
Comp lex Syst ems 5 (1991) 63- 88

Test ing Parallel Simulators for Two-Dimensional
Lattice-Gas Automata*

Richard Squier
Kenneth Steiglitz

Department of Computer Science, Princeton University,
Princeton, New Jersey 08544

Abstract . We describe a test method for lattice-gas automata of
the type introduced by Fr isch , Hasslacher , and P omeau. The test
met hod consist s of inserting test patterns into the initial state of the
auto maton and using a graphics display to detect errors. The test
pattern s are care fully construct ed limit cycles tha t are disrupted by
err ors occurr ing at any level of t he simulator system. T he pat tern s
can be run ind ependently to test t he sys te m for debugging purposes,
or they can be run as sub-simulations embedded in a larger la t tice-gas
simulat ion to det ect fault s at runtime. We describ e the use of this
metho d on a prototype par allel machine for lat t ice-gas simulat ions,
and discuss the range of systems that can make use of this type of
test method. T he test patterns det ect all significant one-bit err ors.
We include experimental resul ts that indica te mult ip le-bit err ors are
unli kely to escape det ection .

1. Introduct ion

Since Frisch , Hasslacher , and Pomeau [1, 2] int rodu ced the use of latt ice­
gas auto mata to simulate hydrodyn amics, their FHP models [3] and vari ants
have been used in many simulat ion studies. Some simulations have used
commercial supercomputers or par allel pro cessors (see references [4-13], for
example) and ot hers have used special-purpose hardware [14-16]. Because
it is not yet known how well lat tice-gas automat a model physical syste ms,
there has been interest in comparing lat ti ce-gas simulations with theoret i­
cal and experimental result s. The validity of such comparisons depends on
the correc tness of the imp lement ation . (T he situat ion is illustrated in fig­
ure 1.) It is not usually possible to establish independently the correctness of
an imp lementation because of the comp lexity of the operations used in the
implementation. For instance, the complexity of floating-point arithmetic

•A condensed version of this paper was delivered at the Internat ional Conference on
Applicat ion Specific Array Processors, Prin cet on, New Jersey, September 1990.

64 Richard Squier and Kenneth Steiglit z

Implementation Reality
. (b)

(c)

Figure 1: T he solid line (b) shows the comparison we really make when
we compare a computer model of a sys te m to expe rimental results for
that system. We would like to say that th e comparison we are making
is effectively between the model and t he physical experiment (das hed
line (c)) . The dotted line (a) suggests the missing piece of information
that would allow us to say this wit h convict ion: the kn owledge of th e
correctness of th e implemen ta tion .

makes verifying the correctness of an implement ation of a finite-difference
scheme for integra ting the Navier-Stokes equat ions imp ossible in practice.
The state of affairs for lattice-gas simulat ions is quite different: the data
movement and logic operations are simple. It is therefore possible and pr ac­
tical for the correct ness of an implement ation of a latt ice-gas automaton to
be test ed exhaust ively before runtime and monitored during runtime.

We became interested in verifying the funct ional correctness of a lattice­
gas simulato r while running fluid flow simulat ions on a custom VLSI pro­
cessor, LGM-1 [16], buil t here as an exper imental prototype. The part icular
simulat ion pro ject we und ertook involved comparing our simulation results
for a specific flow problem with the result s from other methods for th e same
problem. In making t hese comparisons we discovered that it was impossible
to det ermine whether th e discrepancies we saw were caused by the differ­
ences between th e methods or by artifacts of incorrect implementat ion of our
system. Fur thermore, interspersed with simulat ions we were also modify ing
both the hardware and software of th e system, requiring a concrete test ­
ing method for deb ugging purposes . From this experience we realized th at a
complete syst em test ing met hod was needed that could be run independently
of any simulations to verify functional correc tness of the simulator system.

Our exp erience with simulations on LGM-1 also convinced us that system
functional test ing was not sufficient : we also needed runtim e fault detection.
We often ran simulations cont inuously for 24, 36, and more hours, and dis­
covered that, aside from the erro rs caused by incorrect implementation of
th e algorithm, th ere were other sources of error of a mor e transient nature.
For instance, we foun d that during long runs the host system or th e network
facility could caus e err ors, even though the system did not crash and th e
simulat ion ran to complet ion . Similarly, temporary failure of custom chips,
pin connections , and so forth, could occur during a simulat ion, and not be
detectable either before the run or after its completion. Although we real­
ized that detecting every transient error during simulation was probably not
possible, we guessed that the most likely kind of tr ansient error was not th e

Testing Parallel Simulators 65

random single-bit error, but failur es th at would affect large pieces of th e sim­
ulation, large either in t ime or space . We th erefore began to look for ways
of embedding runtime faul t detection in the initial state of th e simulated
automaton.

In this paper we describe a testing method for lat t ice-gas simu lators. The
method can be categorized as specification-based system-level funct ional test ­
ing [17] because we use the specification of th e behavior of a lat tice gas to
derive inpu t data that tests th e correc t functional opera tion of a simulator
system. This means we do not do any modeling of hardware faul ts although
the test method is used to test custom VLSI chips of a special-purpose hard­
war e simulator. Our approach consists of using graphic display of the lat tice­
gas state to detect err ors in the evolut ion of cyclic sub-latt ices. The collect ion
of sub-lattices exhaustively exercises the updat e logic of the simulator , and
is built from a small libr ary of hand-coded test pat tern templat es. The test
system consists of the template library, a small function library for crea ting
pat terns in a lat t ice-gas state , and a library of routines for image manipula­
tion and display. In pract ice, we have used th e test method in a "prevention
oriented" manner [18] in the construction of the tes ting facilities themselves.
That is, during construct ion of the temp lat e libr ary, image manipulation ,
display software, and a simulator for th e special-purpose hardware, th e te st
patterns were used t o prevent, detect , and debug implementat ion err ors . Us­
ing a "destruction oriente d" approach we have used the test method to t est
custom VLSI chips, custom circuit board s, and general control software of
the special-purpose syste m. Finally, we have used the testing facility to em­
bed test patterns in the. inpu t dat a of la ttice-gas simulat ions used in fluid
flow experiments to indicat e simulator syste m funct iona l runt ime errors .

The remainder of t he paper is organized as follows. Sect ion 2 briefly
describes the FHP-III and LGM-l lat t ice-gas models. Section 3 int roduces
some term inology and definitions. Section 4 gives a general description of the
test ensemble and some descript ion of th e methods used in its construction.
Section 5 gives a detailed description of a single test pattern templ at e. Sec­
tion 6 describes th e construction of specific collect ions of test patterns that
const itut e the test ensemble. Section 7 discusses th e err or det ect ion and ex­
perimental results for mult iple-error coverage. Section 8 discusses the issue
of applying the test method to different architect ures . Section 9 contains a
summary of our experiences using t he test method, and our conclusions.

2. Lat t ice-gas aut om ata

Our version of a lat tice gas is based on the FHP-III model. As described in [3]
this typ e of la tt ice-gas au to maton consists of a two-d imensiona l lat tice graph
[19] and a set of update rules for variables associated with each node in t he
lat tice graph. The lat tice is the triangular lat tice on the plane generated by
th e uni t vectors e l = (1,0) and ez = (1, 7r / 3) , in polar coordinates . The edges
of th e graph connect near est neighbors in the lat tice (see figure 2) . In cellular­
automata terms [20, 21] each site toget her with its variab les constit utes a

66 Richard Squier and Kenneth Steiglitz

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(a)

L
(b)

e l

Figure 2: (a) A finite lat t ice generated by the unit vectors e l and e2 .
(b) T he lat t ice-graph produced from (a) by nearest neighbor connec­
tions.

