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Continuous Transitions of Cellular Automata
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Abstract. A method of continuously deforming one cellular automa-
ton rule into another is presented. Transitions between behaviors un-
der this model are found to share some characteristics of the dynamics
of iterated self-maps.

Introduction

As usual, a one-dimensional (discrete) k-state R-neighborhood cellular au-
tomaton (CA) is a doubly infinite linear array of cells, each of which has one
of k possible values (states), evolving in discrete time steps according to a (lo-
cal) transition function. If the possible states are [k] = {0,1,...,k — 1}, then
the transition function is any function 7 : [k]® — [k] such that 7(0) = 0
(some authors do not even make the “nothing from nothing” restriction).
This transition function is applied simultaneously at all cells, thus inducing
a translation invariant global transition function g, : [k]Z — [k]Z (where Z
denotes the integers).

To be precise, we must specify to which R cells surrounding a given cell
the local transition function is to apply. Usually R = 2r + 1, and we take
a symmetric neighborhood of r cells to the left and right of a given cell,
although Smith [4] has shown that R = 2 is enough to simulate any larger R
(if £ is allowed to be large enough).

Even for the simple case k = 2, R = 3, interesting evolution diagrams are
observed for some of the 128 possible rules, starting from an initial configura-
tion of a single live (state 1) cell (see figure 2 and [8, App. 5]). Furthermore,
the evolutionary behavior of a given initial configuration under rules that
differ only slightly from each other can be vastly different. This paper was
motivated by an attempt to understand better this last phenomenon.

There are some qualitative similarities in the evolutionary behavior of
cellular automata and the dynamics of families of iterated self-maps of an
interval f, : I — I, where « is a real parameter and the f, are continuous
functions varying continuously with «, such as the well known f,(z) = az(1—
z). For example, for some «, most initial values give stable or periodic orbit
behavior, while for other « a variety of periodic and chaotic behaviors result
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depending on initial values. Many cellular automata rules give stable or
periodic behavior for most initial configurations, while other rules give more
complex behaviors, dependent on initial configurations.

For self-maps the transitions between behaviors as « varies can be quan-
tified, understood, and hence predicted (e.g., the Feigenbaum constant). For
cellular automata, the transition from one rule to another is discrete, there
is no definitive linear ordering of rules, and predicting behavior of a given
rule is not always easy (but see [3, 1, 6]).

Continuously varying rules

As previous authors have observed, [k]% can be endowed with the product
topology arising from the discrete topology on [k]. It is then compact and g,
is continuous, so ([k]%, g,) is a dynamical system. However, the “continuity”
here is more a topological artifact than a fact to the human eye, and this
distinction persists if we are interested in varying 7 “continuously.”

Here we introduce a method for changing the parameter 7 continuously,
by allowing states to be real numbers in the interval [0, % — 1]. The topology
is the usual one on the real line, so continuity really appears so to the eye
and we obtain some parallels to standard dynamical systems behavior.

The basic technique is to interpolate a continuous function

fi[0,k®=1] = [0,k —1]

to the discrete function 7 : [k]® — [k] (recall [k] denotes a discrete set) in the
sense that for some bijection 8 : [k]® — [k® — 1] (with 8(0) = 0), we have

f(B(z)) = 7(z)
for all z in [k]®. B itself can be interpolated by a real-valued function
B0,k —1]% — [0,k% — 1]

Then the CA evolves using f o f* as the transition mapping. We could,
instead, use directly some interpolating function f*: [0,k — 1] — [0,k — 1]
to 7, but multidimensional interpolants make for complicated formulas and
awkward graphics.

The technique is now illustrated in the two most studied cases, k = 2,
R = 3 and “totalistic” k = 2, R = 5. In the former case, a (discrete)
transition rule is given by its action on the eight triples 000,001,...,111.
Such a rule can therefore be denoted by an eight-element 0, 1-vector. For
example, 00110011 means 000 — 0, 001 — 0, ..., 111 — 1. (Other authors
use the opposite notation, 11001100, but our direction works better here.)
Using f(z,y,2) = 4z + 2y + z, we interpolate a continuous function f :
[0,7] — [0,1] to the discrete function f(0) = 0, f(1) =0, f(2) =1, ...,
f(7) = 1, as illustrated in figure 1(a). We can then calculate the value of
cell 7 in the CA at the next time step as f(4c;—1 +2¢; + ci41), where ¢; is the
current value of cell 7, and this will be consistent with the discrete case. For
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Figure 1: Interpolating continuous functions to discrete k =2, R =3
rules. (a) Quadratic spline for the rule 00110011. (b) Quadratic
spline for the rule 0.3 011 0.6 0 1 0.82. (c) Linear spline for the rule
00110011. (d) Trigonometric spline for 00110011.

