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Abstract. We find t he bas ins of a ttraction and local st ability prop­
ert ies of the limit st ates for three two-valleyed elementary cellular
automata rul es for all la t tice sizes . The bas ins of a t t rac tion and the
unstable direct ions of t he limit states are deter mined by t he bits near
t he bo und aries.

1. Introduction

Cellular automata (CAs) have recently become a popular subject of st udy for
mathematician s and physical, natur al, and computer scient ists [1-8]. CAs
are mathematical models in which space and time are discontinuous , and the
state vari ables can only take on values from a finite set . The rules by which
the state var iab les change are local ; that is, th ey depend on a small numb er
of neighbors. The t ran sition ru les can be a deterministic or a probabi listic
funct ion of the neighb orhood . We only consider the first of these cases in the
present paper.

While much of the literatur e has concent ra ted on the spatiotempo ral
st ructures generated by CAs, some pap ers have dealt with the more abst ract
ph ase-space st ructure of the models. In part icular , t he numb er and size of
attractors and their basins of at t raction are often quan ti ties of int erest . T he
phase-space literature is reviewed in reference [9]; other recent papers appear
in reference [8].

This paper is motivat ed by a recent numerical study of elementary CAs
wit h fixed boundaries [9]; these are nearest-neighbor rul es wit h two states
per site . Among ot hers, three ru les were found to have exact ly two basins
each, of constant relative size. This is an unusually small number of basins,
as a typical random map ping of 2£ integers has L limi t cycles. Although
these rules do not appear to have an energy invariant [10], one can make an
analogy to physical sys tems wit h two energy wells- such as low-temperatur e
ferromagnets- or to dynami cal systems wit h two at t ractors- such as a forced
pendulum- and st udy the st ab ility of the "equilibrium" or limit st ates.
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In this pap er we st udy the size and structure of these basins , as well as
the stability of the limit states. For the lat t er , we use a criterion develop ed
by Kauffman [11] to det ermine t he stability ofrandomly connected automata
to mutati ons. In a similar vein , Hogg and Hub erman [12] have st udied t he
st ability of more abstract discrete dyn amical systems, in particul ar those
wit h mult iple fixed points and a t ree-like t ransient st ruct ure. It is rather
fortun ate that two basins of att ract ion is t he st rict minimum necessary t o
perform a stability analysis in the Kauffman sense .

Section 2 describes t he three ru les. In section 3 we derive rigorous resul ts
for t he size and shape (in phase space) of t he basins of attract ion for these
rul es (for all lat ti ce sizes) as well as for t he local stability of t heir limi t states .
In parti cular , if phase space is represented as an L-dimensional cub e one can
easily visualize bas ins of attract ion and t he at t ract ors t hemselves; we show
examples of this. We make some comments about t he form al language t heory
of the limi ting states of t hese ru les in section 4, and discuss t he result s in
sect ion 5.

2. B ist able rules

The three rul es we have stud ied consist of a one-d imensional lattice of L
sites , each of which can take t he values 0 or 1, denoted by si, s~ , ,s1 at
t ime t. The nodes are updated simult aneously : t he new states si+l , , si,+l
are deterministi c fun ctions of the value of each node and it s nearest neighbors
to the left and right . We denot e t his funct ion by j(N). By extension, N can
be a region of 3 or more sites , for whi ch j (N ) is unique. We take So and S L+l

to be fixed boundary condit ions , as described below. We will use an as te risk
(*) to denote a wild card (unkn own or arbit rary) bit .

Rule 24. Th e local evolution of this rule is given by j(100) = j(OI1) = *h,
*0* otherwise. Or, in modulo 2 arithme tic, S~+ 1 = s~+l (1 + sDU + sL) +
S~ SLl( l + S~+ I ) ' Th e nomenclature of the rules follows Wolfram [2, 7].

R ule 27. Th e local evolution of this rule is given by j (*OO) = j (O *l ) = *h ,
*0* otherwise. Or in modulo 2 arithmetic, s~+l = 1 + s~ + s~+l (SLI + sD .

Rule 40 . Th e local evolution of this rule is given by j (O I1 ) = j (101 ) = *h,
O h . O ' d I 2 . h . HI t (t t)* * ot er wise, r, m m o u 0 ant rnen c, s; = Si+ l Si- l + Si .

3. Pha se space study

3.1 Rule 24

We consider t he fixed bo undary condit ions So = SL+ l = 1.

