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Abstract. We introduce a formalization of a simple genetic algo-
rithm. Mathematically, two matrices F' and M determine selection
and recombination operators. Fixed points and their stability for
these operators are investigated in terms of the eigenvalues of the
associated matrices. We apply our results to one-point crossover with
mutation to illustrate how the interaction between the focusing oper-
ator (selection) and the dispersion operator (recombination) results in
the punctuated equilibrium frequently observed in genetic search.

1. Introduction

Designed to search irregular, poorly understood spaces, Genetic Algorithms
(GAs) are general purpose algorithms developed by Holland (7] and based
on ideas of Bledsoe [3] and others. Inspired by the example of population
genetics, genetic search proceeds over a number of generations. The criterion
of “survival of the fittest” provides evolutionary pressure for populations to
develop increasingly fit individuals. Although there are many variants, the
basic mechanism of a GA consists of:

1. evaluation of individual fitness and formation of a gene pool.
2. mutation and crossover.

Individuals resulting from these operations form the members of the next
generation, and the process is iterated until the system ceases to improve.
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Fixed-length binary strings are typically the members of the population.
They are selected (with replacement) for the gene pool with probability pro-
portional to their relative fitness, which is determined by the objective func-
tion. There, they are recombined by mutation and crossover. Mutation
corresponds to flipping the bits of an individual with some small probability
(the mutation rate). The simplest implementation of crossover selects two
“parents” from the pool and, after choosing the same random position within
each string, exchanges their tails. Crossover is typically performed with some
probability (the crossover rate), and parents are otherwise cloned. This re-
combination cycle repeats, contributing one of the resulting “offspring” each
time until the next generation is full.

While this description may suffice for successful application of the genetic
paradigm, it is not particularly amenable to mathematical analysis, nor does
it illuminate the punctuated equilibrium (alternation between generations
of relatively stable populations and periods of sudden rapid evolution) fre-
quently observed in genetic search.

Holland [8] has addressed punctuated equilibrium from the perspective
of hyperplane transforms (schemata analysis). In contrast, we develop a
rigorous mathematical formalism for a simple GA and model genetic search
directly.

We model GAs geometrically in sections 2 and 3 as dynamical systems
in a high-dimensional Euclidean space. In section 4, we develop the basic
structure of the model and establish preliminary results regarding fixed points
and their stability. In section 5 we apply our qualitative results to one-
point crossover with mutation to illustrate the phenomenon of punctuated
equilibrium. We assume a background in mathematics including algebra (at
the level of Ref. [6]) and calculus (at the level of Ref. [10]).

2. Preliminary considerations

Let Q be the set of all length-¢ binary strings, and let N = 2°. Thinking of
elements of © as binary numbers, we identify Q with the interval of integers
[0, N — 1]. We also regard € as the product group

ZzX"'XZQ

where Z, denotes the additive group of integers modulo 2. The group op-
eration @ acts on integers in [0, N — 1] via these identifications, and we use
® to represent component-wise multiplication. Hence, @ is exclusive-or on
integers and ® is logical-and.

The tth generation of the genetic algorithm is modeled by a vector s* €
RN, where the ith component of s* is the probability that 7 is selected for
the gene pool. Populations excluding members of §2 are modeled by vectors
s* having corresponding coordinates zero.

Let pt € RN be a vector with ith component equal to the proportion of
i in the tth generation, and let 7; ;(k) be the probability that & results from
the recombination process based on parents ¢ and j.



