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Abst ract . The degree to which the genetic opt imizat ion process is
transparent is in part determined by the form of th e object ive func­
t ion. We develop two forms from first principles: polynomial forms
and basis sets. We characterize three function classes that are fully
easy for the genetic algorithm in terms of the polynomial represen­
tation. We generate functions of varying degrees of decepti veness in
terms of the representation provided by basis sets. We furth er show
the relationship between these representations and the more standard
Walsh polynomia ls.

1. In troduction

Many significant optimization problems are defined over finite spaces . These
include virtually all combinatorial optimiza t ion problems, many of whi ch are
extremely difficult. Genetic algorit hms (GAs) are on e general class of t ech­
niques proposed to solve such problems. Although GAs have been succes sful
in a var iety of applicatio ns- including the design of t urbine blades [14], com­
mun icat ion networks [6, 8]' VLSI design [5], and stack filt er design [7J-their
behavior is still not fully understood . Furthermore , the class of fun ct ions for
which genet ic algorithms are suite d has not been well charact erized.

Our work builds on and helps unify work of Bet hke [3], Go ldberg [9, 10],
Bridges and Goldberg [4], Holland [11], Liepins and Vose [13], and Battle and
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Vose [2J. At the suggest ion of Bar to , Bethke [3] used Walsh functions to be­
gin characterizing functions as easy or difficult for genetic opt imization. His
premise an d tha t of work following his was that easily opt imized functions
have prop erly aligned schemata utili ties. Alt hough he did not obtain a com­
plete cha rac te rizat ion , he developed sufficient condit ions for easy functions
and partial condit ions for hard functi ons. However , because his cond itions
are st ated in the transform space, they are not intuitive and are difficult to
underst and.

Goldberg [10J reviewed Walsh transform s and constructed a fully decep­
tive funct ion of order 3. Holland [11], recognizing that Walsh transform
analysis was a viable approach to characterizing the difficulty of problems,
int rodu ced the hyperp lane transform as a too l for simp lifying the ana lysis.
Br idges and Goldberg [4] introdu ced non-uniform Walsh transforms to an­
alyze the evolution of the (implicit) estimates of schemata ut ilit ies on the
basis of the cur rent population . Liepins and Vose [13] const ructed fully
deceptive funct ions of arbit rary order, and t hen exhibite d represent ational
change operators that rend ered them fully easy. Bat tl e and Vose [2J noted
that this change of represent ation could be reinterpreted as search thro ugh
M -schemat a space induced by M -crossovers.

This pap er cont inues the theme of these previous investi gations while
viewing decept ion from t he perspective offered by alte rnate representations.
T hree fun ct ion classes that are fully easy for the geneti c algorithm are char­
acterized in terms of polynomial forms. Polynomial forms are investigated in
the context of M -schemata analysis, and the relationship to Walsh polyno­
mials is developed. Basis sets are introduced and functions of various degrees
of decept iveness are generated in terms of them.

2 . D eception

The essence of deceptiveness stems from the observat ion tha t , in some sense,
schemata represent the direct ion of genet ic search . It follows from t he Schema
T heorem that the number of instan ces of a schema is expected to increase
in the next generat ion if it is of above average utili ty and is not disru pted
by crossover. T herefore, such schemata indi cate the area within the search
space that the GA explores, and hence it is important that , at some stage,
these schema contain the object of sea rch . Problems for which t his is not
t rue are called deceptive.

Although many of our techn iques extend to any finite cardina lity alpha­
bet , we limit our attention to fun ct ions defined over the collect ion n of length
£ bin ary st rings . We regard n as the vector space

where 2 2 denotes fini te field of integers modulo 2. The add itive group opera­
tion EEl is equivalent to component-wise "exclusive-or ." We think of vectors as
column vectors, bu t will for notational simplicity often display elements of n
as binary numbers, thus identifying n with the interval of integers [0, N - IJ.
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It is also conveni ent to sometimes regard a binary vector v as an incidence
vector, that is, as representing the set of subsc rip ts for which Vi = 1.

Defin it ion 1. Let M be an f! -by -f! m atrix over 2 2 , and let £ j M be the linear
span of those colum ns of M represented by th e incidence vector j.

