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Abstract. This pap er present s a theory of convergence for real­
coded genet ic algorit hms- GAs that use float ing-point or oth er high­
cardinality codings in their chromosomes . The theory is consistent
with th e theory of schemata and postulates tha t select ion domin ates
early GA perform ance and restri cts subsequent search to int ervals with
above-average fun ction values, dimension-by-dimension. These inter­
vals may be further subdivided on the basis of th eir at tract ion under
genet ic hillclimbin g. Each of th ese subintervals is called a virtu al char ­
acter, and the collect ion of characters along a given dimension is called
a virtu al alphabet. It is the virtual alphabet that is searched during the
recombinat ive phase of the genet ic algorit hm, and in many problems
thi s is sufficient to ensure that good solut ions are found. Although
the theory helps suggest why many problems have been solved using
real-coded GAs, it also suggests that real-coded GAs can be blocked
from fur ther prog ress in those situa tions when local opt ima separate
the virtual characters from the global optimum.

1. Introduction

Real-coded or floating-point genes have a long, if controvers ial, history in
artificial genetic and evolutionary search schemes, and the ir use as of la te
seem s to b e on the rise . T his rising usage has b een somewhat surpr ising to
researcher s familiar wit h fundamental gene t ic a lgo rit hm (G A) t heory [16, 26]
b ecause sim ple ana lyses seem to suggest that enhanced schema processing is
ob t ained by using alphabets of low card ina li ty, a seem ingly direct con t rad ic­
t ion of em pirical findin gs t hat real cod ings have worked well in a number of
pract ical problem s. The debate b etween pract ition er and t heoretician over
this paradox of real codings has risen almost to the poin t of schism . Theoreti­
cians have won dered why prac t it ioners have pa id so littl e heed to the theory ,
and pract it ioners have wondered why t he theory seems so unable t o come to
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te rms with their findings. This pap er seeks to resolve this apparent parad ox
thro ugh the introduction of a theory of operation for real-coded GAs . Specifi­
cally, the notion of virtual alphabets is introduced and used to shed some light
on the convergence of real-coded GAs. In a sense, a problem coded with a
high-cardinality alphabet is quickly reduced to sea rching over a much smaller
virtua l alphabet, and recomb inative processing proceeds. T he theory is con­
sistent with known schema theory and helps explain why pract it ioners have
obtained good result s in many problems. T he theory also demonst rates that
real-coded GAs can be stymied by difficult pro blems that block the virtua l
characters from accessing (from being mutated to) the globally optimal point
or points.

It should be noted that this new theory is somewhat dist inct from , but a
companion to , previous results on what makes a problem hard for a binary­
coded GA . A previous study [17, 18J considered t he conditions under which a
simple , binary-coded genetic algorithm might be misled by a function-coding
combination . That st udy also suggested the extension of t he binary theory to
other low-cardinality alphabets, and such extensions are directly applicable
to real-coded GAs as long as deception is considered in light of the virtua l
alpha bet . On the other hand, the blocking mechani sm suggested herein
has not been considered before, and is only a factor when high-cardi nality
alphabets are used .

Unless otherwise stated, the rest of the paper assumes that the GAs under
consideration , whether binary or real-coded , are simple: they use select ion ,
simple crossover , and simple mutation [16]. The analys is should be valid
for most selection schemes that give more copies to better individuals. We
assume the use of simple crossover operators, where genes (binary or floating­
point) are exchanged whole, alt hough the number of cut po ints and their
locat ion may vary. We assu me that simple mutation changes I s to Os and vice
versa in binary alphabets. In real-coded (and k-ary) GAs, simple mutation
is assumed to resp ect the ordering of the alphabet and creeps up an d down
wit h eit her fixed- or variable-length st rides. As is the case in most GA
work, we ignore the need for change of representation operat ions , and when
such operations are ment ioned at all, we only consider reorderings such as
inversion and recomb inative reordering that at tempt to get the necessary
linkage between important gene combi nations. T hese assumptions ar e fairly
common, and they have helped promote fairly concrete analysis. But, it
is imp ort ant to understand that the analysis techniques presented herein
extend to ot her known var iants of crossover and mut ation , and as we shall
soon argue, these other ope rato rs app ear to suffer the same perform an ce
limit ations as simple real-code d GAs.

In the remainder , the history of using real-cod ed genes is considered
briefly; reasons for using small and large alphabets are discussed , and the
t heory of virtual alphabets is set forth. T his leads to an understanding of
the limiti ng behavior of a real-coded GA , which directs our at tention to the
problem of inaccessible optima or blocking. T he theory demonstrates tha t ,
while real-coded genes may not harm genet ic processing in some problems
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and may even be helpful in ot hers , there are problems where the coding
places addit ional barriers to the search for global optima- barr iers that do
not exist when low-cardinality alphabets are used.

2 . Past use of real-cod ed genes

The use of real-cod ed genes dates back to the earliest days of evolutionar y
and geneti c methods. In this secti on , we consider both early and more recent
st udies that have adopted high-cardinali ty or real-coded genes .

One of the earliest sugges t ions linking artificial optimizat ion an d natural
evolut ion came in Box 's [4] evolut ionary operations scheme. This suggestion
was less an algorithm and more a method for systemat ically perturbing two or
three decision var iables about the current operat ing condit ion of some fixed
plant . Nonet heless , the work was inspired by evolution , and the method
for choosing solut ions an d the solut ion perturbation cycle may be viewed as
selection-like and mut ation-like op erators, respect ively.

Friedman [15] proposed the const ruction and digit al simulation of what
he called a selective f eedback computer. It is uncl ear whet her this design un­
derwent test ing , but the combinat ion of select ion and mutation mechani sms
was fairl y well spelled out , as was the use of real genes .

Some of the mechanisms within Selfridge's [33] Pandemonium machine
learning system were inspired by evolution , and a number of these involved
the manipulation of real-coded genes. Specifically, he considered the possi­
bility of mutat ing weights randomly for his "demons" or pr ocessing units and
then selecting the bet ter combinat ions . Perhap s mor e interestin g from the
standpo int of modern geneti c algorithms was his suggest ion for a conjuga­
tion operat or , where a pair of mat ed demons would give rise to offspr ing that
were some logical combinat ion of the parents. T his early suggest ion was very
much in the spirit of more modern recombinat ion or crossover operators.

Bledsoe [2] considered both bin ar y and continuous (real) genes under
select ion and mut ation. He considered both fixed-step and continuously dis­
tributed mutation ope rators. T he pap er is remarkable in that it foreshadowed
many issues that did not reemerge until the 1970s and 80s, including GA­
hard problems (he called them lethally dependent), scaling, the importance
of populat ions, and a number of advanced operato rs.

Bremerman n 's work [5-8] considered binary, integer , and real genes. T he
earliest work concent ra ted on select ion and mutat ion, and later st ud ies in­
cluded recomb inat ion operators (recombinat ion by crossing over, recombina­
t ion by averaging , recombination by maj ori ty vote) . The problems considered
included solving sets of linear equations and optimizing linear programming
prob lems.

