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Abstract. This paper presents a theory of convergence for real-
coded genetic algorithms—GAs that use floating-point or other high-
cardinality codings in their chromosomes. The theory is consistent
with the theory of schemata and postulates that selection dominates
early GA performance and restricts subsequent search to intervals with
above-average function values, dimension-by-dimension. These inter-
vals may be further subdivided on the basis of their attraction under
genetic hillclimbing. Each of these subintervals is called a virtual char-
acter, and the collection of characters along a given dimension is called
a virtual alphabet. It is the virtual alphabet that is searched during the
recombinative phase of the genetic algorithm, and in many problems
this is sufficient to ensure that good solutions are found. Although
the theory helps suggest why many problems have been solved using
real-coded GAs, it also suggests that real-coded GAs can be blocked
from further progress in those situations when local optima separate
the virtual characters from the global optimum.

1. Introduction

Real-coded or floating-point genes have a long, if controversial, history in
artificial genetic and evolutionary search schemes, and their use as of late
seems to be on the rise. This rising usage has been somewhat surprising to
researchers familiar with fundamental genetic algorithm (GA) theory [16, 26]
because simple analyses seem to suggest that enhanced schema processing is
obtained by using alphabets of low cardinality, a seemingly direct contradic-
tion of empirical findings that real codings have worked well in a number of
practical problems. The debate between practitioner and theoretician over
this paradoz of real codings has risen almost to the point of schism. Theoreti-
cians have wondered why practitioners have paid so little heed to the theory,
and practitioners have wondered why the theory seems so unable to come to
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terms with their findings. This paper seeks to resolve this apparent paradox
through the introduction of a theory of operation for real-coded GAs. Specifi-
cally, the notion of virtual alphabets is introduced and used to shed some light
on the convergence of real-coded GAs. In a sense, a problem coded with a
high-cardinality alphabet is quickly reduced to searching over a much smaller
virtual alphabet, and recombinative processing proceeds. The theory is con-
sistent with known schema theory and helps explain why practitioners have
obtained good results in many problems. The theory also demonstrates that
real-coded GAs can be stymied by difficult problems that block the virtual
characters from accessing (from being mutated to) the globally optimal point
or points.

It should be noted that this new theory is somewhat distinct from, but a
companion to, previous results on what makes a problem hard for a binary-
coded GA. A previous study [17, 18] considered the conditions under which a
simple, binary-coded genetic algorithm might be misled by a function-coding
combination. That study also suggested the extension of the binary theory to
other low-cardinality alphabets, and such extensions are directly applicable
to real-coded GAs as long as deception is considered in light of the virtual
alphabet. On the other hand, the blocking mechanism suggested herein
has not been considered before, and is only a factor when high-cardinality
alphabets are used.

Unless otherwise stated, the rest of the paper assumes that the GAs under
consideration, whether binary or real-coded, are simple: they use selection,
simple crossover, and simple mutation [16]. The analysis should be valid
for most selection schemes that give more copies to better individuals. We
assume the use of simple crossover operators, where genes (binary or floating-
point) are exchanged whole, although the number of cut points and their
location may vary. We assume that simple mutation changes 1s to Os and vice
versa in binary alphabets. In real-coded (and k-ary) GAs, simple mutation
is assumed to respect the ordering of the alphabet and creeps up and down
with either fixed- or variable-length strides. As is the case in most GA
work, we ignore the need for change of representation operations, and when
such operations are mentioned at all, we only consider reorderings such as
inversion and recombinative reordering that attempt to get the necessary
linkage between important gene combinations. These assumptions are fairly
common, and they have helped promote fairly concrete analysis. But, it
is important to understand that the analysis techniques presented herein
extend to other known variants of crossover and mutation, and as we shall
soon argue, these other operators appear to suffer the same performance
limitations as simple real-coded GAs.

In the remainder, the history of using real-coded genes is considered
briefly; reasons for using small and large alphabets are discussed, and the
theory of virtual alphabets is set forth. This leads to an understanding of
the limiting behavior of a real-coded GA, which directs our attention to the
problem of inaccessible optima or blocking. The theory demonstrates that,
while real-coded genes may not harm genetic processing in some problems
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and may even be helpful in others, there are problems where the coding
places additional barriers to the search for global optima—Dbarriers that do
not exist when low-cardinality alphabets are used.

2. Past use of real-coded genes

The use of real-coded genes dates back to the earliest days of evolutionary
and genetic methods. In this section, we consider both early and more recent
studies that have adopted high-cardinality or real-coded genes.

One of the earliest suggestions linking artificial optimization and natural
evolution came in Box’s [4] evolutionary operations scheme. This suggestion
was less an algorithm and more a method for systematically perturbing two or
three decision variables about the current operating condition of some fixed
plant. Nonetheless, the work was inspired by evolution, and the method
for choosing solutions and the solution perturbation cycle may be viewed as
selection-like and mutation-like operators, respectively.

Friedman [15] proposed the construction and digital simulation of what
he called a selective feedback computer. It is unclear whether this design un-
derwent testing, but the combination of selection and mutation mechanisms
was fairly well spelled out, as was the use of real genes.

Some of the mechanisms within Selfridge’s [33] Pandemonium machine
learning system were inspired by evolution, and a number of these involved
the manipulation of real-coded genes. Specifically, he considered the possi-
bility of mutating weights randomly for his “demons” or processing units and
then selecting the better combinations. Perhaps more interesting from the
standpoint of modern genetic algorithms was his suggestion for a conjuga-
tion operator, where a pair of mated demons would give rise to offspring that
were some logical combination of the parents. This early suggestion was very
much in the spirit of more modern recombination or crossover operators.

Bledsoe [2] considered both binary and continuous (real) genes under
selection and mutation. He considered both fixed-step and continuously dis-
tributed mutation operators. The paper is remarkable in that it foreshadowed
many issues that did not reemerge until the 1970s and 80s, including GA-
hard problems (he called them lethally dependent), scaling, the importance
of populations, and a number of advanced operators.

Bremermann’s work [5-8] considered binary, integer, and real genes. The
earliest work concentrated on selection and mutation, and later studies in-
cluded recombination operators (recombination by crossing over, recombina-
tion by averaging, recombination by majority vote). The problems considered
included solving sets of linear equations and optimizing linear programming
problems.

