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Geometry and Arithmetic of a Simple Cellular
Automaton*

Burton Voorhees
Faculty of Science, Athabasca University,
Box 10,000 Athabasca (AB), Canada TOG 2R0

Abstract. This paper presents the results of a study of the geometric
and arithmetic properties of the graph of a simple cellular automaton,
considered as a mapping of the unit interval to itself. The graph pro-
vides an example of a strictly self-similar figure and exhibits some
numeric properties relating to Fermat numbers. In addition an inter-
esting density result is proved: the predecessor set of any number in
[0,1] is dense in the interval, and the set of kth-order predecessors of
any number is uniformly distributed over a partition of the interval
into 2% uniform segments.

1. Introduction

A number of studies of cellular automata have focused on one-dimensional
nearest neighbor automata defined over Z, [1, 2, 3, 4]. In the set of all such
automata those that are additive are of interest because of their mathematical
tractability. Additive automata rules may be represented as either real or
complex polynomials, as sums of powers of the shift operator, and as circulant
matrices.

Table 1 lists the forms of the seven non-trivial additive nearest neighbor
rules over Z,.

Algebraic properties of rules 90 and 150 have been exhaustively studied [5]
and the entropy-reducing properties of all rules in Table 1 are known [2, 5, 6].
It is also known that the space-time outputs of these additive rules exhibit
self-similar properties and, under an appropriate mapping, define fractals
[7,8,9].

In this paper attention is focused on the asymmetric rule 102, represented
as in Table 1 by the operator D = I +¢. In particular, this rule is considered
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University Research Fund.
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Rule p(t) p*(w) Operator  Shifts Circulant

204 1 1 i T=0° circ(10...0)

170 ¢t w o o cire(010. . .0)

240 ¢! wt ot ot circ(0. . .01)

102 1+t 1+w D I+o cire(110...0)
60 1+t7! 14wt D~ I+o7! cire(10...01)
90 ¢+t w4w? 5 o+o7t cire(010. ..01)

150 t+1+t71 w+l+wt A o+ I+071 cire(110...01)

Table 1: Additive nearest neighbor rules over Z.

as it operates on the space E* of all right half-infinite sequences with entries
in Z,. Each element p of this space defines a number in the interval [0, 1] by

= Z/"l‘i2—i (1.1)
=1

In this way the map D : EY — E* defines a map D : [0,1] — [0,1]. The
properties of this map are studied in this paper.

2. Algebraic properties of D : E* — E*

The fundamental algebraic properties of the operator D can be quickly sum-
marized. Let E, denote the subset of E* consisting of all sequences that are
periodic with period a divisor of n. Elsewhere [2] it has been shown that D
satisfies

Mlk+1
[D* () = J;l < i )Hi+j—1 (2.1)

where (’“jl) is the jth entry in the (k+1)st row of the mod(2) Pascal triangle.

Lemma 1. Let n = 2™d with d odd. Under iteration of D every element of
E,, maps to a cycle or fixed point in at most 2™ iterations.

Proof. If n = 2™ and i € E,,, then by (2.1) and the properties of the mod(2)
Pascal triangle,

[Dk(y’)]i = Ui + Uiyom = 0 mod (2)

Thus, for d = 1, all elements of E,, map to 0 in at most 2™ iterations.
Now suppose that d > 1 and let k& be the smallest integer such that
2% = 2™ mod (n). Then

[DZk (W) = i + Bayor = pigam = [D¥" (Wi
which yields
D*=2"(D*" () = D*" ()
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indicating that D?™ (1) is on a cycle. B
We will say that u € ET terminates at n if 3n > 0 such that p,, = 1 and
wi =0Vi>n.

Lemma 2. Let p € E* terminate at n. Then D iterated on p yields a cycle
of period 2F where k is the smallest integer such that n < 2%.