1*4
6 5

F igure 3: The seven velocity vectors at a lat ti ce sit e. The seventh is
represented by a circle and ha s zero magnitude.

cell of t he automaton; the edges define the cell' s neighborhood. Each cell
has eight bits of state informat ion: seven one-bit dynamical variab les and
one bit defining the type of sit e. In the lattice-gas view, at each site each
incident edge has an associate d variable representing the presence or abse nce
of a un it mass part icle with un it velocity dir ect ed toward the site 's neighbor
along that edge (see figur e 3). T he seventh dynamical variab le encodes the
pr esence or absence of a un it mass particle with zero velocity pos it ioned at
the lat ti ce sit e, called a rest particle . The eighth bit encodes the pr esence
of a barri er at the latti ce sit e. With this int erp retation of the var iables the
update ru le is designed so that , letting the edges have unit length, the latti ce
is populat ed with particles traveling along graph edges and colliding at lat ti ce
sites (see figur e 4).

A lat t ice-gas automaton evolves by synchronously updating the state of
every cell of the automaton: the nex t state of a cell is determined by the
states of it s neighbors and its own state, and the automaton's update ru le
tab le. For the lattice gases the automaton updat e rule table is called a col­
lision rule set, the initial configuration of st ates determining a cell' s new
state is called a collision , the next state ent ry in the ru le table is called the
result of the collision , and the combinat ion of a collision and its resu lt is
called a collision rule. A particular lat ti ce gas is defined by specifying a col­
lision rule set that gives the result s of every possible collision. T hese rul es can

Testing Parallel Simulators

........

. .. .

b~
4lJ..·@lQl·.ffi- .

.JID ~.

(a)

\
(c)

67

C\)ill
. ~~ ~.~

< ~ ·· ~ ~ ILI [QJE] p ..4II .
~ i "' I
~ " l"':"

, tID

(b)

----.
(d)

Figure 4: (a) The state of a lattice site and associated one-bit vari­
ables. r represents a rest part icle, b a barr ier site. (b) The input
variables that affect the next state of the lattice site. (c) Shorthand
notation for the state of a lattice site. (d) Short hand notation for the
input to the next-state comput ation. Input state (d) followed by site
state (c) represents an update rule: (c) is the next state of the lattice
site after an input of (d).

be thought of as ru les about the act ion of particles (vari abl es set to one) or
equivalent ly as rul es about the act ion of holes (variables set to zero), as they
collide at latt ice sites . In an FHP gas, particle collisions generally conserve
momentum and mass, and are symmet ric with respect to rotation by integer
multiples of 7l'/3 , and time reversal ; and for the F HP-II I gas, collisions are
also symmetric wit h respect to hole/ par ti cle duality (comp lement ation of the
dynami cal var iables) .

T hese symmetry pr operties and hole/ part icle duality make it possible to
define a collision rule set in a compact way: for each equivalence class of col­
lisions induced by equivalence under duality and rotation tran sformations,
pick one example, called a canonical collision, and show its next-st ate result .
T he combinat ion of canonical collision and result is called a canonical col­
lision rule. There are 28 canonical collisions for the eight-bit FHP-III and
LGM-l lat ti ce gases, and figure 5 shows the fourteen "non-barr ier" canonical
collision ru les for these two automata. Using the list of fourteen canonical
collisions , Co through C13 , all 256 possible collisions for the LGM or FHP-II I

68 Richard Squier and Kenneth Steiglitz

Co llisions FHP-III LGM-l

Co ·

Cl ' 0

C2 · ~'./

Ca · -0

C4 ' - --E

· f
Cs· ~::~ . .

C6· "~::.: .

C7 · ~.~

Cs · -c!
, .

Cg. -13

. .'.:~

(j

r:

dual only

d ual on ly

for all i

r

..~

x

r

--EJ

\'

·~ · · I

.. ><..

\1
.....~ ..

~X

. ...~

X
..~
~.

~

,
~::< --E

~ ..._ ." .
r
.!"_....
. "

0--3» [2]cf·

ClO , Cn t·

C12·

Cla·

Figure 5: T he ru le sets for the FHP-III and LGM-l gases. T he first
column shows all canonical collisions , Co through C1a, and a single
example of the barrier version , cf. The second colum n shows the
resu lt s for t he FHP-III gas. The LGM-l ru les are shown only in
the cases where they differ from the FHP-III gas . (t) T he canonical
collisions ClO and Cn are reflect ions of each ot her t hro ugh a horizontal
line. Shown is the canonical ru le for ClO .

Testing Parallel Simu lators 69

~ . "

C2(1)

~ .:

C2(2)

'\ I
·· O ~

I ,

C;(l)

.... /

C2(3)

- 0

b
C2(1)

.; : .~

C2(4)

\

C2(S)

" Iq ~ -

I \

(Cg(l)) *

..;/ ...

C2(6)

Figure 6: The actual collisions generated by canonical collision C2.

There are 24 total: six rotations for each of C2, c2, c~, and (c~) *.

gases can be generated by applying the symmetry tr ansformat ions plus bar­
rier presence or absence. When the barriers implement the "non-slip bound­
ary condit ion," the remaining 14 ru les can be stated in a single sentence : all
particles colliding at a barr ier site reverse their direction of travel, and the
last row of figure 5 shows a generic example.

The second column of figure 5 shows the results of the canonical collisions
for th e FHP-II I gas . Where there are two result ent ries for a single canonical
collision, we mean that the two possible result s occur equally often . For
instance, figure 5 shows twopossible result s for th e C4 collision, which LGM-1
implements by using one result on even rows and th e other result on odd rows.

The th ird column of figure 5 defines th e LGM-1 gas . Only th e results th at
differ from FHP-II I are shown. T he C3 and Cs result s are different for the
dual cases only, while the Ca , ClO, and Cll results differ for both non-du al and
dual cases . Because of the lack of dual symmetry in the C3 and Cs collisions ,
we have been mildly decept ive in figur e 5: the C3 and Cs collision classes are
not equivalence classes for the LGM- 1 gas. Nevertheless, we shall cont inue
to speak of them as if they were, pointing out the difference when necessary.

There is one ot her difference in the LGM-1 ru les: a rest part icle at a
barrier site van ishes. This violates conservation of mass, but does not change
the behavior of the lat tice gas . Because th is last property of the LGM-1 gas
creates some difficulties in test ing, we will have more to say about this when
we discuss the const ruct ion of a complet e test set for LGM-l.

The canonical collisions can be used to specify a part icular collision by
providing the rotation, du ality, and barrier status. The collisions listed in
figure 5 are presumed in rotation 1, written Ck(l) for collision Ck . Clockwise
rotat ion by increments of 7f / 3 are writ t en Ck(2) , Ck(3) , . . . , Ck(6) ' The dual of a
collision is written ck, and the presence of a barrier is written c%. For example,
figure 6 shows that canonical collision C2 genera tes 24 distinct collisions: six
rot ations, their duals, six rotat ions with barr iers, and their duals.

