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Continuous Transitions of Cellular Automata

John Pedersen
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Tampa, FL 33620, USA

Abstract. A method of continuously deforming one cellular automa­
ton rule into another is presented. Transitions between behaviors un­
der this model are found to share some characteristics of the dynamics
of iterated self-maps.

Introduction

As usu al , a one-dimensional (discrete) k-st ate R-neighborho od cellular au­
tomaton (CA ) is a doubly infinite linear arr ay of cells, each of which has one
of k possible values (st ates) , evolving in discrete tim e steps according to a (lo­
cal) transition function. If the possible states are [k] = {O, 1, . . . ,k - I} , then
th e transition function is any function r : [k]R -+ [k] such that r(O) = 0
(some aut hors do not even make the "nothing from nothing" restriction).
This transition function is applied simultaneously at all cells, thus inducing
a translation invari an t global transiti on function gr : [k]Z -+ [k]Z (where Z
denotes the integers).

To be precise, we must specify to which R cells surrounding a given cell
th e local transition functi on is to apply. Usually R = 2r + 1, and we take
a symmetric neighborhood of r cells to th e left and right of a given cell,
although Smith [4] has shown th at R = 2 is enough to simulate any larg er R
(if k is allowed to be large enough).

Even for the simple case k = 2, R = 3, interestin g evolut ion diagrams are
observed for some of th e 128 possible rules, st arti ng from an initial configura­
tion of a single live (state 1) cell (see figure 2 and [8, App. 5]). Furtherm ore,
th e evolut ionary behavior of a given initi al configuration under rules that
differ only slightly from each other can be vast ly different . This paper was
motivated by an attempt to und erstand better this last phenom enon .

There are some qualit ative simi larities in the evolut ionary behavior of
cellul ar automata and th e dynami cs of families of iterat ed self-maps of an
int erval f a : I -+ I , where a is a real parameter and the f a are cont inuous
functi ons varying continuously with a, such as the well known fa(x ) = ax( l ­
x ). For example, for some a, most init ial values give stable or periodic orbit
behav ior, while for other a a variety of periodic and chao tic behaviors result
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dep ending on initial values . Many cellular automata rules give st able or
periodic behavior for most initial configurat ions , while other rules give more
compl ex behaviors, dependent on init ial configurat ions.

For self-maps th e transitions between behaviors as ex varies can be quan­
tified, understood, and hence predicted (e.g., th e Feigenbaum constant ). For
cellular automat a, th e transition from one rule to another is discrete, there
is no definitive linear ordering of rules, and predicting behavior of a given
rule is not always easy (but see [3, 1, 6]).

Continuously varying rules

As previous authors have observed, [k ]z can be endowed with th e product
topology arising from th e discrete topology on [k]. It is th en compact and gT
is continuous, so ([k]Z,gT ) is a dyn ami cal syst em. However, th e "continuity"
here is more a topological art ifact than a fact to th e hum an eye, and this
distinction persists if we are interested in varying T "continuously."

Here we introduce a method for changing the param eter T continuously,
by allowing states to be real numb ers in th e interval [0, k - 1]. The topology
is the usu al one on the real line, so continuity really appears so to th e eye
and we obtain some parallels to standard dyn amic al systems behavior.

The basi c technique is to int erpolat e a cont inuous function

f: [O,kR -1]---' [O,k - 1]

to the discrete function T : [k]R ---. [k] (recall [k] denot es a discr ete set) in the
sense that for some bijection (3 : [k]R ---. [kR- 1] (with (3(0) = 0) , we have

f( (3(x)) = T(X)

for all x in [k]R. (3 itself can be interpolat ed by a real-valued function

Then the CA evolves using f 0 (3* as t he transition mapping. We could,
instead, use directly some interpolat ing function f* : [0, k - l ]R ---. [0, k - 1]
to T, but multidimension al interpolants make for complicated formulas and
awkward graphics.

