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Abstract. The degree to which the genetic optimization process is
transparent is in part determined by the form of the objective func-
tion. We develop two forms from first principles: polynomial forms
and basis sets. We characterize three function classes that are fully
easy for the genetic algorithm in terms of the polynomial represen-
tation. We generate functions of varying degrees of deceptiveness in
terms of the representation provided by basis sets. We further show
the relationship between these representations and the more standard
Walsh polynomials.

1. Introduction

Many significant optimization problems are defined over finite spaces. These
include virtually all combinatorial optimization problems, many of which are
extremely difficult. Genetic algorithms (GAs) are one general class of tech-
niques proposed to solve such problems. Although GAs have been successful
in a variety of applications—including the design of turbine blades [14], com-
munication networks [6, 8], VLSI design [5], and stack filter design [7]—their
behavior is still not fully understood. Furthermore, the class of functions for
which genetic algorithms are suited has not been well characterized.

Our work builds on and helps unify work of Bethke [3], Goldberg [9, 10],
Bridges and Goldberg [4], Holland [11], Liepins and Vose [13], and Battle and
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Vose [2]. At the suggestion of Barto, Bethke [3] used Walsh functions to be-
gin characterizing functions as easy or difficult for genetic optimization. His
premise and that of work following his was that easily optimized functions
have properly aligned schemata utilities. Although he did not obtain a com-
plete characterization, he developed sufficient conditions for easy functions
and partial conditions for hard functions. However, because his conditions
are stated in the transform space, they are not intuitive and are difficult to
understand.

Goldberg [10] reviewed Walsh transforms and constructed a fully decep-
tive function of order 3. Holland [11], recognizing that Walsh transform
analysis was a viable approach to characterizing the difficulty of problems,
introduced the hyperplane transform as a tool for simplifying the analysis.
Bridges and Goldberg [4] introduced non-uniform Walsh transforms to an-
alyze the evolution of the (implicit) estimates of schemata utilities on the
basis of the current population. Liepins and Vose [13] constructed fully
deceptive functions of arbitrary order, and then exhibited representational
change operators that rendered them fully easy. Battle and Vose [2] noted
that this change of representation could be reinterpreted as search through
M -schemata space induced by M -crossovers.

This paper continues the theme of these previous investigations while
viewing deception from the perspective offered by alternate representations.
Three function classes that are fully easy for the genetic algorithm are char-
acterized in terms of polynomial forms. Polynomial forms are investigated in
the context of M-schemata analysis, and the relationship to Walsh polyno-
mials is developed. Basis sets are introduced and functions of various degrees
of deceptiveness are generated in terms of them.

2. Deception

The essence of deceptiveness stems from the observation that, in some sense,
schemata represent the direction of genetic search. It follows from the Schema
Theorem that the number of instances of a schema is expected to increase
in the next generation if it is of above average utility and is not disrupted
by crossover. Therefore, such schemata indicate the area within the search
space that the GA explores, and hence it is important that, at some stage,
these schema contain the object of search. Problems for which this is not
true are called deceptive.

Although many of our techniques extend to any finite cardinality alpha-
bet, we limit our attention to functions defined over the collection 2 of length
¢ binary strings. We regard 2 as the vector space

ZzX"'XZz

where Z, denotes finite field of integers modulo 2. The additive group opera-
tion @ is equivalent to component-wise “exclusive-or.” We think of vectors as
column vectors, but will for notational simplicity often display elements of Q
as binary numbers, thus identifying © with the interval of integers [0, N —1].
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It is also convenient to sometimes regard a binary vector v as an incidence
vector, that is, as representing the set of subscripts for which v; = 1.

Definition 1. Let M be an £-by- matrix over 25, and let £; M be the linear
span of those columns of M represented by the incidence vector j.

Holland schemata correspond to those subsets of §2 that can be repre-
sented as k @ £;I for some k, where I is the identity matrix. For example,
the schema 11 has the form

¥11 = {011,111} = 111 @ Lypol

Those subsets {k & L£;M }j,keg of Q where M is some fixed invertible matrix
are referred to as M-schemata, or simply schemata. These generalizations of
Holland schemata were introduced and analyzed by Battle and Vose [2] to
interpret the representational transformations of Liepins and Vose [13].

