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Abstract. We perform numerical experiments with a novel cellular-
automaton fluid model. The model has simple pair-interaction rules
and works in arbitrarily many dimensions; here we consider the two-
dimensional case. By observing the smoothing-out of the velocity
profile of a shear flow and the relaxation of a shear wave, we mea-
sure the kinematic shear viscosity and obtain a value of ~ 0.5. To
demonstrate the fluid-like behavior of our automaton model, we also
simulate a flow past an obstacle (von Karman vortex street).

1. Introduction

A first attempt to simulate fluid dynamics by cellular automata was made
by Hardy, de Pazzis, and Pomeau [6]. They invented a fully discrete two-
dimensional lattice gas model on a square lattice with built-in conservation
laws for mass (particle number) and momentum. The HPP model behaves
qualitatively like a fluid, but cannot quantitatively simulate interesting fluid
dynamical phenomena because of anisotropies in the hydrodynamics of the
lattice gas. The possibility of quantitative fluid-dynamic simulation, how-
ever, has recently become available with the hexagonal lattice gas model
by Frisch, Hasslacher, and Pomeau [4] in two dimensions, and the pseudo-
four-dimensional face-centered hypercubic (FCHC) lattice gas model by
d’Humieres and Lallemand [3] in three dimensions. The hydrodynamics of
these models, although anisotropic, can be shown by symmetry arguments
to be quasi-isotropic in the sense that the hydrodynamics in the low-velocity
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incompressible limit becomes isotropic and is equivalent to the usual incom-
pressible Navier-Stokes dynamics [5].

Particularly the two-dimensional FHP model and variants thereof have
been successfully applied to problems like porous media flow [14], solids in
suspension [9], surface tension [1], immiscible fluids [16], autocatalytic re-
actions [2], and flame propagation [2]. Three-dimensional simulations using
the FCHC model, however, are much more difficult, not only because of the
three-dimensional space, but also because the rules of the FCHC model are
very hard to formulate as an algorithm that should be relatively simple and
computationally effective at the same time [7, 17].

These difficulties with the FCHC model in three dimensions, and also the
awkward hexagonal geometry of the FHP model in two dimensions, can pos-
sibly be overcome by a new model that has recently been proposed by Ralf
Nasilowski [12, 13]. The new model works in arbitrarily many dimensions
on orthogonal lattices and has simple, deterministic rules with pair inter-
actions between cells. Nevertheless, the hydrodynamics of this lattice gas
model can be shown to be equivalent to the usual (isotropic) Euler equations
in the low-velocity incompressible nondissipative limit, so it is in a certain
sense quasi-isotropic. Theoretical results for the practically interesting dis-
sipation transport coefficients, particularly the shear viscosity, have not yet
been obtained.

In this article, we present first results of computer experiments that have
been performed with the two-dimensional version of the new automaton
model. In the first experiment, we observe how a velocity profile of a shear
flow gets smoothed out, whence we can determine the kinematic viscosity.
In the second experiment, we try to simulate a von Karman vortex street by
letting the lattice gas flow past an obstacle.

2. The pair interaction automaton

Our lattice gas model, in the case of two dimensions, is defined as follows. We
use the “alternating” lattice shown in figure 1, whose node points Z = (1, z2)
have coordinates

z; €2, if teZ,

z; €2, if tel,
G = 1,2 (2.1)
at times t = 0,1,2,..., where Z, and Z, are the set of even and odd integral
numbers, respectively. Located at each lattice point are four cells (compare

figure 2), where each of the cells corresponds to one of the four possible
discrete velocity vectors ¥ = {vy,v,) with components

v, = #1  (j=1,2)