T heorem 1. Th ere are two period- three limit cycles,
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where th e dot s stand for an incomplete repeatin g sequence and n is the
integer part of (L - 1)/ 3 and (L - 2)/ 3, resp ectively. Th e two cy cles (A) and
(B) attract all ini tial configurat ions .

Lemma 1. T he sequence 11 cannot occur after t = 0.

Proof. j(*100*) = *010*, j (*Olh ) = *010*. T hese would be the only
neighb orhood s capable of producing two consecut ive Is. For t > 0, ru le 24
is dynami cally equivalent to ru le 16 (f (100) = *h , and *0* otherwise). In
this ru le, isolated Is shift to the right wit h unit speed.•

Le m m a 2. For t > 1 the sequence 101 canno t exist.

P r oof. j -1(*10h ) = 10011,01100, which cannot exist at t > °by Lemma 1.
Therefore, for t > 1, Is must be isolated by at least two Os, except next to
the fixed bo undari es. •

Proof of Theorem 1.

1. From Lemmas 1 and 2, it is clear that any init ial configuration will
be wash ed away afte r L time steps an d replaced by a sequence (OOl )n
shift ing to the right wit h speed one .

2. If t he init ial configur ation has SL- 1 = °and SL = 1, these two sites
remain unchan ged for all t imes, and sL = 1 acts as a "sink" for the
"Is" pro du ced at the left boundary :

j (*Ol1) = *011

j (1011) = 0011

where the last bit is the right boundary. T herefore, we have cycle (B)
in this case.

3. Otherwise, S L eventually becomes (and remains) zero :

and S L+l acts as a "sink" for the right -shifting isolated Is. Here again ,
the last bit is S L + 1 .

Therefore, initial configurations of the form SOl (one quar ter of the total)
evolve to limi t cycle (B) , and all others to limi t cycle (A). •

Figur e 1 shows a pro ject ion of the space of initi al condit ions into the
S L - 1 - S L cube, with the allowed flows.

We now st ud y the stability of the cycles (A) and (B) to the flipping of a
random bit Sn, 1 S n S L . We wish to know if a "final" state in the cycle
(A) or (B) returns to the sa me cycle, or whether it is pushed to the ot her
attractor .
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Figure 1: Evolut ion and basins of att ract ion for rule 24 in SL-1SL

space (horizonta l and vert ical directions, respectively). (A) , (B) as in
Th eorem 1.

Theorem 2. States in limi t cycle (B) have two unstable direct ions each;
only two states in cycle (A) have one unstable direction , and one sta te does
not have any. Th ese results are independent of lat tice size .

Proof: As shown in the pr evious proof, a perturbation in the sites 8 1 , S2 , . . . ,

8L-2 eventually washes away, so that the limit states are stable in those
"direct ions." It can be shown by direct app lication of the ru le that there is
no "phase chan ge" in these cases; that is, a perturbed state catches up to
the st ate in the cycle to which the unperturbed state would evolve.

We now consider perturbations to the sites SL-1 and 8L in: turn.

Cycle (A): possible initi al conditions are of the form SOD and SID .
When the last site is perturbed , these become S Ol and S l1 , respec­
t ively, which evolve to (B) and (A), respect ively. When the second­
to-las t bi t is perturbed , the initial condit ions become SlO and SOD ,
which evolve to cycle (A) . Therefore, the two limit states of the form
SOD have one unst abl e dir ection each, and the SID state is stable under
pertur bations.

Cycle (B) : the init ial conditions , of the form SOl , can be perturbed to
Sl1 or SOD ; either way they evolve to attractor (A) . •

We see then that only a perturbation of the last two bits can cause a jump
between at trac tors, and as L ----> 00 the perturbation of a random bit in a
limi t state will have no long-term effect in most cases.

It can be seen in figure 2 that the unstable dir ect ions just found cor­
respond to nearby limit states in ph ase space (e.g. , Al and B2 or A3 and
Bl ).