Contemp oraneously and independently across the At lant ic, a couple of
graduate students at the Berlin Technical University, Ingo Rechenberg and
Han s Paul Schwefel, st udied evolut ionary techniques applied to the opt i­
mizat ion of engineering systems under the name Evolutionsstmtegie (ES) .
Rechenberg 's early work concent rated on performing select ion-mutat ion ESs
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with physical models of engineering systems . A leas t-drag shape, a lowest­
resist ance pip e bend , a mini mum-weight st ru ctural tr uss, and a high-efficiency
superso nic nozzle were among the objects considered. At about the same
t ime, Schwefel const ructed ES computer simulat ions that included mutation
and select ion , and later studies included recomb ination (shuffle or uniform
crossover ). Rechenb erg's hardware-based st udies are sur veyed in a brief pa­
per in English [30], although the work dat es back to the early 1960s [29].
A fairly complet e list ing of the ES literature is available in Rechenb erg 's
[31] bibliogr aphy. Schwefel's [32] text relat es various Evolutionsstrategien to
random search schemes and tra dit ional optimization procedures.

Holland 's cont ribut ions date back to 1962 [24], and from the start he
took a discret e view of geneti c pro cessing. It wasn 't until Weinb erg 's [34]
thesis departed from this discret e t radit ion that a sugges t ion for real genes
arose out of the Michigan school of thought. In that dissertation , Weinberg
suggested a GA with real genes for the genetic evolut ion of a population
of single-celled artificial organisms . The sugges t ion was fairly det ailed but
was not simulat ed, apparently becaus e of the t ime consumed in doing the
organ ism simu lations .

Weinberg 's work was followed by a flurry of real-cod ed gene work at
Michigan [3, 14, 36]. The work included reproduct ion , crossover , various mu­
tation operato rs , and inversion. Populations of size 40 were used and direct
comparisons were mad e to conjugate-gradient techniques. Some analysis of
ind ividual op erato rs was performed , but these effort s worked direct ly with
the real codings and did not attempt to incorporate Hollan d 's schema theory
[25, 26].

Since these early efforts, t he torch for real-coded genes has largely been
carr ied by the German schoo l, and these efforts ar e too numerous to men­
tion individually. Lately, there has been a growing use of real-coded genes
by researchers in the Uni ted States, although these people remain largely
unaware of the long hist ory of real-coded genes and the volum e of ES work .
A part icularly voca l U.S. proponent of real genes has been Davis. His study
of communicat ion network design [10, 11] coded a discret e set of five com­
munication spee ds direct ly as a single gene and used an adjacency mutation
operator (called creep). This flirtation with bigger-than-binar y alphabe ts
has pr ogressed to the point where a recent study of using GAs in neural net­
work weight adjustment used real-coded genes and a variety of mu tation and
recombination operators tailored to that task [28]. He also reports success
in a var iety of un publi shed pra ct ical problems [12], and has quest ioned the
utili ty of schema theor y if it so bad ly predict s the utili ty of real codes. Al­
though he makes the point without offering a theoret ical explanat ion for his
success in using high-cardinality alphabets , the point deserves a more con­
sidered response than has been offered thus far , and the pr imar y purpose of
this pap er is to resolve the apparent parad ox between empirical results and
schema theory pr edicti ons for real-cod ed genes. T he next sect ion considers
those aspects of schema theory that recommend low-car din ali ty alphabets.
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Binary Octal Fun ction value

000 a 22

all 3 8
101 5 11
111 7 3

Table 1: Binary vs. octal structures

3. Why small alphabets?

Fundamental t heory suggests that small alphabe ts are goo d becau se they
maximize the number of schemata available for genetic processing. T he cal­
culation is st ra ightforward . Consider a GA coded over an alphab et of car­
dinali ty K,. Since there are K, + 1 schemata per posit ion (the K, members of
the alphabet plus a meta-wildcar d characte r-a don 't care- denoted by *),
and each position represents log, K, bit s, there are (K, + 1)l/log2 I< schemata per
bi t of information for a code with cardinality K, . Thus we have proved the
following theorem pr esented elsewhere [20].

Theorem 1. There are n , = (K, + 1)1/log2 1< sim ilari ty subsets or schemata
p er bit of inform at ion for strings coded using an alpha be t of cardinality K,.

This computation leads to ano ther useful resul t .

T heorem 2. For a given information content, strings coded with sm aller al­
ph abet s are represent atives of larger numbers of sim ilarity subsets (schemata)
than strings coded with larger alpha bets .

Proof. From T heorem 1, n s = (K, + 1)1/ log2 1<. Taking the log of n., an d calling
this quantity r yields r (K, ) = log2ns = log2(K, + 1)/ log2 K, = In (K, + 1)/ In K, .
Evaluating the derivative with resp ect to K, we obtain

dr [K, In K, - (K, + 1) In(K, + 1)]

d« K, (K, +I )ln2 K,

Since K, In K, is monotonically increasing for all legit imate alphab et s (K, ~ 2),
the derivative of r is less than zero . Since exp is a monotonically increas­
ing fun ct ion , we hav e shown that smaller alphabets have larger numbers of
schemata per unit of information .•

A simple example will help drive home these calculations. Suppose we
have a choice of coding a problem in oct al or binary. The examinat ion of
a small sample populati on will help convince us of the grea ter information
that becom es available using smaller alphabets (table 1) . Scanning the oct al
structures and their ob ject ive function values we are at a loss to kno w what
to do next. Since each octal string represents it self alone, we can make no
inferences regarding which of the unnamed struc tures might be particularly
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promismg. On the ot her hand, scanning the bin ar y st ruc tures, each st ring is
a representative of a number of subse ts of st ructure s with similarit ies at one
or more posit ions. Thus we can speculate on cause and effect relat ionsh ips
between good components and high fitn ess. For example, mayb e the first
st ring is highly fit becau se it has a 00 in its right most positions or because of
it s a at its rightmost positio n , or perhaps st rings 000 and 101 are rela tively
fit becau se of the a they share in the midd le. In this way, many hyp otheses
can be formulated regarding t he associat ion between substring values and
high fitn ess, and it is this information t hat is recombined to speculate on
possibly better st ructur es during the normal course of genet ic search .

This reasoning and the pr evious calculat ions are st raight forward and
hardly open to quest ion , and both seem to drive us toward the conclusion
that we should be using small alphabet s; however , there are problems where
the use of all these schemata is not necessary and may even slow down our
search . For example, in linear problems, knowledge of high-order schemata
is unnecessary becau se posit ion-wise manipulation of the code permits us to
achieve the opt imum . In such cases, one can certainly count the high-order
schemata, but count ing them is lit t le mor e than an academic exercise. This
point about whi ch schemata ar e important in problems of var ying difficulty,
and therefore should be counted when arguing over the advantage of one
coding over anot her, has been made more forcefully and quan ti tatively else­
where [19], but it is one t hat is often overloo ked . In the next sect ion, we
consider a number of possible reasons why one might choose to ignore the
schema advantage of low-cardinality codings.

4. W hy large alphabets?

Although the largest numb ers of schemat a are obtained using the smallest
alphabets, there are a nu mb er of reasons why a user of genet ic-evolut ionary
techn iques might choo se to ignore this advant age:

1. comfort with one-gene- one-vari ab le corre spondence;

2. avoidance of Hamming cliffs and ot her art ifacts of mutation operating
on bit st rings treat ed as unsigned bin ary integers;

3. fewer generations to population conformity ;

4. reduction of the opportunit ies for normal-mode deception .