The state of a cell (¢,Z,v) is specified by three bits (ng,n1,n2). The
value of the bit ny indicates whether the cell is occupied (ng = 1) or empty
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Figure 1: Lattice structure of our model. Particle positions at even
and odd times are shown as white and black circles, respectively. The
arrows indicate the four possible particle velocities.
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Figure 2: Attempt to illustrate the cellular structure of our model.
The left picture shows all the local cells (indicated by the squares)
belonging to one of the lattice points (indicated by the dot in the
middle); the right picture shows one of the cells in more detail. Each
circle corresponds to a bit in the computer.
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(no = 0); we call ny the mass of the cell. The two remaining bits (ni,n,) are
always zero for an empty cell, but may take arbitrary Boolean values (0 or
1) for an occupied cell. We define, in a somewhat unconventional manner,
the momentum m = (mq, my) of the cell (¢, Z,v) by

m;(t,Z,0) = vn;(t,%0) (j=12) (2:2)

Note that our definition of “momentum” differs from the usual one: in our
model, momentum 7 mass X velocity; instead, a particle with velocity ¥ =
(v1,v2) may have a momentum of m = (vi,v2), (v1,0), (0,v7), or (0,0),
depending on the values of the bits n; and ns, which may be viewed as
internal degrees of freedom of the particle.

The dynamics of our model are given by

nyt+1,8+7,9) = nytE5 (J=0,1,2) (2.3)

where n; and n/; denote respectively the bit values immediately before and
after the interactions that may take place between particles when they meet
at times ¢t = 0,1,2,... at the lattice points. Note that in equation (2.3) and
elsewhere in this text, we are using uppercase and lowercase index letters
to indicate different ranges of allowed values: J € {0,1,2} but j € {1,2}.
The interactions n; — n/; are instantaneous and local (between the four
cells at a lattice point). Equation (2.3) states that the particles move freely
according to their velocity vectors ¢ during the unit time intervals between
the integer-valued instants of time.

Our interaction rule is composed of pair interactions of cells and consists
of two successive steps (see figure 3):

ny = nk = 0% = nd =n} (2.4)

In the first step, nt — n%, the interacting pairs are formed by cells whose
velocity vectors differ only in the first component: ¢ = (%1, vy) with the same
value of v, for both partners (“horizontal pair”). In the second step, n% — n3,
the partners differ only in the second velocity component: ¥ = (vq,£1) with
the same v; (“vertical pair”).

Our pair interaction rules conserve the total mass and momentum of each
interacting pair. For the interaction between two horizontal cells (here: cells
a and b, compare figure 2) they can be derived from the following table (see
also figure 4):

ag by ay by |ay by af b ah b

01 0 0|1 0 0 0 by a

1 0 0 0|0 1 0 0 by a

1 1.0 0[1 1 1 1 by a (2.5)
1 1 1 171 1 0 0 by as

1 1 0 1|1 1 1 0 by as

1 1 1 0|1 1 0 1 by ay

where ay and by are the mass bits and a;, as, by, and by are the momentum
bits of cells a and b before interaction; the bits after interaction are indicated
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Figure 3: Subsequent formation of horizontal and vertical pairs of in-
teracting cells in the collision process. The “process” is instantaneous
(it takes no time in the model) and local (it does not involve any cells
located at different lattice points). The squares represent the four
local cells, and their velocity vectors are indicated by the arrows.

by an apostrophe ('). In cases not listed in the table, we set a/; = a; and
b, = by. After interaction in the horizontal direction between cells a and
b and between cells ¢ and d (n} — n2%), the four cells will interact in the
vertical direction (between cells a and ¢ and between cells b and d) in the
same manner (n% — n3).The dynamics of our automaton are now completely
defined.

The pair-wise mass and momentum conservation follows from the prop-

erties
ag+by = ag+by
ay — by
ay + by

al—bl
a2+b2

of table (2.5). Furthermore, we note that not only two-particle interactions
(third through sixth line of the table), but also one-particle interactions (first
and second line) may occur. In a one-particle interaction, the “self-colliding”
particle changes its velocity while retaining its momentum. This and all the
other transitions listed in (2.5) are only possible because of our unconven-
tional definition of momentum in equation (2.2).