In figur e 3 we show the main features of this rul e as they are actually
seen during the evolution of the automaton. T he first 120 time ste ps show
the dynamical approach 'to one of the limi t cycles, in this case cycle (A).T he
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Figure 2: Limit cycle st ructure for rule 24. Directions: front-back,
5L-3 ; left-right , 5L- 2 ; up-down, 5 L -1 ; in-out , 5L. Points are labeled
according to which limit cycle they belong to. Notice the proximity
of points in different limit cycles (AI and B2, A3 and BI ).

s O SO SO SO t even t odd1 2 3 L

0 0 - 0 OL 1L

0 0 - 1 OL - 11 1L - 10

0 1 0 0 1L - 10 OL-11
0 1 0 1 1L OL

0 1 1 0 OL 1L

0 1 1 1 OL-11 1L - 10

1 - - 0 1L - 10 OL - 11
1 - - 1 1L OL

Table 1: Basins of at traction for rule 27.

next 89 ste ps show the response to a small pertur bation in a cent ral bit (45
in this case) . The right side of the pict ure shows the difference between
the unperturbed and pert ur bed evolut ions ; the fact that the disturbance
disappears shows that the system is st able to this pert ur bat ion. The final
40 time ste ps show the response to a perturbat ion to the Lth bit . It is clear
both from the evolut ion of the system and from t he difference between the
perturbed and the unperturbed cases that a permanent change has set in ; in
fact , t he sys tem is now in limi t cycle (B).

3.2 R ule 27

We consider fixed bo un dary condit ions So = 1 and S L+1 = O.

Theorem 3 . Under the above boundary conditions, rule 27 has two possible
period-2 at tractors: (A) OL <-t 1L and (B) OL - 11 <-t 1L - 10 , determined by
four bits in the ini tial configuration as shown in table 1.

Lem m a 3. si = t + s1 (mo d 2) .
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F igure 3: T ime evolution of rul e 24 for a lat t ice of size L = 100.
Also shown are the left and righ t boundary bits. Left: time ste ps 1­
120, ap proach to limit cycle (A) from a random init ial condit ion ; time
ste ps 121- 209, when a cent ral bit (45) is alt ered , t he syst em return s to
limit cycle (A); time steps 210-239, when bi t 100 is alte red , th e system
jumps to limit cycle (B) . Right: t he "damage" or dist an ce betw een
the alt ered and the unal tered limi t cycle (A): time steps 121-209,
the dam age shifts to the righ t and disap pears; time steps 210-239,
dam age in the right/ side of the syst em remains, as the syste m moves
to limit cycle (B) .
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S3 = t + 1Lemm a 4. For t > 3, either S 1

(mod 2).

Proof. r (l1 ****) = 1111** ; r(100***) = 1000** ; r (1010** ) = 1111** ;
r(1011 * *) = 1000 * *. Here the leftmost 1 corr esponds to So. To complete
the proof we not e that j(l1 l1 * *) = 1000 * * and j (1000 * *) = 1111 * *.•

Lemma 5. Under these "alt ernating" boundery conditions s~ = t and
S;J1 = t + 1; after at m ost 3 tim e steps s~H1 = t and S;J~ 1 = t + 1.

Proof. j (Oh ) = 110; P (10*) = l I ». •

The iterated funct ion is to be und erstood with an alternating first bit .
T he two cases above are those in which an alternating "front" meets on it s
right a bit of a different value.

Proof of Theorem 3 . Applying Lemma 5 indu ctively, we conclude that
eventually (after at most 2L steps) the sites S1 , S2 , .. . , SL - 1 will oscillate in
ph ase, OL - 1 <--7 1L -1 . The phase itself is det ermined by Lemma 4. As site SL

evolves according to Lemma 3, this concludes the P roof of Theorem 3.•

It can be seen from tab le 1 tha t , for lat tice sizes L 2 5, there are two
basins of at tract ion of equal size .

Theorem 4 . If one of the limit states of (A) has site SL altered, the sys tem
jumps to at tractor (B) , and vice-versa.

Proof. This follows from Lemma 3.•

From the previous section (Lemmas 3 through 5) we also deduce that the
bit S1 is un st ab le in bo th (A) and (B) states, and th e bit S 2 is unst able in
states OL and OL - 11. All ot her bi ts in lim it states ar e stable to changes . As
in ru le 24, changes in these bit s do not produce phase changes. We then see
that the unstable direct ions in th is case always corres p ond to states that are
cont iguous in ph ase space.

3. 3 Rule 40

We consider the fixed boundari es So = SL+l = 1. In this ru le, I s are shifted
to the left or destroyed , bu t never created .

T heor em 5 . There are two fixed points OL and OL-11, to be called (A) and
(B). Initial con figurations of the form 500 or 511 1 evolve to (A) .

Lemma 6. Th e 111 sequence can only occur at t = O.