The first of these reasons is mor e psychological than technical, but many
users find a one-to-one correspondence between genes and decision vari ab les
comforting and find the codings of decision var iab le as bit strings or ot her
discret e codes disconcer ting. As we have seen , mu ch of the early work to ok
the real approach almost withou t thinking , and Holland's suggest ions for
discrete structures and more effect ive schema pr ocessing have not always
been appreciated .

Justification for the real-gene approach can be mad e on mor e techni cal
grounds , however. Real-cod ed GAs usu ally adopt mutation operators that
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000 001 010 all 100 101 110 III

x
Fi gure 1: A three -bit functi on wit h a Hamming cliff.

perturb the cur rent solut ion a lit tle about the curre nt value , and binar y-cod ed
GAs usually adopt a bi twise complement operator for mutation . By creeping
up and down, real-coded GAs can easily do hillclimbing in the underlying
decision space, bu t with bitwise comp lement mutat ion , binar y-coded genes
can become st uck on Hamm ing cliffs as illustrated in figur e 1.

Using an octal coding over the eight points of the un imodal search space
and some sort of creeping mutat ion , the higher cardinality GA will be able
to find the best po int regardless of ini tial popu lation . After the populat ion
converges to some value, success ive mutations will cont inue to correc t the
solut ion until t he optimum is reached. On the ot her han d , depending upon
initi al convergence , the binary GA mayor may not be able to access the
best point . For example, becau se the points in the left half of the space are
above average (because f (0 * *) > f (1 * *)), a GA is fairly likely to converge
initi ally to OIl. Although 011 is close to the correct solut ion as measured
in decision space, it is quite distant in Hamming spac e and requ ires changes
at all three bits to reach the optimum 100. Such changes are unlikely- they
are of O(p;"')-and require long waiting t imes . A number of authors have
suggested the use of Gr ay codes to overcome such prob lems [1, 9], but doing so
int rodu ces higher order nonlinearities wit h respect to recombinat ion [18]. A
simple solution to this pr oblem exists. Simply use both bitwise and decision­
var iab le-wise mutation operators in binar y-coded GAs. Some thought should
be given to the proper pro port ion of each, bu t doing so should perm it bin ary­
coded GAs to climb hills in the space (coding or decision) that is curre nt ly
friendliest toward hillclimbing. Such a solut ion was recent ly used to good
effect in Lucasius and Kat eman 's [27] study of chemometric applica t ions of
GAs, and others should find the technique appealing.

Another reason users may pr efer to use higher cardinality alphabets is
speed . Assuming a fixed populat ion size, a fixed number of search alterna-
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t ives, and serial processing of individual loci, it may be shown theoret ically
and empirically that higher card inality alphabe ts converge to some solution
more quickly than those coded over a smaller alphabet . It is important to
recognize that this fast er convergence is a mixed blessing as the quali ty of
the solut ion degrades wit h increasing K, . Nonetheless, some users may be
happy to let a GA converge quickly to some near-optimal solut ion , allow­
ing select ion and mu tation or ot her local search pr ocedures to polish off the
search .

A final reason a user might consider a higher cardinality alphabet is be­
cause it redu ces the dimensionali ty of the pro blem. T his in turn redu ces the
opportunity for decept ion [17, 18] and redu ces (or eliminates ) crossover dis­
ruption wit hin a parameter . Br iefly stated , deception exists when low-order
bui lding blocks lead in one direction , but high-order bu ilding blocks contain­
ing the global optimum lie elsewhere ; reducing the dimens ion of the problem
can redu ce the opportunity for decept ion because there are fewer low-order
building blocks to confuse . T his might be cause for celebration, but as we
shall soon see, this is no free lun ch. First , note that redu cing problem di­
mension reduces the opportunity for deception . If a pro blem is in mor e than
one dimension , deception can st ill exist and can cause convergence difficulty.
Second , the introducti on of higher cardinality alphabets int roduces the pos­
sibility of new obstacles to convergence, obstacles that must be acco unt ed
before choosing any coding.

T he redu cti on of crossover disruption might at first glance appear to be a
blessing, undisguised . Unfort un at ely, it , too, can be a net advantage or disad­
vantage, depending up on the problem . T here is no doubt that th e red ucti on
in crossover disruption increases the chances that select ion will be able to pick
out good alleles. On the other hand , as we've already argued , indivisibil ity
prohibits lower order schemata from offering clues where other goo d (unvis­
it ed) points might be. T his was the primary lesson of the count ing argument
of the pr evious sectio n. T hus, the picture is not at all clear-cut .' Rather
than arguing the meri ts of these alte rnatives on such pr imitive grounds, we
try to better underst and the pro cessing of a real-cod ed genet ic algorithm.

5 . Selection dominates early genetic algorithm performance

To understand the performan ce of high-car dinality GAs, we must first recog­
nize how selection dr am ati cally cuts back on the alt ern atives that are consid­
ered early in a run. Two examples, first in one and then in two dim ensions,
will make this clear er.

1As Harr y Truman longed for a one-armed economist , I find myself wishing for a one­
armed genet ic algorit hm ist in the hope of pu t ting an end to all t his on-the-one-ha nd-and­
on-the-other st uff. On the other han d, economic systems share much of the interwoven
complexity of evolut ionary systems, and perh aps it is t his commonality tha t dri ves, and
must leave unfilled , requests for monodexterous ind ividu als in both fields.
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gen = 0, popsize = 50, pmutation = 0.00, above average = 18
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Figure 2: Trimodal funct ion in one dimension is shown with a uni­
formly random initial distr ibut ion of points. The horizontal line shows
the average value of the funct ion.

5. 1 A function of one var ia b le

To understan d the power of select ion alone, consider the one-dimensional
fun ct ion wit h three peaks as shown in figure 2. Init ially, a random popula­
tion of po ints is chosen (as shown by t he x 's placed on the curve) , an d binar y
tournament select ion is used in success ive generations. In the ini ti al gen­
erat ion, a significant proportion of the populat ion is ab ove average, and in
succeeding generat ions this proporti on should be expec ted to grow no mor e
slowly than logistically [21]. At generat ion 4, all the points are above average
as shown in figur e 3. T his leads us to wonder whether some special role is
played by above-average points in the space . Aft er all, in a very short t ime,
through the action of select ion alone, search on the full unit int erval has been
cut to only those subintervals that are above average . Furthermore, the ad­
dit ion of some small amount of creeping mutation or other genet ic operators
should not mat erially affect these result s; early real-coded GA performance
is dict ated by (1) the points present in t he init ial po pulat ion and (2) the
act ion of select ion to rest rict considerat ion to the best of those points. We
will develop this noti on more fully in a moment , but first we must consider
what happens in fun ct ions of mor e than one variab le.
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gen =4, popsize =50, pmutation =0.00, above average =50
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Figure 3: The distribu tion of points on the t rimodal function at gen­
eration 4 shows t hat select ion qu ickly chooses above-average po int s.