Holland schemata corr espond to those subsets of II that can be repre­
sented as k ED £ j1 for some k, where 1 is the identity matrix. For exa mple,
the schema *11 has the form

*11 = {0l1 ,111} = 111 ED £1001

Those subsets {k ED £ jML,kEl! of II where M is some fixed invertible matrix
are referred to as M-schemata , or simply schemata. These generalizations of
Holland schemata were introduced and analyzed by Battle and Vose [2] to
interpret the representational transformations of Liepins and Vose [13].

Let the order o(j) of j be the number of Is in i , and let the order o(s)
of a schem a s be the codimension of s . In other words, if s = k ED £ jM ,
then o(s) = f! - oU) (for Holland schema, this reduces to t he number of fixed
positions) . Two different schemata s and s' are said to be compe ting if they
are translates of each ot her, that is, if s = k ED s' for some k.

D efinition 2 . Let f be a real-valu ed function on ll , and let s be a schema.
The utility uf(s) of s with respect to f is

uf(s) = _111'I:.f(k)
s kEs

D efinit ion 3. Let f be a function with global optima at {x*, .. .}. Then f
is deceptive of order m iff there exists x ~ {x*, ...} such th at , when s and s'
are competing schemata of order not greater than m,

Bethke [3] approached the analysis of deceptiveness by express ing Holland
schemata ut ilit ies in terms of Walsh transforms. Let 1 < d = 2b < n-l be the
des ired order of deceptiveness. Bethke's const ruct ion showed the existence
of a constant Cd < 0 such that the function f defined bel ow in terms of its
Walsh coefficients has maximum at x* = f and is deceptive of order d:

{

I if o(j) = 1
jj = Cd if o(j) = d + 1

o otherwise

His construction b egs several related questions. Do functions exist that
ar e deceptive of all orders d < n? Do funct ions exist that are deceptive of
order d < n - 1, but who se schemata ar e corr ectly aligned thereaft er? The
combinatorics of the Walsh tran sform analysis qui ckly become unwi eldy, and
these questions are better answered in other ways.
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Alt hough Bethke's const ruct ion leads to deceptive functions , they need
not be the most difficult ones. In the sense that all schemat a lead dia­
metrically away from the optimal, fully deceptive funct ions are maximally
deceptive.

Definition 4. Let f be a real-valued function on ~ with unique global max­
imum at x*, and let X C be the binary complement of x* (i.e. , 1" EB x*). The
function f is fully deceptive iff, whenever sand s' are compe ting schemata
of order less than n ,

The counterparts to fully deceptive fun ction s are fully easy functions.

D efinition 5. Let f be a real-valued function on ~ with unique optim um
at x*. T hen f is fully easy iff, whenever sand s' are competing schemata,

The first construction of a fully deceptive funct ion was given by Goldbe rg
[10] for fI. = 3. Liepins an d Vose [13] later gave a construction of a fully
deceptive function f for st ring lengths fI. > 2:

{

I - 1j(2 f1. ) if o(x) = 0
f(x) = 1 - (1 + o(x))j fl. if 0 < o(x) < fI.

1 if o(x) = fI.

Amazingly, this class of fully deceptive functions f can be transformed into
fully easy functions 9 via 9 = f 0 M , where M is the linear transform at ion
of ~ with matrix

{
0 for i = j =I- fI.

mij = 1 otherwi se

Battle and Vose [2] have explained this result by the observation that a
function may be fully deceptive with respect to Holland schemata and fully
easy with respect to M-schemata for appropriate M. Moreover, they show
how the choice of schemata that direct genetic search can be made using a
suitable linear t ransform at ion. We therefore consider deceptiveness in the
context of M -schemata in this paper .

3. Polynomial forms

A simp le inductive argument proves that any function f over ~ may be
expressed uniquely in the form

f( x ) = L aN II e~x
NC { l, ...,l } n EN
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where the vector en contains 1 in the nth column and 0 elsewhere , T denotes
tr anspose, and the aN are coefficient s. Regarding the vector x as having com­
ponents X l> . . . , Xe, we may view f as a polynomial in t he variab les X l> . . . , Xe .

The proo f is little more than the observation that

f (x ) f (Xl ,. " , Xe)

xd(Xl> " " Xe-l> 1) + (1 - Xe )f (Xl, " " Xe- l> 0)

Since f (Xl> . . . , Xe- l , l ) and f (Xl , . .. , Xe- l> O) have fewer variab les tha n
f (xl> .. . , xe), this reduct ion can be applied recursively to develop the re­
quired represent ation.