70 Richard Squier and Kenneth Steiglitz

3. Some definitions and notation

Before beginning a discussion of the test mechanisms, we need to est ab lish
some definiti ons and convent ions. As we described above , a parti cular lat ti ce­
gas automato n consists of a rule set, a lattice-graph, and the variables asso­
ciated with the elements of the lat ti ce-graph. T hroughout the following we
will assume the rule set and the form of the lattice-graph are both fixed and
corres pond to the LGM-l lattice gas unl ess ot herwise state d . Consequently,
we may think of any such aut omaton as a system of individ ual particles
that obey the collision ru les and exist on a lattice-graph. An inst ance of a
lattice-graph tog ether wit h a spec ificatio n of the barrier sites we call a space,
a combination of a collect ion of part icles and a space we call a system, and
an arrangement of part icles in the space we call a st ate of the system. With
each system there is an associated time t defined by assum ing some spec ified
initial arrangement of a syste m assigned t ime t = 0, and each subsequent
update of the automaton state increases t by one. A subsystem may have a
local time tlocal with an origin different from t he global t ime origin . We writ e
local t ime as a fun ction of global ti me: tlocal(t) . T he idea is that an initial
state of a syste m is built up from smaller systems whose states at global
time t = 0 are achieved by starti ng the local systems in th eir initi al st ates
and running them forward or backward to tlocal(O) . T hus, a local system can
have it s time origin shifte d from the global clock's t ime origin . A system is
termed cyclic if in its evolution it ever repeats a state. A system is said to
be closed if boundaries are placed in such a way that particles outs ide the
system can never enter. When we wish to indi cate the state of a syst em r
at time t we write r (t). For the period of r we write Dr.

A collision is said to occur at tim e t in system r if the collision exists
at some sit e in r(t). If a collision occurs at some pos it ive t in r we say r
contains t he collision. When we discuss systems that det ect evolut ion errors
we will want to know not only if a collision is contained in the system, but
also whether the system detect s bit err ors in the result. We will say a system
covers a bit erro r if the sys tem detect s the error. There are eight possible one­
bit erro rs in any collision result, which we denote {e, , ei , eI, e2, e3, e4, es, e6},
corres ponding to the eight vari abl es associated with a lattice site. When we
wish to specify a particular erro r in a par ti cular collision we will append the
bit-error not ation to the collision notation with a colon separati ng the two.
For instan ce, C2(1) : e, shows t hat the result of a C2 collision at rotation 1 has
the rest particle bit set to the comp lement of it s value in the correct result .

4. Test sets and t heir constituents

A par ticle syste m t hat test s a simulator for all one-bit errors in the evolution
of a lattice gas we call a complete test ens em ble. A test ensemble consists
of a collection of cyclic subsyst ems called tes t cycles. Test cycles are built
from elementary generic subsystems called patt ern templ ates. (A patt ern is
produced from a pattern templat e by set t ing parameters relat ed to the size

Testing Parallel Sim ulators 71

of the pattern, its spa t ial orient at ion, the number of particles contained , and
so on . Any such pat tern could serve as a template, and we shall somet imes
refer to templat es and patterns interchangeab ly as patterns.) A test cycle
consists of a collect ion of subsystems derived from a set of pat tern t emplates
by applying symmetry operations and time translat ions to the patterns pr o­
duced from the temp lates. A test cycle can cons titute a port ion of a complete
ensemble, or it may be inserted into a larger system simulat ing a fluid flow
problem, to serve as a runt ime error detector.

Whi le one might consider trying to compile a pattern t emplate set that
has as few members as possible- each one covering as many collisions as
possible- we found t hat a simple greedy algorithm led to a set of temp lat es
that let us const ruct a complete tes t ensemble that was small enough to be
practical. To be more specific we used th e following procedure:

1. Select a canonical collision.

2. Design a pattern templ ate that contains t hat collision.

3. Simulate every one-bit error for that collision and check to see that
the error is detected by that pattern . If a single-bit error is not de­
tec ted, return to step 2 for a new test pattern template. Record which
canonical collisions are covered.

4. Repeat steps 1 thro ugh 3 unti l all collisions are covered.

Note tha t it is only necessary to simulate bit erro rs (ste p 3) for an update
of t he canonical collision. If an erro r is det ected in the cano nical configu­
rat ion, every bit err or in it s equivalence class will also be det ected by an
appropr iately tr ansformed version of t he pattern.

After we had a complete set of pattern temp lates we could proceed with
the construct ion of a complete test ensemble. Star t ing with an empty en­
semble and using the test pat tern collision coverage table, we continued the
procedure:

5. Select a canonical collision/ one-bit error combina t ion not yet covered
by our ensemble of tes t cycles.

6. Select a pattern covering that error.

7. Build a test cycle from the pattern by ap plying all th e symmetry trans­
form ations to the pat tern so th at all actual collisions generated by the
canonical collision are cont ained in t he test cycle.

8. Complete the tes t cycle started in step 7 by making t ime-delayed ver­
sions of the system constructed in ste p 7. (We will explain this in
det ail later . The reason for t ime-delayed versions is to ensure that
every processor in a pipeline will "see" the collision.)

9. Cont inue in this way, checking off th e covered collisions unt il all one-bit
errors are covered by our ensemble of test cycles.

72 Richard Squier and Kenneth St eiglit z

Our complete set of test pat te rn templates contains 51 templates . Each
pattern is enclosed in a square 30 x 30 box of barr iers. If we naively bui ld the
test cycles for the LGM-1 lat t ice gas , we need , for each pat te rn , six rotat ions
of t he pat tern and it s dual, and about three different time-delayed versions of
each of these. In addit ion , a complete ensem ble for the LGM-1 architect ure
requires every collision on both even and odd rows . Altogether the complet e
ensemble built t his way requires close t o 3500 copies of the patte rns . On the
host machine for LGM-1, a SUN 3/ 160C workst ation;' we can display about
1000 pattern s per screen, and t hus we can see the entire ensemble in four
screens of bitmapped graphics. In pr act ice, we redu ce this cons iderably in
two ways. First, we skip step 8 above: no t ime-delayed versions are required
if we make the pipeline length relatively pr ime to the least common multiple
of pat t ern cycle times. The length of our pipeline has been set to a prime
nu mb er of st ages. Second , we are slightly more careful in constructing the
ensemble: not every patte rn requires all twelve combinatio ns of rotat ions and
du als. T he ensemble we use for a complete sys tem test contains 786 pattern s
and its display occupies about three-quarters of the host 's screen . We will
ret urn to the topic of display when we discuss erro r det ecti on , but now we
want to describe patterns and test cycles in detail.

5. A test pattern

Pat tern s are generic, self-cont ained subsys tems designed to contain one or
more canonical collisions. Our collect ion of pat tern templates is div ided int o
gro ups of similar type designated by lett ers A through K . T here may be
more than one version of a par t icular type; for instance, type K has twenty­
eight versions K 1 t hro ugh K 28 (see [22] for a catalog of the complete template
library).

T he patterns are built using a small library of particle/barrier devices,
which act as cont rol mechanisms for collect ions of moving part icles an d in­
dividual moving particles. Groups of moving part icles are called chains. A
chain is simply a collect ion of particles laid out uniformly in a line, all follow­
ing an identi cal path . T he control mechan isms for chains consist of devices
to deflect a chain, called turns. T here ar e also mechanisms called gates that
reflect single par ticl es at only one phase of a cycle while let ti ng particl es pass
at all other phases, and detectors that detect the incorr ect presence or ab­
sence of a particle involved in some cyclic collision. We will discuss a few of
the components in detail be low as we describe the const ru ct ion of pat te rn A.
Descriptions of the ot her components can be found in [22].