5.2 Functions of more than one variab le

The picture for functions of more tha n one var iable is similar to the one
just painted in that above-average points are preferred by select ion , except
now consideration of above-average intervals must be done dim ension-by­
dim ension , averag ing out the effect of the ot her variables. To understand
this, examine t he function of figure 4. To get a meaningful view of the
function with resp ect to the first decision variab le Xl, simply average out X2

as follows:

Such mean slices will be useful in evaluating the early effect of select ion on
funct ions of more than one vari ab le. The averaging of the mean slice may
be connected to the ran dom sampling that is actua lly perform ed initi ally if
we think in te rms of Mont e Carlo in tegration. One common way to obtain
approximations to definite integrals is to sample the int egrand over the do­
main of integration randomly, and this is exactly what is being done by the
GA during the ini tial population. Calculat ing the mean slice simply takes
this view literally and more formally.

I
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Fi gure 4: A two-dimens ional objective fun ction is used to illustrate a
GA's dimension-wise pr eferen ce for above-average points as a resu lt
of select ion .

Another useful view of the functi on may be taken by fixing the second
decision variable to its value (x;) at the global optimum:

T his slice at the global optimum or global slice is useful in evaluat ing conver­
gence behavior when (if) solutions approach the neighb orhood of the global
optimum . Another view, the max slice, may be obtained by varying Xl and
choos ing the best ¢ value at each point ran ging over all possible X 2 values;
and analogously a min slice may be defined by choosing the smallest function
valu e. Although max and min slices are not used directly in the theory that
follows, they do provide useful informat ion at a glance regarding the relation
of the mean at a point to the maximum and the minimum , thus helping to
indi cate whether the mean is a goo d pred ictor of a part icular optimum .

F igur e 5 shows the max , global, mean , and min slices for the two­
dimensional fun ction of figur e 4. In itially the points are rand omly dis­
t ributed, but the figure shows the distribution after four generat ions of tour­
nament select ion and simple crossover. Nearly all point s are above average
and are distributed in only those places that have above-average performance
on the mean slice. Note that the narrow fea ture containing the global opti­
mum has no representatives. This is not surprising because points wit h an
X l value in that range are not part icularly good on average , and obtaining an
init ial sample on the fairly narrow two-dimensional peak is a low-pr obabili ty
event .

In th e next section , we build on the var ious slices to define virtual char­
acters and virtual alphabets .
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gen =4, popsize =50, pmut ation =0.00, pcross =1.00
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F igur e 5: A max slice, global slice, mean slice, and min slice along
X l for the two-dimensional function of figure 4 shows x 's marking the
50 points contained in th e population at genera t ion 4. T he location
of the points coincides roughly wit h the location of the above-average
points of th e mean slice. The global slice is shown as a dashed line and
coincides with the min slice at a dist ance from the global optimum.

6. The theory of virtual alphabets

The last sect ion suggested th at select ion acts quite quickly to emphasize
highly fit individuals, thereby redu cing drast ically the numb er of alte rnatives
considered . Viewed along a single dimens ion , the genet ic algorithm tends to
allocate trials to th ose int ervals associated with above-average funct ion value.
These intervals may then be viewed as the basic building blocks for fur th er
genetic search via operators such as crossover and mutation, and it is th is
view that is developed more rigorously in this section. Specifically, this loose
talk of "useful intervals" is made more rigorous through the introduction of
th e notions of virtual characters and vir tual alphabets. These concepts turn
out to be the keys to understanding the schema pro cessing th at takes place
in high-cardinalit y GAs.

6 .1 Some mathemati cal preliminaries

Assume th at the object of search is a real-valued function ¢ with domain
S1 in R", The functiorj ¢ is said to have a local maximum at x' if a t5 > 0
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exists such that ¢(x) S ¢(x*) for all x E n with Ix - x*1 < o. A strict
local maximum is said to exist when the inequ ali ty in ¢ may be replaced
by a strict inequ ality « ), and a global or strict global maximum may be
defined by requiring the ap pro priate inequality on ¢ to apply throughout n.
Likewise, analogous definitions for local and global min ima, either st rict or
not , may be defined by reversing t he direction of the inequalities on ¢. In
the remainder, we consider functions ¢ to be maximized and use the term s
optimum and maximum interchangeab ly.

6.2 Sl ices

It is also useful to generalize the slicing notions developed intuitively some­
what earlier . Consider an appropria te probability density function f (x ) wit h
x E n, and recognize that the marginal density function !I (xI) for the subset
of the n real variables spec ified by the ind ex set I may be calcula ted as

(6.1)

where I ' = {I , ... , n } - I , t he complement of the index set I . Wi th these
definitions, the mean slice ¢I, or the expec ted valu e of ¢ wit h respect to f
and the free variables X i (i E 1), may be calculated as follows:

(6.2)

where dnI, = DjEIIdXj and nI' is the indicated II' I-dimensional subspace of
n spanned by the averaged variables. When the index set is empty, ¢I(XI)
reduces to ¢, the expecte d value of ¢ with respect to f. When the index set
I is singleton , the slice is one-dimensional like the one considered in the last
section; and since the singleton slices are so important , a shorthand notation
of subscript ing ¢ by a single index will be used. For example, ¢l(x d is the
expected value of ¢ with respect to f for the single free variable X l .

T he notation is st ra ightforward , but we should pau se and check its mean­
ing. Essent ially we have generated a set of fun ctions that are the averages
of ¢ with respect to any number of var iab les. Of course, in discret e GAs
this is the role played by schema fitness averages, an d the ¢ fun ctions play
that same role in real-coded GAs. In fact , t he schema theorem carr ies over
to the real-coded case as po inted out by Wright [35]; as wit h most codings,
proper interpr et at ion of a schema and appropria te definition of genetic oper­
ato rs wit h high schema sur vival probabilities are enough to ensure that the
schema theorem applies .

The not ion of taking a slice through the best point may also be generalized
by first considering a point slice. The point slice ¢/ (XI) with resp ect to the
point x = a and index set I is defined as the function obtained by setting
Xj = aj (j (j. 1) and allowing the ot her variab les to var y freely. An optimum
slice ¢j(XI) is obtained by choosing the reference po int as any optimum x*,
and a global slice is obt ained when the point select ed is globally opt imal. Of
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course , when mult iple optima or global optima exist, care sho uld be exercised
to consider the var ious slices separate ly.

T he max slice of the pr evious section may be generalized from the single­
tons to ar bitrary ind ex sets . Spe cifically, the max slice q/rX(XI) wit h respect
to an index set I is defined as follows:

¢'!'aX(XI) = max{¢(x ) : x E n an d Xi fixed, i E I} . (6.3)

In ot her words, for a given fixing of the XI, the max slice disp lays the largest
value of ¢ ranging over the remaining variables. An analogous definit ion
yields a min slice st raight away.

We will use these various slices in a moment to help understand real­
coded GA pro cessing . However , since genetic algorithms contain elements
of both random search (during initi alizat ion) and hillclimb ing (via select ion
plus mutation ), we need to consider each of these modes of operat ion .

