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Abstract. We perform numerical expe riments wit h a novel cellular­
automaton fluid mod el. T he mod el has simple pair -in t eraction rules
and works in arb it rarily man y dimensions; here we consider the two­
dimension al case . By observing the smoothing-out of the velocity
profile of a shear flow and t he relax ati on of a shea r wave, we mea­
sure t he kin em ati c shear viscosity and obtain a value of R; 0.5. To
demonstrate t he fluid-like beh avior of our automaton model, we also
simulate a flow past an obs tacle (von Karman vortex st reet) .

1. Introduction

A first at tempt to simula te fluid dyn amics by cellular auto mata was made
by Hardy, de Pazzis, and Pomeau [6]. T hey invented a fully discret e two­
dimensional lat t ice gas mo del on a square lat ti ce wit h built-i n conservation
laws for mass (part icle numb er) and moment um . T he HPP mo del behaves
qualit atively like a fluid , but cannot quantit atively simulate interesting fluid
dynam ical phenomena because of anisotropies in the hydrodyn amics of the
lat tice gas . T he po ssibility of qu an ti tative fluid-dynamic simulat ion , how­
ever, has recentl y become available with the hexagonal lat ti ce gas mo del
by Frisch, Hasslacher , and Pomeau [4] in two dimensions, .and the pseud o­
four-dimensional face-centered hypercubic (FC HC ) lat ti ce gas model by
d 'Hurnieres and Lallem and [3] in three dimensions . T he hydrodynamics of
these models, alt hough anisotropic, can be shown by symmetry arguments
to be qu asi-isotropic in the sense that the hydrodyn amics in the low-velocity
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incompressible limit becomes isot ropic and is equivalent to the usual incom­
pr essible Navier-Stokes dynami cs [5J.

Par ti cularl y the two-dimensional FHP model and vari ants thereof have
been successfully app lied t o pro blems like po rou s media flow [14], solids in
suspension [9], sur face tension [1], immiscible fluids [16], autocatalytic re­
actions [2], and flam e propagation [2J. T hree-dimensional simulat ions using
the FCHC mod el, however , are much more difficul t, not only becau se of the
three-dimension al space , but also because the rul es of the FCHC model are
very hard to formulat e as an algorit hm that should be relatively simple and
computationally effective at the same time [7, 17J.

These difficulties with the FCHC model in three dimensions, and also the
awkward hexagonal geomet ry of the FHP model in two dimensions, can pos­
sibly be overcome by a new model t hat has recent ly been proposed by Ralf
Nasilowski [12, 13J. The new model works in ar bit rarily many dimensions
on orthogonal lat tic es and has simple, det erministic rules with pair int er­
act ions between cells. Nevertheless, the hydrodynami cs of this lat tic e gas
model can be shown to be equivalent to the usual (isotropic) Euler equat ions
in the low-velocity incompressible nondissipative limit , so it is in a certain
sense quasi-isotropic. Theoreti cal results for the pr acti cally interesting dis­
sipat ion tran sport coefficients, particularly the shear viscosity, have not yet
been obtained .

In this article, we pre sent first results of compute r experiments that have
been performed with the two-dimensional version of the new automato n
model. In the first experiment, we observe how a velocity profil e of a shear
flow gets smo othed out , whence we can det ermine the kinematic viscosity.
In the second experiment , we t ry to simulate a von Karman vortex street by
letting the lattice gas flow past an obst acle.

2. The pair interaction automaton

Our lattice gas model, in the case of two dimensions, is defined as follows. We
use the "alte rnat ing" lattice shown in figure 1, whose node points x= (Xl, xz)
have coordinates

if t E Z,

if t E Zo
1,2) (2.1)

at times t = 0,1 ,2, ... , where Ze and Z; are the set of even and odd integral
numbers , respectively. Located at each lattice point are four cells (compare
figure 2), where each of the cells corres ponds to one of the four possible
discrete velocity vectors v= (Vl, vz) with components

V j = ±1 (j = 1,2)

The state of a cell (t,x,v) is sp ecified by three bits (no,nl , nz) . The
value of the bit no indicat es whether the cell is occupied (no = 1) or empty
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Figure 1: Lat t ice st ructur e of our model. Particle posit ions at even
and odd t imes are shown as whit e and black circles , respectively. T he
arr ows indica te the four possible particle velocit ies.