Pattern A was designed to test the C3 and Cs collisions , and consists of
three chains traveling around a roughly t riangular circuit (see figur e 7). T he
chains are the "paired" type: they consist of pairs of parti cles such that
the members of a pair are separated by an emp ty site . T he turn s in A
are designated type T1 turns , and are designed to hand le paired cha ins (see
figur e 8) . The collisions contained in A occur , for the most part , in the turns ,

ISDN is a tr ad em ark of Sun Microsys te ms, Incorporated .
I
i
I
I

I

Test ing Parallel Simulators 73

T1 L::\T1

[/.

(? v~.... .(c)(a I : \ c

. .
, " " ,

.. ' "' ..···V
T1T1C=

(\ » ~Tl
T

1
\..7 (b)

Figure 7: Pattern A schematic. (a), (b) , and (c) are chains of particles
with velocit ies V6 , V4 , and V2, respecti vely. T he deflectors at t he
cor ners are type T1 turns .

T1

D b1

()r1
. ..

8

1<
o o o \P2

. .~.

... ... V
. ~
. .

'~ ... "

0C)
.

o · CJ··0
1 8 0

G
: -. .'

.. C)()

b
Figure 8: Pat tern A detail. Part icles Pl and P2 const itute a one-pair
chain with velocity V2. Two type T1 turns ar e shown in de tail at the
top of the figur e: rest particle r l and barrier sit e b1 cons ti t ute one
turn, r2 and b2 const it ute the other.

74

G
8

"'.. PI

0

"'.. P2

(a)

Richard Squier and Kenneth St eiglitz

°G
: 1--1 r\

"'.. P2

(b)

PI---
o~

o rl Q

\, P2

(c)

PI

o P2° G

0 --8

(d)

Figure 9: Four consecutive time steps of a pair of particles being
deflected by a TI turn. (a) PI and the rest particle collide in a C3

collision. (b) P I is deflected by 'If /3, rl collides with a barrier in a c~

collision. (c) P2 and rl collide in a Cs collision. (d) P2 is deflected by
'If / 3, " i is again at rest.

which we now describe in detail.

The TI turns used in A consist of a rest particle in the path of the oncom­
ing stream, and a barrier at an adjacent lattice site. The location of the rest
particle is called the origin of the turn: the incoming stream will exp erience
a 'If / 3 deflection from it s path at the orig in . Let us follow a pair of part icles,
PI and P2 , through a counterclockwise TI turn (see figure 9). The lead par ­
t icle of the two-p article stream, Pll collides with the rest par ticle, TI , in a C3

collision at t = O. The resulting state of the origin has two particles leaving
the site: one at 'If /3 counte rclockwise from PI'S ini ti al direction and one at
'If / 3 clockwise, whi ch we t ake to be PI and TI , respecti vely. The barrier is
located one site away from the origin, and at t = 1 par ticl e TI experiences a
c~ collision with the barrier sending TI back to the origin. At t = 2 particles
TI and P2 collide in a Cs configuration at the origin, leaving TI in it s origi­
nal location at rest and sending P2 out the same edge that PI used to exit
the turn. The pair of particles have thus turn ed a corne r, and any st ream
consisting of similar pair s can likewise be turned .

In this section we have shown the details of a single test pattern. The
next task is that of constructing a test cycle from such a pattern, which

Testing Parallel Simu lators

Confirmed One-Bit Error Cover age

co llision error co llis ion error

1- 6 r b 1~6 r b

E1 E1 K 27 cb E2 K 27
Co

E* K 20 E* 0 E* E*1 1 2 2

E3 K 26 E3
C

b E4 K 2S
Cl

E* K 21 E* 1 E* E*3 3 4 4

B1 B1 B1
C

b B1 B1
C2

B; K l6 B* 2 B* B*1 1 1

A A A
cb G2 G2

C3
H* K17 H* 3 G* G*2 2 2 2

C1 K s C1
C

b G1 G1
C4

C* K 6 C* 4 G* G*1 1 1 1

A A A
cb G6 G6

Cs
B* K 1S B* s G* G*2 2 6 6

F3 K 1 F3
C

b G3 G3
C6 F,* K 2 F,* 6 G* G*3 3 3 3

C2 K 7 C2
C

b G1 G1
C7

C* K s C* 7 G* G*2 2 1 1

B1 B1 B1
C

b G6 G6
Cs

B* K 19 B* s G* G*1 1 6 6

F1 K 3 F1
C

b G3 G3
C9 F,* K 4 F,* 9 G* G*1 1 3 3

B1 K 12 B1
C~O

D1(el) D1(el)
ClO

K 13 B* D;(el) D;(el)B*1 1

B1 K 12 B1
C~1

D1(cel) D1(cel)
Cn

K 13 D;(cel) D;(cel)B* B*1 1

F2 KlO F2
C~2

G4 G4
C12

Kn F,* G* G*F,*2 2 7 7

D1(el) K 14 K 23
C~3

GS K 24
C13

D;(el) K 1S G*K 22 5 K 2S

Tab le 1: For each collision each one-b it error was sim ulated in both
dual and non-dual forms . T he upper rows in each collision category
are t he non-d ual cases, the lower rows are the duals.

75

76 Richard Squier and Kenneth St eiglitz

Pat tern A Collision Containment

period DA = 6

phase 0 1 2 3 4 5

Co Co Co Co Co Co

collision
C2(2,4, 6) C2(2,4,6) C2(2,4,6) C2(2,4,6) C2(2,4,6) C2(2,4,6)

C1 cb cb
C1 C1 C12(1 ,3 ,5) 2(2 ,4 ,6)

C3(l ,3,5) C3(2,4,6) C5(l ,3,5) C5(2 ,4,6)

Table 2: The period of pattern A is adjustab le by lengthening its
chains; shown here is the containment for A with minimum period.
Where more than one rotat ion of a collision occurs in a phase we
have written the rotations in a list: for instance, { C2(2) , C2 (4) , C2 (6)}
becomes C2(2,4,6) '

is taken up in the following sect ion . To do that we will need t o know the
err or coverage of our patterns . By simulating the pattern s as closed systems
wit h a simu lator that has it s rule set alt ered by the corr esponding error, we
can test error coverage of the patterns. Ta ble 1 shows the confirme d error
coverage for all errors . From that table we can see that pattern A covers all
one-bit errors for the non-d ual C3 and non-du al C5 collisions. Another piece of
information we will need is t he collision t iming table for our patterns . Table
2 shows the local time of each of the collisions C3 and C5 in pattern A.

6. Constructing a test cycle

T his sect ion shows the cons tr uction of a tes t cycle from several copies of pat­
te rn A. We have two goals in buildin g test cycles: (1) t o build a syst em that
contains the complete collision class for one or more canonical collisions, and
(2) to build a system that can present every processor in a multi-processor
mac hine wit h collisions. T he second goal can be achieved for our parallel
machine, LGM-1, by including in the test ensemble patterns with shifted
t ime origins, and we will return to t his below. T he first goa l can be achieved
by looking at the collisions contained in a pattern and adding enough sym­
metry transformed copies of the pattern to form a system that contains all
the collisions of a parti cular class.