Let the order o(j) of j be the number of 1s in j, and let the order o(s)
of a schema s be the codimension of s. In other words, if s = k @ L; M,
then o(s) = £—o(j) (for Holland schema, this reduces to the number of fixed
positions). Two different schemata s and s’ are said to be competing if they
are translates of each other, that is, if s = k @ s’ for some k.

Definition 2. Let f be a real-valued function on 2, and let s be a schema.
The utility ug(s) of s with respect to f is

uy(s) = |;1|Zf<k>

kes

Definition 3. Let f be a function with global optima at {z*,...}. Then f
is deceptive of order m iff there exists « ¢ {z*,...} such that, when s and s'
are competing schemata of order not greater than m,

T E€s = us(s) > up(s)

Bethke [3] approached the analysis of deceptiveness by expressing Holland
schemata utilities in terms of Walsh transforms. Let 1 < d = 2b < n—1 be the
desired order of deceptiveness. Bethke’s construction showed the existence
of a constant ¢y < 0 such that the function f defined below in terms of its
Walsh coefficients has maximum at z* = I and is deceptive of order d:

R 1 ifo(y)=1
fi=1% ca ifo(j)=d+1
0 otherwise

His construction begs several related questions. Do functions exist that
are deceptive of all orders d < n? Do functions exist that are deceptive of
order d < n — 1, but whose schemata are correctly aligned thereafter? The
combinatorics of the Walsh transform analysis quickly become unwieldy, and
these questions are better answered in other ways.
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Although Bethke’s construction leads to deceptive functions, they need
not be the most difficult ones. In the sense that all schemata lead dia-
metrically away from the optimal, fully deceptive functions are maximally
deceptive.

Definition 4. Let f be a real-valued function on §2 with unique global max-
imum at z*, and let x° be the binary complement of z* (ie., ie x*). The
function f is fully deceptive iff, whenever s and s' are competing schemata
of order less than n,

z° € s = us(s) > ugp(s)
The counterparts to fully deceptive functions are fully easy functions.

Definition 5. Let f be a real-valued function on 2 with unique optimum
at z*. Then f is fully easy iff, whenever s and s’ are competing schemata,

" € s => up(s) > uy(s)

The first construction of a fully deceptive function was given by Goldberg
[10] for £ = 3. Liepins and Vose [13] later gave a construction of a fully
deceptive function f for string lengths ¢ > 2:

1—1/(20) if o(z)=0
flz) = ¢ 1—(1+o(z))/t if 0<o(z) <t
1 if o(x)=1¢

Amazingly, this class of fully deceptive functions f can be transformed into
fully easy functions g via g = f o M, where M is the linear transformation
of & with matrix

_JO fori=j5#4
i = 1 otherwise

Battle and Vose [2] have explained this result by the observation that a
function may be fully deceptive with respect to Holland schemata and fully
easy with respect to M-schemata for appropriate M. Moreover, they show
how the choice of schemata that direct genetic search can be made using a
suitable linear transformation. We therefore consider deceptiveness in the
context of M-schemata in this paper.

3. Polynomial forms

A simple inductive argument proves that any function f over {2 may be
expressed uniquely in the form

f@)= > on]]es

NC{1,..&} neN
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where the vector e, contains 1 in the nth column and 0 elsewhere, T' denotes

transpose, and the ay are coefficients. Regarding the vector = as having com-

ponents z1, . .., z,, we may view f as a polynomial in the variables z1, ..., ;.
The proof is little more than the observation that

f(@) = f(z1,...,7)
= xpf(z1,. .., 2o—1,1) + (1 — z) f(21,- .., Te—1,0)

Since f(z1,...,z4-1,1) and f(zy,...,7,-1,0) have fewer variables than
f(z1,...,@), this reduction can be applied recursively to develop the re-
quired representation.