Proof. Application of (2.1) yields [D2k (1)]i = pi + piyor, which taken with
the condition that y terminates at n < 2* tells us that [D2*(u)]; = p;Vi.
Suppose that s > 0 such that Dzk‘s(u) = p. Making use of (2.1) to write
this in component form and canceling terms that sum to zero yields the set
of equations

2k _s41 B |
0 = 2 H2++ 7 Mo

—3+1 2k — 541 2k 541
0 = g s o Hr + Hor1
r—1 r

ok s+l 2k —s+1
0 = Hn-1+ 3 Hon

9% = 1
0 = ( S*) (2:2)

where

_{ d*—s+1>n
T=1 ok k

2 —s+1 2—s+1<n

Since p = 1 the last equation of (2.2) requires that (Zk_;H) = 0. Substi-
tution of this condition into the penultimate equation of (2.2) then requires
that (2 _s“) = 0. Continuation of this process indicates that the full set of
equations in (2.2) will be satisfied if and only if 2 — s +1 > n and

(2" —s5+1
J

The 2% — s 4+ 1 row of Pascal’s triangle has 2 — s 4+ 1 entries, and k has
been choosen as the smallest integer such that n < 2% Hence 25! < n and
satisfaction of (2.3) requires that, after the leading one, more than the first
half of this row must consist of zeros. This occurs if and only if s = 0 and

the proof is done. B
The additivity of D in combination with Lemmas 1 and 2 now yields:

):0 2<j<n (2.3)

Theorem 1. Let i € E* have the form p = y' + 8 where for some k,n

W, = 1 1>k
we =0 1>k
0 1<k
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Let m,(8) be the period of the cycle to which [ goes under iteration of D,
and let p be the smallest integer such that k < 2P. Then D iterated on
yields a cycle with period at most 2Pm,([3).

Sequences of the form indicated in Theorem 1 will be called eventually
pertodic with period n. Note that eventually periodic sequences with period
1 either are terminating, or end in an infinite string of ones. Sequences
that are not terminating or eventually periodic will be called non-periodic.
Notationally, eventually periodic sequences will be indicated in the standard
way by underlining their periodic part.

In what follows it will also be necessary to invert the map D : ET — ET.

Theorem 2. [10] Let 8 € E*. The general solution to the equation D(u) =
B is given by

= B(ar) + B(o7(B)) (24)
where o is the sequence 10, o0~ is defined by

o) = {0 i=1
K= Bi—1 otherwise

and the operator B is defined by
BB =6
r=1

The operator B in the preceding theorem is known to have the following
period-doubling property [10]: if 8 € ET is periodic with period n, then
there is a k such that B*(3) has period 2n.

Theorem 3. Let u € E™ be non-periodic. Then D(u) is also non-periodic.
Proof. Suppose p is non-periodic and D(u) = 3 is eventually periodic with
period n. By Theorem 2 and the period-doubling property of B, however,
the predecessors of 3, one of which is p, must be eventually periodic with
period n or 2n. This contradicts the assumption that y is non-periodic. B

Theorem 4. Let u € E* be on a cycle of D. Then u is eventually periodic.

Proof. If p is on a cycle then 3k such that D*(u) = p. From (2.1) and the
equality (k“) = (k+1) = 1 we obtain the set of equations

1 k+1

k+1 k+1 E,
Hitk = ( 1 >Ni+1+"'+( 5 )/ti+k—1 121 (2.5)
Thus for all » > k, p, is determined in terms of ps,,...,ur by a simple

recursion relation. B
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From the above we see that D maps terminating sequences to terminat-
ing sequences, eventually periodic sequences to eventually periodic sequences,
and non-periodic sequences to non-periodic sequences. Further, all terminat-
ing and eventually periodic sequences are either on cycles or iterate to cycles.
In terms of the map D : [0,1] — [0, 1] this means that rational numbers map
to rationals, irrationals map to irrationals, and no irrationals map to cycles.

By analogy to Taylor’s theorem the operator D can be thought of as a
derivative with respect to sequence index [10]. Operationally D is defined by
the command “shift and add without carrying.”