For example, the fitness function for the fully deceptive problem of Liepins
and Vose [13J for f = 3 has the representation

f( x) = ~ - ~Xl - ~X2 - ~ X3 + ~XI X2 + ~XIX3 + ~ X2X3 + ~XIX2X3

In ord er to relate polynomials to (Holland) schemata ut iliti es, it is convenient
to regard rl as a probability space. Let du be a normalized count ing measure
on Z2, and let dp. denote the product measur e df.1 = df.1e = du x . .. X du , f
factors.

Theorem 1. For any p olynomi al t, the utili ty of any Holland schema is ob­
tained by integrating f after evaluating at the fixed positions of the schema.

Proof. Let the Holland schema be s = k EEl L j I , and let f j (k , x ) be that
function of those variables indexed by the incidence vector j that is obtained
from f by inst an ciating the other variables Xi with k. , Not e that h(k ,x )
corresponds to f after evalua ting at the fixed pos itio ns of the schema s ,
and may be regarded as a funct ion over L jI , which repr esents the var iable
positions of s . We have

1 "f( ) T °(j ) " f (k In x)-I ILJ x = LJ 'lJ
S x Es XEL; T

T e2e- o(j ) L h(k,x )
x EL; T

r .L r f j (k , X) df.1o(j ) df.1e-o(j )
J (L ;J) J L; T

Jj j (k ,x) dp. •
T heorem 2. The ut ility of any Holland schema is obtained by evaluating f
at the schem a where * counts as ~ .

Proof. T his follows from Theorem 1 and the observation that , if we think
of xn(w) = er w as random vari ables on rl , then they are independent . Hence
for any N C {I , . . . ,f }

JIT Xn du. = IT (J Xn dV) = ~ IN I
n EN n EN
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Therefore, integrating Ii (k, x) has the affect of evaluating nonfixed posit ions
with !.•

For example, the utili ty of *10 for our fully deceptive pr oblem is given by

1(1 1 0) = §' _ H _ 11 - 10 + H 1 + H o + 11O + 1l 1O
2 " 6 22 2 2 62 62 6 6 2

1
"6

3 .1 Easy functions

Some classes of easy funct ions are trivial to const ruct. Constant functions are
one such example. What is subst ant ially more difficult is a characterization
of all easy (or fully easy) functions. Liepins and Vose [13] proved full easiness
for linear , monotone, and linearly dominat ed po lyn omi al fun ctions. These
result s are summarized below with new pro ofs that illustrate the power of
T heorem 2. To be thorough , we should note that , in some sense, the class
of linearly dominated polynomial fun ct ions was ant icipated by Bethke [3].
His T heorem 3.4.1 effect ively specifies a linear dominan ce condit ion in the
transform space.

Linear polynomials are defined as t hose wit h no cross term s:

Since lineari ty is invar iant and schemata utilit ies are permuted by any tr ans­
format ion of representat ion effected by t ranslation (mo dulo 2) , we may as­
sume that 1 is maximal at O. Suppose that , in some set of compet ing
schemata, the schema containing 0did not have maxi mal utility. Since utili­
t ies are comp uted by evaluation (where * counts as ! ), it follows that chang­
ing 0 to 1 in some position increases f. Hence some t erm has a positive
coefficient. T herefore, 1 could not be maximal at 0, which is a cont radict ion .

Monotone polynomials are defined as those having all coefficients of like
sign. If we assume t hat 0 is a maximum and that in some set of competing
schemata the schema containing 0 did not have maximal ut ility, then we
conclude as before that some term has a positive coefficient . Since all coeffi­
cients have like sign, this implies that all coefficients are positive. T herefore,
1 could not be maximal at 0, which is a cont radict ion. The case where f is
maximal is analogous .

Let 1 be a polynomial, and let L be the linear part of 1 (t hose terms
involving at most one varia ble). Linearly dominat ed polynomi als are defined
as those for which

I ~L I > I~(J - L)I
aXj aXj

Let 1 be linearl y dominated. Suppose that in some set of comp et ing sche­
mata , s contains a maximum m and does not have maximal util ity. Not e
that L is maximi zed at m , since the condit ion on par t ial derivatives would
otherwise imply that 1 is not maximized at m. Also, s is non-maximal when
utili t ies are computed with respect to L , since changing a 0 to a 1 increases
(decreases) 1 iff L is increased (decreased). We have therefore reduced the
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problem to a situation that has prev iously been shown inconsist ent: a linear
polyn omial (L) maximized at a point (m) that is contained in a non -maximal
schema (s).