Contemporaneously and independently across the Atlantic, a couple of
graduate students at the Berlin Technical University, Ingo Rechenberg and
Hans Paul Schwefel, studied evolutionary techniques applied to the opti-
mization of engineering systems under the name Ewvolutionsstrategie (ES).
Rechenberg’s early work concentrated on performing selection-mutation ESs



142 David E. Goldberg

with physical models of engineering systems. A least-drag shape, a lowest-
resistance pipe bend, a minimum-weight structural truss, and a high-efficiency
supersonic nozzle were among the objects considered. At about the same
time, Schwefel constructed ES computer simulations that included mutation
and selection, and later studies included recombination (shuffle or uniform
crossover). Rechenberg’s hardware-based studies are surveyed in a brief pa-
per in English [30], although the work dates back to the early 1960s [29].
A fairly complete listing of the ES literature is available in Rechenberg’s
[31] bibliography. Schwefel’s [32] text relates various Evolutionsstrategien to
random search schemes and traditional optimization procedures.

Holland’s contributions date back to 1962 [24], and from the start he
took a discrete view of genetic processing. It wasn’t until Weinberg’s [34]
thesis departed from this discrete tradition that a suggestion for real genes
arose out of the Michigan school of thought. In that dissertation, Weinberg
suggested a GA with real genes for the genetic evolution of a population
of single-celled artificial organisms. The suggestion was fairly detailed but
was not simulated, apparently because of the time consumed in doing the
organism simulations.

Weinberg’s work was followed by a flurry of real-coded gene work at
Michigan [3, 14, 36]. The work included reproduction, crossover, various mu-
tation operators, and inversion. Populations of size 40 were used and direct
comparisons were made to conjugate-gradient techniques. Some analysis of
individual operators was performed, but these efforts worked directly with
the real codings and did not attempt to incorporate Holland’s schema theory
(25, 26].

Since these early efforts, the torch for real-coded genes has largely been
carried by the German school, and these efforts are too numerous to men-
tion individually. Lately, there has been a growing use of real-coded genes
by researchers in the United States, although these people remain largely
unaware of the long history of real-coded genes and the volume of ES work.
A particularly vocal U.S. proponent of real genes has been Davis. His study
of communication network design [10, 11] coded a discrete set of five com-
munication speeds directly as a single gene and used an adjacency mutation
operator (called creep). This flirtation with bigger-than-binary alphabets
has progressed to the point where a recent study of using GAs in neural net-
work weight adjustment used real-coded genes and a variety of mutation and
recombination operators tailored to that task [28]. He also reports success
in a variety of unpublished practical problems [12], and has questioned the
utility of schema theory if it so badly predicts the utility of real codes. Al-
though he makes the point without offering a theoretical explanation for his
success in using high-cardinality alphabets, the point deserves a more con-
sidered response than has been offered thus far, and the primary purpose of
this paper is to resolve the apparent paradox between empirical results and
schema theory predictions for real-coded genes. The next section considers
those aspects of schema theory that recommend low-cardinality alphabets.
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Binary | Octal | Function value
000 0 22
011 3 8
101 5 11
111 T 3

Table 1: Binary vs. octal structures

3. Why small alphabets?

Fundamental theory suggests that small alphabets are good because they
maximize the number of schemata available for genetic processing. The cal-
culation is straightforward. Consider a GA coded over an alphabet of car-
dinality . Since there are k + 1 schemata per position (the x members of
the alphabet plus a meta-wildcard character—a don’t care—denoted by ),
and each position represents log, & bits, there are (x+1)/1°82% schemata per
bit of information for a code with cardinality k. Thus we have proved the
following theorem presented elsewhere [20].

Theorem 1. There are n, = (k + 1)Y/°62% similarity subsets or schemata
per bit of information for strings coded using an alphabet of cardinality k.

This computation leads to another useful result.

Theorem 2. For a given information content, strings coded with smaller al-
phabets are representatives of larger numbers of similarity subsets (schemata)
than strings coded with larger alphabets.

Proof. From Theorem 1, n, = (k+1)/°82% Taking the log of n, and calling
this quantity = yields r(k) = log, ns = log,(k + 1)/logy k = In(k + 1)/ In k.
Evaluating the derivative with respect to x we obtain

dr  [klnk —(k+1)In(k+1)]

de k(k+1)In*k

Since x1n x is monotonically increasing for all legitimate alphabets (k > 2),
the derivative of 7 is less than zero. Since exp is a monotonically increas-
ing function, we have shown that smaller alphabets have larger numbers of
schemata per unit of information. W

A simple example will help drive home these calculations. Suppose we
have a choice of coding a problem in octal or binary. The examination of
a small sample population will help convince us of the greater information
that becomes available using smaller alphabets (table 1). Scanning the octal
structures and their objective function values we are at a loss to know what
to do next. Since each octal string represents itself alone, we can make no
inferences regarding which of the unnamed structures might be particularly
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promising. On the other hand, scanning the binary structures, each string is
a representative of a number of subsets of structures with similarities at one
or more positions. Thus we can speculate on cause and effect relationships
between good components and high fitness. For example, maybe the first
string is highly fit because it has a 00 in its rightmost positions or because of
its 0 at its rightmost position, or perhaps strings 000 and 101 are relatively
fit because of the 0 they share in the middle. In this way, many hypotheses
can be formulated regarding the association between substring values and
high fitness, and it is this information that is recombined to speculate on
possibly better structures during the normal course of genetic search.

This reasoning and the previous calculations are straightforward and
hardly open to question, and both seem to drive us toward the conclusion
that we should be using small alphabets; however, there are problems where
the use of all these schemata is not necessary and may even slow down our
search. For example, in linear problems, knowledge of high-order schemata
is unnecessary because position-wise manipulation of the code permits us to
achieve the optimum. In such cases, one can certainly count the high-order
schemata, but counting them is little more than an academic exercise. This
point about which schemata are important in problems of varying difficulty,
and therefore should be counted when arguing over the advantage of one
coding over another, has been made more forcefully and quantitatively else-
where [19], but it is one that is often overlooked. In the next section, we
consider a number of possible reasons why one might choose to ignore the
schema advantage of low-cardinality codings.

4. Why large alphabets?

Although the largest numbers of schemata are obtained using the smallest
alphabets, there are a number of reasons why a user of genetic-evolutionary
techniques might choose to ignore this advantage:

1. comfort with one-gene—one-variable correspondence;

2. avoidance of Hamming cliffs and other artifacts of mutation operating
on bit strings treated as unsigned binary integers;

3. fewer generations to population conformity;
4. reduction of the opportunities for normal-mode deception.

