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Abstract. T his pap er pr esents t he results of a study of the geomet ric
and arit hmetic prope rt ies of t he graph of a simple cellular automaton,
considered as a mapping of t he uni t inter val to it self. T he graph pro
vides an examp le of a st rict ly self-similar figur e and exhibits some
numeric pr op ert ies relating to Fermat numbers. In ad dit ion an inter
est ing density resul t is proved: t he pred ecessor set of any number in
[0, 1] is dense in the interval , and t he set of kt h-orde r pr edecessors of
any number is uniformly dist ributed over a par tit ion of t he interval
int o 2k uniform segments.

1. Introduction

A number of studies of cellular automata have focused on one-dimensional
nearest neighbor automata defined over Zz [1,2,3,4]. In the set of all such
automata those that are addit ive are of interest because of their mathematical
tractability. Addit ive automata rules may be represented as eit her real or
complex po lynomials, as sums of powers of the shift operato r, and as circulant
matrices.

Tab le 1 list s the forms of the seven non-trivial additive nearest neighbor
rul es over Zz .

Algebraic pr opert ies of rules 90 and 150 have been exhaust ively st udied [5]
and the ent ropy-reducing properties of all rules in Table 1 are know n [2, 5, 6J.
It is also known that the space-time outputs of these addit ive rul es exhibit
self-simil ar pr operties and , under an appropriate mapping, define fract als
[7, 8, 9J.

In this paper atte nt ion is focused on the asy mmet ric rul e 102, represented
as in Table 1 by the operator D = 1 + 0'. In par ticular , this rule is considered

' Supported by NSERC operat ing grant OGP-0024871 and by a grant from Ath abasca
University Research Fund.
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Rule p(t) p*(w) Operator Shifts Circulant
204 1 1 I I = (T o circ( 10.. .0)
170 t w (T (T circ(010. . .0)
240 r l w- I (T -I (T -I circ(O. . .01)
102 l +t l+ w D I+(T circ(11O. .. 0)
60 1 + r l 1 + w- I D- 1 + (T - I circ( lO. . .01)
90 t + r:' w + w- I 8 (T + (T - I circ(010. ..01)

150 t + 1 +rl w + 1 + w- I
~ (T + I + (T - I circ(1 1O. . .01)

Table 1: Additive nearest neighbor rules over Zz .

as it operates on the space E+ of all right half-infinite sequences with ent ries
in Z z. Each element J-l of this space defines a number in the interval [0,1] by

00

J-l = .LJ-liT i
i = l

(1.1)

(2.1)

In t his way t he map D : E+ -t E+ defines a map D : [0, 1] -t [0,1] . The
properties of th is map are studied in t his paper.

2. Algebraic p roperties of D : E+ -t E+

The fund amental algebraic prop erties of t he operator D can be quickly sum
marized. Let En denote the subset of E+ consisting of all sequences that are
periodic with period a divisor of n . Elsewhere [2] it has been shown that D
satisfies

k k+1 (k+ 1)
[D (J-l)] i = .L . J-li+j-I

j = 1 J

where (k~l) is the j t h ent ry in the (k+ l )st row of the mod(2) Pascal t riangle.

Lemma 1. Let n = 2md with d odd. Under iteration of D every element of
En maps to a cycle or fixed point in at most 2m iterations.

Proof. If n = 2m and J-l E En, then by (2.1) and the properties of the mod(2)
Pascal t riangle,

Thus, for d = 1, all elements of En map to 0 in at most 2m iterations.
Now suppos e that d > 1 and let k be the smallest integer such that

2k = 2m mod (n) . Then

[D Zk(J-l )]i = J-li + J-li+zk = J-li+Zm = [Dzm(J-l )] i

which yields

Dzk_zm(Dzm(J-l )) = Dzm (J-l )
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ind icating that D 2m(f-L) is on a cycle.•

We will say that f-L E E + terminates at n if :3 n > 0 such that f-Ln = 1 and
f-Li = OVi > n.