From the collision containment of pattern A list ed in table 2, one can see
that a single inst ance of A contains collisions Co, C1 , C2, c~ , C3 , an d C5' T he
dual of A , A* would contain the duals of t he collisions just ment ioned. In
pattern A, t he canonical collision C3 occurs in every rotation , C3(l) to C3(6) , as
do all the collisions in table 1 except C2 , whi ch appears only in even rotations.
Consequent ly, if we want a test cycle that covers all C2 collisions we must
comb ine A with a copy of A rotated by 7r /3. Let us call this combination
tes t cycle n~ .

Testing Parallel Simulators 77

~DD
array of lat tice sites sites in

DD D
sites out

o --E} ~ -

Figure 10: The LGM-l archit ecture. The lattice sites are stored in an
array and fed in raster scan order to a pipeline of processors. Each
processor advances the lattice-gas system one evolution step and sends
the data out in the same raster scan order.

T he test cycle n1 covers every rotation of the collisions list ed in tab le 2.
If we build a new test cycle n~ by combining a copy of n1 and a dual copy
(n1r, we will have a test cycle containing the complete collision classes for
every collision contained in pat tern A. Unfortunately, Q~ does not achieve
our goal for the collision class C3. As we ment ioned earlier, the C3 and Cs

classes are each split into two because of dual asymmet ry. As a consequence,
pattern A does not cover any of the dual cases for C3, but patterns H 2 and K 17

together do, as can be seen in table 1. Consequent ly, a test cycle combining
n1 with test cycles built from these two addit ional patterns is requir ed.
Nevertheless, for th e sake of simp licity in the following, we will assume that
n~ covers the C3 and Cs classes .

T he second goal in tes t cycle construction involves collision containment
for mult i-pro cessor implementations of the lattice-gas simulato r. If the ma­
chine doing the lat tice-gas simulation is a uniprocessor machine, we would
be sat isfied wit h this n~ test cycle. Simul ating this test cycle would cause
the machine to repeatedly update the test cycle and every sit e would be pro­
cessed by the same processor . T hen , in a single period of the test cycle, the
pro cessor would "see" every collision in the collision classes contained in n~ .

If, however , we are interested in test ing a multi-processor machine, we need
to insur e t hat every processor sees every collision . We have been interested
primari ly in test ing the LGM-1 machine, which is a linear pipeline in which
each stage of the pipeline executes one update of the entire lat t ice-gas. In
each stage there are two pro cessors: one updates odd rows of the lat t ice, the
other updates even rows. We next discuss the construct ion of a test cycle
specifically targ eted for the LGM-l archit ecture (see figur e 10).

For the moment we will assume each stage of LGM- 1 has only one pro­
cessor. If we look at the second stage of t he pip eline, r», we see that it
updat es the automaton at global update steps tg == l (mod N), where N is
the numb er of stages in the pipeline. Consequent ly, in order for p(2) to see
collision Ck(i) we must bu ild our test cycle so that at some t g == l(mod N) we
have Ck(i) occurr ing somewhere in the cycle.

78 Richard Squier and Kenneth Si eigutz

Because all th e copies of pattern A in test cycle n~ have the same phase,
tlocal(O) = 0, individual collisions are contained in some phases of n~ and
not others. For instance, from table 2 we see that the per iod of pattern A ,
bA ' is six global update steps and th at collision C3 occurs in even rot ations
at local t ime t == O(mod bA), and odd rot ations at t == l (mod bA)' Therefore,
a copy of n~ with its local time origin set to coincide with the global t ime
origin , t local(O) = 0, has a period of six and contains all rot ations of C3 at
t == O(mod bA) and at t == l(mod bA) Neverth eless, unless the period is
relatively prime to N or N /3 , every stage of the pipeline will not see C3 . One
way to overcome this is to build a test cycle that contains every collision on
every phase of its cycle. As tab le 2 shows, we can cover the missing cycle
steps by reproducing n~ th ree times with local time origins tlocal(O) = 0, 2,
and 4; th e result we will call n~ . The complete test cycle n~ containing six
copies of pattern A has a cycle t ime of six and contains C3 in every rotation
at every phase of th e cycle.

As we menti oned above, LGM-l uses two processors within each stage;
one processor handles th e odd numbered rows and the ot her processor th e
even ones. To handle this we must check that our test cycle also contains
every collision on both even- and odd-numbered rows. The simplest way
around this problem is to make two copies of the test cycle, installing them
so that their row posit ions differ by one. Alte rnately, one can ensure that
every collision is represent ed for both row parit ies by adding more tu rns to
pattern A to make a new pattern.

7. Error detection and experimental resu lts

Our method of testing a 'simulator consists of simulating a comp let e test en­
semble for many generations, and after the simulation, graphically display­
ing th e ensemble system to detect errors in its evolutio n. For our machine,
LGM-l , th e state of a lat tice-gas system is stored as a two-dimensional array
of bytes in rast er scan order, each byte containing the state of a single lat tice
site. Because we want to be confident that we are actually seeing the state
of t he system , we want the process of displaying it to minimize th e amount
of transformation done to the original data . We therefore t reat the array as
a bitmap graphics file and display it with a color map that color codes each
byte.

The color coding is done so that , if t here is only a single particle present at
the site, the presence of the particle is ind icated by a color corresponding to
its velocity (see figure 11). If there are several part icles present, their colors
add in such a way that the resultant color corresponds to the vector sum of
the velocit ies. Higher int ensity corres ponds to a greater number of part icles
present. So, for instance, if all six non-zero velocit ies are present , the site
will appear bright white (white represents zero velocity) ; if no par ticles are
present it will appear dim white; and if only a rest par ticle is present it will
app ear a not iceab ly bright er white than when no par ti cle is present.

Testing Parallel Simulators 79

100 101

110* 001
010 011

Figure 11: Color coding of unit vectors. Each direction vector is asso­
ciat ed with an rgb (red, green, blue) color coding, and the zero vector
is coded 111 (white). We imagine that the colors change cont inuously
and linearly with the angle of rot ation . For inst ance, VI is associ­
ated with the triple 110, and V 2 is associated with the triple 100.
Any vector between V I and V 2 will have a tr iple of the form {1, x , O},
where 0 :s; x :s; 1. Given a collection of velocity vectors at a lat tice
site, adding the corresponding rgb triples and normalizing gives an
rgb triple that codes a color that mat ches the resultant vector sum's
direction. Th e numb er of par t icles present determines the brightness
of the color. Thus V I +V2 -> 210, and normalizing gives {1,0. 5, 0} as
the sum's color wit h a relative brightness of 2.

Different color maps can be used to bring out different featur es. For
instance, in the color map described above, barrier sites are coded witho ut
color so that they appear black unless other particles are present at t he site.
If seeing the location of the barriers is important, t he barriers can be coded
with some distinctive color.

We want the pr esence of an err or to result in a st a te of t he sys te m that is
easy to distinguish visually from any of it s correct st a t es. Our patterns have
the general prop erty that an erro r disrupts the cycle and results in one or
more particles straying b eyond the sites occ upied by the pattern. In most of
our patterns we put a rest par ticle in any lattice site that is not part of t he
pattern but is insid e the containing box of barr iers . A stray particle passing
into t he space occupied by rest particles usually results in t he rest particles
erupting in a chain reaction that floods the box wit h moving par ti cles. T his
chaot ic state is visu ally unmistakable.