The first of these reasons is more psychological than technical, but many
users find a one-to-one correspondence between genes and decision variables
comforting and find the codings of decision variable as bit strings or other
discrete codes disconcerting. As we have seen, much of the early work took
the real approach almost without thinking, and Holland’s suggestions for
discrete structures and more effective schema processing have not always
been appreciated.

Justification for the real-gene approach can be made on more technical
grounds, however. Real-coded GAs usually adopt mutation operators that
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Figure 1: A three-bit function with a Hamming cliff.

perturb the current solution a little about the current value, and binary-coded
GAs usually adopt a bitwise complement operator for mutation. By creeping
up and down, real-coded GAs can easily do hillclimbing in the underlying
decision space, but with bitwise complement mutation, binary-coded genes
can become stuck on Hamming cliffs as illustrated in figure 1.

Using an octal coding over the eight points of the unimodal search space
and some sort of creeping mutation, the higher cardinality GA will be able
to find the best point regardless of initial population. After the population
converges to some value, successive mutations will continue to correct the
solution until the optimum is reached. On the other hand, depending upon
initial convergence, the binary GA may or may not be able to access the
best point. For example, because the points in the left half of the space are
above average (because f(0 %) > f(1 % %)), a GA is fairly likely to converge
initially to 011. Although 011 is close to the correct solution as measured
in decision space, it is quite distant in Hamming space and requires changes
at all three bits to reach the optimum 100. Such changes are unlikely—they
are of O(p?,)—and require long waiting times. A number of authors have
suggested the use of Gray codes to overcome such problems [1, 9], but doing so
introduces higher order nonlinearities with respect to recombination [18]. A
simple solution to this problem exists. Simply use both bitwise and decision-
variable-wise mutation operators in binary-coded GAs. Some thought should
be given to the proper proportion of each, but doing so should permit binary-
coded GAs to climb hills in the space (coding or decision) that is currently
friendliest toward hillclimbing. Such a solution was recently used to good
effect in Lucasius and Kateman’s [27] study of chemometric applications of
GAs, and others should find the technique appealing.

Another reason users may prefer to use higher cardinality alphabets is
speed. Assuming a fixed population size, a fixed number of search alterna-
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tives, and serial processing of individual loci, it may be shown theoretically
and empirically that higher cardinality alphabets converge to some solution
more quickly than those coded over a smaller alphabet. It is important to
recognize that this faster convergence is a mixed blessing as the quality of
the solution degrades with increasing x. Nonetheless, some users may be
happy to let a GA converge quickly to some near-optimal solution, allow-
ing selection and mutation or other local search procedures to polish off the
search.

A final reason a user might consider a higher cardinality alphabet is be-
cause it reduces the dimensionality of the problem. This in turn reduces the
opportunity for deception [17, 18] and reduces (or eliminates) crossover dis-
ruption within a parameter. Briefly stated, deception exists when low-order
building blocks lead in one direction, but high-order building blocks contain-
ing the global optimum lie elsewhere; reducing the dimension of the problem
can reduce the opportunity for deception because there are fewer low-order
building blocks to confuse. This might be cause for celebration, but as we
shall soon see, this is no free lunch. First, note that reducing problem di-
mension reduces the opportunity for deception. If a problem is in more than
one dimension, deception can still exist and can cause convergence difficulty.
Second, the introduction of higher cardinality alphabets introduces the pos-
sibility of new obstacles to convergence, obstacles that must be accounted
before choosing any coding.

The reduction of crossover disruption might at first glance appear to be a
blessing, undisguised. Unfortunately, it, too, can be a net advantage or disad-
vantage, depending upon the problem. There is no doubt that the reduction
in crossover disruption increases the chances that selection will be able to pick
out good alleles. On the other hand, as we've already argued, indivisibility
prohibits lower order schemata from offering clues where other good (unvis-
ited) points might be. This was the primary lesson of the counting argument
of the previous section. Thus, the picture is not at all clear-cut.! Rather
than arguing the merits of these alternatives on such primitive grounds, we
try to better understand the processing of a real-coded genetic algorithm.

5. Selection dominates early genetic algorithm performance

To understand the performance of high-cardinality GAs, we must first recog-
nize how selection dramatically cuts back on the alternatives that are consid-
ered early in a run. Two examples, first in one and then in two dimensions,
will make this clearer.

!As Harry Truman longed for a one-armed economist, I find myself wishing for a one-
armed genetic algorithmist in the hope of putting an end to all this on-the-one-hand-and-
on-the-other stuff. On the other hand, economic systems share much of the interwoven
complexity of evolutionary systems, and perhaps it is this commonality that drives, and
must leave unfilled, requests for monodexterous individuals in both fields.
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Figure 2: Trimodal function in one dimension is shown with a uni-
formly random initial distribution of points. The horizontal line shows
the average value of the function.

5.1 A function of one variable

To understand the power of selection alone, consider the one-dimensional
function with three peaks as shown in figure 2. Initially, a random popula-
tion of points is chosen (as shown by the x’s placed on the curve), and binary
tournament selection is used in successive generations. In the initial gen-
eration, a significant proportion of the population is above average, and in
succeeding generations this proportion should be expected to grow no more
slowly than logistically [21]. At generation 4, all the points are above average
as shown in figure 3. This leads us to wonder whether some special role is
played by above-average points in the space. After all, in a very short time,
through the action of selection alone, search on the full unit interval has been
cut to only those subintervals that are above average. Furthermore, the ad-
dition of some small amount of creeping mutation or other genetic operators
should not materially affect these results; early real-coded GA performance
is dictated by (1) the points present in the initial population and (2) the
action of selection to restrict consideration to the best of those points. We
will develop this notion more fully in a moment, but first we must consider
what happens in functions of more than one variable.
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gen = 4, popsize = 50, pmutation = 0.00, above average = 50

Figure 3: The distribution of points on the trimodal function at gen-
eration 4 shows that selection quickly chooses above-average points.

5.2 Functions of more than one variable

The picture for functions of more than one variable is similar to the one
just painted in that above-average points are preferred by selection, except
now consideration of above-average intervals must be done dimension-by-
dimension, averaging out the effect of the other variables. To understand
this, examine the function of figure 4. To get a meaningful view of the
function with respect to the first decision variable z1, simply average out z,
as follows:

Bon) = 7

/b ¢(z1, z2)dxs.