For example, the fitness function for the fully deceptive problem of Liepins
and Vose [13] for £ = 3 has the representation

_ 5 1 1 1 j i 1 1 T
f(l') =5 531'1 e Exz = 51‘3 —+ 6531(132 -+ 51‘11}3 + gl‘gxg + 6.’E1$2$3

In order to relate polynomials to (Holland) schemata utilities, it is convenient
to regard Q2 as a probability space. Let dv be a normalized counting measure
on Z,, and let du denote the product measure dy = duy = dv X -+ X dv, £
factors.

Theorem 1. For any polynomial f, the utility of any Holland schema is ob-
tained by integrating f after evaluating at the fixed positions of the schema.

Proof. Let the Holland schema be s = k & £;I, and let f;(k,z) be that
function of those variables indexed by the incidence vector j that is obtained
from f by instanciating the other variables z; with k;. Note that f;(k,z)
corresponds to f after evaluating at the fixed positions of the schema s,
and may be regarded as a function over £;/, which represents the variable
positions of s. We have

ﬁZf(w) = 20 Y fkoz)

TES €Ll

2742420 N~ fi(k, z)

zeLl;l

~/(.£-I)J- /l:-I [i(k, @) dpoy) dpte—o()

= [ i(h,2) du u

I

Theorem 2. The utility of any Holland schema is obtained by evaluating f

at the schema where x counts as %

Proof. This follows from Theorem 1 and the observation that, if we think
of z,(w) = eIw as random variables on €2, then they are independent. Hence

(/zndu) = 1

for any N C {1,...,¢}

[Mendu =11

neN neN



50 Gunar E. Liepins and Michael D. Vose

Therefore, integrating f;(k, z) has the affect of evaluating nonfixed positions

with 1. @
2
For example, the utility of %10 for our fully deceptive problem is given by
f(3,1,0)=2 112120+ 311+ 120+ 210+ 2110 = 1

3.1 Easy functions

Some classes of easy functions are trivial to construct. Constant functions are
one such example. What is substantially more difficult is a characterization
of all easy (or fully easy) functions. Liepins and Vose [13] proved full easiness
for linear, monotone, and linearly dominated polynomial functions. These
results are summarized below with new proofs that illustrate the power of
Theorem 2. To be thorough, we should note that, in some sense, the class
of linearly dominated polynomial functions was anticipated by Bethke [3].
His Theorem 3.4.1 effectively specifies a linear dominance condition in the
transform space.
Linear polynomials are defined as those with no cross terms:

f=a,+am+ -+ a2,

Since linearity is invariant and schemata utilities are permuted by any trans-
formation of representation effected by translation (modulo 2), we may as-
sume that f is maximal at 0. Suppose that, in some set of competing
schemata, the schema containing 0 did not have maximal utility. Since utili-
ties are computed by evaluation (where * counts as ) it follows that chang-
ing 0 to 1 in some position increases f. Hence some term has a positive
coefficient. Therefore, f could not be maximal at 0, which is a contradiction.

Monotone polynomials are defined as those having all coefficients of like
sign. If we assume that 0 is a maximum and that in some set of competing
schemata the schema containing 0 did not have maximal utility, then we
conclude as before that some term has a positive coefficient. Since all coeffi-
cients have like sign, this implies that all coefficients are positive. Therefore
f could not be maximal at 0, which is a contradiction. The case where Tis
maximal is analogous.

Let f be a polynomial, and let L be the linear part of f (those terms
involving at most one variable). Linearly dominated polynomials are defined
as those for which

a
(9.’13]'

o
\a—mff‘”’

Let f be linearly dominated. Suppose that in some set of competing sche-
mata, s contains a maximum m and does not have maximal utility. Note
that L is maximized at m, since the condition on partial derivatives would
otherwise imply that f is not maximized at m. Also, s is non-maximal when
utilities are computed with respect to L, since changing a 0 to a 1 increases
(decreases) f iff L is increased (decreased). We have therefore reduced the
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problem to a situation that has previously been shown inconsistent: a linear
polynomial (L) maximized at a point (m) that is contained in a non-maximal
schema (s).