Figure 12 shows a small, example test cycle evolving in the presence
of a one-bit error : the lat t ice-gas rules in a software simulator have been
alte red to contain the one-bit err or C3(1) : el . T he t est cycle consists of six
copies of pattern A and is design ed for periodic boundaries so that one of
the patterns wrap s around the sides . T he pict ures in the figure are t he color­
coded bitmaps of the states converted to gray scale: each pixel represent s a
lattice site, and the color scheme described above has been mapped to a gray
sca le.

In figure 12(a) the ini ti al state of the test cycle is shown, and each suc­
ceeding image shows the sys te m 10 time steps older. As is easily seen even in
gray scale, the chaot ic resul t is clearly distingui sh able from t he ini ti al state.
Because any legal state of t he test cycle looks very sim ila r to the

80

(a)

(c)

Richard Squier and Kenneth Steiglitz

(b)

(d)

Figure 12: A test cycle containing six copies of pattern A simulated
with the C3 : e l error at every step . (a) The cycle in its initial sta te,
t = O. (b) t = 10. (c) t = 20. (d) t = 100. The second row of pat terns
in each picture above contains two patterns : one is "wrapped around"
the left and right edges of the lat tice.

ini ti al state, we have no problem distinguishing the err or ind ication from the
system 's correct st ate s.

Besides having exte nsion in evolution time, these test subsystems also
have extension in the space of the lat ti ce-gas, allowing them to detect erro rs
such as those caused by incorrect data address ing by the lat ti ce-gas simulator.
For dete cting these types of errors , t he patterns that are "loops," such as
pattern A, ar e useful. For instance, in LGM-l a lattice-ga s system is "cut "
into strips that are fed to the pipeline one at a t ime and "sewn" together as
they exit the pipeline. Placing a loop pattern across such strip bo undaries
makes it easy to see if there are any addressing errors made in the cutt ing an d
sewing operations. Likewise, if the bound aries of the lat ti ce-gas ar e per iod ic,
the loops can be placed across the boundari es. In LGM-l the boundari es can
be eit her p eriod ic or not, 1I'nd we test both cases wit h different tes t ensembles .

Testing Parallel Simulators

7.1 Detection diffi culties

81

Our ensemble detects all significant one-bit err ors, but not all are detected
by chaotic conditions . One reason for th is is the lack of dual symmetry for
the collision of a single particle with a rest par ticle in the LGM-1 gas : we
cannot have "explosions" in a dual world. We have two methods of get ting
around this.

One met hod is to build a pat tern with many particles moving in an orderly
fashion . Disrupt ion of the pattern resul ts in many stray par ticles and, while
not giving the magnitude of chaos in an explosion, it is easy to see when th e
system fails to evolve correct ly.

Another method is to enclose the dual pattern in a box with a device th at
funct ions as a gate for dual part icles (holes). The du al par t icle is transformed
to a real particle and the real part icle can cause an explosion outs ide the du al
box.

For some of our pat t erns , instead of emp loying either of these two methods
we have relied on being able to see one or two st ray part icles or a global
change th at is not chaot ic. While this is not the most desirable method
of detecting erro rs, employing it allowed us to complete the set of patterns
without spending t ime attempting to produce explosions for every erro r .
Indeed , th e at tempt might be futi le: it is an open quest ion wheth er or not it
is possible to find a collect ion of patterns th at results in chao tic condit ions
for everyone-bit error..

Another problem in detection is a consequence of the mismatch in scales
caused by detect ion without chaos and the large number of patterns in our
test ensemble. As we mentioned in section 4, our ensemble contains close
to 1000 pa t terns. A chaot ic change in any of 1000 30 x 30 pixel boxes
displayed at one time is easy to see at a glance. But, because th e size of
the ensemble is much larger than the area of a single pixel (which may show
th e presence of a st ray par t icle), the pat terns that do not become chaotic
require closer inspect ion. We have handled this by scanning a display of
the test ensemble using a mouse-driven "magnifier" tha t allows IUS to see the
patterns indi vidu ally. While this works, it is not entirely sa tisfacto ry.

One way to approach this, besides trying to make all patterns detect by
chao tic results, is to reduce the size of the ensemble. If an ensemble were
small enough, a single part icle would occupy a sufficient portion of the dis­
play so th at , aga in , a glance would suffice. We have made no at tempt t o
minimize our set. Rather, we have been interested in ensuring its complete­
ness, and we have for th e most part used each pattern as a tes t of a single
canonical collision. As the descrip tion of test pattern A showed, a single
pattern contains several collisions , and for th is reason we estimate that our
complete set is considera bly larger than necessary.

For inst ance, the pattern th at was specifically designed to test the Co
(quiescent la tt ice site) collision is simply an emp ty box. If any particles
or barriers appear in the box, the error is detected but the result is not
necessari ly chao t ic. It seems likely that the Co test pattern is superfluous,

82 Richard Squier and Keaiietii St eiglit z

and ot her patterns will detect any error that Co can . Confirming this could be
done by simulat ing t he eight possible one-bit errors for the canonical collision
Co on the ent ire ensemble and checking to see that the errors were detected
by some other pattern in every case.

There is one type of one-bit err or th at we make no claim of detect ing. Be­
cause these err ors do not affect the lat tice-gas behavior in a way th at changes
it s modeling capability, we consider these types of errors insignificant. As
tab le 1 shows, these errors are all rest -particle errors in collisions in which
a rest par ticle and a barrier exist a t th e same site . As we menti oned when
we describ ed th e LGM-1 rule set , in th e LGM-1 gas th e rest particle disap­
pears in these configurations. Consequently, any test pattern for this type
of collision can only be used as a one-shot test , and this test must occur at
t = O.

The patterns we have devised for these collisions do det ect all one-bit
err ors , but the one-shot nature of this testing forces us to deny fully covering
th ese collisions for two reasons: one is th at the errors cannot be detected in
any pro cessor ot her than th e first one in an LGM-1 typ e pipeline machine,
and the other is that the patterns must be inspected very closely to detect
the error of a rest particle remaining at the site after t = O. In genera l, this
is a difficult type of change to detect because the rest particle at a barr ier
lat tice site has no int eraction with other particles. Altogether , 28 of our
test patterns, K , through K 28 , were created especially to deal with these
rest -par ticle problems.

7.2 Experimental r esu lts

In t his sect ion we describ e the result s of experiments with simulated mult i-bit
erro rs . The experiments we performed for the C3 collision show it is unlikely
th e ensemble will fail to det ect multi-bit erro rs. Using a software simulator
for the LGM-1 gas , we ran simulat ions of th e test cycle in figur e 12. For each
simulat ion run we altered the ru le set to include an error in the result of the
C3(l) collision. A total of 117 simulat ions were run , each for 20 updat e steps:
all 8 possible one-bit erro rs, all 28 possible two-bit erro rs , all 56 possible
three-bit errors, and 25 selected four-bit err ors. T he four-bit errors were all
tho se of the form e3 ,S,x ,y and eS, r',x ,y because these were th e typ es of errors
that resulted in detection difficulti es in th e two-bit and three-bit cases. After
each simulation th e state of the test cycle was observed using the technique
describ ed in section 7.1. As table 3 shows, t here was only one error tha t
failed th e test completely, namely the C3(l) : es,r error.