Lemma 2. Let f-L E E + terminate at n: Then D iterated on f-L y ields a cycle
of p eriod 2k where k is the sm allest integer such that n :s; 2k .

Proof. Application of (2.1) yields [D2k(f-L )]i = f-Li + f-Li+2k, which taken with
the condit ion that f-L te rminates at n :s; 2k tells us that [D2k(f-L )]i = f-Li Vi .
Suppose that s > 0 such that D2k- S(f-L) = f-L . Making use of (2.1) to write
this in compo nent form and canceling terms that sum to zero yields the set
of equat ions

o = C k - ; + 1) f-L2+ + C
k

- : + 1) u;

o C
k

- ; + 1) f-L3+ + C
k
; ~ : 1) f-Lr + C

k
- : +1)f-Lr+l

o C
k

- ; + 1) f-Ln-l + C
k

- ; +1)f-Ln

o C
k

- ; +I) f-Ln (2.2)

where

{
n dk - s + 1 ~ n

T = 2k _ S + 1 2k - S + 1 < n

Since f-L = 1 the last equation of (2.2) requires that ek
-2S+l ) = o. Sub st i

tution of this condition into the penultimate equat ion of (2.2) then requires
that ek

- 3
s+1

) = O. Cont inuation of th is process indicates that th e full set of

equa t ions in (2.2) will be satisfied if and only if 2k
- s + 1 ~ n and

Ck

- j S +1)= 0 2:s; j :s; n (2.3)

The 2k - s + 1 row of Pascal 's triangle has 2k - s + 1 entries, and k has
been choosen as the smallest integer such that n :s; 2k

. Hence 2k
- 1 < nand

satisfact ion of (2.3) requires that , after the leading one, mor e than the first
half of this row must consist of zeros. This occurs if and only if s = 0 and
th e proof is done.•

The addit ivity of D in combination with Lemmas 1 and 2 now yields :

Theorem 1. Let f-L E E + have the form f-L = f-L' + fJ where for some k , n
,

1 i> kf-Lk,
0 i> kf-Li

fJi { ~i+n
i:S; k
i>k
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Let 1rn ((3) be the p eriod of the cycle to which (3 goes under i teration of D ,
and let p be the smallest in teger such that k :::; 2P • Th en D itera ted on f..L
yields a cycle with p eriod at most 2P1rn ((3 ).

Sequences of t he form indicated in Theorem 1 will be called eventually
periodi c wit h period n. Note that eventually period ic sequences wit h period
1 eit her are terminating, or end in an infinit e string of ones . Sequences
that are not terminating or event ually periodic will be called non-p eriod ic.
Notationally, eventually periodic sequences will be indicated in the st andard
way by underlining their per iodic part .

In what follows it will also be necessary to invert the map D : E + ~ E +.

Theorem 2. [1OJ Let (3 E E +. Th e general solution to the equation D (f..L ) =
(3 is given by

(2.4)

where a1 is the sequence l Q, 0- -
1 is defined by

i = 1
otherwise

and th e operator B is defined by

i

[B( (3)] i = L (3r
r =l

T he op erator B in the pr eceding theorem is known to have the following
period-doub ling property [10]: if (3 E E + is period ic with period n , t hen
there is a k such that B k((3) has period 2n.

Theorem 3. Let u. E E + be non-periodic. Then D(f..L) is also non-p eriodic.

Proof. Suppose f..L is non-p er iod ic and D (f..L) = (3 is event ually periodic with
per iod n . By T heorem 2 and t he period-doubling pr op erty of B , however ,
the predecessors of (3 , one of which is u; must be event ually periodi c with
period n or 2n. This cont radicts the assum ption that f..L is non-periodi c. •

Theorem 4. Let f..L E E + be on a cycle of D . Th en f..L is event ually p eriodic.