6.3 Random search

Consider performing a random search for a target T en according to the
random search prob abi lity density funct ion fr(x ) with X E n. T he pr obabi lity
P; of finding a point within the targ et on a given random trial may be
calculat ed as follows:

(6.4)

In n, tr ials, the chances of having at least one success is 1 - (1 - Pr)n•. We
say that the target T is a needle in a haystack (NIAH) or probabilistically lost
at the level a if 1 - (1 - PT) n. < a . Rearranging, a target is NIAH if PT <
1 - (l_a)l /nr

, which may be solved approximately as PT < - (Inf l - a)) In.,
the approximation improvin g wit h increasing n T •

6.4 Hillclimbing

In many search problems, hillclimbin g- wheth er perform ed genetically through
selection and mutation or otherwise- may be sufficient to find good solut ions .
To separate such relat ively easy problems from those that require more so­
phist icated genet ic processing, such as recombi nat ion, reordering, niching,
and expression , we consider an abs tract fram ework for hillclimb ing algo­
rithms, their basins of attraction , and whet her repeated hillclimbi ng is likely
to achieve a solution.

There are many forms of hillclimbing algorithm available to a search al­
gorit hm designer or user . W hen mutation is enabled in a GA , its act ion
toget her with select ion promotes a br oad hillclimb ing mechani sm , and in re­
stricte d probl em domain s, specia lized local search algor it hm s are often avail­
able. We are less concerne d here wit h the det ails of how hills are climb ed in
a problem and more interested in identifying whether we are at all likely to
climb t he right hill in a particular problem . With this is mind , we imagine a
hillclimbing sys tem (HC S) as a five-tuple (X, M , cf> , g, h ), where X c n is the

I
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allowable search space, M is the space of allowable memory configurat ions ,
<I> is the set of possible funct ion values, and g and h are memory transition
fun cti ons and output functions defined as follows:

g(mt, ¢h);

h(m t , ¢Jt).

(6.5)
(6.6)

In words, the memor y m E M and search point x E X are upd ated de­
pending on the </J value received from the "environment" of the RCS and
t he current state of RCS memory. This definition of a hillclimber is broad
enough to encompass most algorithms . P rob abi listi c schemes such as sim­
ulated annealing and GAs (wit h mutat ion and select ion) are covered if the
transit ion fun ctions are viewed as determining a probability distribution over
the search and memory configurat ion spaces. Note t hat the output , X t+1> is
viewed as a single point (as it is in most hillclimbers), alt hough this assump­
tion does not prevent the form alism from encompassing population-oriented
schemes simply by varying the amount and type of informat ion retain ed in
memory.

Once a hillclimber is specified , it is useful to talk about its ability to find
a particular optimum. We say that an RCS is attrac ted to a point x* from
a point x if applicat ion of the RCS start ing within a 8-neighborhood of x
resul ts in a non-zero probability of being within an E > a of x* or within an
E of any </J-equal point connected to x*. The basin of attract ion Ex' is then
defined as the maximal connecte d set of points x E n att rac te d to x *. For a
deterministi c RCS the probabili ty of randomly choosing a point in the basin
leading to x* is simp ly

(6.7)

and t his is the pro bab ility of being at tracted to x* because, in the det erm in­
ist ic case, choosing a point in the basin guarantees ultimate arr ival.

For a probabili sti c RCS, if we define the condit ional probabili ty density
function ix' (x) of ar riving near x* (or near some point s in a </J-equal connected
region) given a start near x , the prob ability of ending up at the desired
optimum after a single t rial of random init ializat ion and hillclimbing is simply

(6.8)

Of course, it is no longer necessary to restrict the domain of integration to
the basin , as the second density function properly account s for those points
that are un abl e to access a part icular optimum through hillclimbing, but the
restr iction causes no har m and further emphas izes which points can lead to
Rome.

lt is now possible to connect these calculations to those of the previous
subsect ion by recognizing that , when using randomly started hillclimbing
(as opposed to ran dom search) , it is no longer necessary to hit the target on
the head ; we must only find a point in the appropriate basin of at t ract ion .
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In unimodal problems this usually poses no difficulty, and in problems with
extensive global basins, waiting t imes are quite reasonab le. On the ot her
hand , problems exist with fairl y limi ted global basins, and it is these prob­
lems that we hope to solve with the innovat ive capability of a recombinat ive
GA. Assuming the repeated applica t ion of rand om st art followed by the ap­
plication of an HCS to convergence, we say that a function is hill climbing
hard or simply HC-hard if its global basin of at t ract ion is NIAH (needle in a
haystack) . Otherwise, we say the problem is HC-easy. Becau se hillclimbi ng
algorithms are so widely studied , and becau se even geneti c search has its
own bu ilt-in hillclimber (mutation plu s select ion), we assume that HC-easy
pr oblems can be solved , and restrict further considerati on to those prob lems
that are HC-hard .

6 .5 The actio n of se lection

In an earlier sect ion , we saw empirically how select ion dominates the early
performance of a genetic algorithm . We recognize that, in a relatively shor t
t ime, only ind ividuals with relat ively high funct ion values will be represented
in the po pulat ion. To quant ify this, assume binary tourn ament selection (or
linear ranking select ion with two copies given to the best and none given to
the worst) , and fur ther assume a uniformly distributed obj ective fun ct ion
such that roughly 50% of the individuals in the initi al population are above
average. It may then be shown by th e methods of another pap er [21] that
the number of generat ions t requi red for above-average points to all but take
over the popul ati on may be calculated as

t = log log n p , (6.9)

where n p is the population size and the logarithm is taken base two. Even
with a po pu lation of 109 individuals, the number of generat ions needed to
take over is roughly t ;::::: 5, and for typical populat ion sizes (30- 1000), three
or four generations is enough to fix the population at a functi on value that
is ab ove average."

Wi th this viewpoint of rapid takeover by above-averag e points, an d re­
calling that a level set L of ¢ with level A may be defined as the set

L(¢ , A) = {x : x E ~ and ¢(x) ~ A}, (6.10)

we define the selection set or S- set as th e level set with level A = ¢. In word s,
the S-set is the porti on of ~ with above-average ¢ value.

We subdivide the S-set into connecte d subsets, calling each maximal con­
nect ed subset of the S-set a f eature, as each tend s to stand out above the

2It may be argued that I have been insufficiently conservative in my assumpt ions in
this calcu lat ion. Bu t even if t he populati on starts from a lesser state, and even if th e
select ion scheme used is less pushy, the takeover tim e for many select ion methods grows
no more slowly than as a logari th mic function of n p [21]. It is possible to be more precise
about th e level of convergence obt ained in a particular num ber of genera t ions for a given
typ e of select ion, alt hough this has not been done here so we may carry on to th e ma in
resul t .
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Figure 6: Th e sketch shows a mean slice, its basins, its featur es, and
its virtual characters. Note that the definition allows for overlapping
virtual charact ers, depending upon the choice of a hillclimbing system,
even though the figure shows disjoint sets.

crowd. W ith these pr eliminari es, we rigorously develop the not ion of a virtual
charact er.