The map D : EY — E7 is a function since D(u) is uniquely defined for all
. This is not true for D : [0,1] — [0,1]. The reason is found by considering
the sequences p and i/ defined by

arbitrary 7 <n
My = {1 1=n
0 1>n
i 1<n
- {0 Ay (2.6)
1 1>n

Both of these sequences define the same point of [0,1] but

[D(“)]"‘{[lJrlfl;(u)]i i=n-1

Every sequence of the form (2.6) corresponds to a point of [0, 1] having de-
nominator a power of two. Thus D : [0,1] — [0,1] is double-valued at all
points with rational expression K /2"

3. Geometric properties of D : [0,1] — [0,1]

The graph of D : [0,1] — [0,1] is shown in Figure 1. In appearence this
graph is composed of multiple triangular structures of different sizes, is re-
flection symmetric about z = 1/2, and is self-similar. These properties will
be demonstrated in what follows.

Theorem 5. The graph of D : [0,1] — [0, 1] is reflection symmetric about
=12

Proof. Let z € [0,1/2] and take p and ' such that, under the map of (1.1),
pu— (1/2) —z and p’ — (1/2) + z. Then g+ p' = 1 so that D(u+ /) = 0.
Since D is additive this means that D(u) = D(x'), hence D((1/2) — z) =
D((1/2)+z).1

As a result of Theorem 5 it is only necessary to consider values of z in
the interval [0,1/2], and this restriction will be observed hereafter.

Coordinates can be defined on the graph shown in Figure 1 that have a
natural correspondence to the structure of this graph. On the interval [0,1/2]
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Figure 1: Graph of D : [0,1] — [0, 1].

this structure is based on the sequence defined in (3.1), which approaches
(0,0) as a limit.

{S(a)} ={(@™,27") |1 < a; < o0} (3.1)

Every point of this sequence is, in turn, the limit point of a second sequence
{S(a1,as)}, and so on ad infinitum.

To make this intuitive image precise, we define a subset of [0,1/2] x
[0,1] consisting of those points on the graph of D having z-coordinates with
denominator a power of two. (Recall that D is double-valued on precisely
these points.) Points of this subset are labeled S(ay, ..., a,) for some finite n.
The z and y coordinates of S(ay, ..., a,) will be denoted as z(a, ..., a,) and
y(ai,...,a,). The binary sequence z*(aj,...,a,) corresponding to a point
z(ay,...,a,) is defined by the following algorithm:
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/—’L
1. z*(1,...,1) is the sequence having the first n terms alternating 0 and
1 starting with 0. If n is odd the remaining terms of the sequence are
one and if n is even the remaining terms are zero. Thus z*(1,1) = 010
and z*(1,1,1) = 0101.

n

. . ,—_
2. For 1 <i<n, z*(ay,...,a,) is generated from z*(1,...,1) as follows:
.. . . T ’—17“
a) If 7 is odd replace the zero in the ith position of z*(1,...,1) by a

block of zeros of length a;; b) If 7 is even replace the one in the ith

position of z*(1,...,1) by a block of ones of length a;.

For example, z*(2,3,3) = 001110001 and z*(2,3,1,2) = 001110110.

Lemma 3. Every number in [0,1/2] of the form K/2° has an expression
z*(a1,...,a,) for finite n.

Lemma 4. Every number in [0,1/2] that is not of the form K/2° has a
unique expression

z* = lim z*(a,...,a,)

n—oo

As an example of Lemma 4, 1/3 is the limit as n becomes infinite of

the sequence z*(1,...,1). Since every point of [0,1/2] can be approximated
arbitrarily closely by a point k/2°%, only these latter need be considered in
computing properties of the graph shown in Figure 1. Points of this graph
are characterized by two structural lemmas:

Lemma 5.

z(ar,...,an,1) = z(az,...,an+1)

y(as,...,an,1) = ylay,...,a, +1) 42790 (3.2)
where
n
a(k,n) =Y a, (3.3)
s=k
Proof. Suppose that n is even. Then the sequence z*(ay,...,a, + 1) has
the form
an+1

e
(Mo, ssws M3 Lo 3. 150)

where each M, is a block of a; ones (i even) or zeros (¢ odd). On the other
hand, the sequence z*(ay, ..., an,1) will have the form

——

(Mlv'"7Man—171a"':1aoil)
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and the numerical values of these two sequences are the same. A similar argu-
ment for odd n finishes proof of the first of the claimed equalities. The second
is demonstrated by observing the way in which the sequences z*(ay, . . ., ay,, 1)
and z*(ay,...,a, + 1) map under D. Writing these out and applying D we
find that, regardless of whether n is even or odd,

D(z*(a1,...,an,1)) = D(z"(a1,...,a, + 1)) + (0,...,0,1,0)

where the one in the second term on the right is located in the a(1,n)th
position. Mapping this back to [0,1/2] then yields the second equality. B

Lemma 6.