The technique is now illustrated in th e two most studied cases, k = 2,
R = 3 and "totalistic" k = 2, R = 5. In the former case, a (discret e)
transition rule is given by its action on the eight triples 000,001 , . . . , 111.
Such a rule can therefore be deno ted by an eight-element 0, I-vector. For
example, 00110011 means 000 ---.0,001 ---. 0, . . ., 111 ---. 1. (Other authors
use the opposite notation, 11001100, but our directi on works better here.)
Using (3 (x , y, z ) = 4x + 2y + z , we int erp olat e a cont inuous function f :
[0, 7] ---. [0, 1] to th e discrete function f(O) = 0, f(l) = 0, f(2) = 1, . . .,
f(7) = 1, as illustrated in figure l(a) . We can th en calculate th e value of
cell i in the CA at th e next time step as f( 4 Ci-l + 2 Ci + Ci+l ) , where Cj is the
current value of cell i, and this will be consist ent with the discrete case. For
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Figure 1: Interpolating cont inuous fun ct ions to discrete k = 2, R = 3
rul es. (a) Quadratic spline for the ru le 00110011. (b) Quadratic
spline for the rule 0.30 11 0.6 0 1 0.82. (c) Linear spline for the ru le
00110011. (d) Trigonometric spline for 00110011.

example, if a cell' s current valu e is 0.8 and its left and right neighbors have
valu es 0.7 and 0.2 respectively, th en its value in the next genera t ion will be
f(2.8 + 1.6 +0.2) = f(4.6). We considered th ree interpolat ing functions : the
linear , quadratic, and t rigonometric spli nes

= (J(n + 1) - f(n))(x - n) + f (n)

{

2(J(n + 1) - f (n))(x - n)2 + f (n),
2(J(n) - f (n + 1))(x - n - I?

+f(n+l) ,

and

{
! (J (n) + f (n + 1) + (J(n ) - f(n + 1)) cos(1l'X)), for n even

ftrig(X) = 1(J(n) + f (n + 1) - (J(n) - f (n + 1)) cos(7rx)), for n odd

where 0 ~ x ~ 7, n = [x], the greatest integer in x, and f(O) , . . . , f (7) are
the given rule values. These are illust rated in figure 1. All three interpolants
give qualitatively similar results (see below; d . uniformity of behavio r for
unimodal self-maps) . In the examples below we use f quad unless ot herwise
specified.

The point of introducing a cont inuous function for f is th at we can now
consider automata rules such as f(O) = 0.3, f(l) = 0, f(2) = 1, . .. , f(4) =
0.6, .. ., f(7) = 0.82, where some of the rule values are not 0 or 1. We
just int erpolate the rule values, as in figure l b, and use the same f(4ci- t +
2 Ci + Ci+1 ) meth od as before to obtain successive generations of cell values.
For example, with th e rule in figure 1b, an initial configuration of one cell
with value 1.0 and all other cells having value 0.0, the three nonzero cells
in the next generat ion will have values f(4 . 0 + 2 . 0 + 1) = f (l) = 0,
f(4 ' 0 + 2 ·1 + 0) = f (2) = 1, and f(4 · 1 + 2· 0 + 0) = f(4) = 0.6. In
th e following generat ion the cell with curr ent value 0.6 will obtain the value
f(4 · 1 + 2 . 0.6 + 0) = f(5.2).
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A transition rule is "totalist ic" if the value r(aI, . .. ,aR) depends only
on the sum a l + ... + an- Thus there are 32 legal totalistic k = 2, R = 5
rules . These are of int erest because some exhibit "class 4" (locally organized)
behavior, not present in any of the k = 2, R = 3 rules and believed to be
capable of supporting universal computation [7]. In th e totalist ic case, r can
be viewed as a function from [k(R - 1)] to [k]' and we naturally interpolate
a cont inuous f : [0, R(k - 1)] --> [0, k - 1].

In the k = 2, R = 5 totalistic case, the rules can again be notated by 0, 1­
vectors, this time of length 6, giving th e next states for the possible sums
0, 1,2, .. . , 5 of the five surrounding cells. Thus, the totalistic rule 000110
says that th e state of a cell in the next generation should be 0 unless three
or four of the five cells about it (including its elf) are current ly in state 1. To
obtain a continuous automaton we again take a (continuous) interpolat ing
function f : [0, 5] --> [0,1]. We always take

in the totalist ic case.

G lobal behavior

Fractional rule values allow us to progress cont inuously from one discrete rule
to another. This is easiest if we consider two discret e rules th at differ in just
one position, for example the k = 2, R = 3 rules 00110011 and 00111011. We
can vary the fifth component from 0 to 1, holding th e initial configuration
constant, and observe th e transition in beh avior between these rules (see
figure 2). In this way we can see a progression revealing how one discrete
behavior changes to a radically different one (a "homotopy of behavio rs," if
you like) .