3.2 Linear transformations of polynomial fo rm s

Since M -schemat a are t he images un der the linear transformation M of Hol­
lan d schemata [2], calculation of M-schemat a utilities for f coincide with
calculation of Holland schemata utili ties for f 0 M. T herefore, in principle
one could apply T heorem 2 to the polynomi al represent ati on of f 0 M . How­
ever, if we are solely int erested in the transformat ion of schemata utili t ies,
this can be compute d ot herwise. Let

g(x) = f(M( x)) = L aN II (VnX)
NC{l, ... ,f} nEN

where the nth row of M is Vn, and angle brackets denot e reduction modulo
2. Applyin g T heorem 1, the utility ug(s ) of the schema s = k EEl .ejI is

where id is the identity functi on . Observe t hat , for any fun ction h, an appli­
cation of Fubini 's t heorem [1] yields

j (xi + ...) h(Xi+1J " ') dp, = ~ j h(xi+1J"' ) dp,

Next , notice that any produ ct of modulo 2 sums is eit her 0 or may be
put in the form

(Xi+ ...)h(Xi+l " " )

where h(Xi+l"") is also a pr odu ct of modulo 2 sums and is it self in thi s
form ; simply equate each sum to 1 and red uce (in D) the result ing syste m to
triangular form. T his correspo nds to iteratively app lying the reduction

(X + y )(x + z) = (x + y )(l + Y + z)

In other words, the integral of a prod uct of modulo 2 sums is 0 if the system
that result s from equat ing each sum to 1 is inconsistent , and is ~ to the
number of nontrivial factors ot herwise.

For examp le, consider our pr evious example f and t he schema s = M
(*10) where

M (~~~)
III
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T he uti lity uf (s) is

J~ - ~( 1 + 0) - ~(Xl + 0) - ~ (X l + 1 + 0) + ~ (1 + 0) (Xl + 0)+

+ ~ (1 + 0) (Xl + 1 + 0) + ~ (Xl + 0) (Xl + 1 + 0)+

+ ~ (1 + 0) (Xl + 0) (Xl + 1 + 0) d/-l

which simp lifies to

~ _!_ ! _ ! + ~ + ~ + 0 + 0 = 0
6 2 4 4 12 12

3.3 Walsh transforms

Since there are differing account s of Walsh transforms , we include a br ief
introduct ion to fix notation.

T he set of homomorphisms from n into the unit circle in the complex
plane forms a group un der multiplication , called t he character group. Since
any element X of n is self-inverse (x EB x = 0), the ran ge of any group cha rac te r
lies in the set {I , - I}. Moreover , a cha racter is uni quely determined by the
subgroup it maps into 1. Define ui, by ui, (Xl ' .. Xi) = ( - 1y', and for j in
the power set J of {I , . . . ,f }, define Wj(x) = ITiE jWi(X),

Since the collect ion of 2£ functions {Wj }jEJ are dist inct group char acters ,
a theor em of Artin (see Ref. [12]) imp lies they are linearl y ind ependent and
therefore form a basis for. the space of fun ctions over n. In fact , this basis
corres ponds to the famil y of Walsh functions defined by wj( k) = (- 1)i'\
wher e the integers j and k (0 ::::: i ,k ::::: f - 1) are identified wit h element s of
n thro ugh their binary repr esent ation , and j . k is the inner pro duct of the
bit strings. T he corre spondence is through the identi ficat ion of an incidence
vector j with a set j E 1.

T he Walsh fun ct ions have several useful properties. For all i, i .k En,

1. Wi(j) = wj(i)

2. wi(k) wj(k) = wi(j) j (k )

3. L,kEn Wj(k )Wi(k ) = { ~£ if i =I j
if 2 = J

T he first and second assertions follow from the repr esent ation ui, (k) = (- 1)i.k.
T he third follows from the second an d the observat ion that i EB j = 0 iff i = j .
Moreover , if i =I i , t hen

I{k E n : k - (i EBj) is oddj] = I{k E n: k · (i EBj) is even}I

D efi ni t ion 6. Th e Walsh transform j of a function f : n --+ R is

j (j ) = T £L f (k ) Wj(k)
kE n
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Let XN(Xl . . . Xi ) = ITnEN Xn. The Walsh transform of XN is given by:

Lemma 1.

if the incidence vector j
represents a subset of N
otherwise

Proof. T he terms of

~ (-1 )jk II kn

kEn nEN

ar e nonzero iff those bits of k indexed by N are all 1, and there are 2£-I NI
such terms . If the incidence vector j represents a subset of N , then all terms
are (-1 )o(j). If i . = 1 and i rt- N , then these term are partit ioned by the
value of k; ; half are 1 and half are -1. •

Definition 7. The Walsh polynomial j of the polynomial

f (x ) = ~ aN II e~x
NC{l, ..,£} nEN

where f(x) = J(y ) and Y = f - 2x.

