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Abstract. We find the basins of attraction and local stability prop-
erties of the limit states for three two-valleyed elementary cellular
automata rules for all lattice sizes. The basins of attraction and the
unstable directions of the limit states are determined by the bits near
the boundaries.

1. Introduction

Cellular automata (CAs) have recently become a popular subject of study for
mathematicians and physical, natural, and computer scientists [1-8]. CAs
are mathematical models in which space and time are discontinuous, and the
state variables can only take on values from a finite set. The rules by which
the state variables change are local; that is, they depend on a small number
of neighbors. The transition rules can be a deterministic or a probabilistic
function of the neighborhood. We only consider the first of these cases in the
present paper.

While much of the literature has concentrated on the spatiotemporal
structures generated by CAs, some papers have dealt with the more abstract
phase-space structure of the models. In particular, the number and size of
attractors and their basins of attraction are often quantities of interest. The
phase-space literature is reviewed in reference [9]; other recent papers appear
in reference [8].

This paper is motivated by a recent numerical study of elementary CAs
with fixed boundaries [9]; these are nearest-neighbor rules with two states
per site. Among others, three rules were found to have exactly two basins
each, of constant relative size. This is an unusually small number of basins,
as a typical random mapping of 27 integers has L limit cycles. Although
these rules do not appear to have an energy invariant [10], one can make an
analogy to physical systems with two energy wells—such as low-temperature
ferromagnets—or to dynamical systems with two attractors—such as a forced
pendulum—and study the stability of the “equilibrium” or limit states.
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In this paper we study the size and structure of these basins, as well as
the stability of the limit states. For the latter, we use a criterion developed -
by Kauffman [11] to determine the stability of randomly connected automata
to mutations. In a similar vein, Hogg and Huberman [12] have studied the
stability of more abstract discrete dynamical systems, in particular those
with multiple fixed points and a tree-like transient structure. It is rather
fortunate that two basins of attraction is the strict minimum necessary to
perform a stability analysis in the Kauffman sense.

Section 2 describes the three rules. In section 3 we derive rigorous results
for the size and shape (in phase space) of the basins of attraction for these
rules (for all lattice sizes) as well as for the local stability of their limit states.
In particular, if phase space is represented as an L-dimensional cube one can
easily visualize basins of attraction and the attractors themselves; we show
examples of this. We make some comments about the formal language theory
of the limiting states of these rules in section 4, and discuss the results in
section 5.

2. Bistable rules

The three rules we have studied consist of a one-dimensional lattice of L

sites, each of which can take the values 0 or 1, denoted by s¢ sk, ..., s} at
time ¢. The nodes are updated simultaneously: the new states s, ..., st*!

are deterministic functions of the value of each node and its nearest neighbors
to the left and right. We denote this function by f(N). By extension, N can
be a region of 3 or more sites, for which f(N) is unique. We take s and sp44
to be fixed boundary conditions, as described below. We will use an asterisk
(%) to denote a wild card (unknown or arbitrary) bit.

Rule 24. The local evolution of this rule is given by f(100) = f(011) = %1,
*0% otherwise. Or, in modulo 2 arithmetic, si*' = st (1+ st)(1 + st_;) +
stst_1(1+ st,,). The nomenclature of the rules follows Wolfram [2, 7].

191—1
Rule 27. The local evolution of this rule is given by f(x00) = f(0x1) = *1x,

*0x otherwise. Or in modulo 2 arithmetic, si™ =1+ st + sk, (s'_; + sf).

Rule 40. The local evolution of this rule is given by f(011) = f(101) = *1x,

*0% otherwise. Or, in modulo 2 arithmetic, si*! = st (st_, + st).

3. Phase space study

3.1 Rule 24

We consider the fixed boundary conditions sq = sp+1 = 1.
Theorem 1. There are two period-three limit cycles,

(A) ..(010)"0 — ..(001)"0 — ..(100)"0
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and
(B) ..(010)"01 — ..(001)"01 — ..(100)"01
where the dots stand for an incomplete repeating sequence and n is the

integer part of (L —1)/3 and (L —2)/3, respectively. The two cycles (A) and
(B) attract all initial configurations.