Such mean slices will be useful in evaluating the early effect of selection on
functions of more than one variable. The averaging of the mean slice may
be connected to the random sampling that is actually performed initially if
we think in terms of Monte Carlo integration. One common way to obtain
approximations to definite integrals is to sample the integrand over the do-
main of integration randomly, and this is exactly what is being done by the
GA during the initial population. Calculating the mean slice simply takes
this view literally and more formally.
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Figure 4: A two-dimensional objective function is used to illustrate a
GA’s dimension-wise preference for above-average points as a result
of selection.

Another useful view of the function may be taken by fixing the second
decision variable to its value (z3) at the global optimum:

¢"(z1) = (21, 25).

This slice at the global optimum or global slice is useful in evaluating conver-
gence behavior when (if) solutions approach the neighborhood of the global
optimum. Another view, the maz slice, may be obtained by varying x; and
choosing the best ¢ value at each point ranging over all possible x5 values;
and analogously a min slice may be defined by choosing the smallest function
value. Although max and min slices are not used directly in the theory that
follows, they do provide useful information at a glance regarding the relation
of the mean at a point to the maximum and the minimum, thus helping to
indicate whether the mean is a good predictor of a particular optimum.

Figure 5 shows the max, global, mean, and min slices for the two-
dimensional function of figure 4. Initially the points are randomly dis-
tributed, but the figure shows the distribution after four generations of tour-
nament selection and simple crossover. Nearly all points are above average
and are distributed in only those places that have above-average performance
on the mean slice. Note that the narrow feature containing the global opti-
mum has no representatives. This is not surprising because points with an
z; value in that range are not particularly good on average, and obtaining an
initial sample on the fairly narrow two-dimensional peak is a low-probability
event.

In the next section, we build on the various slices to define virtual char-
acters and virtual alphabets.
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gen = 4, popsize = 50, pmutation = 0.00, pcross = 1.00
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Figure 5: A max slice, global slice, mean slice, and min slice along
z for the two-dimensional function of figure 4 shows x’s marking the
50 points contained in the population at generation 4. The location
of the points coincides roughly with the location of the above-average
points of the mean slice. The global slice is shown as a dashed line and
coincides with the min slice at a distance from the global optimum.

6. The theory of virtual alphabets

The last section suggested that selection acts quite quickly to emphasize
highly fit individuals, thereby reducing drastically the number of alternatives
considered. Viewed along a single dimension, the genetic algorithm tends to
allocate trials to those intervals associated with above-average function value.
These intervals may then be viewed as the basic building blocks for further
genetic search via operators such as crossover and mutation, and it is this
view that is developed more rigorously in this section. Specifically, this loose
talk of “useful intervals” is made more rigorous through the introduction of
the notions of virtual characters and virtual alphabets. These concepts turn
out to be the keys to understanding the schema processing that takes place
in high-cardinality GAs.

6.1 Some mathematical preliminaries

Assume that the object of search is a real-valued function ¢ with domain
Q in R™. The function ¢ is said to have a local mazimum at z* if a 6 > 0
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exists such that ¢(z) < ¢(z*) for all z € Q with |z — z*| < 6. A strict
local maximum is said to exist when the inequality in ¢ may be replaced
by a strict inequality (<), and a global or strict global maximum may be
defined by requiring the appropriate inequality on ¢ to apply throughout 2.
Likewise, analogous definitions for local and global minima, either strict or
not, may be defined by reversing the direction of the inequalities on ¢. In
the remainder, we consider functions ¢ to be maximized and use the terms
optimum and maximum interchangeably.

6.2 Slices

It is also useful to generalize the slicing notions developed intuitively some-
what earlier. Consider an appropriate probability density function f(z) with
z € £, and recognize that the marginal density function f;(z) for the subset
of the n real variables specified by the index set I may be calculated as

filen) = [ fla)d, (6.1
]/

where I' = {1,...,n} — I, the complement of the index set I. With these

definitions, the mean slice ¢y, or the expected value of ¢ with respect to f

and the free variables z; (i € I), may be calculated as follows:

di(en) = [ fuler)d()d, (6.2)

where dQ2p: = [[;ep dr; and Qp is the indicated |I'|-dimensional subspace of
Q spanned by the averaged variables. When the index set is empty, ¢r(zr)
reduces to @, the expected value of ¢ with respect to f. When the index set
I is singleton, the slice is one-dimensional like the one considered in the last
section; and since the singleton slices are so important, a shorthand notation
of subscripting ¢ by a single index will be used. For example, ¢;(z;) is the
expected value of ¢ with respect to f for the single free variable z;.

The notation is straightforward, but we should pause and check its mean-
ing. Essentially we have generated a set of functions that are the averages
of ¢ with respect to any number of variables. Of course, in discrete GAs
this is the role played by schema fitness averages, and the ¢ functions play
that same role in real-coded GAs. In fact, the schema theorem carries over
to the real-coded case as pointed out by Wright [35]; as with most codings,
proper interpretation of a schema and appropriate definition of genetic oper-
ators with high schema survival probabilities are enough to ensure that the
schema theorem applies.

The notion of taking a slice through the best point may also be generalized
by first considering a point slice. The point slice ¢¢(z;) with respect to the
point x = a and index set I is defined as the function obtained by setting
zj =a; (j ¢ I) and allowing the other variables to vary freely. An optimum
slice ¢7(zy) is obtained by choosing the reference point as any optimum z*,
and a global slice is obtained when the point selected is globally optimal. Of
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course, when multiple optima or global optima exist, care should be exercised
to consider the various slices separately.

The maz slice of the previous section may be generalized from the single-
tons to arbitrary index sets. Specifically, the max slice ¢**(z;) with respect
to an index set I is defined as follows:

¢7*(xr) = max{P(z) : © € Q and z; fixed, ¢ € I}. (6.3)

In other words, for a given fixing of the z;, the max slice displays the largest
value of ¢ ranging over the remaining variables. An analogous definition
yields a min slice straight away.

We will use these various slices in a moment to help understand real-
coded GA processing. However, since genetic algorithms contain elements
of both random search (during initialization) and hillclimbing (via selection
plus mutation), we need to consider each of these modes of operation.