The reason the es,r erro r escaped detection is that in th is tes t cycle the
err or partially erases its own mistake in such a way th at th e cycle cont inues
undisturbed. Of course, a careful inspect ion of the ind ividu al pixels would
reveal the error, but from our viewpoint this is not an acceptable meth od of
error detect ion. Rather , we want t he error to expose itself in such a way that
a glance at a monitor would suffice to det ermine its existence. One remedy
for this part icular detection problem is to make a copy of pattern A with t he

Test ing Parallel Simu lators

Experimental Results for Simulated Errors

number of incorr ect bits 1 2 3 4

stray particles 0 e3,S e3,4,S 0
non -chaotic

lack of particles
det ection results

0 0 e3,S,r e 3,4,5 ,r

undetected 0 es,r 0 0

Table 3: The results of experiments simulating mult i-bit errors in the
evolut ion of the test cycle shown in figure 12. All errors simulated
resulted in a chaotic system except those listed above. For inst ance,
the two-bit error e3,S resulted in "stray particles" occurring in the
test cycle. Str ay particles are defined as particles in the test cycle
that are moving beyond th e limits of the part icle pat hs in the cor­
rectly functioning cycle. A "lack of particles" result means that all
the moving particl es have dissapp eared from the cycle. An "unde­
tected" result means that the cycle is visually indistinguishable from
a correctly evolving test cycle. This last result could be detected by
a program that directly compares two cycles.

83

particle chains traveling aro und the loop in the opposit e direction. The new
pattern would detect the C3(1) : es,r error but would fail for the C3(4) : e6 ,r

error, which one would expe ct since the two patterns are mirror images of
each ot her , as are the two err ors just mentioned.

8. Architectures and applic ability of the test method

T he testing method we have described was conc eived with the LGM-l pipeline
arch it ecture in mind. Coincidently, t he method also works well for testing
software implement ati ons. The element that makes the method applicable
to LGM-l is the scanning sty le of data flow through the update processors .
Because of this data scanning, the entire lat t ice is passed through every pro­
cessor , every collision contained in the lattice-gas syste m is processed by
every processor , and thus all the update logic is tested.

Contrasted to this scanning data flow is the parallel implementation of
a lat ti ce-gas automaton that assigns a single processor to each lat t ice site.
Here, the test method described in this pap er implies building a lat ti ce­
gas system that has every collision occurring at every lattice site . T his is
prob ably impractical for two reasons , one of which is that t he test ensemble
would be excessively lar ge. For instance, one would need a separate lat ti ce­
gas system for every possible collision, which amounts to 28 x 6 x 2 = 336
lat ti ce-gas systems the size of the entire automaton. Which br ings us to the
second reason this is a bad idea : even if t he set of test patterns was mu ch
smaller , the det ection would have to be don e wit hout the aid of chaotic
"explosions" contrasting with an ordered system . While it is true that an
ent ire latt ice init ialized to contain the same collision at every lattice sit e may
appear organ ized to start wit h , detect ing the failure of a small percentage of

84 Ricllard Squier and Kennetll Steiglitz

randomly located pro cessors would probab ly require looking closely at every
latti ce site because the lattice-gas system would likely appear randomized
afte r a few updates.

Between the the architecture ment ioned ab ove using one proce ssor per
lat tice site and the archi tectures that scan the entire lat t ice- such as uni­
pro cessors and linear pipelines like LGM-1- lies a cont inuum of architec tures
we dub "fra me-oriented architec tures ." A frame-or iented architecture pro­
cesses a lat tice by assigning the updat e of some fixed region , or frame, of
the lat t ice to each pro cessor and exchanges information about the frame
boundaries between appropriate processors . Our test method is direct ly ap­
plicab le when the numb er of frames is small because we can duplicat e the
test ensemble for each frame and proceed as usual , tr eat ing each frame as if
it were handled by a separate machine. The LGM-1 machine is a two-frame
architect ure because the lat t ice sites in even and odd rows are processed by
what amounts to two separate pipelines of processors . As we said earlier, we
handle this by duplicating the test ensemble and tr anslat ing it by one row
in the latt ice. In genera l, this approach is only wort hwhile when the number
of frames is small, and consequently this presents a t rade-off in the design
of architec tures for lat tice-gas simulations. That is, one must trade test abil­
ity, at least by our method, against the number of frames th e architecture
employs.

9 . Summary a nd conclusions

We have shown how to test lattice-gas simulators with reasonab le resources.
Easily discerni ble changes in cyclic "part icle" patterns signal an evolut ion
erro r in the lattice gas , and a br ief visual scan of bitmapp ed graphics suf­
fices to determine whet her or not an erro r has occurred. More precisely, our
test ensembles are built from a library of 51 pat tern templa tes, each pattern
occupying roughly 50 lattice sites contained in a "box" of barr ier sites with
30 lat tice spacings on a side. A naively const ructed ensemble to test a soft­
ware simulator of an LGM-1 gas requires 612 patterns: two duals and six
rot at ions of all 51 pat tern templates. The ensemble we have used for thi s
purpose consist s of 393 patterns . An ensemble for the two-frame architecture
of the LGM-1 requires twice th at many, or 786 patterns. The display of this
786 pat tern ensemble occupies about 77% of the host 's display. For the pur­
poses of testing every proce ssor in an LGM-1 type architecture containing an
arbitra ry number of stages, t ime-shifted copies of the patterns are required ,
resulting in an ensemble about three times larger , that is, containing about
2400 pat terns displayed on two and one-half screens of bitmapped graphics.
In pract ice, we have always set th e number of pip eline stages so tha t the
numb er of stages is relat ively prime to the cycle t imes of the patterns, and
consequently only 786 patterns are needed for our complete ensemble. Be­
cause of the hole/ particle symmetry of the FHP-III gas, a complete ensemble
for it requires only about two-thirds the numb er of patterns as the LGM-1
gas.

Test ing Parallel Sim ulators

Figure 13: Test patterns embedded in an 800 x 800 site lat tice-gas
fluid flow experiment . The state of the lat tice is represented by a
gray scaled version of th e color scheme mentioned in section 7. The
light gray border on three sides contains 76 test patterns. Th e stip­
pled center section contains the lat tice-gas flow, seen here after 10,000
update generations. Although it cannot be seen, there is a forced flow
across the top edge of the image. The test patterns are incorporated
into the boundaries defining th e shap e of the flow "well."

85

T hese ensembles detect all significant one-b it err ors in the evolut ion of a
simulated lattice-gas system , and our expe rime nts suggest t hat multip le er­
rors are unl ikely to escape det ection. Simulating t he complet e ensemble tests
t he correctness of t he implementation of the update rul es, the data address­
ing logic, and data transmission and general system functions to t he extent
that t hey affect the lat ti ce-gas syst em 's evolut ion . Because the patterns are
cycl ic, testing continues for as long as the lat t ice-gas system contain ing t hem
evolves . This lets the ensembles test every processor in a pipelined archi­
t ect ur e such as LG M-l , and it also let s t hem act as runtime err or detect ors
by incorpo rating them into real fluid flow lat t ice-gas systems . Also , t hese
embedded test s allow some detect ion of transient failur es in the simulating
system during simulation runs.

86 Richard Squier and Kenneth Steiglitz

The technique describ ed in this paper can be used in any software im­
plementat ion . For hardware implementations the tec hnique's applicability
depend s on the way the lattice sites are assigned to the pro cessors. If the
lattice is split into non- overlapping pieces, or frames, that are updat ed by dis­
joint sets of pro cessors, the ensemble must be duplicated for each such fram e.
As the number of frames increases the technique soon becomes impracti cal ,
and there is consequent ly a t rad e-off between testability by t his method and
the architect ural par amet er associated with the number of fram es.