3.2 Linear transformations of polynomial forms

Since M-schemata are the images under the linear transformation M of Hol-
land schemata [2], calculation of M-schemata utilities for f coincide with
calculation of Holland schemata utilities for f o M. Therefore, in principle
one could apply Theorem 2 to the polynomial representation of fo M. How-
ever, if we are solely interested in the transformation of schemata utilities,
this can be computed otherwise. Let

g(@)=FfM@) = > an [] ()

Nc{1,...0} neN

where the nth row of M is v, and angle brackets denote reduction modulo
2. Applying Theorem 1, the utility uy(s) of the schema s =k & £;I is

> o [ 11 (i (kv

Nc{i,..b neN

where id is the identity function. Observe that, for any function h, an appli-
cation of Fubini’s theorem [1] yields

/(xl + oY h(Tigr, .. ) dp = %/h(miﬂ, o) dp

Next, notice that any product of modulo 2 sums is either 0 or may be
put in the form

(zi+ ) h(®ig, )

where h(z;y1,...) is also a product of modulo 2 sums and is itself in this
form; simply equate each sum to 1 and reduce (in Q) the resulting system to
triangular form. This corresponds to iteratively applying the reduction

(z+y)y(z+2) = (e+y){1+y+2)

In other words, the integral of a product of modulo 2 sums is 0 if the system
that results from equating each sum to 1 is inconsistent, and is % to the
number of nontrivial factors otherwise.

For example, consider our previous example f and the schema s = M

(¥10) where

M:

=)
=
_
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The utility us(s) is

/g-§(1+o>_ Lz +0) — Lz +1+0)+ 2(1+0) (z, +0)+

+ (1 +0)(z1+1+0) + 2(z1+0) (z1 + 1+ 0)+
+ (14 0) (z1 +0) (z; + 1+ 0) du

which simplifies to

3.3 Walsh transforms

Since there are differing accounts of Walsh transforms, we include a brief
introduction to fix notation.

The set of homomorphisms from € into the unit circle in the complex
plane forms a group under multiplication, called the character group. Since
any element x of  is self-inverse (z@®x = 0), the range of any group character
lies in the set {1, —1}. Moreover, a character is uniquely determined by the
subgroup it maps into 1. Define w; by w;(z1---z,) = (—1)", and for j in
the power set J of {1,...,¢}, define w;(z) = ic;wi(z).

Since the collection of 2 functions {w; };c; are distinct group characters,
a theorem of Artin (see Ref. [12]) implies they are linearly independent and
therefore form a basis for the space of functions over Q. In fact, this basis
corresponds to the family of Walsh functions defined by w;(k) = (—1)7*,
where the integers j and k£ (0 < j,k < £ — 1) are identified with elements of
Q through their binary representation, and j - k is the inner product of the
bit strings. The correspondence is through the identification of an incidence
vector j with a set j € J.

The Walsh functions have several useful properties. For all 7, j, k € Q,

2. wi(k) wi(k) = wig;(k)
5. Srenm®u® ={ 3 § 12

The first and second assertions follow from the representation w;(k) = (—1)"*.
The third follows from the second and the observation that ¢j = 0iff ¢ = j.
Moreover, if i # j, then

HkeQ:k-(i®j)isodd}={keQ:k-(i®j)is even}|
Definition 6. The Walsh transform f of a function f:Q—Ris
fG) = 2783 Fk)wi(k)

keQ
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Let Xn(wq -+ 20) = [Inen Tn- The Walsh transform of Xy is given by:

Lemma 1.
X (=1)°0) 2=Vl if the incidence vector j
Xn(g) = represents a subset of N

0 otherwise

Proof. The terms of

> (=17 ] ke

keQ neN
are nonzero iff those bits of k indexed by N are all 1, and there are 2¢~1V!
such terms. If the incidence vector j represents a subset of NV, then all terms
are (—1)°U), If j; = 1 and ¢ ¢ N, then these term are partitioned by the
value of k; ; half are 1 and half are —1. B

Definition 7. The Walsh polynomial f of the polynomial

f@y= Y an[lefz s f)= Y Bv]lely

Nc{1,...,0} neN Nc{1,...,£} neN
where f(z) = f(y) and y =1 — 2a.