6 .6 V irt ual cha racters an d alp habets define d

The defini ti on of a feature gets us close to a rigorous statement of the ideas
developed loosely regarding above-average intervals. Restricting our at te n­
tion to the mean slices of 1> over sing leto n index sets- t he one-dimensional
mean slices ¢i - a vir tual character may then be defined as a non-emp ty in­
tersect ion of a basin and a feature on 1>i , and a virtual alphabet is simply
the collect ion of virtual char act ers along a given dimension . T he sketch of
figure 6 illust rates the basic ideas. In the figure, the select ion set is divided
into two features and four basins. The first feature (FI ) contains portions of
two different basins (B I and B 2 ) and is divided int o two virtual characte rs
(C I and C2 ) . T he second feature (F2 ) contains a portion of only one basin
and as a result has only a sing le charac ter (C3 ) . Not e that the third basin
is unrepresent ed as a char acter . Even though it is locally optimal, selecti on
will pr efer other regions early on , and B3 will be ignored .

This view is fairly straight forward , but at leas t two quest ions come to
mind as we think of the genet ic pro cessing that follows the ini tial select ive
ph ase. How are virtual alphabets processed by the combined ac tion of selec­
tion and recombinat ion , and why don 't we need to consider mean slices of
two, three, and more dimensions in defining the virt ual alphabe t?
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Fi gure 7: Selection and recombination in a real-coded GA pro cess
the virtual alphab et s mu ch like a low-cardinality GA processes its
fixed alpha bet . In two dimensions, t his biases the processing to the
cross-ha tched regions, In higher dimen sions, t he pict ur e is the sa me
except that the linkage biases of the particular crossover operator
mu st be acco unted in det erm ining the varying pr obabili ties of visit ing
particular regions.

T he first of these quest ions is the easier to answer. Reduct ion to the vir­
tual alphabe t so soon means that select ion and recombi nation will process the
virtual alphabets as though they were some underlying set of fixed alphabets .
For example, in two dimensions a te rnary alphabe t along the Xl axis and a
binary alpha bet along the X2 axis might give a search picture something like
that shown in figure 7. T he regions of likely subsequent search are shown
as cross-hatched int ersections between virtual cha racters on different dim en­
sions, Of cour se, this picture is somewhat modified by t he act ion of mut ation
because mu tation permits the system to climb hills one dimensionally once
t he solut ion has been t rans ported to a point in some ot her cross-hatched re­
gion. (Act ua lly mut ation is occurr ing simult aneously, but for mutation ste ps
that are small wit h respect to the virtua l character width , the erro rs made
by assuming no change during the recombinat ive phase are small).

The more difficult quest ion is why consider only the one-dimensional
slices? The answer is that features on slices of high er dimension are unlikely
to be sampled properly. Imagine a problem specified on the n-dimensional
hypercube, a problem map ping [0, l] n --+ R , and assum e that features occupy
a width 5 of the unit interval in each dimension . Thus, one-dimensiona l fea­
t ures occupy a proportion 5 of the unit interval, features in two dimensions
occupy 52 of t he unit area , features in three dimensions occupy 53 of the
unit volume, and, more generally, features in k dim ensions occupy 5k of the
k-dimensional hyp erCUbe.! Moreover , the populat ions are likely to be sized

I
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so that the sma llest char acter receives only 0 (1) sa mples; pu t another way,
8 ~ 1/ np . When this is done, the probab ility of having represent at ives of all
two-dimensional features in a population is itself of 0 (1/ np ) and , as a result ,
we may say that such fea tures (and features in higher dimensions) are NIAH
for GAs that are run with fewer than O(np ) restar ts. T hus, the simple theory
suggested here is a reasonab le first cut , and mean slices in higher dimensions
may safely be ignored ."

7. Blocking

Vir tual charac ters and alphabe ts provide a useful perspect ive from which
to view the convergence mechan isms of real-cod ed GAs. Simp ly resta ted ,
one-dimensional basinic features are selected early in the GA dim ension­
by-dimension , and the collect ion of virt ual alphabets thus select ed is used
in subsequent recomb inat ive-selective search . On the positive side of the
ledger , this mechani sm seems to sides te p th e precision and alias ing problems
th at may occur when low-card inality codes are used by allowing real GAs to
adaptively select their own alphabets . T he empirical success enjoyed by users
of Evolut ionsstrategien and real-cod ed genetic algorithms can in large part
be explained by this single factor. Moreover , we note that the convergence
mechanism described here is consistent with the theory of schemata and
essentially says that , if you don 't present a select ionist method with a low­
cardinality alphabe t , it will choose one for you . On the other han d , the
convenience of having a select ion-selected alphabe t has been bought at a
pri ce, as it is possible to imagine impediments to subsequent search that are
a direct resul t of allowing the alphabets to be so chosen . In this section , we
consider the possibility of blocking and establish some necessar y condit ions
for its occurrence on polynomial fitness functi ons.

7. 1 Sim p le blocking

To see that real-coded GAs can be thwarted from finding global optima,
consider the sketch showing a mean slice and a global (point) slice of a
hyp othet ical mult i-dimensional funct ion as shown in figure 8. Considering
the mean slice first , we see that there are two vir tual charac ters and , by
the reasoning of the last sect ion , these will be pr eferr ed early in the search.
Lat er on , assuming that search along the other dimensions has largely been

30 n t he other hand, when larger pop ulations are used or fairly broa d k-dimensiona l
feat ures exist but are not well predict ed by low-dimensional fea tures , t he met hods of
t his paper can be adopted to sor t out mean ingful algorit hm mechanism. Specifically, k­
dimensional basin ic feat ures become t he building blocks of subseq uent solutions , and special
car e can be taken to ad d t he salient combinations that are not represented dimension-by­
dim ension. Supp ose a, b, and c represent intervals along dimensions 1, 2, and 3, t hat
are not above average, bu t suppose t he t hree-dimensional st ruct ure abc contains a highly
fit feature that is not NIA H. T hen th e building block abc (call it a com pound virt ual
character) should be added to th e evaluation of final convergence as long as t he crossover
operator adopt ed and t he ordering chosen permit t he buildin g block to remain linked wit h
high prob abi lity.
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Figure 8: A mean slice and a global (point) slice of a hypothetical
function illustrates the not ion of blocking. The real GA will prefer
the virt ual charact ers (shaded) , but when the GA gets in the vicinity
of the optimum, it will be prevented from advancing beyond the local
optima that block the global optimum.

successful, t he picture sho uld switch to that of the slice through the global
optimum. Note in this case that the virtual characters will be prevented
from finding the global opt imum becau se select ion and mu tation will only
be ab le to perform hillcl imbing and will get st uck on one of the two local
optima guarding the global optimum . We say in such cases that the global
optimum is blocked, an d call t he one-dimensional form of blocking simple
blocking. Higher order blocking can be visualized using mean and global
slices in higher dimensions, and these should be resear ched and categorized .
The important thing to recognize at this point is that there are limits to the
use of real-coded GAs- limits that must be recogni zed and attacked wit h
careful analysis , algorit hm design , and innovation .

It might be suggested that the t roub le here is simply the operators being
used; perhap s by shift ing to other mutat ion or recomb inati on operators, t he
problem can be sidestepped . Although there may be operators that effec­
t ively avoid blocking, ot hbr variants of crossover and mutati on in current use
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are likely to be only of limit ed relief. At any rate, ana lysis of these ot her
operators proceeds directly using the theoret ical tools developed here.