Figur e 2: At te mpt to illustrate the cellular structur e of our model.
T he left picture shows all t he local cells (indicated by the squa res )
belonging to one of the lat tice point s (indica te d by the dot in the
middle) ; t he right pict ur e shows one of the cells in more det ail. Each
circle corres ponds to a bit in the computer.
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(no = 0); we call no the mass of the cell. T he two remaining bits (nl ' n2) are
always zero for an empty cell, but may t ake arbitrary Bool ean values (0 or
1) for an occupied cell. We define, in a somewhat unconventional manner,
the momentum iii = (ffil' ffi2) of the cell (t , X,v) by

(j = 1, 2) (2.2)

Not e that our definition of "momentum" differs from the usu al one : in our
model, momentum i= mass x velocity; inst ead, a particle with velocity v=
(Vl,V2) may have a momentum of iii = (Vl,V2) , (Vl,O), (0 ,V2) , or (0,0),
depending on the value s of the bits nl and n2, which may be viewed as
internal degrees of freedom of the particle.

The dynamics of our model are given by

(J = 0,1 ,2) (2.3)

where nJ and n~ denote resp ectively the bit valu es immediately before and
after the interactions that may t ake place between particles when they meet
at times t = 0,1,2, . .. at the lattice points. Note that in equation (2.3) and
elsewhere in this text , we are using uppercase and lowercase index let ters
to indicate different ranges of allowed valu es: J E {a, 1, 2} but j E {1,2}.
The int eractions nJ ---+ n~ ar e inst antan eous and local (between the four
cells at a lat t ice point). Equation (2.3) st at es that the particles move freely
according to their velocity vectors v during the unit time intervals between
the integer-valued instants of time.

Our interaction ru le is composed of pair inte ract ions of cells and consists
of two successive steps (see figur e 3):

(2.4)

In the first step, n} ---+ n3-, the int eracting pairs are formed by cells whose
velocity vectors differ only in the first component : v = (±1 , V2) wit h the same
valu e of V2 for both partners ( "hori zontal pair "). In the second st ep , n3- ---+ n} ,
the partners differ only in the second velocity component : v= (Vl' ± 1) with
the sam e Vl ("vertical pair") .

Our pair int eraction rules conserve the total mass and momentum of each
interacting pair. For the interaction between two hori zontal cells (here: cells
a and b , compar e figur e 2) they can be derived from the following table (see
also figure 4):

ao bo al bl a' b' a' b' a' b'0 0 1 1 2 2

0 1 0 0 1 0 0 0 b2 a2
1 0 0 0 0 1 0 0 b2 a2
1 1 0 0 1 1 1 1 b2 a2
1 1 1 1 1 1 0 0 b2 a2
1 1 0 1 1 1 1 0 b2 a2
1 1 1 0 1 1 0 1 b2 a2

(2.5)

where ao and bo are the mass bits and al , a2, bl , and b2 are the momentum
bit s of cells a and b before interaction; the bits afte r interaction are indicated

I
I
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Figure 3: Subsequent formation of horizontal and vertical pairs of in­
teract ing cells in the collision process. The "process" is instantaneous
(it takes no time in the model) and local (it does not involve any cells
located at different lat tice points). The squares represent the four
local cells, and their velocity vectors are indicated by the arrows.

by an apost rophe ('). In cases not listed in the table, we set a~ = aJ and
b~ = bJ. Aft er interaction in t he horizontal direct ion between cells a and
b and between cells c and d (n:, ---+ n}) , t he four cells will interact in the
vert ical direct ion (between cells a and c and between cells b and d) in the
same manner (n} ---+ n} ).The dynami cs of our automaton are now complete ly

. defined.
T he pair-wise mass and momentum conservation follows from the prop ­

erties

a~ + b~

a~ - b~

a; + b;
of tabl e (2.5) . Furthermore, we not e that not only two-part icle interacti ons
(third through sixth line of the tab le) , but also one-particle interactions (first
and second line) may occur. In a one-part icle interact ion , the "self-colliding"
par t icle changes its velocity while retaining its momentum. T his and all the
other tra nsit ions list ed in (2.5) are only possible be cau se of our unconven­
tional definition of momentum in equat ion (2.2) .