Punctuated Equilibria in Genetic Search 33

Lemma 1. Let £ denote expectation, then

gt = Zs s 7,5 (k)

Proof. The expected proportion of k in the next generation is computed by
summing over all possible ways of producing k. If k results from reproduction
based on parents 7 and j, then i is selected for reproduction with probability
st 7 is selected for reproduction with probability s?, and k is the result of
recombination with probability ; ;(k). H

Taking the limit as population size — oo, the law of large numbers gives
pitl — S pit. Thus Lemma 1 can be used to determine how the probability
vector s’ changes from one generation to the next in a GA with infinite
population. But first, we note an important property of r; ;(k):

Lemma 2. If recombination is a combination of mutation and crossover,
then

rij(k ® 1) = Tigk jor (1)

Proof. Let C(i,7) represent the possible results of crossing i and j. Note
that kel e C(i,7) if k € Ci @ 1,j®1). Let X(i) represent the result of
mutating 7, for some fixed mutation. Note that k&l = X (3) iff k = X (i®1).
Since recombination is a combination of operations that commute with group
translation, the result follows. B

Let F' be the nonnegative diagonal matrix with ¢,ith entry f(7), where f
is the objective function, and let M be the matrix with 7, jth entry m;; =
7;;(0). Define permutations o; on RY by

0380, .., sw-2)" = (00, - Sjw—1)

where vectors are regarded as columns, and 7" denotes transpose. Define the
operator M by

M(s) = ((008) " Moys,...,(on-15) Moy_1 )T

Let ~ be the equivalence relation on RY defined by z ~ y if and only if there
exists A > 0 such that z = \y.

Theorem 1. Let € denote expectation, then & s'*1 ~ FM(s').

Proof.
& pfﬂ"'l = Z s; 1"”
= Z 5; 85 Tigk jor (0)
%]
= Z 52@1: Sj‘ek Tij(o)
i®k,j®k

= (ox5)'Moys
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Since s't! ~ Fp'*! (the probability of selection is proportional to relative
fitness), the result follows. B

The (expected) behavior of a simple GA is therefore determined by two
matrices: fitness information appropriate for selection is contained in F,
while M encodes mixing information appropriate for recombination. More-
over, the relation

s~ FM(s')

is an exact representation of the limiting behavior as population size — co.
The matrix M has many special properties, the most obvious of which
are:

Theorem 2. The matrix M is nonnegative and symmetric, and for all 1,5
satisfies

1= Zmz‘ek,j@k
k

Proof. M is nonnegative since its entries are probabilities, and is symmetric
since m; ; = 7;,;(0) and the results of recombination depend on the unordered
set of parents. Moreover,

1=Y "rij(k) =) rigkjor(0) = Y _ migk, jok |
k k k

A more subtle property is that conjugation by the Walsh matrix W trian-
gulates the twist M, of M, where the 7, jth entry of M, is m;g;;. We define
the Walsh matrix W = (w;;) by

¢
wi; = [ m&(liz1-*moaz) (7)
=1

where the Rademacher functions r;(z) are given by

rfe)=1-12 (WJ titod 2)

In fact, conjugation by W transforms the positive! matrix M into a sparse
symmetric matrix C' having nonzero entries only where the row (or column)
is smaller than the ged of the column (row) and N. The proof of this result
is outlined in the appendix.

The Walsh matrix is symmetric and orthogonal, and the rows are group
characters:

Wigjk = Wi kWjk

For an introduction to Walsh functions and their properties see Harmuth
[9]. For previous applications of Walsh functions to GAs see Bethke [2] and
Goldberg [4, 5].

"When mutation is nonzero.
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Theorem 3. The matrix WM, W is lower triangular.

Proof. In view of the preceding remarks, we may represent M as WCW so
that the 7, jth entry of the matrix in question is

Z Wi, s Z Whs@ka,ky Chy ey Wk ks Wky,j
k3,kq k1,k2

Using symmetry, the group character property, and rearranging gives

Z Wi k3 Wk k2 ks Cky ko z Wiy ks Wi ks
k1,k2,k3 k4

By orthogonality, the inner sum is zero unless k; = j. Hence we may simplify
(modulo some multiplicative constant) to

D Ciks D Wiky Wighy ks
ko ks

Orthogonality forces k; = 7 @ 7, and we simplify as before to obtain c;g;.
It therefore suffices to show

j>i= (j 2ged(i®j,N))A(IDj > ged(j,N))

This follows by a simple induction on £. B

3. Formalization

Definition 1. Simple genetic search corresponds to the operator G = FoM,
where F' is the fitness matrix and M is any mixing matrix satisfying Theorems
2 and 3. An initial population is modeled by a point s° € RY, and the
transition between generations is determined by s ~ G(st).