Proof. !(10Ih) = *110*. •

T his wou ld be the only neighborh ood capable of producing three con­
secutive Is. We only need to consider single and double Is shift ing to the
left.
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Lemma 7. A double 0 spreads to the left with speed one, and to the right
with speed one-half until it reaches the boundary.

Proof. f( * * 00*) = *000*; F (* * 00*) = 00000. •

Lemma 8. A traveling "11" creates a 0 pair when it hits 8 0 = l.

Proof. f(l1h) = 100*.•

From Lemma 9, a pair of Is will event ua lly cause a spreading pattern of
Os. Only the case of altern ating single Os and Is remains.

Lemma 9. An ini tial condition (01)n produces a double 1 on the right
boundary.

Proof. f(10 11) = (0111) , where the last bit is 8 L+1 . Therefore, all ini t ial
condit ions eventually produce an expanding pattern of Os. •

Proof of Theorem 5. T he fixed points can be verified by direct applicat ion
of the ru le; we see from Lemmas 7 through 9 t hat these two fixed points
at t rac t all init ial configurations :

f (*OOl) = 0001 f (*1111) = * * 001

All other init ial configur ations evolve to (B) . The basins of attraction occupy
3/8 and 5/8 of ph ase space , resp ect ively. •

From the previous subsect ion , we see that only changes in the last three
bits may result in fixed point changes.

Theorem 6. Fixed point (A) has two unstable directions, while (B) has one
unstable direction.

Proof. Cha nges in the las t three bits of OL lead to ..001, ..010, or ..100. By
T heorem 5, these evolve to (B) , (B) , and (A) , respe ct ively.

Cha nges in the last thr ee bits of OL- 11 lead to ..000, ..011, or ..101, which
evolve to (A) , (B) , and (B) , respectively. In this proof the leading dots
corres pond to multiple Os. •

The unstabl e direction in (B) and one of those in (A) are related to the
proximity of the two fixed points in ph ase space .

4. Formal language theory

T he limit sets of configurat ions for each rule can be genera ted from the
graphs of figur e 4. Each limitin g configuration on a system of size L (and
reading from right to left ) corres ponds to a path tha t st art s from the specified
nod e and traverses L arcs. Conversely, every path start ing from the specified
nod e, however long, corres ponds to a limi t ing configuration for some L. The
regular lan guages thus describ ed can be compared wit h those obtained at
finite times for the same ru les and wit hout bound ar ies [13, 14]. For instance,
with boundaries the state transit ion graph corres ponding to rul e 40 has t he
limit shown in Figure 4(c ) , while in the unbounded case [14] the size of the
graph appears to grow lithtim'

I
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Figure 4: The state transition graphs for the deterministic finite au­
tomata that generate the regular languages obtained in the large-time
limit for the three rules. From the top, they correspond to rules 24,
27, and 40 .

5 . Summary and discussion

In this paper we have determi ned the basin size, and th e st ructure and stabil­
ity pr operti es of the limit states, for three cellular automata rules each wit h
two basins of attract ion . The attractors are fixed po int s or limi t cycles of
length 2 or 3. Because of the small number of at tractors- and the indepen­
dence of this number on lat ti ce length- we have been able to determ ine these
prop er ties rigorously. The resul ts are summarized in Theorems 1 through 6
in sect ion 3.

A first observation is that only a few bits near the boundari es determine
to which at trac to r an initi al condit ion is going to evolve. In rules that become
purely shift rules afte r a few t ime ste ps, such as 24 and 40, only the first few
or the last few bits matter. In more complica ted rules like 27, bit s near both
boundaries are importan t. T hese three rules, then , can be seen to act as
"pat te rn recognizers" for certain pro pert ies of the initi al condit ion .

A second observation is that the limi t states are extremely stable under
small perturbations. Only perturbations to the bits near the boundari es will
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cause the system to jump from one limit cycle to another , and most other
perturbations will not even cause a change in the "phase" of the limi t cycle.

There are two final remarks abo ut the consequences of discrete phase
space. One is that the st ruc ture of the basin s of attract ion is very differ­
ent from what is observed in the cont inu um. For example, the hypercubi c
pro ject ion of figur e 2 is quite different in st ructure from the fractal basin
bo undaries that have been found in a forced perid ulum (figure 1 in reference
[15]). The final remark is that this discrete st ructure seems to play a role
in the existence of the few unstable "direct ions" in the limi t states. (See for
example figure 2 in t his pap er) .
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