6.3 Random search

Consider performing a random search for a target 7 C ) according to the
random search probability density function f,(z) with z € Q. The probability
P, of finding a point within the target on a given random trial may be
calculated as follows:

B / Fo(2)dS2. (6.4)

In n, trials, the chances of having at least one success is 1 — (1 — P,)™. We
say that the target 7 is a needle in a haystack (NIAH) or probabilistically lost
at the level a if 1 — (1 — P,)™ < a. Rearranging, a target is NIAH if P, <
1—(1—a)'™ which may be solved approximately as P, < — (In(1 — a)) /n,.,
the approximation improving with increasing n,.

6.4 Hillclimbing

In many search problems, hillclimbing—whether performed genetically through
selection and mutation or otherwise—may be sufficient to find good solutions.
To separate such relatively easy problems from those that require more so-
phisticated genetic processing, such as recombination, reordering, niching,
and expression, we consider an abstract framework for hillclimbing algo-
rithms, their basins of attraction, and whether repeated hillclimbing is likely
to achieve a solution.

There are many forms of hillclimbing algorithm available to a search al-
gorithm designer or user. When mutation is enabled in a GA, its action
together with selection promotes a broad hillclimbing mechanism, and in re-
stricted problem domains, specialized local search algorithms are often avail-
able. We are less concerned here with the details of how hills are climbed in
a problem and more interested in identifying whether we are at all likely to
climb the right hill in a particular problem. With this is mind, we imagine a
hillclimbing system (HCS) as a five-tuple (X, M, ®, g, h), where X C Q is the
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allowable search space, M is the space of allowable memory configurations,
® is the set of possible function values, and g and h are memory transition
functions and output functions defined as follows:

M1 = g(mt:¢t); (6-5)
Ti4+1 = h(mt,@). (6~6)

In words, the memory m € M and search point z € X are updated de-
pending on the ¢ value received from the “environment” of the HCS and
the current state of HCS memory. This definition of a hillclimber is broad
enough to encompass most algorithms. Probabilistic schemes such as sim-
ulated annealing and GAs (with mutation and selection) are covered if the
transition functions are viewed as determining a probability distribution over
the search and memory configuration spaces. Note that the output, z;;4, is
viewed as a single point (as it is in most hillclimbers), although this assump-
tion does not prevent the formalism from encompassing population-oriented
schemes simply by varying the amount and type of information retained in
memory.

Once a hillclimber is specified, it is useful to talk about its ability to find
a particular optimum. We say that an HCS is attracted to a point z* from
a point z if application of the HCS starting within a é-neighborhood of z
results in a non-zero probability of being within an € > 0 of z* or within an
€ of any ¢-equal point connected to z*. The basin of attraction B, is then
defined as the maximal connected set of points z € 2 attracted to z*. For a
deterministic HCS the probability of randomly choosing a point in the basin
leading to z* is simply

Pa = /B (@), (6.7)

and this is the probability of being attracted to * because, in the determin-
istic case, choosing a point in the basin guarantees ultimate arrival.

For a probabilistic HCS, if we define the conditional probability density
function f,«(z) of arriving near z* (or near some points in a ¢-equal connected
region) given a start near z, the probability of ending up at the desired
optimum after a single trial of random initialization and hillclimbing is simply

P, = /[;z* fr(x)fx*(x)dg (68)

Of course, it is no longer necessary to restrict the domain of integration to
the basin, as the second density function properly accounts for those points
that are unable to access a particular optimum through hillclimbing, but the
restriction causes no harm and further emphasizes which points can lead to
Rome.

It is now possible to connect these calculations to those of the previous
subsection by recognizing that, when using randomly started hillclimbing
(as opposed to random search), it is no longer necessary to hit the target on
the head; we must only find a point in the appropriate basin of attraction.
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In unimodal problems this usually poses no difficulty, and in problems with
extensive global basins, waiting times are quite reasonable. On the other
hand, problems exist with fairly limited global basins, and it is these prob-
lems that we hope to solve with the innovative capability of a recombinative
GA. Assuming the repeated application of random start followed by the ap-
plication of an HCS to convergence, we say that a function is hillclimbing
hard or simply HC-hard if its global basin of attraction is NIAH (needle in a
haystack). Otherwise, we say the problem is HC-easy. Because hillclimbing
algorithms are so widely studied, and because even genetic search has its
own built-in hillclimber (mutation plus selection), we assume that HC-easy
problems can be solved, and restrict further consideration to those problems
that are HC-hard.

6.5 The action of selection

In an earlier section, we saw empirically how selection dominates the early
performance of a genetic algorithm. We recognize that, in a relatively short
time, only individuals with relatively high function values will be represented
in the population. To quantify this, assume binary tournament selection (or
linear ranking selection with two copies given to the best and none given to
the worst), and further assume a uniformly distributed objective function
such that roughly 50% of the individuals in the initial population are above
average. It may then be shown by the methods of another paper [21] that
the number of generations t required for above-average points to all but take
over the population may be calculated as

t = loglogn,, (6.9)

where n, is the population size and the logarithm is taken base two. Even
with a population of 10° individuals, the number of generations needed to
take over is roughly ¢ & 5, and for typical population sizes (30-1000), three
or four generations is enough to fix the population at a function value that
is above average.”

With this viewpoint of rapid takeover by above-average points, and re-
calling that a level set L of ¢ with level A may be defined as the set

L(g,A\) ={z:z € Q and ¢(z) > A}, (6.10)

we define the selection set or S-set as the level set with level A = ¢. In words,
the S-set is the portion of Q2 with above-average ¢ value.

We subdivide the S-set into connected subsets, calling each maximal con-
nected subset of the S-set a feature, as each tends to stand out above the

2t may be argued that I have been insufficiently conservative in my assumptions in
this calculation. But even if the population starts from a lesser state, and even if the
selection scheme used is less pushy, the takeover time for many selection methods grows
no more slowly than as a logarithmic function of n, [21]. It is possible to be more precise
about the level of convergence obtained in a particular number of generations for a given
type of selection, although this has not been done here so we may carry on to the main
result.
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Figure 6: The sketch shows a mean slice, its basins, its features, and
its virtual characters. Note that the definition allows for overlapping
virtual characters, depending upon the choice of a hillclimbing system,
even though the figure shows disjoint sets.

crowd. With these preliminaries, we rigorously develop the notion of a virtual
character.