Proof. If f..L is on a cycle then :3 k such that D k(f..L ) = u . From (2.1) and the

equality (ki1) = (~~D = 1 we obtain the set of equations

(k+ 1) (k+1)f..L i+ k = 1 f..L i+ 1 + ... + k f..Li+ k-1 i ~ 1 (2.5)

Thus for all r > k, f..Lr is determined in te rms of f..L2, "" f..Lk by a simple
recursion relat ion .•
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From the above we see that D map s terminating sequences to terminat
ing sequences, eventually per iodic sequences to eventually per iodic sequences ,
and non-periodi c sequences to non-periodi c sequences. Further , all te rminat
ing and event ually periodic sequences are eit her on cycles or it erate to cycles .
In terms of the map D : [0, 1] ----7 [0, 1] this mean s that rati onal numbers map
to rati onals, irr ationals map to irrat ionals, and no irrat ionals map to cycles .

By analogy to Tay lor 's theorem the op erator D can be thought of as a
derivative with respect to sequence index [10J. Operationally D is defined by
the command "shift and add without carrying ."

The map D : E+ ----7 E+ is a fun cti on since D (J.L ) is uniquely defined for all
J.L. This is not t rue for D : [0, 1] ----7 [O, lJ. The reason is found by considering
the sequences J.L and J.L' defined by

{ rbitrary i <n
J.Li t=n

i >n

{f
i< n,

J.Li = t =n
i > n

(2.6)

Both of these sequences define the same po int of [0, 1] bu t

[D( ' )] = { [D(J.L )]i i i= n - 1
J.L . 1 + [D( J.L )Ji i = n - 1

Every sequence of the form (2.6) corresponds to a poin t of [0,1] having de
nominator a power of two . Thus D : [O, lJ ----7 [O,lJ is double-valued at all
points with rational expression K / 2n

.

3 . G eometric properties of D : [0, 1] ----7 [0,1]

The graph of D : [O, lJ ----7 [0, 1] is shown in Figur e 1. In appearence t his
graph is composed of mu ltiple t riangu lar structures of different sizes, is re
flection symmetric abo ut x = 1/2 , and is self-simila r. These properties will
be demonstra ted in what follows.

Theorem 5. The graph of D : [0, 1] ----7 [O, lJ is reflection symmetric about
x = 1/ 2.

Proof. Let x E [0, 1/2] and take J.L and J.L' such that , under the map of (1.1) ,
J.L ----7 (1/2) - x and J.L' ----7 (1/2) + x. Then J.L + J.L' = 1 so that D (J.L + J.L' ) = 0 .
Since D is addit ive this mean s that D (J.L ) = D(J.L' ), hence D((1/2 ) - x) =
D((1/ 2) + x). •

As a result of T heorem 5 it is only necessary to consider values of x in
the interval [0,1/2]' and this restrict ion will be observed hereaft er .

Coordinates can be defined on the graph shown in Figure 1 that have a
natural corres po ndence to the st ru ct ure of this graph. On the interval [0, 1/ 2J
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Figure 1: Graph of D : [0, 1] -> [0, 1].

this st ructure is based on the sequence defined In (3.1) , which ap proaches
(0, 0) as a limit .

(3.1)

Every point of this sequenc e is, in turn , the limit point of a second sequence
{S(al ,a2)} , and so on ad infini tum.