For example, one might suggest a form of mu tat ion that jumps anywhere
within t he allowable parameter interval to overcome blocking . In t heory,
since the GA is no longer restricted to the asy mptotic hillclimbing behavior
of select ion and creeping mutation, it can get unstuck. Unfortunate ly, such
operators are very disruptive and can only be used with low pro bability.
Additio na lly, for a jump-mut atedoffsprin g to sur vive, it had bet ter jump to a
point at or above the curre nt average fitness. Point slices through the likeliest
individuals (the most highly fit recomb inations of the virtua l charac te rs) can
be checked to determine whether such jumps are going to do much good, but
some simple reasoning suggests that they won 't ofte n be of much help . The
virtual cha racters are located where they are because the feature or features
associat ed with tha t interval are of sufficient breadth and height to st ick out
above t he crowd. J umping to an above-average, unrepresented point that
can hillclimb to the global optimum is an unlikely event . In ot her words,
the line search of jump mutation is likely to fail because good features that
are not close to already-represented virtual cha racters are likely to be NIAH
wit h respect to that search .

Similarly, the use of averagi ng recomb ination operators is unlikely to be
of much pr acti cal help in overcoming blocking. T here are many variations
on averaging recombinat ion. One can simp ly average parents dimen sion­
by-dimension ; one can choose a single random para mete r ~ E [0, 1J and
simply take the convex combination of the parents, ~Xl + (1 - ~)X2, as an
offspr ing; or one can choose a set of ~i , one for each dimension , and take
a convex recombination componentw ise. Again , each of these (and their
many mutants) theoretically offers some hope against blocking because each
can jump somewhere very different from cur rent parents. As with jump
mutation , however , the cha nce of hitting a useful t arget is quit e small. The
individual point , line, or regional searches imp lied by t hese recombination
opera tors can be investigated using the var ious slices defined in this pap er ,
thereby determ ining whether good points are likely to be found in a particular
prob lem. In general, however , findi ng features that are not represented by
virtua l characters is likely to be an NIAH subproblem .

7.2 Some n ec essary conditions for sim p le b lock ing of p olynomials

The previous discussion of simple blocking can be made somewha t more
quan ti tative if we restrict ourse lves to the polynomials. Of course , we are
interested in functions ot her tha n polynomials, bu t because many functions
can be well approximated by power series, and many such series are conver­
gent and can be t runcated without great loss of inform ation , it is useful to
exp lore some necessary conditions for blocking on polynomials.

Restrict ing ¢ to a polynomial over the decision vari abl es Xi, and referr ing
to figure 8, we note that there must be a tot al of five ext rema (three peaks,
two valleys) in ¢. As a result the derivat ive of ¢ must have at least five Os,
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and the po lynomial must be at leas t of degree six to exhibit simple blocking.
Not e that this example is a case with two-sided blocking, where one or more
virtual characters on each side is separated from the global optimum by at
least one local optimum per side. T hus we have proved the following:

Lemma 1. For active, two-sided simple blocking to occur on a p oly nomial
¢, the function m ust be at least of degree six in the blocked decision variable.

T he term active is used here to indicate that the blocking is caused by the
interpositi on of a local optimum between a virtual character and the global
op ti mum.

One-sided active blocking can occur when no virtual characters exist on
one side of the global op ti mum. T here are two possibilit ies in this case: the
global optimum occurs on the boundar y, or the global optimum occurs in the
interior of the interval. W hen the global optimum occurs on the boundary,
two ext rema are necessar y for active blocking (one local minimum, and one
local maximum ), and the polyn omial must be no less than degree three.
When the global opt imum occurs in the interior of the int erval there are three
ext rema (the global optimum , a local minimum, and a local maximum) , and
the polynomial required is of degree four or more. T hus we have shown the
following:

Lemma 2 . For act ive, one-sided sim ple blocking to occur on a po lynom ial
¢, the function must be at least of degree three in the blocked variable when
its global optimum is located on the boundary, and degree four when the
global op timum is in terior.

T his reasoning is straight forward , but we might ask whether act ive blocking
(the interp ositi on of a local optimum between a virtual character and the
global opt imum) is necessar y to pr event a virtual alphabet from reaching the
global optimum. Interesti ngly enough, the answer is no.

T he picture painted earlier is a lit t le to o st rict . If a virtual characte r is
not act ively blocked , but is located on a slope leadi ng away from the global
opt imum , we say that the problem is passively blocked or slope blocked. Since
this is a weaker form of blocking, it is not surprising that the po lynom ials
required are of lower degree. T wo-sided slope blocking requires a single global
opt imum and two local minima wit h the virtual characters located out side the
local minima protecting the global opt imum as shown in figure 9. Thus, wit h
three ext rema, passive two-sided blocking requires a qu art ic in the blocked
var iable:

Lem ma 3 . For passive two-sided simple blocking to occur on a polynomial
¢, th e function m ust be at least of degree four in the blocked variable.

One-sided passive blocking can also occur , and if the global optimum exists
in the interior there are two extrema, the global optimum and the local
minimum ; a cubic polyn omial is requi red. If t he global optimum exists on
the boundary, only a single local minimum is requ ired , thereby dict at ing a
quadrat ic po lyno mial:



Real-cod ed Genet ic Algorithms, Virtual Alphabe ts , and Blocking 161

<1>1

x,·

Fi gure 9: An illust ra tion of two-sided passive blo cking shows the vir­
tual cha ra ct ers on the slopes of the global slice leading away from the
global optimum.

Lemma 4. For passive one-sided simple blocking to occur on a polyn omi al
4:>, th e function must be a t least of degree two in the blocked variable when
it s global optimum is located on the bound ary, and degree three when the
global optimum is interior.

These resul ts can be gathered together if we define a number of Boolean
variables. Requiring the activity a to take value 1 when blocking is active
and 0 otherwise, requiring the sidedness s to take value 1 when blocking is
two sided and 0 ot herw ise, and requiring the locale I to be 1 when the global
optimum is interior to r2 and 0 otherwise, the previous results may be stated
compactly:

T heorem 3. To exhibit simple blocking of activity a, sidedness s, and locale
l , a function 4:> must be of degree 2 + a + s + l + a- s in the blocked variable,
subject to the requirement that l = 1 when s = 1.

That many pract ical problems are of low degree and often are no worse
than quadrati c helps explain why Evolutionsstrategien and real-coded GAs
have been fairl y successful. Since active blocking requires a polynomial of
degree three, four , or six , problems of lesser degree should not usually be
in the blocking ballpark . In these cases, real-coded GAs may be preferab le
to discrete-coded GAs because the use of the adaptively selecte d virtual
alphabet can overcome the known precision and aliasing problems of fixed
discrete codes. On the other hand, it is premature to state this too strongly,
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as the poss ibility of higher order blocking must be investi gated . At any rate,
that pro blems can be blocked at all should be fairly alarming to curre nt
users of real-coded GAs. The existence of a large class of fun ct ions that
thwart the underlying mechani sm of an algorithm is never good news, and
resear chers and users of real-coded GAs need to investigat e fur ther both their
funct ions and their algorithms in an effort to find out whether blocking is
a significant practical problem , and if it is, to determin e how or whet her it
may be overcome.