1S J(y) = ~ PN II e~y
NC {l ,...,£} nE N

Theorem 3. The Walsh coefficient f(j) is equal to that coefficient PJ of j
having a subscript corresponding to the incidence vector j. That is,

j(Yl ' . .. ,Y£) = ~ f(j) II y~n
j n

Proof. Since the Walsh transform is linear , it suffices to consider the funct ion
XN . Since x = ~( f - y), we have

XN(y) = II a(I -Yn) } = ~(-I)IJIT INIIIYj
nEN Jc N jEJ

Appealing to Lemma 1 finishes the proof. •
Definitio n 7 occurs in Goldb erg [10], where the representation provided

by Theorem 3 is used to define Walsh coefficients . Not e that the Walsh
polynomial may also be obtained directly (as was the polynomial j) via the
reduct ion

j(y) .1(Yl"" ,Y£)

~( 1 y£)j(Yl" ' " YH , -1) + ~( 1 + y£)J(Yl , " " YH , 1)

Walsh po lynomials have several desirable properties:

1. Fitness values may be obtained by evaluat ion (f(x) = J(y)).
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2. Schema utilities may be obtain ed by evaluation (Theorem 2 and f(x) =
](y)).

3. Walsh coefficients may be obtained by insp ect ion (Theorem 3).

4. Walsh po lynomials transform nicely under linear operators on ~ .

This last point is clarified by Theorem 4 below. As pr eviously noted, M­
schemata uti lit ies of f can be reduced to Holland utiliti es of f 0 M . It is
therefore of interest to compute the transformation of Walsh po lynomials
under linear maps. Since Walsh po lynomials have Walsh coefficients, it suf­
fices to consider how the Walsh transform react s with linear operators .

Lemma 2. Let M be a linear operator on~. Th en (j 0 M)(j)
j((M-1)Tj).

Proof. This follows from the observation that

L f(M k) (_I)jk
kED.

L f(k) (_ I)jM-'k
kED.

L f(k) (_I)CCM- ') Tj) k
kED. •

Theorem 4. If M is an invertible linear operator on ~ , th en th e Walsh
polynomial corresponding to f 0 M is

L j(j) II«:>
j n

Proof. By T heorem 3 and Lemma 2, the Walsh polynomial corresponding
to f 0 M is

n

L j((M-1fj) II y;,n
j n

L j(j) II y~CCM- l)T)-lj)n

n

The proof is finished by noting that (M- 1f = (MT) -l , and that reducing
the exponent of Yn modulo 2 has no effect since Yn E {I , - I }. •

To illust rate, the Walsh polynomial ](y) for our previous example f( x)
may be obtained through the subst itut ion x = ~(f - y) , which afte r simpli­
ficat ion yields

](y) = *+ -isYl + -isY2+ -isY3 + fBYIY2 + fB YIY3 + fBY2Y3 - -!sYIY2Y3

The utili ty of the Holland schema dO is obtained by evaluation of either f
or 1:

f(~, 1,0) = ](0, -1 , 1) = *--is + -is - fB = ~
I
I
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The Walsh polynomial g for 9 = f 0 M (where M is our exa mple from Section
4.2) results from mapping the monomials of j by M T :

Y1 --., Y2Y3
Y2 --., Y1Y3
Y3 --., Y1Y2Y3

Y1Y2 --., Y1Y2
Y1Y3 --., Y1
Y2Y3 --., Y2

Y1Y2Y3 --., Y3
producing

- ( ) 17 3 3 7 3 19 Y1 ,Y2 ,Y3 = 4s+ 16Y1+ 16Y2- 4sY3+ 16Y1Y2+ 4sY1Y3
+-isY2Y3+ -isY1Y2Y3

If s is the image under M of t he Hollan d schema dO , then evaluation gives
the ut ility

uf (s) = ug (*10) = g(O, - 1, 1) = *-16 - -Is - -is = 0

4. B asis set s

Fully easy and fully difficult fun ctions are readily generated in terms of the
representation provided by polynomial forms. Const ruct ing functions of in­
termediate difficulty is not as straightforward . We propose a different rep­
resent at ion , basis sets, which is better suit ed to the ana lysis of intermediate
difficulty.