This formalization generalizes the recombination induced by mutation
and one-point crossover, and regards GAs with finite populations as approx-
imations to the ideal of simple genetic search. The generality of our model
allows m-point or uniform crossover, or any other mixing operator that com-
mutes with group translation (see Lemma 2) and whose associated matrix
satisfies Theorem 3.

One natural geometric interpretation of simple genetic search is to re-
gard F' and M as maps from S—the nonnegative points (i.e., points with
nonnegative coordinates) of the unit sphere in R¥—to S (since apart from
the origin, each equivalence class of ~ has a unique member of norm 1). An
initial population then corresponds to a point on S, the progression from one
generation to the next is given by the iterations of G, and convergence (of
the GA) corresponds to a fixed point of G.
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4. Basic properties

Regarding I as a map on &, its fixed points correspond to the eigenvectors
of F', which are the unit basis vectors uo,...,uy_1. (Here u; differs from
the zero vector only in that the jth component of u; is 1.) If f(7) = f(j),
then by passing to a quotient space (moding out by the subspace generated
by u; and w;), the subspace corresponding to 7 and j is collapsed to a single
dimension. Hence we may assume that f is injective by considering a suitable
homomorphic image.

Theorem 4. The basin of attraction of the fixed point u; (of F) is given by
the intersection of S with the (solid) ellipsoid

2() <

Proof. Let s € S. The cosine of the angle between s and wu; is given by the
dot, product s-u;, and the cosine of the angle between F's and u; is given by
Fs/||Fs|| - uj. Hence, the angle between s and u; is decreased by F' when

s;f(7)
< Fs]

which is equivalent to the statement of the theorem. H

Only the fixed points corresponding to the maximal value of the objective
function f are in the interior of their basins of attraction. Hence all other
fized points are unstable. This follows from the observation that when f(j)
is maximal, no point of & moves away from u; since

ORI

> (sf5) <31

Intuitively, Theorem 4 is not surprising. Selection is a focusing operator that
moves the population toward one containing the maximally fit individuals
that are initially present.

Regarding M as a map on S, the set Mgyq of fixed points of M is
more difficult to analyze; it can range from all of S to the single point v =
(N-Y2 . N~'2). Moreover, intermediate behavior is possible; matrices
corresponding to crossover can have surfaces of fixed points. In order to
investigate Mgyeq further, we need to consider the differential Dy(z) of M
at z. We need to be careful, because the differential is changed by regarding
M as amap from S to S. We therefore interpret M strictly (i.e., as originally
defined on RY) in what follows.

Lemma 3. The 4, jth component of Dp(z) is 231 Migj k Tiak-
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Proof. The calculation of Dy follows from taking partial derivatives and
using the symmetry of M to simplify the resulting Jacobian. B

A fixed point z of a map W is stable in the sense of Lyapunov if for
any neighborhood N; of z there is a neighborhood Ny of z such that the
trajectory of every point of N, lies in N;. A point is asymptotically stable
if it is stable and all trajectories from some neighborhood of 2 converge to
x. We will need the following discrete analogue from Lyapunov’s theory of
stability (see Ref. [1]):

Lemma 4. Suppose that z is a fixed point of a map W and that the spec-
trum of the differential Dy (z) is contained in the open unit disk. Then x is
asymptotically stable.