6.6 Virtual characters and alphabets defined

The definition of a feature gets us close to a rigorous statement of the ideas
developed loosely regarding above-average intervals. Restricting our atten-
tion to the mean slices of ¢ over singleton index sets—the one-dimensional
mean slices ¢;—a virtual character may then be defined as a non-empty in-
tersection of a basin and a feature on ¢;, and a wirtual alphabet is simply
the collection of virtual characters along a given dimension. The sketch of
figure 6 illustrates the basic ideas. In the figure, the selection set is divided
into two features and four basins. The first feature (F}) contains portions of
two different basins (B; and Bs) and is divided into two virtual characters
(Cy and Cy). The second feature (F3) contains a portion of only one basin
and as a result has only a single character (C3). Note that the third basin
is unrepresented as a character. Even though it is locally optimal, selection
will prefer other regions early on, and Bj will be ignored.

This view is fairly straightforward, but at least two questions come to
mind as we think of the genetic processing that follows the initial selective
phase. How are virtual alphabets processed by the combined action of selec-
tion and recombination, and why don’t we need to consider mean slices of
two, three, and more dimensions in defining the virtual alphabet?
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Figure 7: Selection and recombination in a real-coded GA process
the virtual alphabets much like a low-cardinality GA processes its
fixed alphabet. In two dimensions, this biases the processing to the
cross-hatched regions. In higher dimensions, the picture is the same
except that the linkage biases of the particular crossover operator
must be accounted in determining the varying probabilities of visiting
particular regions.

The first of these questions is the easier to answer. Reduction to the vir-
tual alphabet so soon means that selection and recombination will process the
virtual alphabets as though they were some underlying set of fixed alphabets.
For example, in two dimensions a ternary alphabet along the z; axis and a
binary alphabet along the z, axis might give a search picture something like
that shown in figure 7. The regions of likely subsequent search are shown
as cross-hatched intersections between virtual characters on different dimen-
sions. Of course, this picture is somewhat modified by the action of mutation
because mutation permits the system to climb hills one dimensionally once
the solution has been transported to a point in some other cross-hatched re-
gion. (Actually mutation is occurring simultaneously, but for mutation steps
that are small with respect to the virtual character width, the errors made
by assuming no change during the recombinative phase are small).

The more difficult question is why consider only the one-dimensional
slices? The answer is that features on slices of higher dimension are unlikely
to be sampled properly. Imagine a problem specified on the n-dimensional
hypercube, a problem mapping [0, 1]* — R, and assume that features occupy
a width 6 of the unit interval in each dimension. Thus, one-dimensional fea-
tures occupy a proportion § of the unit interval, features in two dimensions
occupy &2 of the unit area, features in three dimensions occupy &° of the
unit volume, and, more generally, features in k& dimensions occupy 6* of the
k-dimensional hypercube. Moreover, the populations are likely to be sized
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so that the smallest character receives only O(1) samples; put another way,
6 ~ 1/n,. When this is done, the probability of having representatives of all
two-dimensional features in a population is itself of O(1/n,) and, as a result,
we may say that such features (and features in higher dimensions) are NIAH
for GAs that are run with fewer than O(n,) restarts. Thus, the simple theory
suggested here is a reasonable first cut, and mean slices in higher dimensions
may safely be ignored.?

7. Blocking

Virtual characters and alphabets provide a useful perspective from which
to view the convergence mechanisms of real-coded GAs. Simply restated,
one-dimensional basinic features are selected early in the GA dimension-
by-dimension, and the collection of virtual alphabets thus selected is used
in subsequent recombinative-selective search. On the positive side of the
ledger, this mechanism seems to sidestep the precision and aliasing problems
that may occur when low-cardinality codes are used by allowing real GAs to
adaptively select their own alphabets. The empirical success enjoyed by users
of Ewolutionsstrategien and real-coded genetic algorithms can in large part
be explained by this single factor. Moreover, we note that the convergence
mechanism described here is consistent with the theory of schemata and
essentially says that, if you don’t present a selectionist method with a low-
cardinality alphabet, it will choose one for you. On the other hand, the
convenience of having a selection-selected alphabet has been bought at a
price, as it is possible to imagine impediments to subsequent search that are
a direct result of allowing the alphabets to be so chosen. In this section, we
consider the possibility of blocking and establish some necessary conditions
for its occurrence on polynomial fitness functions.

7.1 Simple blocking

To see that real-coded GAs can be thwarted from finding global optima,
consider the sketch showing a mean slice and a global (point) slice of a
hypothetical multi-dimensional function as shown in figure 8. Considering
the mean slice first, we see that there are two virtual characters and, by
the reasoning of the last section, these will be preferred early in the search.
Later on, assuming that search along the other dimensions has largely been

30n the other hand, when larger populations are used or fairly broad k-dimensional
features exist but are not well predicted by low-dimensional features, the methods of
this paper can be adopted to sort out meaningful algorithm mechanism. Specifically, k-
dimensional basinic features become the building blocks of subsequent solutions, and special
care can be taken to add the salient combinations that are not represented dimension-by-
dimension. Suppose a, b, and ¢ represent intervals along dimensions 1, 2, and 3, that
are not above average, but suppose the three-dimensional structure abe contains a highly
fit feature that is not NIAH. Then the building block abe (call it a compound virtual
character) should be added to the evaluation of final convergence as long as the crossover
operator adopted and the ordering chosen permit the building block to remain linked with
high probability.
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Figure 8: A mean slice and a global (point) slice of a hypothetical
function illustrates the notion of blocking. The real GA will prefer
the virtual characters (shaded), but when the GA gets in the vicinity
of the optimum, it will be prevented from advancing beyond the local
optima that block the global optimum.

successful, the picture should switch to that of the slice through the global
optimum. Note in this case that the virtual characters will be prevented
from finding the global optimum because selection and mutation will only
be able to perform hillclimbing and will get stuck on one of the two local
optima guarding the global optimum. We say in such cases that the global
optimum is blocked, and call the one-dimensional form of blocking simple
blocking. Higher order blocking can be visualized using mean and global
slices in higher dimensions, and these should be researched and categorized.
The important thing to recognize at this point is that there are limits to the
use of real-coded GAs—Ilimits that must be recognized and attacked with
careful analysis, algorithm design, and innovation.

It might be suggested that the trouble here is simply the operators being
used; perhaps by shifting to other mutation or recombination operators, the
problem can be sidestepped. Although there may be operators that effec-
tively avoid blocking, other variants of crossover and mutation in current use
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are likely to be only of limited relief. At any rate, analysis of these other
operators proceeds directly using the theoretical tools developed here.