To make this intuit ive image precise, we define a subset of [0, 1/2] x
[0, 1] consist ing of those points on the grap h of D having x-coordinates wit h
denom inator a power of two. (Recall that D is double-valued on pr ecisely
these points.) Points of this subse t are labeled S(aI , ... , an) for some finite n .
T he x and y coordinates of S (al" ' " an) will be denoted as x(a l" '" an) and
y(a I , , an). The binary sequence x' (al, . .. , an) corresponding to a point
x( al , , an) is defined by the following algorit hm:



Geometry and Arithm etic of a Simple Cellular Automaton 175

n
~

1. x*( l , .. . , 1) is the sequence having the first n terms alte rnat ing 0 and
1 start ing wit h O. If n is odd the remaining terms of the sequence are
one and if n is even the rem aining te rms are zero . Thus x*( l, 1) = 01Q
and x*( l , 1, 1) = 0101 .

n
~

2. For 1 ::::: i ::::: n , x*(al " ' " an) is generated from x*( l , . . . , 1) as follows:
n
~

a) If i is odd replace the zero in t he ith positi on of x*( l , . . . , 1) by a
block of zeros of length ai; b) If i is even replace the one in the ith

n
~

po sit ion of x*( l , ... , 1) by a block of ones of length ai.

For example, x* (Z, 3, 3) = 001110001 and x*(Z, 3, 1,2) = 00111011Q.

Lem m a 3. Every num ber in [0, 1/2] of the form K / 2s has an expression
x*(a l "'" an) for finite n.

Lemm a 4. Every number in [0,1 /2] that is not of the form K / 2s has a
unique expression

As an example of Lemma 4, 1/ 3 is the limit as n be comes infinite of
n

t he sequence x*~. Since every po int of [0, l / Z] can be approximated
ar bit rarily closely by a point k / 2s , only these lat t er need be considered in
comput ing pr operties of the graph shown in Figure 1. Points of this gra ph
are characterized by two st ructural lemmas:

Lemma 5.

x(al "' " an, 1)
y (al " ' " an, 1)

where
n

a(k,n) = I>s
s=k

x(a l , . . . , an + 1)

( + 1) + 2- a(l ,n )
yal , · ·· , an (3.2)

(3.3)

Proof. Suppose that n is even . Then the sequence x* (al, " " an + 1) has
the form

a,, + l
~

(Atl , . . . , Ata,, _l ' 1, ... , 1, Q)

where each Ata i is a block of ai ones (i even) or zeros (i odd) . On the other
hand , the sequence x*(al, ... , an, 1) will have the form
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and the numerical values of these two sequences are the same. A similar argu
ment for odd n finishes proof of the first of the claimed equalit ies. The second
is demonstrated by observing the way in which the sequences x*(al' . .. ' an, 1)
and x*(aI , . .. , an + 1) map under D . Writing these out and applying D we
find that , regard less of whet her n is even or odd ,

D (x*(al ' . . . ' an, 1)) = D(x*(aj, .. . , an + 1)) + (0, . . . , 0, I ,Q)

where the one in the second term on the right is located in the a(l , n) th
positio n. Mapping this back to [0, 1/ 2] then yields the second equality. •

Lemma 6.

x (aj , , an+! + 1)

y(al ' ' an+! + 1)
(1/2)[x(al 1 · · · ' an + 1) + x (aI, , an)]
(1/ 2)[y(a j, . . . ,an + 1) + y(aj , ,an)]

Proof. Assume n is odd . T hen

a n+ l
~

X* (al , ,an) (M1 , , Ma ", I , .. . , 1,1)

x*(aj, , an+l ) (Mj , , Ma, Man+" Q)

x*(al , . .. , an+! + I ) (M1, , Ma, Man+" I ,Q) (3.4)

where Man is a block of an zeros and M a n + 1 is a block of an+! ones . By (3.4)
x (a a ) - x( a a + 1)+2-a(j,n+I)- j - x (a a )+ 2- a (l,n+l)1 " , , ) n - 1 , "" n + l - 1" " , n+ l

and this proves the first equation . T he second follows since y*(a j , . . . , an) =
D( x*(aI, .. . , an)) and th e map D : E + ---> E+ is linear. Similar arguments
hold for n even and the proof is done . •

Theorem 6 . The (x, y ) coordina tes of S (aI, . . . , an) are given by

x(al ' . . . ' an) = 1 - 2- a(l,n) { (- It + f)_ 1)k- 12a(k,n)}
k=l

y(aI, . . . , an) = T a(l,n) { 1 +E2a(k ,n)} (3.5)