Let the sum of the coordinates of s € RY be denoted by |s|, and let
A = {z € RY : z is nonnegative and |z| = 1}

Note that for all &,

I—wT =0 (I - vh) oy

where the o; are regarded as permutation matrices. (Recall that v =
(N=Y2 ... N~'2) and, interpretating the o; as a permutation matrices,
or = 05 * = o}.) Next observe that

Du(z) =2 0p M, or ax,
k

Since the column sums of M, are constant (Theorem 2), as is also the case
for Daq(z) (Lemma 3), it follows from the Perron—Frobenius theory (see Ref.
[11]) that, when M, is positive, v is the unique positive eigenvector for both
MT and Dp(z)T. Moreover, since the corresponding eigenvalues are simple
and maximal, this discussion leads to a sufficient condition for a fixed point
to be an attractor.

Theorem 5. Let © € Mgyeq. If the matrix M is positive, then x is asymp-
totically stable whenever the second largest eigenvalue of M, is less than
1/2.

Proof. According to Lemma 4, it suffices to check the spectrum of the
differential of M. Since A is mapped into itself by M, it suffices to consider
the action of M restricted to A. The kernel of the projection I — vvT is
normal to A, hence the spectral radius in question is o = p (Da(z) (I —voT)).
Because a matrix and its adjoint share the same spectrum, the previous
discussion shows

o = p((I—vv")Du(2)")

2p (Z o {(I — ") M, oy, :ck>
k

Il
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Since conjugation by W diagonalizes both (I —vv®) and the oy, (this follows
from the orthogonality of the Walsh functions), and also triangulates M,”
(Theorem 3), there is a basis in which every term of the sum is lower trian-
gular. Because the spectral radius is invariant under change of basis and is
subadditive over lower triangular matrices, we have

o < Yop(op'(I—vo") M oy )
k
= 2lz|p((I —vo") M.T)

It remains to show that postmultiplication of M,T by I — vuT sends the
maximal eigenvalue of M.” to zero and otherwise leaves the spectrum alone.
Let M,Tv = aw and suppose that M,Tw = fw. Let w = w' + w"”, where
w' L v and w” || v. Then

(I — v ) M w' = (I — voT) (Bw — aw”) = pu’

Hence every eigenvalue of M, is an eigenvalue of (I — ’U’UT)M*T with the
possible exception of o.. Conversely, suppose that (I —vvT) M,"w = pw. It
follows that

M w = pw + v M,Tw = Bw + yu

for some scalar . Therefore,

M*T(w—}—ﬁjav):ﬂ(w—kﬂiav)

if 8 # . Hence every eigenvalue of (I — vvT) M,T is an eigenvalue of M,”
with the possible exception of a. Finally, suppose that f = «, so that w
is an eigenvector for the matrix (I — vvT) M,” corresponding to a. Then
extending the set {v,w} to a basis for representing M.T yields

a 0 0
MT =17 «0

which contradicts the simplicity of the maximal eigenvalue c.. B
Although Mg,.q can vary drastically, there is a group of symmetries that
acts on it.

Theorem 6. For all j, and for every mixing matrix M, M(o; z) = o;M(z).
In particular, we have 0;Mgxed = Miixed, and v € Miyed.

Proof.
oM(z) = o;{(coz) Magz,...,(on-12) Moy_1z)T
= {(oj+0 m)TMUJ+ofC - (Tj4n-1 z)" Moy z)"
= {((000;2)  Maoojz,...,(on_10;3)  Mon_10; )"

z)”
= M(o;z)
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Since z = M(z) = ojz = 0;M(z) = M(o;z), it follows that 0;Mgxea =

Méixea. Since o;M(v) = M(ojv) = M(v), it follows that M(v) is fixed by

each ¢; and must therefore have equal components (i.e., M(v) ~v). B
Since the o; are isometries of S, we have

[M(z) = M)l = lloj (M(z) = M(y)ll = M (05 2) — M(o; )]l

Hence the dynamical system on S corresponding to M looks the same at
every member of the population—any neighborhood of u; is mapped by ojg;
to a neighborhood of u;.