Since we want to simulate hydrodynamic phenomena, the observables of
interest in our mod el are not the states of individual cells, but rather the
ma croscopic densiti es p and qof mass and momentum, respectively, given by

p(t , x) ~ (21 n o(t ,x,V))

~ (21 mj(t , x,v) )
(j = 1, 2)
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Rule 1:

Rule 2:

Ru le 3:

Ru le 4:
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Im~ml

I*~ml
I~~~I

I~~~I
no + nt = cons t
nl - ni = const
n 2 +nt = const

v = (-1, v2)
v+ = (+ 1,v2)

F igure 4: T he pair interact ion ru les, illustrated for a "horizont al"
int eract ion . A legend of the diagrams is given at the bottom, where
the conservation laws are also indica ted . il , V+, n r , and n j denote
the velocity vectors wit h respect to state bits of the partner cells.
W hen only one cell contains a particle and the other is empty, that
particle can "spontaneously" cha nge it s velocity (jump to the partner
cell) without changing its momentum (rule 1). W hen both cells are
occup ied by particles, t hese particles necessar ily retain their velocit ies,
but a transfer of momentum from one part icle to t he other is poss ible
(rules 2 thro ugh 4).
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where the sum s extend over all four poss ible values of if with Vj = ± 1, and
the average (-) is taken over many lat ti ce points in some neighb orhood of x.
By applying to our model t he usual Gibbs form alism of stat ist ical mechani cs
and then maki ng a Chapman-Enskog type expansion , in a manner similar to
that done for the convent ional cellular-automaton fluids [5], one obtains the
hydrodynamic equat ions [13]

with

V ·u
au ~ ~
- + (u · V')u + V'¢at

o
o (2.6)

V= o

4 ~ 8 ~
¢ := gP u:= gq

Equations (2.6), which have the usual form of fluid-dyn ami c Euler equa­
ti ons, are valid for the lat ti ce gas only in the low-velocity, incompressible,
nondissipative limit , for a mean mass dens ity of P = 1/2. When these limiti ng
condit ions are not sat isfied , the automaton 's hydrodynam ics are described by
anisot ropic equations whose form s are considerably more complicated than
(2.6).

Unfortunately, the theoret ical pr edicti on of dissipative effects- part icu­
larly the shear viscosity, which is of great pr acti cal interest - is very difficult ,
and no results are availab le yet . We can , however , "measure" the viscosity
by compute r experiments.

3. Measu rement of the shear viscosity

3.1 The smoot h ing-out of a d iscontinu ity in velocity

A simple method to measure the shear viscosity of lat t ice gases has been
described by Lim [10]. The initi al setup consists of two adj acent streams
moving at the same velocity V but in opposite directi ons:

{
- V for y < 0
+V for y > 0

o
(at t = 0)

where il =: (Ul,U2) ' T he analyt ical solut ion of the incompressible Navier­
Stokes equat ions wit h this initial condition is known:

U l = V erf b
y 4vt

where erf is the err or functi on and v is the kinemat ic shear viscosity coeffi­
cient . Linear izing the error funct ion for small values of the argument (<< 1),
we have
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Figure 5: Measurement of the shear viscosity v : Ul(Y , t) over y (after
6000 time steps): data points (0) and fitted error funct ion .

T he viscosity can be calculated by linear regression applied to the obse rved
velocity profile Ul(t , y) for sufficient ly small y at different t im es t . The size
of our computational domain is 2048 x 2048 unit s , and we use macro- cells for
coarse-gr aining (local averaging over x) of size 64 x 16. The ver t ical velocity
compon ent v and the dens ity dev iation from 1/2 remain small during the
simulation: afte r t = 6000 timesteps we observe U2 = 0.000 ± 0.014 and
p = 0.500 ± 0.015. The x-averaged mean values U(t,y) = (Ul(t,X , y))x
and t he corresponding standard deviations are calculate d from 32 macro-cell
values along the x-direction . The resu lt s of t he linear fit near y = 0 (see
figure 5) are shown in t he following table:

t 2000 4000 6000
v 0.49 0.52 0.48

The value of the kin ematic shear viscosity is similar to that of t he FHP-2
mo del at the same density (FHP-1 : v = 1.2; F HP-2: v = 0.68; FHP-3: v =
0.075 [5]). Only recen tly Rothman [15] has given (non-loca l) collision ru les
for F HP that resu lt in even negative viscosity.
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3.2 Shear wave relaxation measurements
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As shown by d 'Humieres and Lalleman d [3], the relaxat ion of an init ial shear
wave on a squa re lat t ice with periodic boundary condit ions can be used to
measure the shear viscosity u, the bulk viscosity "I , and the speed of sound
c. The init ial perturbation consist s of a longitudinal and a transversal mode
and has the form