Lemma 1. The sequence 11 cannot occur after t = 0.

Proof. f(x100%) = *010%, f(%x011x) = x010%. These would be the only
neighborhoods capable of producing two consecutive 1s. For ¢t > 0, rule 24
is dynamically equivalent to rule 16 (f(100) = *1x, and x0% otherwise). In
this rule, isolated 1s shift to the right with unit speed. B

Lemma 2. Fort > 1 the sequence 101 cannot exist.

Proof. f~1(x101%) = 10011, 01100, which cannot exist at ¢ > 0 by Lemma 1.
Therefore, for ¢ > 1, 1s must be isolated by at least two 0Os, except next to
the fixed boundaries. B

Proof of Theorem 1.

1. From Lemmas 1 and 2, it is clear that any initial configuration will
be washed away after L time steps and replaced by a sequence (001)"
shifting to the right with speed one.

2. If the initial configuration has s;_; = 0 and s; = 1, these two sites
remain unchanged for all times, and s; = 1 acts as a “sink” for the
“1s” produced at the left boundary:

F(x011) = %011

£(1011) = 0011
where the last bit is the right boundary. Therefore, we have cycle (B)
in this case.

3. Otherwise, sy, eventually becomes (and remains) zero:
f(x01) = f(x11) = %01

and sp4; acts as a “sink” for the right-shifting isolated 1s. Here again,
the last bit is sp41.

Therefore, initial configurations of the form S01 (one quarter of the total)
evolve to limit cycle (B), and all others to limit cycle (A). B

Figure 1 shows a projection of the space of initial conditions into the
s;,—1 — sz, cube, with the allowed flows.

We now study the stability of the cycles (A) and (B) to the flipping of a
random bit s,, 1 < n < L. We wish to know if a “final” state in the cycle
(A) or (B) returns to the same cycle, or whether it is pushed to the other
attractor.
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Figure 1: Evolution and basins of attraction for rule 24 in sp_jsy,

space (horizontal and vertical directions, respectively). (A), (B) as in
Theorem 1.

Theorem 2. States in limit cycle (B) have two unstable directions each;
only two states in cycle (A) have one unstable direction, and one state does
not have any. These results are independent of lattice size.

Proof: As shown in the previous proof, a perturbation in the sites s;, g, . . .,
sr—o eventually washes away, so that the limit states are stable in those
“directions.” It can be shown by direct application of the rule that there is
no “phase change” in these cases; that is, a perturbed state catches up to
the state in the cycle to which the unperturbed state would evolve.

We now consider perturbations to the sites s;_; and sy, in turn.

Cycle (A): possible initial conditions are of the form S00 and S10.
When the last site is perturbed, these become S01 and S11, respec-
tively, which evolve to (B) and (A), respectively. When the second-
to-last bit is perturbed, the initial conditions become S10 and S00,
which evolve to cycle (A). Therefore, the two limit states of the form
S00 have one unstable direction each, and the S10 state is stable under
perturbations.

Cycle (B): the initial conditions, of the form S01, can be perturbed to
S11 or S00; either way they evolve to attractor (A). B

We see then that only a perturbation of the last two bits can cause a jump
between attractors, and as L — oo the perturbation of a random bit in a
limit state will have no long-term effect in most cases.

It can be seen in figure 2 that the unstable directions just found cor-
respond to nearby limit states in phase space (e.g., A1l and B2 or A3 and
B1).