In this sect ion we will use N to represent the number of elements in the
set n of length .e binary st rings.

4 .1 The uniform case

D efinition 8. A collection S of subsets of n is a basis iff the incidence
vectors that represent the elemen ts of S form a basis for R N.

Theorem 5. Let S be a basis, and U a real-valued function defined on S .
There exists a unique function f : n ----> R such tha t

s E S ==}
1
-II L f (x) = u(s)

S xEs

Proof. Let A be the matrix having as rows the incidence vectors correspond­
ing to element s of S , let f be the column vector of required funct ion values,
and let U be the column vector of given values. The linear system relating
function values to schemata ut iliti es is

D Af = U

where D is a diagona l matrix containing Isl-1 for s E S. Hence f is uniquely
determined by f = A- 1D- 1u . •
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Definition 9. Le t x be a point in n. A schemata path a t x is a nested
sequence of schem ata x = Hn C . . . C Hi, = n containing x such that
o(Hi ) = i .

Let us now return to the concept of deceptiveness . Intuitively, decept ive­
ness occurs whenever a "good path" leads to a "bad point" or a "bad path"
leads to a "goo d point."

Definition 10 . Let x E n and let 5 be a schemata path at x. Then f
is in creasing a t x along 5 of order (a, b) iff, whenever Hand H ' are two
schemat a in 5 ,

a :::; o(H) < o(H ') :::; b ===} l1f(H ) < l1f(H ')

If a = 0, we shall use th e term "increasing along 5 oforder b." The definit ions
for decreasing along 5 are defined analogously.

Observe that fully deceptive funct ions have a unique op t imal x* and are
increasing at XC of order n - 1 along all schemata paths . Fully easy fun c­
tions have a unique optimal x* and ar e increasing at x* of order n along all
schemata paths. This follows from the relation

where the H , ar e any two schemata of order 1 + o(H ) t hat parti tion H.

Lemma 3. The collection 5 of all Holland schemata containing (5 is a basis.

Proof. For s E 5 , replace each °in s with 1, each * in s with 0, and interpr et
the result as a binary integer. Using the reducti on

let f be that po lynomial that map s the binary integer representing s into the
utility of s . By const ruct ion, evaluat ing j correct ly computes the utili ti es of
schemata in 5 ; hence j may be regarded as a Walsh polynomial. Because
the function f (x) corresponding to the Walsh polynomial j(y) exists and is
unique (it may be computed via the substit ut ion y = f - 2x), the linear sys­
tem relating fun cti on values to schemata utilities has a un ique solut ion . Since
the coefficients of that linear syst em are the incidence vecto rs corresponding
to the schemata in 5 , it follows that 5 is a basis. •

T heorem 6. Let x E n. Th e collection of all M -schem ata containing x (for
fixed M) is a basis.
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P roof. Let o be the matrix correspo nding to the permutation that sends
the jth component of a bin ary vector to the j ffi xth position , where x E n
is fixed. If v is the incidence vector for a Holland schema s, it follows that
rJV is the incidence vector for the schema x ffi s . Therefore the incidence
vectors associate d with a t ranslation (by x in n ) of a basis are obtained
by mapping the incidence vectors associated with that basis by a . Since
permutation matrices are invertible, they preserve linear indep end ence; and
since x was arbit rary, it can tr anslate the basis of Lemma 3 to any point
of n. Hence, the collection of all Holland schemata containing x is a basis.
Finally, note that mapping the collect ion of Holland schemata by an inver tible
linear transformation M also indu ces a permutation of the component s of the
correspond ing incidence vectors. •

We can now t urn our at tention to the existe nce of classes of fun ct ions of
intermediate deceptiveness. We assume that the funct ions of interest have a
unique optimal that wit hout loss of generality is at O. We prove each of the
following classes are nonempty:

Cl. Functions wit h several schemata paths at t he optimal; some of them
increasing of order n , and ot hers decreasing of orde r n - 1.

C2. Funct ions all of whose schemata paths at the opt imal are increasing for
some order d < n - 1 and decreasing thereafter (except at order n) .