Theorem 3. The Walsh coefficient f (4) is equal to that coefficient B, of f
having a subscript corresponding to the incidence vector j. That is,

P = S FO v

Proof. Since the Walsh transform is linear, it suffices to consider the function
Xpy. Since z = (I — y), we have

Iv) = [1 {30 -w)} = S ()2 ]y,

neN JCN jeJ

Appealing to Lemma 1 finishes the proof. B

Definition 7 occurs in Goldberg [10], where the representation provided
by Theorem 3 is used to define Walsh coefficients. Note that the Walsh
polynomial may also be obtained directly (as was the polynomial f) via the
reduction

fly) = .f(yl,---,ye)

A=y f W, ye-1, —1) + 2+ y) Flyr, -, Y1, 1)

Walsh polynomials have several desirable properties:

1. Fitness values may be obtained by evaluation (f(z) = f(y)).
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2. Schema utilities may be obtained by evaluation (Theorem 2 and f(z) =
f)).
3. Walsh coefficients may be obtained by inspection (Theorem 3).

4. Walsh polynomials transform nicely under linear operators on €.

This last point is clarified by Theorem 4 below. As previously noted, M-
schemata utilities of f can be reduced to Holland utilities of f o M. It is
therefore of interest to compute the transformation of Walsh polynomials
under linear maps. Since Walsh polynomials have Walsh coefficients, it suf-
fices to consider how the Walsh transform reacts with linear operators.

Lemma 2. Let M be a linear operator on Q. Then (f/O\M)(j) =
F(M=1)T9).
Proof. This follows from the observation that

S SME) (=17 = 3 f(k) (-1

keQ ke

> f(k) (-1 m

keQ

I

Theorem 4. If M is an invertible linear operator on €2, then the Walsh
polynomial corresponding to f o M is

Zf HyM o

Proof. By Theorem 3 and Lemma 2, the Walsh polynomial corresponding
to foM is

S (FoM)() [Ty

J

Il

> f ((M”I)Tj)]_[yf;"
= AT

The proof is finished by noting that (M) = (M7T)~!, and that reducing
the exponent of y, modulo 2 has no effect since y,, € {1,—1}. B

To illustrate, the Walsh polynomial f (y) for our previous example f(x)
may be obtained through the substitution z = %(f — y), which after simpli-
fication yields

F@) =8+ Ly + Lyo+ Ly + Syiye + Syiys + Syeys — Hviveys

The utility of the Holland schema 10 is obtained by evaluation of either f
or f:

f(z))) f( )_211*;—215+ZI§~%:%
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The Walsh polynomial g for g = foM (where M is our example from Section
4.2) results from mapping the monomials of f by M7:

Y1 — Y23
Y2 — Nys
Ys — Y1Y2Ys
Y1Y2 — YilY2
Nys — U
Y2Ys — Y2
Y1Y2yYs — Y3
producing
3(Y1,Y2,9s) = i;— + I%yl + %yz = 4—783/3 = %ylyZ = ﬁylya
+25Y2Ys + 25Y12Y3

If s is the image under M of the Holland schema 10, then evaluation gives
the utility

us(s) = up(410) = §(0, -1, 1) = H - Z - L L =0

4. Basis sets

Fully easy and fully difficult functions are readily generated in terms of the
representation provided by polynomial forms. Constructing functions of in-
termediate difficulty is not as straightforward. We propose a different rep-
resentation, basis sets, which is better suited to the analysis of intermediate
difficulty.

In this section we will use N to represent the number of elements in the
set 2 of length ¢ binary strings.

4.1 The uniform case

Definition 8. A collection S of subsets of Q is a basis iff the incidence
vectors that represent the elements of S form a basis for RN .

Theorem 5. Let S be a basis, and u a real-valued function defined on S.
There exists a unique function f : Q — R such that

T%Zﬂ@=wﬂ

zES

sesS =

Proof. Let A be the matrix having as rows the incidence vectors correspond-
ing to elements of S, let f be the column vector of required function values,
and let u be the column vector of given values. The linear system relating
function values to schemata utilities is

DAf = u

where D is a diagonal matrix containing |s|™* for s € S. Hence f is uniquely

determined by f = A7'D 'u. i
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Definition 9. Let « be a point in . A schemata path at x is a nested
sequence of schemata x = H, C --- C Hy = Q containing = such that

Let us now return to the concept of deceptiveness. Intuitively, deceptive-
ness occurs whenever a “good path” leads to a “bad point” or a “bad path”
leads to a “good point.”