example, if a cell’s current value is 0.8 and its left and right neighbors have
values 0.7 and 0.2 respectively, then its value in the next generation will be
f(2.84+1.6+0.2) = f(4.6). We considered three interpolating functions: the
linear, quadratic, and trigonometric splines

fin(z) = (f(n+1) = f(n))(z —n)+ f(n)
2(f(n+1) — f(n))(z —n)?+ f(n) n<z<n+i
faad(z) = { 2(f(n) = f(n+1))(z —n —1)?
+f(n+1), n+z<z<n+tl
and

Foeal2) = { $(f(n) + f(n+1) + (f(n) = f(n +1)) cos(wz)), for n even
- 3(f(n)+ f(n+1) = (f(n) = f(n +1))cos(nz)), forn odd

where 0 < z < 7, n = [z], the greatest integer in z, and f(0),..., f(7) are
the given rule values. These are illustrated in figure 1. All three interpolants
give qualitatively similar results (see below; cf. uniformity of behavior for
unimodal self-maps). In the examples below we use fyu.q unless otherwise
specified.
The point of introducing a continuous function for f is that we can now
consider automata rules such as f(0) = 0.3, f(1) =0, f(2) =1, ..., f(4) =
.. f(7) = 0.82, where some of the rule values are not 0 or 1. We
just interpolate the rule values, as in figure 1b, and use the same f(4c¢;—; +
2¢; + ¢;41) method as before to obtain successive generations of cell values.
For example, with the rule in figure 1b, an initial configuration of one cell
with value 1.0 and all other cells having value 0.0, the three nonzero cells
in the next generation will have values f(4-0+2-04+1) = f(1) = 0,
f4-0+2-140)=f(2)=1,and f(4-1+2-0+0) = f(4) = 0.6. In
the following generation the cell with current value 0.6 will obtain the value
f(4-1+42-0.64+0) = f(5.2).
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A transition rule is “totalistic” if the value 7(ay,...,ar) depends only
on the sum a; + --- 4+ ag. Thus there are 32 legal totalistic k = 2, R =5
rules. These are of interest because some exhibit “class 4” (locally organized)
behavior, not present in any of the k¥ = 2, R = 3 rules and believed to be
capable of supporting universal computation [7]. In the totalistic case, 7 can
be viewed as a function from [k(R — 1)] to [k], and we naturally interpolate
a continuous f : [0, R(k — 1)] — [0,k —1].

In the k = 2, R = 5 totalistic case, the rules can again be notated by 0, 1-
vectors, this time of length 6, giving the next states for the possible sums
0,1,2,...,5 of the five surrounding cells. Thus, the totalistic rule 000110
says that the state of a cell in the next generation should be 0 unless three
or four of the five cells about it (including itself) are currently in state 1. To
obtain a continuous automaton we again take a (continuous) interpolating
function f : [0,5] — [0,1]. We always take

B(z1,...,TR) =T1+... + TR

in the totalistic case.

Global behavior

Fractional rule values allow us to progress continuously from one discrete rule
to another. This is easiest if we consider two discrete rules that differ in just
one position, for example the k = 2, R = 3 rules 00110011 and 00111011. We
can vary the fifth component from 0 to 1, holding the initial configuration
constant, and observe the transition in behavior between these rules (see
figure 2). In this way we can see a progression revealing how one discrete
behavior changes to a radically different one (a “homotopy of behaviors,” if
you like).

To display CA evolution when cells have real number values (say, in the
interval [0, 1]), we can use a spectrum of colors, or textures in monochrome, to
represent cell values. In practice only finitely many gradations are available,
and for monochrome display, at least, it heightens features if only a quite
limited number of different outputs are used. The diagrams below use 11
textures, representing decimal values rounded to the nearest 0.1. Figure 2
illustrates some typical transitions between rules. All figures were produced
from the author’s C language programs running on a Sun 3/60. The programs
are available from the author.