=
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Proof. Assume n is odd. Then

m*(alv"'van> ( ) a,,v]-’"'a]-a
$*(a1, wsay an+1) ( 3 av Ma,H,va)
z¥(ay,. .., ap1 +1) = (]Vfl ..... Mo, M,,.,,1,0) (3.4)

S a block of a,4; ones. By (3.4)
z(ay, ..., a,) = z(ag, ..., Qnp1+1)+270Em )1 = g(gy . anyq) 27000+
and this proves the ﬁrst equation. The second follows since y*(ay,...,a,) =
D(z*(ay,...,a,)) and the map D : EY — E¥ is linear. Similar arguments
hold for n even and the proof is done. B

where M, is a block of a, zeros and M,

Theorem 6. The (z,y) coordinates of S(ay,...,a,) are given by

aloy, .. 0s) = 1—2790m {(—1)“ - Z(—1)’°*12“(’°’”>}

k=1
ylag, ..., 0,) = 279 {1 +3 2“("”*")} (3.5)
k=2

Proof. For n = 1 the claim is valid by inspection. Assume that (3.5) are
valid for S(ay,...,a,). By (3.3) and Lemma 5

B e <oy By 1) = T — 2R {(—1)” + Z(—l)k*zl“(’f»n)} (3.6)

k=1

while iteration of the first equation of Lemma 6 yields

z(ay,...,8n41) = 27 g(ay, ... a,,1) + 2(ay,. .., 0 Z 273
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Noting that >7_;27° = 27(2" — 1)~! we substitute (3.6) and the first
equation of (3.5) into (3.7) to obtain the claimed result for z(ay, ..., ans1),
after a suitable rearrangement of terms.

Similarly, iterative reduction of the second equation of Lemma 6 gives

y(alr"'va’n+1) = 21_un+l{y(a1*"'7a’ﬂ’1)
(2t l)y(al,...,an)} (3.8)

and substitution from Lemma 5 and the induction hypothesis again yields
the desired result. B
Inspection of Figure 1 suggests that the sequence of points

s(i,n) = {S(ay,...,a,) | a, fixed r # 1,1 < a; < 0o}

lies along a straight line. Computation of the slope of this line shows this to
be true.

Theorem 7. All points of the sequence s(i,n) lie on a straight line with
slope

m(i,n) = —

1+ Xn: 2“(’“")} / [ znj (—1)F 12 4 (-1 (3.9)

k=i+1 k=i+1

Proof. Pick any two values of a; and apply Theorem 6 to compute the slope
of the straight line joining the corresponding points of s(i,n). The result
is given by (3.9). Since (3.9) is independent of a;, all points of s(i,n) are
connected by straight lines of the same slope and the proof is done. B

Remarks:

1. m(n,n) = (=1)"!
m(n—1,n) = (—1)" (2% +1)/(2* — 1) =+3 if a, =1

2. The slope of a sequence s(i,n) depends only on the a, for r > i.

Therefore any two sequences s(i,n) and s(j, k) such that n —i =k — 5, and
with all a, equal for the final n — ¢ terms, will lie along distinct straight lines
having the same slope.

Strict self-similarity has been defined by Hutchinson [11] as implying that
all components of a figure map identically onto all other components by a
similarity transformation (isometry and scaling).

The graph indicated in Figure 1 is composed of infinite sequences grouped
into triangular patterns. Any given triangle will have vertices defined by
S(ay,-..,a,), S(ai,...,0,+1), and S(ay,...,a,+1,1) for some ai,...,an. ;.
By Theorem 7 the slopes of the three sides of these triangles will be
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m(S(a1,...,a,),S(a1,...,an41)) = %1
m(S(as,...,an),S(a1,...,an41,1)) = £3
m(S(ai,...,an41),5(a1,...,an41,1)) = —(£3)

hence all such triangles are similar. Further, the nature of the infinite se-
quences composing these triangles, as determined in Lemmas 5 and 6, insures
that they are pointwise identical up to isometries and scalings. Thus we have:

Theorem 8. The graph of D : [0,1] — [0, 1] is strictly self-similar.