Definition 10. Let x €  and let S be a schemata path at . Then f
is increasing at = along S of order (a,b) iff, whenever H and H' are two
schemata in S,

a<o(H)<oH)<b = wus(H)<us(H

Ifa = 0, we shall use the term “increasing along S of order b.” The definitions
for decreasing along S are defined analogously.

Observe that fully deceptive functions have a unique optimal z* and are
increasing at z¢ of order n — 1 along all schemata paths. Fully easy func-
tions have a unique optimal z* and are increasing at z* of order n along all
schemata paths. This follows from the relation

up(H) = 5 {us(Ho) + us(Hy)}

where the H; are any two schemata of order 1 + o(H) that partition H.

Lemma 3. The collection S of all Holland schemata containing 0 is a basis.

Proof. For s € S, replace each 0 in s with 1, each * in s with 0, and interpret
the result as a binary integer. Using the reduction

f(ylv s 1yZ) = yef(yla s Ye-1, 1) + (1 - yf)f(ylv nee 7yf—150)

let f be that polynomial that maps the binary integer representing s into the
utility of s. By construction, evaluating f correctly computes the utilities of
schemata in S; hence f may be regarded as a Walsh polynomial. Because
the function f(z) corresponding to the Walsh polynomial f(y) exists and is
unique (it may be computed via the substitution y = T 2z), the linear sys-
tem relating function values to schemata utilities has a unique solution. Since
the coefficients of that linear system are the incidence vectors corresponding
to the schemata in S, it follows that S is a basis. B

Theorem 6. Let z € §2. The collection of all M-schemata containing x (for
fixed M) is a basis.
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Proof. Let o be the matrix corresponding to the permutation that sends
the jth component of a binary vector to the j @ xth position, where z € Q
is fixed. If v is the incidence vector for a Holland schema s, it follows that
ov is the incidence vector for the schema z @ s. Therefore the incidence
vectors associated with a translation (by z in Q) of a basis are obtained
by mapping the incidence vectors associated with that basis by ¢. Since
permutation matrices are invertible, they preserve linear independence; and
since # was arbitrary, it can translate the basis of Lemma 3 to any point
of 2. Hence, the collection of all Holland schemata containing z is a basis.
Finally, note that mapping the collection of Holland schemata by an invertible
linear transformation M also induces a permutation of the components of the
corresponding incidence vectors. B

We can now turn our attention to the existence of classes of functions of
intermediate deceptiveness. We assume that the functions of interest have a
unique optimal that without loss of generality is at 0. We prove each of the
following classes are nonempty:

C1. Functions with several schemata paths at the optimal; some of them
increasing of order n, and others decreasing of order n — 1.

C2. Functions all of whose schemata paths at the optimal are increasing for
some order d < n — 1 and decreasing thereafter (except at order n).

C3. Functions all of whose schemata paths at the optimal are decreasing for
some order d < n — 1 and increasing thereafter.

These classes are interesting because real problems could presumably have
some paths that are deceptive and other paths that are not, or could have
some regions of deceptiveness either preceded or followed by regions that are
nondeceptive. Intuitively, one might expect that the density of nondeceptive
paths or the depth of deceptiveness is related to whether a GA discovers an
optimum.

The proof that these classes are nonempty follows from the observation
that each is defined in terms of schemata paths at the single point 0. By
Theorem 6, the collection of all schemata at a point forms a basis, hence the
schemata involved in the definitions of these classes are linearly independent.
It follows from Theorem 5 that assigning arbitrary utilities to any set of
linearly independent schemata will induce a fitness function consistent with
the given utilities.

4.2 The non-uniform case

The previous section dealt with schemata in a uniform fashion in that utilities
were calculated with respect to the entire space Q.

