behaviora l difference. The initially random lattice decays
from over 100 connections per sit e to O.
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Fi gure 22: For the random latti ce, the effective dimensionality also
decays.

Finally, we exam ined the results of applying purely a coupler or purely a
decoupl er. In figure 23 we compare th e results of the mod 2 and step function
value rul es on an initially Car tesian lat t ice for a pure coup ler (no decoupler) .
Here we find that th e mod 2 rule leads to rapid expansion unt il all of the sites
are coupl ed. The value density assumes a periodicity of four (in contrast to
two when the decoupler is added). For the step function rule, a stable state
is reached with less than half of all sites connected. T he value density decays
to zero . In figure 24, th e mod 2 rule is compared to life. Life also leads to a
final st able state, but yet simpler, wit h only 70 connect ions per site .

In figure 25, the quest ion of th e effect of th e choice of init ial valu e seed
is considered. A rand om initi al distribution of vales is compared to a set of
three ones (a "blinker" ) for th e value rule life. In the former case, there is
an expansion to a much larger number of links per site , whereas in the latter
case the lattice st ructure remains stable wit h eight links per site .

In figures 26 and 27 a pur e decoupler is ut ilized , with th e effects of th e
link rule compared. Note here th at th e link rule prevents complete decay of
the lattice down to zero links per site .

In figure 28, a pur e decoupler is utili zed and the mod 2 and life rules are
compared. Note that both rules allow for decay to a stable state , though
in th e case of life there is an early period of growth in dim ensionality and a
final effect ive dimensionality of 3 and in the mod 2 case th ere is pure decay
of effect ive dimensionality down to a value of less than 1. Thus, life induces
final lattice structures that are far more complex.
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Figure 23: Here we consider the case of a pure link coupler, without
a decoupler . We compare the mod 2 and step function ru les, and find
that , though both lead to a stable st at e, in the st ep function case the
stable state is much simpler.
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Figure 24: Compar ing mod 2 versus life for a pu re coupler , we find
that the stable st ate reached by life has far fewer connect ions.
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lution of a random configuration of ones and zeroes to a "blinker" :
three ones in a row. There is a sharp difference in the final results for
links per sit e.
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Figure 27: Simil arly, the final effect ive dimen sion is different for a link
ru le versus a complete decoupl er .
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4. Effects of changing probabilities

It is int eresting to examine how th e introduction of link rul es alte rs th e dy­
namics of an ordinary cellular au tomaton. One way to stu dy thi s transition is
to introduce th e link couplers and decouplers in a probabilist ic manner. Then
by increasing th e probabili ty of th ese lat tice alte ring events, one can observe
a continuous transformation of the system from one cellular automaton to
another.

Physically, th e idea is to mim ic the effect of random but value dependent
lat t ice alterations. In a lattice gas , for instance, components might, with
some probability, lose contact or gain contact . In other words , next-nearest
neighbors might have a certain chance of becoming neighbors if they are
"aligned ," bu t have no chance if th ey are not "aligned." In the case of
genetic networks, new connections might be made (with a given probabi lity)
only if both genes are active, while connections might be severed if both sit es
are inactive.

With these ideas in mind , we define new probabilisti c couplers and de­
couplers: Probabilistic Boolean decoupl ers are defined as follows:

Given
where

ilj = 1, th en ilt1 = IIIp(llj),
IlIp = 1 - 8(vI + v}, O) [P(D ) > r],
P(D) is the decoupler probability,
and r is a random number between 0 and 1.

(4.1)

Therefore, two linked sit es i and j are decoupled with probability P(D)
if and only if th e sum of their sit e values is zero.

Boolean coupl ers are defined in th e following mann er:

Given
then

where

ilj = 0 /\ mlj = 1,
lIt = w(llj),
w = 8(vi + v}, 2)[P(C) > r],
P( C) is the coupler probability,
and r is a random numb er between 0 and 1.

(4.2)

Thus, two unlinked sit es i and j have the probab ility P( C) of becoming
linked if and only if th ey are next-nearest neighbors and th e sum of their sit e
values is two.