The ultimate objective is to have a single parameter that as it varies covers
the whole range of KE® rules, so that we might hope to identify parameter
intervals particular to specific behaviors (cf., predictability of periodic or
chaotic behavior for self-maps of an interval). Putting together 0-1 changes
in single components of rules over some linear ordering of rules can be viewed
as achieving such a parameterization, although it may be judged artificial.

For example, the 128 legal k = 2, R = 3 rules can be arranged in an order
such that only one place changes at a time (Gray code). We first consider
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the entire spectrum of 128 rules arranged in this way. The initial configura-
tion considered for these rules was always a single live cell. Figure 3 shows
“randomness” and periodicity indexes for this spectrum. The randomness
index represents the percentage of predictable sites per generation after a
large number of generations. This can be construed as a Kolmogorov com-
plexity measure, that is, a measure of the shortest (Turing machine) program
capable of computing later generations. Its computation is necessarily some-
what subjective and was carried out by human. The periodicity index is 1/k
if (the predictable part of) the evolution diagram has apparent “period” k,
where “period” is interpreted loosely enough to allow for increasing length
of generations. For example, the second diagram in figure 2f [0110100 0.2] is
0.75 predictable and has period 2. Steps of 0.1 between rules were used. Fig-
ure 3 displays no overall pattern that would allow us to predict discrete CA
behaviors. The question remains whether there exists some other ordering
of rules from which such a pattern can be observed.

The behavior of transitions can be divided roughly into three types: ver-
tical, horizontal, and mixed. The vertical case is typified by some regularity
on one or both edges of an evolution diagram becoming more pronounced as
the parameter approaches 0 or 1, eventually closing out an irregular middle
or other-side portion. Transition from partially irregular to regular shape can
appear very sudden, resulting from changes of 10710 or less in the parameter
value (see figure 4a). This is perhaps reminiscent of crystal formation —
past a certain critical point, structural regularity forces itself upon the whole
configuration. In reverse, the sudden onset of irregularity could be compared
with the onset of turbulence.

In horizontal transitions, intermediate global periodic behavior is ob-
served with varying periods (see figure 4b). In some cases the transition
rule is effectively a function f : [0, &k — 1] — [0, ¥ — 1] (instead of from
[0, & — 1]%), because some positions do not affect the rule behavior (e.g.,
00100000). In these cases we have a univariate self-map of an interval and
the usual period doubling into chaos is to be expected. However, chang-
ing periodic behavior also appears in more complex cases that are not just
reincarnations of one-dimensional dynamical systems (e.g., from 00111110 to
00111111). This is examined in the next section.

Figure 2 contains examples of transitions between each class of behavior
that occurs in the Gray code ordering for k£ = 2, R = 3 rules: stable (peri-
odic) to stable, stable to fractal, fractal to fractal, fractal to “random” class
3. There are several examples of each type of transition over the whole range
of rules. However, no clear categorization of transition behaviors based on
type difference was observed.  The totalistic k = 2, R = 5 case is of inter-
est for displaying class 4 (locally organized) behavior (e.g., the rule 001011).
Because totalistic rules give symmetric evolution from symmetric configura-
tions, a random initial configuration (same for all) was used. Class 4 behav-
ior appears to persist over relatively large intervals in transitions involving
a discrete class 4 behavior rule. Also, behavior approaching class 4 some-
times arises in transition from class 1 to class 3 discrete rules, for example in
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Figure 2: Transitions between discrete rules. Left and right ends are
discrete rules; interpolated rules lie inbetween. Fifty generations of
evolution are displayed for each rule. Triangular diagrams are k = 2,
R = 3 rules, with an initial configuration of one live cell; square
diagrams are totalistic ¥ = 2, R = 5 rules with a random initial
configuration (only the central 50 cells of 250 are displayed). The
values of cells are real numbers, displayed using textures as explained
in the text. The rules are (a) 011101z1, (b) 0010z100, (c) 00112100,
(d) 0111011z, (e) 0110100z, (f) 0110101z, (g) 0111000, (h) 00011z,
(i) 002100, (j) 00101z, (k) 012100, with z varying from 0 to 1 (left to
right) in steps of 0.2.

002100 for values of z close to 0.62. Another complex intermediate behavior
is observed around z = 0.65 in 0111z1.