Proof. For n = 1 the claim is valid by inspection . Assume that (3.5) are
valid for S (al ' . . . ' an). By (3.3) and Lemma 5

x (al , . . . , an, 1) = 1 - 2- a (l ,n )- 1 { ( - It + i:_ 1)k- 12l+a(k,n)} (3.6)
k= l

while iteration of the first equation of Lemma 6 yields
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Not ing that 2:::=12- 8 = 2T(2T
- 1)- 1 we subs titute (3.6) and the first

equation of (3.5) into (3.7) to obtain the claimed resul t for X(al" ' " an+! ),
after a suitable rearrangement of terms.

Simil arly, it erative reduction of the second equa tion of Lemma 6 gives

y(aI, . . . , an+!) = 2 l
-

a n
+ 1 { y(al"' " an, 1)

+ (2a n
+ l

-
l

- l )y(al" " , an)} (3.8)

and substitution from Lemma 5 and the induction hypothesis again yields
the desir ed result . •

Inspect ion of Figur e 1 sugges ts tha t the sequence of po ints

s(i,n) = {S (al"" , an) I c, fixed r i- i , l:::; a; < oo}

lies along a st raight line. Computation of the slope of this line shows this to
be t rue.

Theorem 7. A ll po ints of the seq uence s(i ,n) lie on a straight line wit h
slop e

m( i ,n ) = - [1 + t 2a(k,nJ] / [ t (_ 1)k- 12a(k,nJ + (-It]- 1 (3.9)
k=t +l k=t+ l

P roof. P ick any two values of a; and apply Theorem 6 to compute the slope
of the straight line joining the corr esponding po int s of sCi ,n). The resul t
is given by (3.9). Since (3.9) is indep endent of ai , all po ints of s(i ,n ) are
connected by straight lines of the same slope and the pr oof is do ne.•

Remarks:

1. m (n ,n ) = (_ l)n-l
m(n -l ,n ) = (_1) n-l(2an + 1)/ (2an - 1) = ± 3 if an = 1

2. The slope of a sequence s(i ,n) depends only on the a; for r > i.

Therefore any two sequences s( i, n ) and s (j ,k) such that n - i = k - i , and
with all a; equal for the final n - i te rms, will lie along distinct st raight lines
havin g the same slope.

St rict self-similarity has been defined by Hu tchinson [11] as implyin g that
all components of a figure map identi cally onto all ot her components by a
similarity tran sformat ion (isomet ry and sca ling).

The graph indicated in Figure 1 is composed of infinite sequences groupe d
into t riangular patterns . Any given t riangle will have vertices defined by
S(al"'" an), S (al"'" an+d , and S (aI, .. . , an+l , 1) for some a l, " " an+l.
By Theorem 7 the slopes of the three sides of these t riangles will be
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m(S(a1" '" an),S(a1" ' " an+l)) = ±1

m(S(a1" ' " an), S(al, "" an+1 ,1)) = ±3

Bur ton Voorhees

hence all such triangles are similar . Further , the nature of the infini te se
quences composing these t riangles, as det ermined in Lemmas 5 and 6, insures
that they are po intw ise identi cal up to isometries and scalings. Thus we have:

Theorem 8. The graph of D : [0 ,1] ----7 [0,1] is strictly self-similar.

4. A r it h metic of D : [0 , 1] ----7 [0 ,1]

The fixed points of D are °= a and l Q = 1/2 . T he point 01 = 1/2 goes
to lQ in one iterat ion . In this sect ion some of the numerical properti es of D
iterated on [0,1] are presented .