Since we want to simulate hydrodynamic phenomena, the observables of
interest in our model are not the states of individual cells, but rather the
macroscopic densities p and ¢ of mass and momentum, respectively, given by

p(t,7) = Z<Zn0(t,f,ﬁ)>
q(t, %) = E<ij(t,z,ﬁ)> = Z<Z:vjn](t,a:,v)>
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Figure 4: The pair interaction rules, illustrated for a “horizontal”
interaction. A legend of the diagrams is given at the bottom, where
the conservation laws are also indicated. @, v+, ny, and nj denote
the velocity vectors with respect to state bits of the partner cells.
When only one cell contains a particle and the other is empty, that
particle can “spontaneously” change its velocity (jump to the partner
cell) without changing its momentum (rule 1). When both cells are
occupied by particles, these particles necessarily retain their velocities,
but a transfer of momentum from one particle to the other is possible
(rules 2 through 4).
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where the sums extend over all four possible values of ¥ with v; = £1, and
the average (-) is taken over many lattice points in some neighborhood of Z.
By applying to our model the usual Gibbs formalism of statistical mechanics
and then making a Chapman-Enskog type expansion, in a manner similar to
that done for the conventional cellular-automaton fluids [5], one obtains the
hydrodynamic equations [13]

Vi =0
Bl I
Z i@ V)yi+ve = 0 (2.6)
ot
with
4 L, 8,
¢—§P =t

Equations (2.6), which have the usual form of fluid-dynamic Euler equa-
tions, are valid for the lattice gas only in the low-velocity, incompressible,
nondissipative limit, for a mean mass density of p = 1/2. When these limiting
conditions are not satisfied, the automaton’s hydrodynamics are described by
anisotropic equations whose forms are considerably more complicated than
(2.6).

Unfortunately, the theoretical prediction of dissipative effects—particu-
larly the shear viscosity, which is of great practical interest—is very difficult,
and no results are available yet. We can, however, “measure” the viscosity
by computer experiments.

3. Measurement of the shear viscosity
3.1 The smoothing-out of a discontinuity in velocity

A simple method to measure the shear viscosity of lattice gases has been
described by Lim [10]. The initial setup consists of two adjacent streams
moving at the same velocity U but in opposite directions:

-U fory<O
s = { +U fory >0
uy, = 0
(at t =0)
where @ =: (uy,uz). The analytical solution of the incompressible Navier-
Stokes equations with this initial condition is known:

Y
Vvt

where erf is the error function and v is the kinematic shear viscosity coeffi-
cient. Linearizing the error function for small values of the argument (< 1),
we have

v=20

u; = Uerf

Uy

U =~

%
<
+



96 D. A. Wolf-Gladrow, R. Nasilowski, and A. Vogeler

.25

.20

.05

o

A L 2 o o

ul(y,t)

|
°

-.20

USRS Y (I 1SS TN (S | S S N L e R o | [ SO S (U O (L (B
10 20 30 40 50 60 70 80 90 100 110 120 130

Y

Figure 5: Measurement of the shear viscosity v : u;(y,t) over y (after
6000 time steps): data points (o) and fitted error function.

-.25

The viscosity can be calculated by linear regression applied to the observed
velocity profile u;(¢,y) for sufficiently small y at different times ¢. The size
of our computational domain is 2048 x 2048 units, and we use macro-cells for
coarse-graining (local averaging over &) of size 64 x 16. The vertical velocity
component v and the density deviation from 1/2 remain small during the
simulation: after ¢ = 6000 timesteps we observe uy; = 0.000 & 0.014 and
p = 0.500 £ 0.015. The z-averaged mean values U(t,y) = (u1(t,z,9))s
and the corresponding standard deviations are calculated from 32 macro-cell
values along the z-direction. The results of the linear fit near y = 0 (see
figure 5) are shown in the following table:

~~

2000 4000 6000
v| 049 0.52 0.48

The value of the kinematic shear viscosity is similar to that of the FHP-2
model at the same density (FHP-1: v = 1.2; FHP-2: v = 0.68; FHP-3: v =
0.075 [5]). Only recently Rothman [15] has given (non-local) collision rules
for FHP that result in even negative viscosity.
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3.2 Shear wave relaxation measurements