Local behavior

Some understanding of the transition process can be derived by considering
a fixed cell in a given generation. As the CA transition rule changes, how
does the value of the cell in that generation vary? Figure 5 shows that
the variations may be quite complex even after a relatively small number
of generations. Such complexity may be surprising at first, but reflection
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Figure 2: Cont’d.

shows that iteration of a multimodal function (multiple local extrema on the
interior of an interval) such as our interpolating function can give a function
with a number of extrema that is exponential in the number of iterations.
We must also bear in mind that we are not doing straightforward iteration,
but using the f conversion function and the automaton rule as well. Since
we no longer have a univariate map, we cannot necessarily expect an orderly
progression of periodic and chaotic behaviors a la Sarkovskii. Indeed, the
order and distribution of periods is much more complex than Sarkovskii’s
sequence (see figure 4b). The extremely complex behavior of single cells
even relatively early in the evolutionary process shows us that any “smooth”
transitions between global behaviors that may appear to occur (such as in
figure 2¢) should be carefully scrutinized. A sampling interval such as 0.1
is large compared to the scale at which local behavior can change (which
is apparently of the order of 27" after n generations). This helps us to
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Figure 3: Randomness and periodicity of evolution in k = 2, R =3
rules. (a) Proportion of sites with a predictable value. (b) Frequency
(1/period) of predictable portion. A zero frequency means no period-
icity. A predictable, zero-period pattern is probably a fractal.

understand the suddenness of some global behavior changes, such as the
“crystalline” transition in figure 4a.

This view of single cell behavior is perhaps the most revealing observation
in our investigation. The great complexity arising from iterated functional
composition could be expected to occur in any attempt at continuous pro-
gression between discrete rules, since some non-monotone function must be
used to move between them. Thus, the discrete behaviors are just points in
a potentially extremely erratic spectrum, at least at the local level. In fact,
with this view of individual cells having the potential for so many changes
in behavior as we progress from one discrete rule to another, the real mys-
tery becomes why we see any “smooth” transitions at all. The tendency
for adjacent cells to conspire to synchronous behavior is partially responsi-
ble for what periodic behavior we do observe, but a full explanation of this
local-global interaction does not appear to be at hand.
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Figure 4: Sensitivity to rule changes. (a) Sudden disappearance of
irregularity in k£ = 2, R = 3 rule 0110100x with x = 0.9712651660
(left) and x = 0.9712651661 (right). (b) Variety of periodic behaviors
in 0011x100. Diagrams from left to right are x = 0.13520735 (period
25), 0.13520736 (infinite period), 0.13520737 (period 17), 0.13520738
(period 36), 0.135207385 (period 25 again).
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Figure 5: Reaction of a single cell in a given generation to parameter

variation. (a) Cell 1 left of center, generation 9, changing from rule
01110110 to 01110111; (b) same cell, generation 20.

Another view of local transition behavior is given by a “phase portrait”
diagram displaying the values of a single cell over many generations as the
automaton rule changes. The analogous diagram for one-dimensional dynam-
ical systems shows the characteristic bifurcations, and gaps showing regions
of low periodicity sandwiched between chaotic regions. Diagrams for selected
cells in some of the transitions of figure 2 are given in figure 6. They are seen
to share qualitative characteristics with one-dimensional dynamical systems
(bifurcations, gaps), but there are noticeable differences. There is apparently
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Figure 6: Evolutionary behavior of a cell as a function of automaton
rule. For each rule, the values of a cell are plotted for generations 50
to 150. Regions of periodic behavior show up clearly. The diagrams
show (a) cell 1 left of center (initial configuration of one live cell)
for the £ = 2, R = 3 rules 0111011x (see figure 2d); (b) cell 2 right
of center for 0011x100 (see figure 2c); (c) cell 1 right of center for
0110011x; and (d) center cell for the totalistic K = 2, R = 5 rule
00101x. The indicated area of (a) is magnified in figure 8.

no orderly progression of periods — they can come in seemingly any order,
often with repetitions. As a result, these diagrams have not been found to
have the fractal properties that standard bifurcation diagrams have. Many
regions were magnified without finding evidence of self-similarity (see also
figure 8).