For example, one might suggest a form of mutation that jumps anywhere
within the allowable parameter interval to overcome blocking. In theory,
since the GA is no longer restricted to the asymptotic hillclimbing behavior
of selection and creeping mutation, it can get unstuck. Unfortunately, such
operators are very disruptive and can only be used with low probability.
Additionally, for a jump-mutated offspring to survive, it had better jump to a
point at or above the current average fitness. Point slices through the likeliest
individuals (the most highly fit recombinations of the virtual characters) can
be checked to determine whether such jumps are going to do much good, but
some simple reasoning suggests that they won’t often be of much help. The
virtual characters are located where they are because the feature or features
associated with that interval are of sufficient breadth and height to stick out
above the crowd. Jumping to an above-average, unrepresented point that
can hillclimb to the global optimum is an unlikely event. In other words,
the line search of jump mutation is likely to fail because good features that
are not close to already-represented virtual characters are likely to be NTAH
with respect to that search.

Similarly, the use of averaging recombination operators is unlikely to be
of much practical help in overcoming blocking. There are many variations
on averaging recombination. One can simply average parents dimension-
by-dimension; one can choose a single random parameter « € [0,1] and
simply take the convex combination of the parents, az; + (1 — a)z,, as an
offspring; or one can choose a set of a;, one for each dimension, and take
a convex recombination componentwise. Again, each of these (and their
many mutants) theoretically offers some hope against blocking because each
can jump somewhere very different from current parents. As with jump
mutation, however, the chance of hitting a useful target is quite small. The
individual point, line, or regional searches implied by these recombination
operators can be investigated using the various slices defined in this paper,
thereby determining whether good points are likely to be found in a particular
problem. In general, however, finding features that are not represented by
virtual characters is likely to be an NIAH subproblem.

7.2 Some necessary conditions for simple blocking of polynomials

The previous discussion of simple blocking can be made somewhat more
quantitative if we restrict ourselves to the polynomials. Of course, we are
interested in functions other than polynomials, but because many functions
can be well approximated by power series, and many such series are conver-
gent and can be truncated without great loss of information, it is useful to
explore some necessary conditions for blocking on polynomials.

Restricting ¢ to a polynomial over the decision variables z;, and referring
to figure 8, we note that there must be a total of five extrema (three peaks,
two valleys) in ¢. As a result the derivative of ¢ must have at least five Os,
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and the polynomial must be at least of degree six to exhibit simple blocking.
Note that this example is a case with two-sided blocking, where one or more
virtual characters on each side is separated from the global optimum by at
least one local optimum per side. Thus we have proved the following:

Lemma 1. For active, two-sided simple blocking to occur on a polynomial
¢, the function must be at least of degree six in the blocked decision variable.

The term active is used here to indicate that the blocking is caused by the
interposition of a local optimum between a virtual character and the global
optimum.

One-sided active blocking can occur when no virtual characters exist on
one side of the global optimum. There are two possibilities in this case: the
global optimum occurs on the boundary, or the global optimum occurs in the
interior of the interval. When the global optimum occurs on the boundary,
two extrema are necessary for active blocking (one local minimum, and one
local maximum), and the polynomial must be no less than degree three.
When the global optimum occurs in the interior of the interval there are three
extrema (the global optimum, a local minimum, and a local maximum), and
the polynomial required is of degree four or more. Thus we have shown the
following:

Lemma 2. For active, one-sided simple blocking to occur on a polynomial
¢, the function must be at least of degree three in the blocked variable when
its global optimum is located on the boundary, and degree four when the
global optimum is interior.

This reasoning is straightforward, but we might ask whether active blocking
(the interposition of a local optimum between a virtual character and the
global optimum) is necessary to prevent a virtual alphabet from reaching the
global optimum. Interestingly enough, the answer is no.

The picture painted earlier is a little too strict. If a virtual character is
not actively blocked, but is located on a slope leading away from the global
optimum, we say that the problem is passively blocked or slope blocked. Since
this is a weaker form of blocking, it is not surprising that the polynomials
required are of lower degree. Two-sided slope blocking requires a single global
optimum and two local minima with the virtual characters located outside the
local minima protecting the global optimum as shown in figure 9. Thus, with
three extrema, passive two-sided blocking requires a quartic in the blocked
variable:

Lemma 3. For passive two-sided simple blocking to occur on a polynomial
¢, the function must be at least of degree four in the blocked variable.

One-sided passive blocking can also occur, and if the global optimum exists
in the interior there are two extrema, the global optimum and the local
minimum; a cubic polynomial is required. If the global optimum exists on
the boundary, only a single local minimum is required, thereby dictating a
quadratic polynomial:
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Figure 9: An illustration of two-sided passive blocking shows the vir-
tual characters on the slopes of the global slice leading away from the
global optimum.

Lemma 4. For passive one-sided simple blocking to occur on a polynomial
¢, the function must be at least of degree two in the blocked variable when
its global optimum is located on the boundary, and degree three when the
global optimum is interior.

These results can be gathered together if we define a number of Boolean
variables. Requiring the activity a to take value 1 when blocking is active
and 0 otherwise, requiring the sidedness s to take value 1 when blocking is
two sided and 0 otherwise, and requiring the locale | to be 1 when the global
optimum is interior to 2 and 0 otherwise, the previous results may be stated
compactly:

Theorem 3. To exhibit simple blocking of activity a, sidedness s, and locale
l, a function ¢ must be of degree 2+ a+ s+ 1+ a- s in the blocked variable,
subject to the requirement that [ =1 when s = 1.

That many practical problems are of low degree and often are no worse
than quadratic helps explain why FEwvolutionsstrategien and real-coded GAs
have been fairly successful. Since active blocking requires a polynomial of
degree three, four, or six, problems of lesser degree should not usually be
in the blocking ballpark. In these cases, real-coded GAs may be preferable
to discrete-coded GAs because the use of the adaptively selected virtual
alphabet can overcome the known precision and aliasing problems of fixed
discrete codes. On the other hand, it is premature to state this too strongly,
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as the possibility of higher order blocking must be investigated. At any rate,
that problems can be blocked at all should be fairly alarming to current
users of real-coded GAs. The existence of a large class of functions that
thwart the underlying mechanism of an algorithm is never good news, and
researchers and users of real-coded GAs need to investigate further both their
functions and their algorithms in an effort to find out whether blocking is
a significant practical problem, and if it is, to determine how or whether it
may be overcome.