C 3. Funct ions all of whose schemata paths at the optimal are decreasing for
some order d < n - 1 and increasing thereafte r .

These classes are interest ing becau se real problems could pr esumab ly have
some paths that are deceptive and ot her paths that are not , or could have
some regions of deceptiveness eit her pr eceded or followed by regions th at are
nondeceptive. Intuitively, one might expec t that the dens ity of nondeceptive
paths or the depth of deceptiveness is related to whet her a GA discovers an
optimum.

The proof that these classes are nonempty follows from the observation
that each is defined in terms of schemata paths at the single po int O. By
T heorem 6, the collection of all schemata at a point forms a basis, hence the
schemata involved in the definit ions of these classes are linearly independ ent .
It follows from T heorem 5 that assigning arbit rary utilit ies to any set of
linearly independent schemata will induce a fitne ss functi on consist ent wit h
the given utilit ies.

4 .2 T he non-uniform case

T he previous section dealt with schemata in a un iform fash ion in that utilit ies
were calculated wit h respect to the ent ire space n.

In analogy wit h how the non-u niform Walsh transform can take account
of bias int roduced by non -uniform populations, the met hod of Basis Sets has
a nat ur al generalization that incorporates these sam e effects .
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Let L be an N -by-N diagonal matrix wit h ith entry equa l to the number
of occurre nces of i in the population P , let S be a basis, and let A be the
matrix having as rows the incidence vectors corres ponding to elements of
S . Let D be a diagonal matri x containing the reciprocals of the number of
instan ces (which may be zero) in P of schemata s E S . The linear system
relating t he vector f of function values to the vector u of schemata utilities
with respec t to P is

DALf = u

The rows containing division by zero corres pond to schemata not repr esented
in the population , hence these rows and the corres ponding components of u
are left undefined . Basis sets in the non-uniform case are ana logous to the
uniform case, the chief difference being that the consiste ncy of the system
DAL f = u replaces the invertibility of the matrix A.

5. R epresent ational r elationships

The following diagram summari zes the relationships between the repr esenta­
tions discussed in this paper.

Here f denotes the vector of fun ction values, I, = f (i ), p denot es the coeffi­
cient vector of t he polynomial repr esentation of t,

n

Pdenot es the coefficient vector of t he Walsh polynomial, Pi = j(j ), and u
denotes a vecto r of non-uniform schema utilities for the basis repr esent ed
by an incidence matrix A and any population corr esponding to consistent ly
chosen matrices D and L . The matrix W repr esents the Walsh transform ,

and T is the evaluat ion matrix

T · = II iint,l n
n

where 0° is int erpreted as 1, and i, j E {O, . .. , N - I} .
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If g is obtained from f t hro ugh a translation by t of the domain st

g(x) = f (x ffit )

then

1
-IIL g(k)

S k Es

u f( s ffi t)

1
-IIL f (k ffi t )

S k Es

1
-I I L f (k)

S kE s$t

It follows that the relationships between the schemata ut ilit ies wit h respect to
g are completely isomorphic to those with respect to f . From the perspect ive
of schemata analysis, if we are interested in the basis of those schemata
containing some element x of st, we may therefore assume x = O.

Also, since M -schemata utilit ies for f coincide wit h Hollan d schemata
utilit ies for g = f 0 M , we may as well assume that it is Hollan d schemata
that ar e of interest.

T hrough these reducti ons, we may assume A = T . T his is a consequence
of the following:

Lemma 4 . Th e basis of all Holland schemata containing 0has as incidence
matrix the evaluation matrix T . Moreover, the i th row T; of T is the incidence
vector corresponding to that schema obtained from i by replacing each 1 in
i with *.

Proof. The mat rix T is invertible since f uniquely determines p (see the
diagram above). T he schemata represent ed by T all contain 0, since

Ti,o = IT i~n = 1
n

To see that the ith row of T represents the Hollan d schema obtained from i
by replacing each 1 in i with *, note that in = 0 ==} i; = 0 is a necessar y
and sufficient condit ion for 1i,j = 1. •

Let J denot e the n-by-n permutat ion matrix that reverses order ,

J _ {I ifl + i + j = n
',J - 0 otherwise

Theorem 7. If U represents uniform util it ies for the basis of Holland sche­
mata containing 0, then the following diagram commutes:

p-- - - - - +
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Proof. Let [xm:::: denot e xwhere all occurren ces of yl, . .. have been repl aced
by 2 1 , . . .. We have