To display CA evolution when cells have real number valu es (say, in t he
interval [0,1]) , we can use a spectrum of colors , or textures in mono chrome, to
represent cell values . In practice only finite ly many gradations are availab le,
and for monochrome disp lay, at least , it heightens features if only a quite
limited number of different outputs are used. The diagrams below use 11
textures, representing decimal values rounded to th e near est 0.1. Figure 2
illustrates some typical transitions between rules. All figures were produced
from the author's C language programs running on a Sun 3/60. The programs
are available from the author.

The ultimate objective is to have a single parameter that as it varies covers
th e whole range of kk

R
ru les, so that we might hope to identify parameter

intervals particular to specific behaviors (cf., predictability of per iodic or
chaotic behavior for self-maps of an interval). Putting together 0-1 changes
in single components of rules over some linear orde ring of rules can be viewed
as achieving such a parameterization, although it may be judged artificial.

For example, the 128 legal k = 2, R = 3 rules can be arranged in an order
such that only one place changes at a time (Gray code). We first consider
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the entire spectrum of 128 rules arranged in th is way. T he init ial configura ­
t ion considered for thes e rules was always a sing le live cell. Figure 3 shows
"randomness" and periodicity indexes for this spectrum. T he randomness
index represents the perce ntage of predict abl e sites per generation after a
large numb er of generations. This can be const rued as a Kolmogorov com­
plexity measure, that is, a measure of the shortes t (Tu ring machine) program
capable of comput ing later generations . Its compu tation is necessarily some­
what subjective and was carried out by human. The periodic ity index is 11k
if (the predictable part of) the evolut ion diagram has apparent "period" k,
where "period" is interpreted loosely enough to allow for increas ing length
of generations. For example, the second diagram in figure 2f [0110100 0.2J is
0.75 predictable and has per iod 2. Steps of 0.1 between rules were used. Fig­
ure 3 displ ays no overall pattern t hat would allow us to pred ict discrete CA
behaviors. The question remains wheth er th ere exists some other ordering
of rules from which such a pat tern can be observed.

The behavior of transitions can be divided roughly into th ree typ es: ver­
tical, hori zont al, and mixed. The vertical case is typified by some regularity
on one or both edges of an evolut ion diagram becoming more pronounced as
th e parameter approaches aor 1, event ually closing out an irregular middle
or oth er-side portion. Transition from partially irregular to regular shap e can
appear very sudden, resulting from cha nges of 10- 10 or less in the parameter
value (see figure 4a). This is perhaps reminis cent of crystal formation ­
past a certain crit ical poin t , structural regularity forces itself upon the whole
configuration. In reverse, th e sudden onset of irregularity could be compared
with the onset of turbulence.

In hori zontal transitions, intermediat e global periodic behavior is ob­
served with varying periods (see figure 4b). In some cases th e t ran sit ion
rul e is effectively a funct ion f : [0, k - 1] -+ [0, k - 1] (instead of from
[0, k - I]R), because some positions do not affect the rule behavior (e.g.,
00100000) . In these cases we have a univariate self-map of an interval and
the usual period doubling into chaos is to be expected . However, chang­
ing periodic behavior also appears in more complex cases that are not just
reincarnations of one-dimension al dynamical systems (e.g., from 00111110 to
00111111). This is examined in th e next section.

Figure 2 contains examples of t ransitions between each class of behavior
th at occurs in the Gray code order ing for k = 2, R = 3 rules: stable (peri­
odic) to stable, st able to fract al , fract al to fractal, fract al to "random" class
3. There are several examples of each type of tr ansition over th e whole range
of rules. However, no clear cat egorization of transi ti on behaviors based on
type difference was observed. The totalisti c k = 2, R = 5 case is of int er­
est for displaying class 4 (locally organized) behavior (e.g., th e rule 001011).
Because totalistic rules give symmetric evolut ion from symmetric configura­
tions, a random init ial configuration (same for all) was used . Class 4 behav­
ior appears to persist over relat ively large int ervals in transi ti ons involving
a discrete class 4 behavior rule. Also, behavior approaching class 4 some­
times arises in t ransit ion from class 1 to class 3 discrete rules, for example in
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Figure 2: Tr ansi tions between dis crete rul es. Left and right ends are
discr et e rul es; inte rpo la ted rules lie inb etween . Fifty generations of
evolut ion are displ ayed for each rule. Tri angular di agram s are k = 2,
R = 3 rules, with an ini ti al configuration of one live cell; square
di agrams are tot alistic k = 2, R = 5 rules with a random ini ti al
configurat ion (only the cent ral 50 cells of 250 are displayed). The
valu es of cells are real numbers, displ ayed using textures as explained
in the text. The rules are (a) Oll101xl , (b) OOlOxlOO, (c) OOllxlOO,
(d) OlllOllx , (e) OllOlOOx, (f) OllOlOlx , (g) OllxlOOO, (h ) OOOllx ,
(i) OOxlOO, (j ) OOlOlx , (k) OlxlOO, with x varyin g from 0 to 1 (left to
right) in steps of 0.2.