As shown by d’Humieres and Lallemand [3], the relaxation of an initial shear
wave on a square lattice with periodic boundary conditions can be used to
measure the shear viscosity v, the bulk viscosity 7, and the speed of sound
c¢. The initial perturbation cousists of a longitudinal and a transversal mode
and has the form

(if) + ;) cos(k - 7) (3.1)

where #; is the longitudinal mode, i, is the transversal mode, and k is the
wave vector. By solving a linearized Navier-Stokes equation with (3.1), one
gets the relaxation of the initial velocity modes and a density perturbation
8p coupled to the longitudinal mode [11]:

170 = (roos(ut)exp (-2 D)

2

+; exp (—k2ut) ) cos(E - 7)

<& sin(wt) exp (——Mt)> sin(k - 7) (3.2)

5p(7,t
p(7, 1) p 5

with w = ck and (k(v 4 1)/2pc)® < 1. A typical set of the relaxation curves
is shown in figure 6. To obtain the relaxation curves, the transversal and
longitudinal velocities and the density have been averaged perpendicular to
the wave vector at each time step. Then the interesting component of the
initial wave has been extracted by a Fourier transformation as a function
of time. The viscosities ¥ and 1 and the speed of sound ¢ were calculated
by least-squares fits of the above equations (3.2) to the measured relaxation
curves. We performed our measurements on a lattice of 512 x 512 nodes
with wavelengths between 64 and 128 nodes and at a density per cell of
p = 0.5. We let the shear wave propagate in the z- and y-directions. This
is easily attained by exchanging the succession of interacting pairs in the
lattice gas. Within the uncertainty of our measurements we obtained the
same values for both directions. For sufficiently small mean velocities the
results are independent of wavelength and mean velocity. We have obtained
v = 0.46 £ 0.02 for the kinematic shear viscosity, which is in good agreement
with the previous method. The bulk viscosity n seemed to have its value
below 0.02, so we were unable to determine it. For the sound velocity ¢ we
have measured ¢ = 0.58 & 0.02, a confirmation of the predicted theoretical

value of ¢ = 1/1/3 & 0.577 for p = 0.5 of Nasilowski [13]. The results of the
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Figure 6: Shear wave relaxation measurements. A typical set of mea-
sured relaxation curves.

measurements are summarized in the following table:

U p A direction | v n c
0.05 0.5 128 Y 0.46 < 0.02 0.58
0.05 0.5 128 @ 0.48 < 0.02 0.58
0.07 0.5 128 Yy 0.46 < 0.02 0.58
0.07 0.5 128 x 0.46 < 0.02 0.58
0.05 0.5 64 Y 0.47 < 0.02 0.59
0.10 0.5 64 Y 0.46 < 0.02 0.58

4. Von Karman vortex street

In the literature, the von Karman vortex street serves as a classical example
for the complexity of flow patterns that may occur in systems governed by
the Navier-Stokes equations from a phenomenological point of view [8]. We
performed the vortex street simulations on a domain of size 6400 x 3200,
with periodic boundary conditions in the z-direction and free slip at the y-
boundaries. The width of the obstacle is 400 units. With a speed of u = 0.1
and a kinematic.shear viscosity of 0.5, one gets a Reynolds number of 80.
Figure 7 shows the flow pattern at ¢ = 80,000.
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Figure 7: Von Karman vortex street. The flow pattern after 80,000
time steps (the mean flow has been subtracted) on a lattice of 6400 X
3200 nodes with a velocity of v = 0.1. With an obstacle of length 400
nodes the Reynolds number is 80.

5. Conclusions

Our simulations show that the new cellular-automaton model indeed shows
the expected fluid-dynamical behavior. Moreover, we have obtained by mea-
surement a numerical value of the shear viscosity coefficient and the sound
speed. Whether dissipative effects are (at least approximately) isotropic in
our lattice gas is still an open question.
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