5. Punctuated equilibria

Punctuated equilibria typically characterize simple genetic search. Popu-
lations often alternate between generations of relative stability—indicating
adaptation to the current environment represented by the position in the
search space—and periods of sudden rapid evolution resulting in the emer-
gence of a superior individual.

This phenomenon is explained in the context of our model by the qual-
itative properties of the “focusing operator” (selection) and the “diffusing
operator” (recombination).

We illustrate with the example of one-point crossover with mutation. If
X is the crossover rate and pu is the mutation rate, then a simple calculation
shows (see the appendix) that m; ; is

1— ) ( . 1 ) =
E..Z_‘u)_ {nlzl (1 — g Z)_C—l Zn AI,JJC) +n|J| (1 — et Z_i(_ Z nAi,J,k)}
k=1 k=1

where n = p/(1—p), integers are to be regarded as bit vectors when occurring
in ||, division by zero at = 0 and g = 1 is to be removed by continuity,
and

Ay =|(2* - ) ®i| - [(2" - 1) ®]]
Several computer runs calculating the spectrum of M, support the following:
Conjecture 1. If 0 < p < 0.5, then

1. The second largest eigenvalue of M, is % —u

2. The third largest eigenvalue of M, is 2 (1 — ?)LCT) (% — p)z

Applying Theorem 5, we would infer from this conjecture that every fixed
point of M is an attractor when 0 < p < 0.5. When p = 0, calculations
indicate that the elements of Mg,.q are not isolated but form a surface, which
suggests the condition of Theorem 5 may be necessary and sufficient in this
case.

The following conjecture of Belitskii and Lyubich applies [1]:
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Conjecture 2. If max,ex p (Dw(z)) < 1, where X is the compact and con-
vex domain and codomain of W, then the fixed point of W is unique, and the
sequence of iterates W*(z) converges to it for every choice of initial point .

Combining (the proof of) Theorem 5 with Theorem 6, we would infer
from conjectures 1 and 2 that v is the unigue fixed point of M (regarding M
as a map on §; Conjecture 2 would actually be applied to obtain a unique
fixed point on X = A). Hence the dynamical system corresponding to M is
similar to a diffusion process (when 0 < p < 0.5) in that the unique fixed
point v corresponds to all possible strings represented equally, all of S is
its basin of attraction, and the dynamical system on S corresponding to M
looks the same at every member of the population.

Theorem 4 shows I to have attractors corresponding to the distinct fitness
values of f, all of which are unstable except the maximally fit. The geometry
of the basins of attraction implies that to move out of the basin of an unstable
fixed point is to move into the basin of a more fit attractor.

In GA implementations, finite populations make low probability events
occur even more infrequently; mutation and crossover do not typically pro-
duce better strings with each generation. Moreover, the emergence and
growth of a string having greater fitness typically requires events less prob-
able than does focusing a population towards a prevalent high-fitness string
whose dominance is not interfered with by finite-population effects.

Therefore, a population will move under the influence of F, slowing and
seeming to stabilize as it approaches a fixed point. If the fixed point is not
maximally fit, then it is unstable and does not lie in the interior of its basin.
The diffusion-like property of recombination may then move the population
outside the basin of attraction, causing the population to experience a major
change as it moves under the influence of a new attractor with greater fitness.
This situation is depicted by the following diagram where the dotted path
represents the trajectory of a population:

basin of unstable
attractor

unstable attractor — -

g

more fit attractor
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6. Summary and future research

We have formalized selection and recombination within a mathematical
framework as a first step to better understand the simple genetic algorithm.
We have shown recombination to be a quadratic operator determined by the
matrix M and the group of permutations {o}}o<k<n, and have shown se-
lection to be the diagonal linear transformation F. The importance of the
Walsh matrix as a natural basis that simplifies the structure of genetic search
has been demonstrated (by Theorem 3 and in the appendix), and it has been
shown useful in understanding fixed points and their stability (as in the proof
of Theorem 5). Further explanation of the role of the Walsh matrix and the
development of its relation to our model will be provided in a future paper.