OOxlOO for values of x close to 0.62. Another complex int ermediate behavior
is observed around x = 0.65 in Ollixl.

Local behavior

Some und erstanding of th e transition process can be derived by considering
a fixed cell in a given generation. As the CA t ransition rule changes, how
does the value of the cell in tha t genera t ion vary? Figure 5 shows that
the variations may be quite complex even afte r a relatively small number
of genera t ions. Such complexity may be surprising at first , but reflection
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Figure 2: Cont'd.

shows that iteration of a multimodal function (multiple local ext rema on the
interior of an interval) such as our interpolat ing function can give a function
with a number of extrema that is exponent ial in the number of iterations.
We must also bear in mind that we are not doing straightforward iteration,
but using the f3 conversion funct ion and the automaton rule as well. Since
we no longer have a univariate map, we cannot necessarily expect an orderly
progression of periodic and chaotic behaviors a la Sarkovskii . Indeed, the
order and dist ribution of periods is much more complex than Sarkovskii's
sequence (see figure 4b). The extremely comp lex behavior of single cells
even relatively early in the evolutionary proc ess shows us that any "smooth"
t ransitions between global behaviors th at may appear to occur (such as in
figure 2c) shou ld be car efully scrutinized. A sampling interval such as 0.1
is large compared to the scale at which local behavior can change (which
is apparently of th e order of 2- n after n generations ). This helps us to
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Figur e 3: Randomness and p eriodicity of evolution in k = 2, R = 3
rules. (a) Proport ion of site s with a pred ictable value. (b ) Frequency
(l / p eriod) of predict able portion . A zero frequency means no period­
icity. A predictable, zero-period pattern is probably a fractal.

unde rstand the suddenness of some global behavior changes, such as the
"crystalline" transition in figure 4a.

This view of single cell behavior is perhaps the most revealing observation
in our investigation. The great complexity arising from iterated functional
composition could be expected to occur in any attempt at cont inuous pro­
gression between discrete rules , since some non-monotone function must be
used to move between them. Thus, the discrete behaviors are just points in
a potentially extremely erratic spectrum, at least at the local level. In fact ,
with this view of individual cells having the potential for so many changes
in behavior as we progress from one discrete rule to another, the real mys­
tery becomes why we see any "smooth" transitions at all. The tendency
for adjacent cells to conspire to synchronous behavior is partially responsi ­
ble for what periodic behavior we do observe, but a full explanation of this
local-global interaction does not appear to be at hand.
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Figure 4: Sensitivity to rule changes. (a) Sudden disappe arance of
irregularity in k = 2, R = 3 rule 0110100x with x = 0.9712651660
(left) and x = 0.9712651661 (right). (b) Variety of periodic behaviors
in 0011xlOO. Diagrams from left t o right are x = 0.13520735 (period
25),0.13520736 (infinite period), 0.13520737 (period 17), 0.13520738
(period 36), 0.135207385 (period 25 again).
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Figure 5: Reaction of a single cell in a given generation to paramete r
variation. (a) Cell 1 left of center, generation 9, changing from ru le
01110110 to 01110111; (b) same cell, generation 20.

Another view of local transition behavior is given by a "phase portrait"
diagram displaying the values of a single cell over many generations as the
au tomaton rule changes. The analogous diagram for one-dimensional dynam­
ical systems shows the characteristic bifurcations , and gaps showing regions
of low periodicity sandwiched between chaotic regions . Diagrams for selected
cells in some of the transitions of figure 2 are given in figure 6. They are seen
to share qualitative characteristics with one-dimensional dynamical systems
(bifurcat ions, gaps ), bu t there are not iceable differences. There is apparently
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Figure 6: Evolutionary behavior of a cell as a function of automaton
rule. For each rule, the values of a cell are plotted for generat ions 50
to 150. Regions of p eriodic behavior show up clearly. The diagrams
show (a) cell 1 left of cent er (initial configur at ion of one live cell)
for the k = 2, R = 3 rules 01l1011x (see figure 2d); (b) cell 2 right
of center for 001lx100 (see figure 2c) ; (c) cell 1 right of center for
OllOOllx; and (d) center cell for the t otalist ic k = 2, R = 5 rule
001Olx. The indicated area of (a) is magnified in figure 8.