8. Ramifications and extensions

So what’s a genetic algorithmist to do? Given a choice between binary-coded,
real-coded, or in-between-coded GAs, which should we choose to obtain the
best performance most of the time? If this paper has demonstrated one
thing, it is that the decision is far from clear cut. Binary-coded GAs do have
an abundance of schemata available for processing, which can lead to rapid
processing of problems of bounded deception, but they can be thwarted by
more fully deceptive problems or when linkage is inappropriate to the degree
of deception. Real-coded GAs adaptively choose their own virtual alphabets,
which can lead to more rapid discovery of near global points in easy problems,
but they can be stymied by blocking and deception, singly or in combination.

The course we chart therefore depends upon our confidence in a GA’s
ability to defeat its enemies. Lack of such confidence in the ability of binary-
coded GAs to defeat problems of bounded deception led to the recent inven-
tion of messy genetic algorithms [22, 23]. It has been conjectured that messy
GAs defeat problems of bounded deception in polynomial time, and both em-
pirical results and asymptotic theoretical analysis support this claim. This
grounding gives us a good bit of confidence in our ability to solve difficult
problems quickly and effectively.

Simple real-coded GAs can suffer at the hands of deception and blocking,
and while there is some hope that messy techniques can help alleviate decep-
tion difficulty within real-coded GAs, there is a good bit of doubt whether
averaging recombination or other operator variants can effectively alleviate
blocking. Carefully designed empirical studies and more analysis are needed
(and are underway). In the meanwhile, the practitioner needs to get on with
his work and make a decision.

Perhaps the most rational response at this juncture is simply to decide,
and not agonize over one’s coding. If one is concerned with having some
theoretical assurance that problems of bounded difficulty can be solved to
global optimality, then perhaps proven messy techniques and binary codings
should get the nod. On the other hand, as we have seen in this paper, ge-
netic algorithms do something with whatever codings and operators we hand
them, and oftentimes that something is surprisingly good. To summarize
the present case, recall that a little theory told us that GAs would not like
big alphabets, some users ignored that warning and got good results, and
further inquiry has suggested that the GA sidesteps the problem by turning
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big alphabets into little alphabets. Anyone who has ever played with ge-
netic algorithms can tell similar anecdotes where selectionist schemes were
quite good at (and sometimes quite surprising in) exploiting any opening in
their quest for improvement; it shouldn’t come as much surprise that GAs
regularly take computational lemons and compute lemonade.

Of course, I am not arguing here for resting on our laurels, and this paper
has only begun to scratch the surface of real-coded and high-cardinality GAs.
Further empirical and analytical study are needed along a number of lines:

1. Creating blocked test functions, and testing simple and advanced real-
coded GAs.

2. Using slices to analyze different operators, such as averaging recombi-
nation and jump mutation.

3. Extending alphabet theory along variance or probability lines to define
virtual alphabets in terms of characters that are achievable in popula-
tions of a particular size.

4. Developing and testing hybrid binary-real GAs.

5. Considering floating-point messy GAs and their relation to simple real-
coded GAs.

The results of this paper have been largely theoretical. The theory needs
to be tested through the creation of a suite of blocked problems, and simple
operators and their variants should be tested to see if the bogeyman envi-
sioned here is made of straw or stone. These studies are underway, and results
should be available soon. Note that it is important in the design of blocked
problems to make sure that global basins are NIAH (needle in a haystack).
Otherwise, any hillclimber can solve the problem and little is learned about
blocking.

Slice analysis should be applied to other operators more rigorously. This
extension was discussed briefly herein, but a more formal treatment should
permit the analysis of all known forms of averaging recombination and a
variety of mutation operators.

The theory of virtual alphabets takes the mean slice as the dividing line
between those intervals that are likely to have highly fit samples and those
that are not. This theory can be extended usefully if the mean slice is replaced
by a profile of fitness values that have a specified probability of being found
at random. Such a profile can be calculated directly, or it can be estimated
from mean and variance profiles together with some assumption regarding
the distribution of function values.

Hybrid real-binary GAs should be developed and tested. The success en-
joyed by Lucasius and Kateman [27] using both binary and creeping mutation
might be carried over to the simultaneous use of a number of recombination
operators. Some thought should be given to the function suite used in testing
the hybrids, and it is likely that functions that are both binary-deceptive and
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real-blocked or real-deceptive can be generated. Perhaps the more interesting
test cases are those where the function thwarts the algorithm in one space
and not in the other, or in a manner such that part of the problem can be
solved in one space and part of the problem can be solved in the other.

Messy floating-point GAs have been partially investigated [13]. This ap-
proach may be viewed as a hybrid, combining aspects of both real-coded and
binary-coded GAs. Messy GAs use variable numbers of mantissa bits and ex-
ponent bits together with parameter-ending punctuation marks to adaptively
place precision and emphasis where it is needed. More work is necessary to
determine whether the appropriate combination of messy operators can over-
come deception and blocking.

9. Conclusions

This paper has developed a theory of real-coded genetic algorithm operation
called the theory of virtual alphabets. The theory suggests that selection re-
duces the continuum to a virtual alphabet along each dimension, where the
virtual characters of that alphabet are selected from basinic features (above-
average intervals attracted to a local optimum) of the one-dimensional mean
slice of the function along each dimension. The theory reconciles an apparent
paradox between simple schema theory and the empirical success enjoyed by
users of real-coded GAs. Although simple schema theory is correct in say-
ing that lower cardinality alphabets process higher numbers of schemata,
this new theory suggests how selection itself reduces high-cardinality actual
alphabets to low-cardinality virtual alphabets quite quickly, the alphabets
thereafter undergoing processing through the action of recombination and
other genetic operators. Although the theory provides a plausible mecha-
nism of convergence consistent with the theory of schemata, it also predicts
that problems exist that effectively block real-coded GAs from finding global
optima, and examples of simple blocking have been given. Although the the-
ory was developed for simple real-coded GAs, straightforward suggestions
for alleviating blocking through averaging recombination or jump mutation
appear to be of limited utility; the basic argument against their usefulness
has been outlined and the route to more detailed analysis has been sketched.
Early computational results tend to confirm this theory and its predictions,
but more work needs to be done. Nonetheless, the results of this paper are
on firm enough ground that users of real-coded GAs would be wise to turn
to the development and investigation of other operators that can circumvent
the impediment of blocking, if real-coded GAs are not to be permanently
limited to the relatively small and simple class of unblocked problems.
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