A more complete understanding of selection as a focusing operator and
of recombination as a dispersion operator has emerged. Their qualitative
properties have been used to shed light on the phenomenon of punctuated
equilibrium.

Explicit formulas for the matrices corresponding to two-point and uni-
form crossover can be worked out. This raises the possibility that differences
in performance related to the use of different mixing operators may be clar-
ified through their analysis. Crossover and mutation represent only a few of
the recombination operators whose associated matrices possess the requisite
properties. It would seem promising to investigate alternatives with simple
procedural counterparts.

Another interesting possibility is the development of a synthetic GA that
does not use a population. This may be possible by implementing an approx-
imation to G via sparse matrix techniques since M is sparse in a suitable
basis (see the appendix).

Appendix

The explicit formula for m;; given in Section 5 is easily derived from the
following considerations:

1. The probability that O results from parents ¢ and j depends on the
probability that mutation changes the 1s occurring in the results of
crossover to 0 and leaves the other bits alone.

2. The number of 1s occurring in the results produced by crossing ¢ and
J at position k are given by |i| — A; ;5 and || + A ;4.

3. The probability of changing a specified collection of b bits (in a length-¢
binary string) via mutation is (1 — ) bul.

The fact that C = WMW has nonzero entries only where the row (or col-
umn) is smaller than the ged of the column (row) and N follows from direct
calculation using the following observations:
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1. If h is an arbitrary function, and ¢ > 0 then

Y Wik we, h([ka]) = D wiy jh(|E2) Y wi g, wor, =0

k1,k2 k2 k1

since orthogonality implies that the inner sum is zero. Similarly, if
7 > 0 then

D Wik, Wiy 5h([Ka]) = 0

k1,k2

2. Suppose 7 and j are greater than 0, and h is an arbitrary function.

Note that
£-1
Z Wi ky Wk, 5 Z h(lkZI +Ak1‘k2,k3)
k1,k2 k3=1
-1 ¢
= Z z h’(k‘l) Z Wi ky Wk, 5
k3=1k4=0 1:k2
[k |48k, kg kg =Fka
-1 ¢ N—1 2k3—12¢"k3)
= Z Z h(k4) Z Z Z W, (ks mod2*3 )@ (k7243 ) Wks@ (253 | ks2—*3 ),j
k3=1ks4=0 ks=0 kg=0 ky=0
|ks|=kq
-1 ¢ 2k3—1 2t—k3_
Z Z h(k‘l Z w; k5mod2k3w2k3|_k52 k3], Z Wke,j z W; kr2ks
k3=1ks=0 k5=0 k7=0
lks|=ksg
-1 ¢ N-1
= Z Z h(ka) Z W; ks mod2ks Waks | ks2—*3 |
k3=1 k4=0 k5=0
[ksl=k4
kg £
x [[(Q+re() II (@ +r@)
kg=1 ko=1+ks

Now assume that neither product is zero. Then, since

I+ r () = 25 ﬁl{l - QJH - 2)}

ks=1 kg=

and

1 aenm=2o 11 fi- (|2 mo2)}

ko=1+ks ko=1+ks3

t follows that
j2*s
N

'2k9
= VN J mod 2=0

Vk87k9.0<k8Sk3<k9S£ - [ Jmon
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which implies the upper k3 bits of j and the lower £ — k3 bits of 7 are
zero. Hence j < ged(i, N). Similarly, a necessary condition for the
nonvanishing of

-1
D> Wik Whyj Y B(IEL| — Ay kyks)

k,k2 k3=1

is that ¢ < ged(j, N).

In fact, this argument can be modified to show that, for n-point or uniform

Crossover,

;>0=i®j=0

Since the proof of Theorem 3 shows the 1, jth entry of WM, W is ¢;;g;, the
implication

j>i=j0@E®j) >0

shows that the matrices for n-point and uniform crossover also satisfy The-
orem 3.
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