8. R amifica t ions and extensions

So what 's a genet ic algorit hmi st to do? Given a choice between binary-cod ed ,
real-coded , or in-between-coded GAs, which should we choose to obtain t he
best performan ce most of the t ime? If this pap er has demonstrated one
thing, it is that the decision is far from clear cut . Binary-coded GAs do have
an abundan ce of schemata available for processing, which can lead to rap id
processing of problems of bounded deception , but they can be thw arted by
more fully deceptive problems or when linkage is inappro pri ate to the degree
of decept ion. Real-coded GAs adapt ively choose their own virtual alpha be ts ,
which can lead to more rap id discovery of near global points in easy problems,
but they can be stymied by blocking and deception, singly or in combination.

The cour se we chart therefore dep ends upon our confidence in a GA 's
ab ility to defeat it s enemies. Lack of such confidence in the ability of binary­
coded GAs to defeat problems of bounded deception led to the recent inven­
tion of messy genetic algorithms [22, 23]. It has been conjectured that messy
GAs defeat problems of bounded deception in polynomial t ime, and bo th em­
pirical result s and asymptot ic theoretical ana lysis support this claim. This
grounding gives us a good bit of confidence in our ability to solve difficult
problems quickly and effect ively.

Simp le real-coded GAs can suffer at the hands of deception and blocking,
and while there is some hop e that messy techniques can help alleviate decep­
tion difficulty within real-cod ed GAs, there is a good bit of doubt whether
averaging recombi nation or other operator variant s can effectively alleviate
blocking . Car efully designed empirical studies and more analysis are needed
(an d are underway). In the meanwhile, the practit ioner needs to get on with
his work and make a decision .

Perhaps the most rational resp onse at this juncture is simply to decid e,
and not agonize over one 's coding . If one is concerned with having some
theoretical assurance that problems of bounded difficulty can be solved to
global opt imality , then perhaps proven messy techniques and binary codings
should get the nod. On the other hand, as we have seen in this paper , ge­
net ic algorithms do something with whatever codings and operators we hand
them , and oftent imes that somet hing is sur prisingly good. To summarize
the present case, recall that a lit tl e theory told us that GAs would not like
big alpha bets, some users ignored t hat warning and got good results, and
fur ther inquiry has suggested that the GA sidesteps t he problem by turn ing
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big alphabet s into lit tl e alphabets . Anyone who has ever played with ge­
neti c algori thms can tell similar anecdotes where select ionist schemes were
quite good at (and somet imes quit e surprising in ) exploit ing any opening in
their quest for improvement ; it shouldn 't come as much surprise that GAs
regularly take computational lemons and compute lemonade.

Of cours e, I am not arguing here for rest ing on our laurels, and this paper
has only begun to scratch the sur face of real-coded and high-cardinality GAs.
Further empirical and analytical st udy are need ed along a number of lines:

1. Creat ing blocked tes t funct ions, and test ing simple and advanced real­
coded GAs.

2. Using slices to analyze different operators, such as averaging recombi­
nation and jump mutation .

3. Extending alphabet theory along vari anc e or pr obabi lity lines to define
virtual alphabets in terms of charac ters th at are achievable in popula­
tions of a particular size.

4. Developing and testing hybrid binary-real GAs.

5. Considering floating-p oint messy GAs and their relat ion to simp le real­
coded GAs.

The resu lts of this pap er have been largely theoreti cal. The th eory needs
to be tested through the creat ion of a suite of blocked pr oblems, and simple
operators and their var ian ts should be tested to see if the bogeyman envi­
sioned here is mad e of st raw or st one . These studies are underway, and resul ts
should be available soon . Note that it is important in the design of blocked
problems to make sure that global basins are NIA H (needle in a hayst ack) .
Otherwise, any hillcl imb er can solve the prob lem and lit tle is learn ed abo ut
blocking.

Slice analysis should be applied to ot her operato rs more rigorously. T his
extension was discussed br iefly herein , but a more formal tr eatment should
permit the analysis of all kn own forms of averaging recombination and a
variety of mutation operators.

The theory of virtual alphabets takes the mean slice as the divid ing line
between those intervals that are likely to have highly fit samples and those
that are not. T his theory can be extended usefully if the mean slice is replaced
by a pr ofile of fitness values that have a spec ified probabi lity of being found
at random . Such a pro file can be calculated dir ectly, or it can be est imated
from mean and vari ance profil es together with some assumpt ion regarding
the distribution of function values.

Hybrid real-binary GAs should be developed and tested. The success en­
joyed by Lucasius and Kateman [27] using both bin ar y and creeping mutation
might be carr ied over to the simultaneous use of a number of recombination
operato rs . Some thought should be given to the funct ion suite used in test ing
the hybrids, and it is likely that functi ons that are bo th binary-deceptive and
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real-b locked or real-decepti ve can be generated . Perhap s the more interest ing
test cases are those where the fun ction thwarts th e algorithm in one space
and not in the ot her , or in a man ner such that part of the problem can be
solved in one space and part of the problem can be solved in the ot her .

Messy float ing-p oint GAs have been part ially invest igated [13J. T his ap ­
proach may be viewed as a hybrid , combining aspec ts of both real-coded and
binar y-cod ed GAs . Messy GAs use var iable numbers of man t issa bits and ex­
ponent bits to get her with param eter-ending punctuat ion mark s to adapt ively
place precision and emphasis where it is needed. More work is necessary to
determ ine whether the appropria te combination of messy operators can over­
come deception and blocking.

9 . Conclusions

This paper has developed a theory of real-cod ed genetic algorit hm operation
called the theory of virtual alphabe ts . The th eory sugges ts that select ion re­
duces the cont inuum to a vir tual alphabet along each dimension , where the
virtual charac ters of that alp hab et are selected from basinic feat ures (above­
average intervals att rac ted to a local opt imum) of the one-dimensional mean
slice of the funct ion along each dimension . The theory reconciles an apparent
paradox between simple schema theory and the empirical success enjoyed by
users of real-cod ed GAs. Although simple schema theory is correct in say­
ing that lower cardinality alphabets pr ocess higher numbers of schemata,
this new theory suggest s how select ion itself reduces high-cardinality actual
alphabets to low-cardi nality virtual alphabe ts quite quickly, the alphabets
t hereafter undergoing processing through the action of recomb inat ion and
ot her genetic operators . Alt hough the theory provides a plausible mecha­
nism of convergence consist ent with the theory of schemata , it also pr edict s
that problems exist that effect ively block real-cod ed GAs from finding global
optima, and examples of simple blocking have been given . Although the the­
ory was develop ed for simple real-coded GAs, st raightforward suggestions
for alleviat ing blocking t hrough averaging recombin ation or jump mutation
appear to be of limi ted utility ; the basic argument against their usefulness
has been outlined and the route to more det ailed analysis has been sketched.
Early computat ional results tend to confirm this theory and its predict ions,
bu t more work needs to be done. Nonetheless, the result s of this pap er are
on firm enough ground that users of real-coded GAs would be wise to turn
to the development and invest igation of ot her operators that can circumvent
t he imp ediment of blocking, if real-cod ed GAs are not to be perm an ent ly
limited to the relat ively small and simple class of un blocked pro blems .
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