In figure 3 we show the main features of this rule as they are actually
seen during the evolution of the automaton. The first 120 time steps show
the dynamical approach to one of the limit cycles, in this case cycle (A).The
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Figure 2: Limit cycle structure for rule 24. Directions: front-back,
sp—3; left-right, sp_s; up-down, sy_; in-out, s;. Points are labeled
according to which limit cycle they belong to. Notice the proximity
of points in different limit cycles (Al and B2, A3 and B1).

s? Sg sg s% t even | t odd
ojlo|l—1]o0 0L 1L
0|0 |—1|1]ok11 |10
o(1|0]o0]|1% | o011
0|1]0]1 1k oL
0o|1]1]o0 oL il
01| 1]1/fok11]| 10
1|—|—| 0110 | 0oF 11
1| —|—11 1L oL

Table 1: Basins of attraction for rule 27.

next 89 steps show the response to a small perturbation in a central bit (45
in this case). The right side of the picture shows the difference between
the unperturbed and perturbed evolutions; the fact that the disturbance
disappears shows that the system is stable to this perturbation. The final
40 time steps show the response to a perturbation to the Lth bit. It is clear
both from the evolution of the system and from the difference between the
perturbed and the unperturbed cases that a permanent change has set in; in
fact, the system is now in limit cycle (B).

3.2 Rule 27

We consider fixed boundary conditions sy = 1 and sp4; = 0.

Theorem 3. Under the above boundary conditions, rule 27 has two possible
period-2 attractors: (A) 0F < 1F and (B) 0¢7'1 « 1710, determined by
four bits in the initial configuration as shown in table 1.

Lemma 3. si =t+ s (mod 2).

Proof. f(¥10) = %0 and f(x00) = x1x. B
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Figure 3: Time evolution of rule 24 for a lattice of size L = 100.
Also shown are the left and right boundary bits. Left: time steps 1-
120, approach to limit cycle (A) from a random initial condition; time
steps 121-209, when a central bit (45) is altered, the system returns to
limit cycle (A); time steps 210239, when bit 100 is altered, the system
jumps to limit cycle (B). Right: the “damage” or distance between
the altered and the unaltered limit cycle (A): time steps 121-209,
the damage shifts to the right and disappears; time steps 210-239,
damage in the right side of the system remains, as the system moves
to limit cycle (B).
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Lemma 4. Fort > 3, either s; = s = s3 =t or 8 = 89 = s3 = t+ 1

(mod 2).

Proof. f4(11x%x%) = 1111%x; f4(100%%%) = 1000%%; f4(1010%%) = 1111x%x;
f4(1011 % ) = 1000 * *. Here the leftmost 1 corresponds to so. To complete
the proof we note that f(1111 % %) = 1000 * * and f(1000 % *) = 1111 * . B

Lemma 5. Under these “alternating” boundary conditions s, = t and
st =t + 1; after at most 3 time steps shy41 =t and stﬁ}_l =t+1.

Proof. f(01%) = 110; f2(10%) = 11x. B

The iterated function is to be understood with an alternating first bit.
The two cases above are those in which an alternating “front” meets on its
right a bit of a different value.

Proof of Theorem 3. Applying Lemma 5 inductively, we conclude that
eventually (after at most 2L steps) the sites s, s, ...,s,_; will oscillate in
phase, 0L~ «» 12=1. The phase itself is determined by Lemma 4. As site s,
evolves according to Lemma 3, this concludes the Proof of Theorem 3. B

It can be seen from table 1 that, for lattice sizes L > 5; there are two
basins of attraction of equal size.

Theorem 4. If one of the limit states of (A) has site sy, altered, the system
jumps to attractor (B), and vice-versa.

Proof. This follows from Lemma 3. B

From the previous section (Lemmas 3 through 5) we also deduce that the
bit s; is unstable in both (A) and (B) states, and the bit s, is unstable in
states 0L and 0%~'1. All other bits in limit states are stable to changes. As
in rule 24, changes in these bits do not produce phase changes. We then see
that the unstable directions in this case always correspond to states that are
contiguous in phase space.

3.3 Rule 40

We consider the fixed boundaries sy = sp41 = 1. In this rule, 1s are shifted
to the left or destroyed, but never created.

Theorem 5. There are two fixed points 0F and 071, to be called (A) and
(B). Initial configurations of the form S00 or S111 evolve to (A).

Lemma 6. The 111 sequence can only occur at t = 0.