Convergence

With the complex behaviors demonstrated, some apparently sensitive to ini-
tial conditions, and the extensive real-valued computations required for even
fifty generations of evolution, there must be considerable concern for nu-
merical accuracy. Perhaps some of the pictures do not really look anything
like the computed pictures at some parameter values? In fact this is almost
surely true, for the reasons cited above. Nevertheless, we can believe that
parameter values very close to the given ones give pictures very similar to
those computed. This has been proved rigorously in the dynamical systems
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Figure 7: Effect of different interpolating functions. (a) Phase protrait
for cell 2 right of center in the k = 2, R = 3 rule 0011x100 under linear

interpolation. (b) Same for trigonometric interpolation. Compare
with figure 6b.

case [2], and the similar conclusion in our case is supported by the visual
evidence.

As concerns dependence on the interpolating function, figure 7 shows the
behavior of the same cells under the linear and trigonometric interpolating
functions given above, compared with the quadratic interpolant used so far.
We see that the trigonometric interpolant gives nearly identical behavior of
the cell, and the linear one gives qualitatively similar behavior. This holds
for all cells in all generations. Concerns for numerical accuracy are somewhat
overshadowed by the arbitrariness of the interpolating functions, but since
the qualitative behavior of the model remains intact even for nondifferentiable
interpolants such as fi;,, our concern need not be too great after all. There is
one aspect where slow convergence does appear to show, that is, in particular
regions of some “bifurcation” diagrams. For example, figure 8 shows how a
region of one diagram changes if later generations are added. It is not clear
from the current investigations how widespread such behavior is.

Conclusions

This study was initiated to help understand the variety of global CA behav-
iors, but it can be argued that it has not yielded much in that direction.
The difficulty is partly in arranging rules in a linear order to regard them
as a continuously varying parameter and partly in the complex behavior
inevitably produced by iteration of three-fold meshing of even a simple func-
tion. Figure 5 gives a good appreciation of the latter, and perhaps provides
some insight into the often choppy nature of transitions between discrete
rule behaviors under the paradigm examined here. We do also observe some
smooth global behavior transitions on relatively large scales — cases where
erratic local behaviors conspire to synchrony in producing, for example, pe-
riod doubling effects. This effect is somewhat mysterious and bears further
examination.
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Figure 8: Lack of convergence in the parameter range 0.682-0.702 for
the £ = 2, R = 3 rule 0111011x. This is a magnification of part of
figure 6a. (a) Generations 100 to 200. (b) Generations 100 to 300.

One way to proceed is to conduct a mathematical investigation of the
abstract formulation, namely a function f : [0,1]% — [0,1] and its iterated
behavior on initial configurations. An initial configuration is just a mapping
from Z to the set of states, i.e., a doubly infinite sequence of states. The
evolution of a cell in a one-dimensional CA can be expressed in terms of shift
and subsequence operators applied to such sequences. Using the reduction of
discrete one-dimensional CA to arithmetic recurrences given in [5] is another
possible approach.

Although we did not accomplish the original objective of bringing order
to the variety of discrete rule behaviors, some of the results of the continu-
ous case may be of interest in their own right. The technique given here of
producing continuous variation between cellular automaton rules clearly can
be applied to any k and R, and also to two- and higher-dimensional cellular
automata. We have not conducted higher-dimensional investigations. How-
ever, as others have observed, the one-dimensional case appears already to
have all the complexity of higher dimensional systems.

Acknowledgments

The author is pleased to thank W. E. Clark and W. R. Stark for several
helpful discussions related to this paper.

References

[1] P. Grassberger, “Some more exact enumeration results for 1D cellular au-
tomata,” J. Phys. A., 20 (1987) 4039-4046.

[2] S. Hammel, J. Yorke, and C. Grebogi, “Numerical orbits of chaotic processes
represent true orbits,” Bull. Amer. Math. Soc., 19 (1988) 465-469.

[3] E. Jen, “Global properties of cellular automata,” J. Stat. Phys., 43 (1986)
219-242.



Continuous Transitions of Cellular Automata 665

[4] A. R. Smith III, “Simple computation universal cellular spaces,” J. Assoc.
Computing Machinery, 18 (1971) 339-353.

[5] J. Urias, “One-dimensional cellular automata as arithmetic recursions,” Phys-
ica D, 36 (1989) 109-110.

[6] S. Willson, “The equality of fractional dimensions for certain cellular au-
tomata,” Physica D, 24 (1987) 179-189.

[7] S. Wolfram, “Universality and complexity in cellular automata,” Physica D,
10 (1984) 1-35.

[8] S. Wolfram (ed.), Theory and Applications of Cellular Automata (World Sci-
entific, Singapore, 1986).