In analogy with how the non-uniform Walsh transform can take account
of bias introduced by non-uniform populations, the method of Basis Sets has
a natural generalization that incorporates these same effects.
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Let L be an N-by-N diagonal matrix with ith entry equal to the number
of occurrences of 7 in the population P, let S be a basis, and let A be the
matrix having as rows the incidence vectors corresponding to elements of
S. Let D be a diagonal matrix containing the reciprocals of the number of
instances (which may be zero) in P of schemata s € S. The linear system
relating the vector f of function values to the vector u of schemata utilities
with respect to P is

DALf = u

The rows containing division by zero correspond to schemata not represented
in the population, hence these rows and the corresponding components of u
are left undefined. Basis sets in the non-uniform case are analogous to the
uniform case, the chief difference being that the consistency of the system
DAL f = wu replaces the invertibility of the matrix A.

5. Representational relationships

The following diagram summarizes the relationships between the representa-
tions discussed in this paper.

p

T

¥

7 pa

p

Here f denotes the vector of function values, f; = f(), p denotes the coeffi-
cient vector of the polynomial representation of f,

flz) = ij Hl‘f{‘

$ denotes the coefficient vector of the Walsh polynomial, p; = f(j), and u
denotes a vector of non-uniform schema utilities for the basis represented
by an incidence matrix A and any population corresponding to consistently
chosen matrices D and L. The matrix W represents the Walsh transform,

Wi; = 27wi(j)
and T is the evaluation matrix
T, = Il

where 0° is interpreted as 1, and 7,5 € {0,..., N — 1}.
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If g is obtained from f through a translation by ¢ of the domain
g(z) = flzo1)

then
we) = ~Ygk) = =Y ke = = 5 Fk)
|S| kes ISI kes |S' kes®t
= us(s@1)

It follows that the relationships between the schemata utilities with respect to
g are completely isomorphic to those with respect to f. From the perspective
of schemata analysis, if we are interested in the basis of those schemata
containing some element x of 2, we may therefore assume z = 0.

Also, since M-schemata utilities for f coincide with Holland schemata
utilities for g = f o M, we may as well assume that it is Holland schemata
that are of interest.

Through these reductions, we may assume A = T'. This is a consequence
of the following:

Lemma 4. The basis of all Holland schemata containing 0 has as incidence
matrix the evaluation matrix T. Moreover, the ith row T; of T' is the incidence
vector corresponding to that schema obtained from i by replacing each 1 in
1 with *.

Proof. The matrix T is invertible since f uniquely determines p (see the
diagram above). The schemata represented by 7" all contain 0, since

Tip = Hiz" =1
n

To see that the ith row of T represents the Holland schema obtained from i
by replacing each 1 in ¢ with *, note that i,, = 0 = j, = 0 is a necessary
and sufficient condition for 7;; = 1.

Let J denote the n-by-n permutation matrix that reverses order,

7. = 1 ifl4+i4+j=n
bl 0 otherwise

Theorem 7. If u represents uniform utilities for the basis of Holland sche-
mata containing 0, then the following diagram commutes:

p

WT,

ol
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Proof. Let [z]%! denote x where all occurrences of yy, . . . have been replaced
by z1,.... We have

(DTf)i = w = us([il}) = AT = B(EYs) = (TP) o
= (JTD)

The first equality is from the diagram, the second is from Lemma 4, and the
third follows from Theorem 2 and the definition of the Walsh polynomial.
The fourth equality is through simplification, the fifth is by construction
since T was designed to evaluate polynomials, and the last follows from the
observation that

elip = 2-1-2

This establishes the commutivity of the lower triangle. The commutivity of
the right and left triangles is by inspection. B

6. Summary

We have investigated three forms for the objective function of a genetic al-
gorithm: polynomial forms, basis sets, and Walsh polynomials.

Our motivating perspective has been deceptiveness. We defined various
degrees of deceptiveness and, since representational changes can affect de-
ceptiveness, we provided a framework that encompasses the representational
change operators of Liepins and Vose [13] by means of M-schemata.

We illustrated the use of polynomial forms by using them to characterize
three classes of fully easy functions. We applied basis sets to the construction
of functions with specified predetermined difficulty. We demonstrated a lin-
ear interrelationship between these forms and traditional Walsh polynomials
through a commutative diagram involving matrices that transform between
them.
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