(3.1)

where Ul is the longitudinal mod e, ttt is the tr ansversal mode, and k is the
wave vector. By solving a linearized Navier-Stokes equa tion with (3.1) , one
gets t he relaxation of the init ial velocity modes and a density perturbation
{;p coupled to the longitudinal mode [11]:

u(i,t)

{;p(i, t)

(
_ ( k

2
(V + T) ) )

Ul cos(wt ) exp - 2 t

+Ut exp ( - k2vt)) cos(k . r)

(
PU l ( k

2
(v + T)) ) ) -----;;- sin(wt) exp 2 t sin(k . f') (3.2)

with w = ck and (k(v + TJ )/ 2pC)2« 1. A typical set of the relaxation curves
is shown in figure 6. To obtain the relaxation curves, the transversal and
longitudinal velocit ies and the density have been averaged perp endi cular to
the wave vector at each t ime step . T hen the int erest ing component of t he
initi al wave has been ext racted by a Four ier transformat ion as a function
of time. T he viscosities v and T) and the speed of sound c were calculated
by least-squares fits of the ab ove equa t ions (3.2) to the measur ed relaxation
curves. We performed our measur ement s on a lat t ice of 512 x 512 nodes
with wavelengths between 64 and 128 nodes and at a density per cell of
p = 0.5. We let the shea r wave propagate in the x- and y-d irections. T his
is easily at t ained by exchan ging the succession of int eracti ng pairs in the
lat t ice gas . Within the uncertainty of our meas urement s we obtained the
same values for both directi ons. For sufficient ly small mean velocities the
result s are independent of wavelength and mean velocity. We have obtained
v = 0.46 ± 0.02 for the kinematic shear viscosity, which is in good agreement
wit h the previous method. The bulk viscosity T) seemed to have its value
below 0.02, so we were unab le to determine it . For the soun d velocity c we
have measured c = 0.58 ± 0.02, a confirmation of the predicted theoret ical

value of c = fli3 ~ 0.577 for p = 0.5 of Nasilowski [13]. The result s of the
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F igure 6: Shear wave relax a tion measurements. A typical set of mea­
sured relaxation cur ves .

measurements are summarized in the following table:

u p A direction v TJ c
0.05 0.5 128 Y 0.46 < 0.02 0.58
0.05 0.5 128 x 0.48 < 0.02 0.58
0.07 0.5 128 Y 0.46 < 0.02 0.58
0.07 0.5 128 x 0.46 < 0.02 0.58
0.05 0.5 64 Y 0.47 < 0.02 0.59
0.10 0.5 64 Y 0.46 < 0.02 0.58

4. Von Karman vortex street

In the literat ure, the von Karman vort ex st reet serves as a classical example
for the complexity of flow patterns that may occur in syste ms governed by
the Navier-Stokes equations from a phenomenological point of view [8J. We
performed the vortex street simulations on a domain of size 6400 x 3200,
wit h periodic boundary condit ions in the x-direct ion and free slip at the y­
boundaries. The width of the obstacle is 400 units. Wi th a speed of u = 0.1
and a kinemati c .shear viscos ity of 0.5, one gets a Reyn olds number of 80.
Figure 7 shows the flow pattern at t = 80,000.
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Figure 7: Von Karman vortex st reet. T he flow pat tern after 80,000
tim e steps (the mean flow has been subtrac ted) on a lat tice of 6400 x
3200 nodes with a velocity of u = 0.1. With an obst acle of length 400
nodes the Reynolds numb er is 80.

5. Conclusions

Our simulations show that t he new cellular-automaton mo del indeed shows
the expected fluid -d yn amical behavior. Moreove r, we have obtained by mea­
sur eme nt a numerical va lue of t he shear viscos ity coefficient and the sound
speed. Whether dissipati ve effects are (at least approximately) isot ropic in
our lat t ice gas is st ill an ope n question .
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