Let us now see how changing the prob abili ty of linking or delinking affects
automata dynamics. In figures 29-31, we see an example of how a probabilis­
t ic decoupler changes th e lat tice and value dynamics of a randomly seeded,
randomly connected lat tice wit h mod 2 value rule. By altering th e probabil­
ity of decoup ling from 0% to 50% to 100%, the final behavior of the value
density is altered from th at of small fluctuations ab out 0.5 to a decay to a
small static value (around 0.5). Thus changing P(D) causes a qualitative
change to take place in th e automaton dyn ami cs.

We have investigated a wide range of probab ilist ic topological automata,
altering the value rule, init ial lat tice structure, initial value seeding and the
probabilit ies P(D ) and P(C). We have utili zed th e mod 2, st ep function and
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Figure 29: Here is a probabilistic automaton in which the probability
of decoupling is set to be zero. Not e the random fluct uati ons in value
density.
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Figure 30: Afte r changing the prob ability of decoupling to 50%, the
value density behavior exhibits monotonic decay.
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Figure 31: When the prob ability of decoupling is set to 100%, there
is a rapid decay in the value density.

life value rules, Cartesian and ran dom lat tices, and random and designat ed
seeding for 0 s P(D ) ~ 1 and 0 ~ P(C) ~ 1. Our results are summarized in
figures 32-3 9 for the value density, links per sit e, and effective dimension of
these auto mata. We have found a large variety of behavior including lattice
growth, decay to a stable state, growth followed by decay, decay to a periodic
st ate, and small fluctuations about a stable lat t ice.

It is int eresting to exam ine, for instance, the app lication of probabilist ic
decouplers and couplers to a Cartesian four-neighbor lat tice, seeded randomly
and altered wit h the mod 2 value rule. If one starts off with a standa rd (no
link changes) cellular automaton and gradually increases P(C), one finds tha t
a significant tr ansformation takes place. When P(C ) is zero, the value struc­
ture oscillat es between 30 configurations . However, when P(C) increases
from 0.5 to 0.75 to 1, a bifurcation in the value behavior takes place wit h
th e final value density altering from stable to having a per iodicity of 2 to
having a periodicity of 4. The lat t ice st ructure itself experiences more and
more rapid growth, while the effective dimension approaches zero.

Then , if one increases P(D) , the value behavior becomes alte red. Th e
final value density first experiences small alt erations . T hen, as P(D ) ap­
proaches 1, the final value density decays to O. Meanwhile, the lat tice growth
slows down. Eventu ally, for 0 < P(C) < 0.5, 0.5 < P(D) < 1, the lat tice
structure decays while the effective dimension reaches a state in which it
und ergoes small fluctuat ions. Thus, th e lat ti ce st ructure approaches a final
decayed st ate wit h a small final effective dimension.

One can compare this behavior to that for other value rules. In each of
the cases there is a different qualitative sort of behavior , as one can see in
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Figure 32: Here are the results for the links per sit e behavior for a
purely probabilistic update. The probability to couple is presented
horizontally; the probability to decouple, vertically. Note that for a
pure decoupler there is complete decay; for a pure coupl er , growth to
a stable state, and for a mixed set of couplers , slower growth.
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Figure 33: For the mod 2 rul e, for a pr obabili stic topological au­
tomaton there are four distinct phases: growt h t o stability, decay to
st abili ty, incomplete growth, and incomplete decay. Note that unlike
the pu re probabili stic case , these decay ing st ructures reach a stable
(not null) final state.
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RANDOM CONNECTIONS
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Figure 34: This cha rt represents the sam e value and link ru les as
figure 33. However , here the initial lattice structure is random , not
Cartesian. Note that this m akes a strong difference in the phase
structure of the chart. Also note that for coupler probability 25% and
decoupler probability 25%, there exists a new phase- small oscillat ions
about a fixed structure.
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Figure 35: This chart depicts the results when the coupler and decou­
pler probabiliti es are altered for the life value ru le. Note that most of
the end states ar e stable, with the rest decaying to st ability.
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Figure 36: Here is the ph ase st ructure for the st ep fun cti on value
rule . Not e the rich variety of behaviors for very small alterations in
the decoupler and coupler probabiliti es.
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Figure 37: This is the value density behavior for a purely probabilistic
updating.
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Figure 38: Here is a depiction of the value density behavior for the
probabilistic link rul es and the mod 2 value rule. Note the differences
with the previous diagra m . In t his diagram, one can examine the bi­
furc ation of the value structure as the 'coupler probability is increased
(with the decoupler probabili ty set to zero .) The valu e density st arts
out st able, bifurcates to pe riod 2, then fur ther bifurcates to period 4.