Let J1 E E+ be periodic with period 2k. Then J1 defines the point

(4.1)

If J1i is one when i = 2kS and is zero ot herwise, then x(J1 ) = (22k _1)-1 and
iterates to a in 2k steps. For m < 2k

m

Dm (x(J1 )) = (22k - 1)-1 L [Dm (J1 )h k_5 25

5= 0

which on subst it uti on from (2.1) becomes

Dm (X(J1 )) = (22k _ 1)- 1f (m+ 1) 25

5=0 S + 1

The sum in (4.2) can be evaulated using a result of Hewgill [12].

Lemma 7. {12}

m (m+ 1) (m+l) (m+l) (m+l)'\' 25= F 1 F: 2 . . . F. m+l
Z:: S + 1 m +l m 0
5= 0

where F; = 22
" + 1 is the rth Fermat number.

The denominat or of (4.2) is given by the expansion

(4.2)

(4.3)

(4.4)

Every point of [0,1] has exact ly two immediate predecessors, which can be
computed by use of (2.4). Figur e 2 shows a porti on of the binary tree of
pr edecessors of O.
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Figure 2: Some pr edecessors of O.

More generally, if J.L E E+ has per iod n = 2k m t hen J.L is eit her on a cycle
or it erat es to a cycle. For such a J.L

2 km -l

x (J.L ) = (22km
- 1)-1 L J.L2 km_s2S

8= 0

and t he denominator of (4.5) is given by

k - l

22km _ 1 = (2m - 1) II FT(m )
T=O

where FT (m ) = (FT - l )?' + 1 are generaliz ed Fermat numbers.
If

(4 .5)

(4.6)

{
I i = 2k m s

J.Li = 0 otherwise
l:::; s < oo
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Figure 3: Some predecessors of a 3-cycle ,

then x (J.L) iterates to a cycle in exact ly 2k steps, and for r :S 2k

(4.7)

which again can be evaulated in term s of (4.4) and (4.6) .
Figure 3 shows a portion of the predecessor trees for the 3-cycle ' " ->

3/7 -> 5/ 7 -> 6/7 -> .. ,

5 . D ensity of pr edecessor set

As might be ant icipated from Figures 2 and 3, the basins of a tt ract ion for
cycles of D have a highly complicated st ruc ture. It era tion of (2.4) yields the
general solut ion of Dk(J.L ) = (3 as [10]

k

J.L = B ka- k((3 ) +I: J.LsB' (a(sl)
8=1

(5.1)
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in which [a(s )Jr is one if s = r and zero otherwise. Note that the first k terms
J.Ll ' ... , J.Lk of these kth order pr edecessors are free param eters. In particular ,
if J.L' is any element of E+ we can choose J.Li = J.L~ for 1 :::; i :::; k. This pr oves

T heorem 9. Let fJ , J.L' E E+ be etbritrery. Th en fJ has a kth order prede
cessor J.L such that /x(J.L ) - x (J.L') I :::; 2- k.

Corollary. The set P (x (fJ )) of all pr edecessors of fJ is dense in [O, IJ.

In fact a st ronger result is possible. Consider a partit ion of [0, 1J into 2k

segments of equal length so that the endpoint of each segment is r12k for
a :::; r :::; 2k - 1. Wri te the kth order pr edecessors of fJ as

J.L = (J.L l . .. J.LkQ) + (0" , 0J.Lk+l ... ) == J.L*+ J.L'

where J.L* represents the initi al condit ions . Then x( J.L) = x (J.L*) + x( J.L') and
x( J.L*) t akes the values r12k. Denote these as x (J.L*; r) and the correspond
ing values of x( J.L) by x (J.L ;r) . It is easy to see that x( J.L* ;r) :::; x( J.L; r) :::;
x( J.L*; r + 1). Thus each segment of the partit ion contains exactly one kt h
order pr edecessor of x (fJ ). This pr oves

T heore m 10. Let x (fJ) E [O, IJ. Th e set Pk(x( fJ) ) of kth order predecessors
of fJ is uniformly distributed with resp ect to th e uniform partition of [0,1J
into 2k segments.
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