Of course, as wit h any testing facility, the issue of the correctness of the
thing being tested becomes the issue of the correctness of the test . For our
test method, the issue becomes one of verifying the correct implementation
of the test patterns, an d the ques tion then becomes one of establishing the
correct ness of the software, amo unt ing to several thousand lines of code,
that constructs and manipulates the tes t ensemble. While confirming that
the software is free of bugs by tradi tional software testing an d verificat ion
methods is difficult , we have been able to refer t o the resulting patterns
themselves for confirmation . T he reason is that the pat te rns are simple and
easy to underst and visually, even when displaying them amounts to no mor e
than color coding an octal dump of the data. Thus, we have been able to
use the pat te rns themselves to debug the softwa re that creates them.

The use of this test method in pr actic e has shown it to be an efficient aid in
the const ruction, verificat ion, and opera t ion of lattice-gas simulators . In the
const ru ct ion of the machines we have used it t o screen for faulty custom chips
that contain the pro cessors of the LGM-1 Iatt ice-gas simulato r , and to detect
hardware design errors in the custom boards. For these pur poses we have
used a subse t of the comp lete set of patterns and found that screening a single
chip requires abo ut t hree minutes of real t ime . Most of this time is spe nt
inserting the chip in the tes t socket, set ting up the simulation , an d displaying
the result . We have used the test method during const ruct ion of software
controlling the simulation. We found that writing simulat ion software was
speeded up considerably by the availability of a concur rent test facility: the
code could be quickly written , modified, or redesigned becau se a simp le five­
minute t est would det ect errors as they were introduced int o the system and
let them be correc ted immediat ely. In fact , the tes t temp late libr ary routines,
the software simulator, and the image handling libr ary were develop ed in
para llel: the simple graphical nature of the tes t pat terns allowed debugging
of each concurre nt ly, even though none of these sys tems was comp lete . For
verification of the system before and afte r simulation runs, the ent ire system
test required abo ut five minutes of real t ime . We have also conducted fluid
flow experiments on LGM-f using an 800 x 800 lat tice containing embedded
test pat t erns to detect runtime err ors (see figure 13). T hese emb edded tes t
patterns added abo ut 10% to the simulation t ime, and the comp lexity of
spec ifying the initial state of the lattice was increased by approximately a
factor of two.

Testing Parallel Simulators 87

Acknowledgement

We would like to thank David P. Dobkin and Elefther ios Koutsofios for t heir
encourag em ent , advice, and assistance in the gr aphic disp lay of the t est pat­
terns and ens embles . T he di spl ays were p erformed on SUN 3/160C and IRIS
4D 220G TX workstations ' using t he Cheyenn e [23] graphics library. This
work was supported in part by NSF Grant MIP-8912100, and U.S. Army
Research Office-Durham Contract DAAL03-89-k-0074.

References

[1] U. Frisch, B. Hasslacher , and Y. Pomeau , "Lat tice-gas Automat a for the
Navier-Stokes Equation," Ph ysical Review Lett ers, 56 (1986) 505-1508.

[2] D. dHumieree, P. Lallemand, and U. Frisch , "La t tice Gas Models for 3D
Hydrodynamics," Europhysics Lett ers, 4(2) (1986) 291-297.

[3] U. Frisch, D. d 'Hum ieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J . P.
Rivet, "Latt ice Gas Hydro dynamics in Two and Three Dimensions," Comp lex
Systems, 1 (1987) 649-707.

[4] D. d 'Humieres, P. Lallemand, and T . Shimomura, "Lat tice Gas Cellular Au­
tomat a: A New Experimental Tool for Hydrodynamics," Preprint LA-UR­
85-4051, Los Alamos National Laboratory, Los Alamos, New Mexico (1985).

[5] ,J. Salem and S. Wolfra m, "Thermodynamics and Hyd rodynamics with Cellu­
lar Automata," Theory and Applications of Cellular Automata, vol. 1, edited
by S. Wolfram (World Scientifi c, Singapore, 1987).

[6] F. Hayot , M. Mandai, and P. Sadayappan, "Implementat ion and Performance
of a Binary Lattice Gas Algorithm on Par allel Processor Syst ems," Journal
of Computational Physics (1987).

[7] T . Shimomura, G. D. Doolen, B. Hasslacher , and C. F\l, "Calculations Using
Lattice Gas Techni ques," Los Alamos Science, 15 (1987) 201-210.

[8] D. d 'Humieres and P. Lallemand, "Numerical Simulations of Hydrodynamics
wit h Lattice Gas Automata in Two Dimensions," Comp lex Syst ems , 1 (1987)
599-632.

[9] L. Kadanoff, G. McNamara, and G. Zanetti, "A Poiseuille Viscometer for
Lattice Gas Automata," Complex Systems, 1 (1987) 791- 803.

[10] H. Lim , "Lat tice Gas Automata of Fluid Dyn amics for Unst eady Flow," Com ­
plex Systems , 2 (1988) 45- 58.

[11] H. Chen, S. Chen, G. Doolen, and Y. C. Lee, "Simple Lattice Gas Models for
Waves," Complex Systems, 2 (1988) 259-267.

2IRIS is a trademark of Silicon Graphics, Incorporated.

88 Richard Squier and Kenneth St eiglit z

[12] R. Benzi and S. Succi, "Bifur ca tions of a Lattice Gas F low under Ex ternal
Forc ing ," Journal of Sta tistical Physics, 56(1/2) (1989).

[13] P . Binder , "Abnormal Diffusion in Wind-tree Lat tice Gas es," Comp lex S ys­
tem s, 3 (1989) 1- 7.

[14] A. Clouqueur and D. cl'H um ieres , "RAP l, a Cellular Automata Mac hine for
F luid Dynamics," Comp lex Sys tems, 1 (1987) 585-597.

[15] N. Margolus and T . Toffoli, "Cellular Automata Machines," Comp lex Systems,
1 (1987) 967-993.

[16] S. D. Kugelmass and K. Steiglit z, "A Scalabl e Architecture for Lattice-Gas
Simulations," Journ al of Computational Physics, 84 (1989) 311-325.

[17] T. J . Ostrand and M. J. Balcer, "T he Category-Partition Method for Speci­
fying and Generat ing Funct ional Tests," Communications of the ACM, 31(6)
(1988) 676-686.

[18] D. Gelperin and B. Hetzel, "The Growth of Softwar e Testing," Communica­
tions of the ACM, 31(6) (1988) 687-695.

[19] P. W . Kasteleyn, "Graph Theory and Crystal Physics," in Graph Theory and
Th eoretical Ph ysics, edited by F . Harary (Academic Press , New York, 1967) .

[20] K. Preston , Jr. , and M. J. B. Duff, Modem Cellular A utomata: Theory and
A pplications (P lenum Press, New York, 1984) .

[21] T . Toffoli and N. Margo lus , Cellu lar Automata Mac hines: A New Environ­
m ent fo r Mod eling (MIT Press , Cambridge, 1987).

[22] R. Squier an d K. Steiglitz , "Test ing Parallel Simulators for Two-Dimens iona l
Latt ice-Gas Automata," Technical Report CS-TR-269-90 , Princeton Univer­
sity , Comp uter Science Department , 35 Olden St reet , Princeton, NJ 08544­
2087, (June 1990).

[23] D. P. Dobkin and E. Koutsofios, "T he Cheyenne Graphics Libr ary, " unpub­
lished int ern al document ation , Computer Science Department , P rinceton Uni­
vers ity (1989).