Proof. f(1011x) = #110«. B

This would be the only neighborhood capable of producing three con-
secutive 1s. We only need to consider single and double 1s shifting to the
left.
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Lemma 7. A double 0 spreads to the left with speed one, and to the right
with speed one-half until it reaches the boundary.

Proof. f(x*00%) = x000%; f2(* * 00%) = 00000. W
Lemma 8. A traveling “11” creates a 0 pair when it hits so = 1.
Proof. f(111%) = 100«. B

From Lemma 9, a pair of 1s will eventually cause a spreading pattern of
0s. Only the case of alternating single Os and 1s remains.

Lemma 9. An initial condition (01)* produces a double 1 on the right
boundary.

Proof. f(1011) = (0111), where the last bit is sp.;. Therefore, all initial
conditions eventually produce an expanding pattern of 0s. B

Proof of Theorem 5. The fixed points can be verified by direct application
of the rule; we see from Lemmas 7 through 9 that these two fixed points
attract all initial configurations:

F(¥001) = 0001  f(x1111) = x % 001

All other initial configurations evolve to (B). The basins of attraction occupy
3/8 and 5/8 of phase space, respectively.

From the previous subsection, we see that only changes in the last three
bits may result in fixed point changes.

Theorem 6. Fixed point (A) has two unstable directions, while (B) has one
unstable direction.

Proof. Changes in the last three bits of 07 lead to ..001, ..010, or ..100. By
Theorem 5, these evolve to (B), (B), and (A), respectively.

Changes in the last three bits of 0°~1 lead to ..000, ..011, or ..101, which
evolve to (A), (B), and (B), respectively. In this proof the leading dots
correspond to multiple Os. B

The unstable direction in (B) and one of those in (A) are related to the
proximity of the two fixed points in phase space.

4. Formal language theory

The limit sets of configurations for each rule can be generated from the
graphs of figure 4. Each limiting configuration on a system of size L (and
reading from right to left) corresponds to a path that starts from the specified
node and traverses L arcs. Conversely, every path starting from the specified
node, however long, corresponds to a limiting configuration for some L. The
regular languages thus described can be compared with those obtained at
finite times for the same rules and without boundaries [13, 14]. For instance,
with boundaries the state transition graph corresponding to rule 40 has the
limit shown in Figure 4(c), while in the unbounded case [14] the size of the
graph appears to grow with time.
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Figure 4: The state transition graphs for the deterministic finite au-
tomata that generate the regular languages obtained in the large-time
limit for the three rules. From the top, they correspond to rules 24,
27, and 40.

5. Summary and discussion

In this paper we have determined the basin size, and the structure and stabil-
ity properties of the limit states, for three cellular automata rules each with
two basins of attraction. The attractors are fixed points or limit cycles of
length 2 or 3. Because of the small number of attractors—and the indepen-
dence of this number on lattice length—we have been able to determine these
properties rigorously. The results are summarized in Theorems 1 through 6
in section 3.

A first observation is that only a few bits near the boundaries determine
to which attractor an initial condition is going to evolve. In rules that become
purely shift rules after a few time steps, such as 24 and 40, only the first few
or the last few bits matter. In more complicated rules like 27, bits near both
boundaries are important. These three rules, then, can be seen to act as
“pattern recognizers” for certain properties of the initial condition.

A second observation is that the limit states are extremely stable under
small perturbations. Only perturbations to the bits near the boundaries will



136 Philippe Binder, Carole Twining, and David Sherrington

cause the system to jump from one limit cycle to another, and most other
perturbations will not even cause a change in the “phase” of the limit cycle.

There are two final remarks about the consequences of discrete phase
space. One is that the structure of the basins of attraction is very differ-
ent from what is observed in the continuum. For example, the hypercubic
projection of figure 2 is quite different in structure from the fractal basin
boundaries that have been found in a forced pendulum (figure 1 in reference
[15]). The final remark is that this discrete structure seems to play a role
in the existence of the few unstable “directions” in the limit states. (See for
example figure 2 in this paper).
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