(DTf); u ; = U f ([i]; ) = p( [[i ] ; l~:~~ ,o) = p( [i]~ :6) = (Tp)[i]O"
1,0

(JTp) i

T he first equality is from the diagram, the second is from Lemma 4, and the
t hird follows from Theor em 2 and the definition of the Walsh po lynomial.
T he fourth equality is throug h simplification , the fifth is by construct ion
since T was designed to evaluate po lynomials , and the last follows from the
observation that

[xJ ~ : 6 = 2£ - 1 - x

T his establishes the commutivity of the lower triangle . The commutivity of
the right and left t riangles is by insp ect ion . •

6. Summary

We have investigated three forms for the objective fun ction of a genetic al­
gorithm: polynomial forms, basis sets , and Walsh po lynomials.

Our motivating perspective has been deceptiveness. We defined var ious
degrees of deceptiveness and , since representational changes can affect de­
ceptiveness, we provided a framework that en compasses the representational
change operators of Liepins and Vose [13Jby means of M-schemata.

We illu st rat ed t he use of polynomial forms by using them to characterize
three classes of fully easy functions. We applied basis set s to the construction
of fun ct ions with specified predet ermined difficulty. We demonstrated a lin­
ear interrelationsh ip betwe en these forms and traditional Walsh po lynomials
through a commutat ive diagram involving matrices that transform between
them .

References

[1] R. G. Bartle, Th e Elements of Integration (Wiley, New York, 1966).

[2] D. Battle and M. D. Vose, "Isomorphisms of Genetic Algorithms," Workshop
on the Foundations of Genet ic Algorit hms and Classifier Systems (Blooming­
ton , Indiana , July 1990).

[3] A. D. Bethke, "Genet ic Algorithms as Function Optimizers" (Doctoral disser­
tation, University of Michigan) , Dissertation Abstracts International, 41(9)
(1988) 3503B (University Microfilms No. 8106101).

[4] C. L. Bridges and D. E. Goldberg, "A Note on the Non-un iform Walsh-Schema
Th eorem," TCGA Report No. 89004 (University of Alabama, Th e Clearing­
house for Genetic Algorithms, Tuscaloosa, 1989).

[5] J . P. Cohoon and W. D. Paris, "Genetic P lacement ," Proceedings of the IEEE
Intern ational Conference on Computer-Aided Design (1986), 422-425 .



I

Polynomials, Basis Sets, and Deceptiveness in GeAetic Algorithms 61

[6] S. Coombs and L. Davis (1987 ), "Genetic Algorithms and Communication
Link Speed Design : Constraints and Operators," Genetic Algorithms and
Th eir App lications: Proceedings of the Second International Conference on
Genetic Algorithms (1987), 257-260.

[7] C.-H.Chu, "A Gene t ic Algor it hm Approach to the Config uration of Stack F il­
ters," in Schaffer (ed.), Gene tic Algorithms (Morgan Kaufmann , San Mateo,
1989), 219-224.

[8] L. Davis and S. Coombs (1987 ), "Genet ic Algor ithms and Commun ication
Link Speed Design: T heoret ical Considerations," Genetic A lgorithms and
Their Applicati ons: Proceedings of the Second Int erna tional Conference on
Gene tic Algorithms (1987), 252-256.

[9] D. E. Goldberg, "Genetic Algorithms and Walsh Functions: Part I, a Gentle
Int roduction ," Comp lex Systems, 3 (1989) 129-152.

[10] D. E. Goldberg, "Genetic Algor it hms and Walsh Functions: Part II , Cecep­
t ion and it s Analysis," Comp lex Systems, 3 (1989) 153-171.

[11] J. H. Holland, "Searching Non linear Functions for High Values," Applied
Math ematics and Computation, 32 (1989) 225-274.

[12] S. Lang, Algebra (Addison Wesley, Reading, Mass. , 1971).

[13] G . E. Liepin s and M. D. Vose, "Representational Issues in Genet ic Optimiza­
tion ," Jou rnal of Experim ental and Theoretical Artificial In telligence, 2(2)
(1990) 4-30.

[14] D. J. Powell, S. S. Tong , and M. M. Skoln ick, "EnGENEous Domain Inde­
pend ent Machine Learning for Design Optimization ," Proceedings of the Third
Intern ational Conference on Gene tic Algorithms (1989), 151- 169.