MOD 2 RULE
Flnl l Err.etlve Dlml n. loni llty

C OUP LE

D
E
C
o
U
P
L
E

1 00

00 - .9 9

Q 1 - 1.9 9

111 2 - 2. 9 9.3or mor e

Figure 39: Here is the ran ge of final effect ive dimensionalit ies for the
mod 2 rule. Note that by altering the link rul e probabilities one can
cause a sort of "dimensional reduction ," decreasing the final dimen­
sion ality by as mu ch as 2.
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figures 32-39. T hus there is a strong dependence of the dynamics on the
value rule.

5. Conclusion

In this preliminary survey, we have found a wide range of topologica l auto ma­
ton behavior for our Boolean link rules. T his behavior includes long-term
growth, decay, growth followed by decay, and decay to a simp ler state of lower
dimensionality. We have found that this behavior is strongly influenced by
the choice of initial value configuration, initial link st ructure, and the valu e
rules.

We have also explored a modified version of thi s model, in which the link
couplers and decouplers are applied in a probabilistic manner. It is of interest
to note that by altering one of these probabilit ies as a parameter one can force
a cellular automaton to experience bifurcation from stability to periodicity
(and perhaps even to chaos ). One can also induce a dimensionality alte ring
transition for a cellular automaton.

This result lends itself to speculat ion on physical and biological appli­
cations. T he fact th at link rules can alter automaton dim ensions suggest
use of these models to depict compactificat ion in a cellular auto maton based
quantum field theory, such as the one developed by Svozil [10].

In theoretical biology, there are some parallels between topological au­
tomata and genetic network theory, such as that developed by Kauffman [7].
Both involve nodes, connections, and a changing link dynamics.

In Kauffman's scheme, an idealized chromosome is considered in which
genes, depicted as points, regulate each other through connections presented
in a "wiring diagram." This "wiring diagram" model serves as a cellular
automaton in which site values are either 0 or 1 (inactive or act ive) and the
value rules represent a simple Boolean dynamics. However, unlike conven­
tional cellular automata, the link structure of these networks is dynamic.
Genetic mutations, represented as random fluctu ations, can alter the net­
work structure. Kauffman considers , as a first approximation, that these
link changes are purely random, but states [11] :

"Fully random directed graphs constitute a beginning point
for studies of the connectivity features of mutat ing genet ic sys­
tems, but are only a background. The actual ways chromosomal
mutations 'scramble' the genet ic regulat ory syst em are not fully
random in an equivalent sense . For example, a major mechani sm
creating novel regulatory connections presumably involves dupli­
cat ion of a sequence and its dispersion. .. to new positions in th e
genome. The probabilities of genera t ing a new duplication are
almost certainly not independent of the number and sequence of
that sequence already present."

Perhaps Boolean topological automaton theory, part icularly the proba­
bilist ic automata considered earlier, could playa part in realizing this goal.
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T hus mutations (read: decoupl ers and couplers) could be both probabilistic
and value dependent (as in the link rules considered earlier). Probabili sti c
link rules could th en mod el th e evolut ion of genetic regulatory systems.

Other applications for TAs might also be considered. Kauffman has sug­
gested that it may be of interest to explore applications for these mod els
in economic th eory [12]. Hopefully, further study of topological automata
will yield more information on thes e connections. A computer st udy of th e
app lication of TAs to genetic nets is cur rent ly in progress .
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