no orderly progression of periods - they can come in seemingly any order,
often with repetitions. As a result, th ese diagrams have not been found to
have the fractal prop erti es th at standard bifurcation diagrams have. Many
regions were magnified without finding evidence of self-similarity (see also
figure 8).

Convergence

With the compl ex behaviors demonstrated, some app arently sensitive to ini­
tial conditions, and the extensive rea l-valued comput at ions required for even
fifty generations of evolution, there must be considerable concern for nu­
merical accuracy. Perh aps some of the pictures do not really look anything
like the computed pictures at some parameter values? In fact this is almost
surely true, for th e reasons cited above. Nevert heless, we can believe that
parameter values very close to the given ones give pictures very similar to
those computed. This has been proved rigorously in the dynamical syst ems
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Figure 7: Effect of different int erp olating functions . (a) Phase protrait
for cell 2 right of center in the k ~ 2, R = 3 rule OOllxlOOunder linear
interpolat ion . (b) Same for trigonometric interpolat ion . Compare
with figure 6b.

case [2], and the similar conclusion in our case is supported by the visual
evidence.

As concerns depe ndence on th e interpolat ing function , figure 7 shows the
behavior of the same cells und er the linear and trigonometric int erpolating
functions given above , compared wit h th e quadratic int erpol ant used so far .
We see that the trigonometric int erpolant gives nearly ident ical behavior of
the cell, and the linear one gives qualitat ively simi lar behavior. T his holds
for all cells in all generations. Concerns for num erical accuracy are somewhat
overshadowed by the arbitrariness of the interpolating functions, but since
th e qualitative behavior of the model remains intact even for nondifferentiable
interpolants such as inn' our concern need not be too great aft er all . There is
one asp ect where slow convergence does appear to show, th at is, in particular
regions of some "bifurcat ion" diagrams . For example, figure 8 shows how a
region of one diagram changes if later genera t ions are add ed. It is not clear
from th e current investigations how widespr ead such beh avior is.

Conclusions

T his study was initiated to help und erst and th e var iety of global CA behav­
iors , but it can be argued that it has not yielded much in that directio n.
The difficulty is partly in arranging rules in a linear order to regard them
as a continuously vary ing parameter' and partly in th e comp lex behavior
inevitably produced by iteration of three-fold meshing of even a simple func­
tion. Figure 5 gives a good app reciation of the latter, and perh aps provid es
some insight into the often choppy nature of t ransitions between discrete
rule behaviors under the paradigm exam ined here. We do also observe some
smooth global behav ior transitions on relatively large sca les - cases where
erratic local beh aviors consp ire to synchrony in producing , for example, pe­
riod doubling effects. This effect is somewhat mysterious and bears further
examination.
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Figure 8: Lack of convergence in the parameter range 0.682-0.702 for
the k = 2, R = 3 rule Oll1011x. This is a magnification of part of
figure 6a. (a) Generations 100 to 200. (b) Generations 100 to 300.

One way to proceed is to conduct a mathematical invest igation of the
abstract formul ation, nam ely a functi on f : [0, 1]R ----> [0, 1] and its iterat ed
behavior on initial configurations. An initial configurati on is just a mapping
from Z to th e set of states, i.e., a doubly infinite sequence of states. The
evolut ion of a cell in a one-dimensional CA can be expressed in terms of shift
and subsequence operators applied to such sequences. Using the reduct ion of
discrete one-dimensional CA to arit hmetic recurrences given in [5] is anot her
possible ap proach.

Although we did not accomplish the original objective of bringing order
to t he vari ety of discrete rule behaviors, some of the results of the cont inu­
ous case may be of interest in their own right . The technique given here of
producing continuous variation between cellular automat on rules clearly can
be applied to any k and R, and also to two- and higher-dimensional cellular
automata. We have not conducted higher-dim ensional invest igat ions. How­
ever , as others have observed , the one-dim ensional case appears already to
have all th e complexity of higher dim ensional systems.
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