4. Arithmetic of D : [0,1] — [0,1]

The fixed points of D are 0 = 0 and 10 = 1/2. The point 01 = 1/2 goes
to 10 in one iteration. In this section some of the numerical properties of D
iterated on [0, 1] are presented.

Let . € E* be periodic with period 2*. Then u defines the point

(p) = (2% - 1) > pasoi2 (4.1)

If 1; is one when 7 = 2*s and is zero otherwise, then z(u) = (22 — 1)~! and
iterates to 0 in 2k steps. For m < 2k

m

D™(x(n)) = (2% = 1) 3 [D™(W)]ae2°

s=0

which on substitution from (2.1) becomes

D(a() = (@ 1) 3 ("‘ ¥ 1) 2 (42)

=\ e

The sum in (4.2) can be evaulated using a result of Hewgill [12].

Lemma 7. [12]
> @:;)23 _ AP, gl 43
where F, = 22" + 1 is the rth Fermat number.
The denominator of (4.2) is given by the expansion
9 1 =F 1P y-Fy (4.4)

Every point of [0,1] has exactly two immediate predecessors, which can be
computed by use of (2.4). Figure 2 shows a portion of the binary tree of
predecessors of 0.



Geometry and Arithmetic of a Simple Cellular Automaton 179

164 cT[ﬁC 5% | lEfSJ :;ﬁﬁ;l.ﬁfﬁs
v A / 1 f
\-. ’ ,-' :¥i N
1017 Bl ? [
) L ]

L c,ilcl, -

From <445

Fram 2/3

Figure 2: Some predecessors of 0.

More generally, if 4 € E* has period n = 2¥m then p is either on a cycle
or iterates to a cycle. For such a p

z(p) = (2 z Hakms2 (4.5)

s=0
and the denominator of (4.5) is given by

22" _1=(2m—1) kl:[lF,(m) (4.6)

=0

where F.(m) = (F, —1)™ + 1 are generalized Fermat numbers.
If

u_:{l i=2kms 1<s<oo
‘ 0 otherwise
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Figure 3: Some predecessors of a 3-cycle.

then z(p) iterates to a cycle in exactly 2F steps, and for r < 2F

D (alu) = (27~ 1)1 Y (: : i)z (7)

which again can be evaulated in terms of (4.4) and (4.6).
Figure 3 shows a portion of the predecessor trees for the 3-cycle --- —
3/T—5/T—6/T— -

5. Density of predecessor set

As might be anticipated from Figures 2 and 3, the basins of attraction for
cycles of D have a highly complicated structure. Iteration of (2.4) yields the
general solution of D¥(u) = f as [10]

k
p=B*7*(B) + 3 p.B* () (5.1)

s=1
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in which [(*)], is one if s = r and zero otherwise. Note that the first k& terms
H1, ..., g of these kth order predecessors are free parameters. In particular,
if y' is any element of E™ we can choose p; = ) for 1 <7 < k. This proves

Theorem 9. Let 3,1/ € E* be arbritrary. Then (8 has a kth order prede-
cessor pu such that |z(u) — z(p')| < 27F.

Corollary. The set P(z(f3)) of all predecessors of /3 is dense in [0, 1].

In fact a stronger result is possible. Consider a partition of [0, 1] into 2F
segments of equal length so that the endpoint of each segment is r/2* for
0 < < 2F — 1. Write the kth order predecessors of 3 as

p= (1 p0) + (0 Oy -+ ) = p" + 4/

where p* represents the initial conditions. Then z(p) = z(u*) + z(i') and
z(u*) takes the values r/2¥. Denote these as z(u*;r) and the correspond-
ing values of z(u) by z(u;7). It is easy to see that z(u*;r) < z(u;r) <
z(p*;r + 1). Thus each segment of the partition contains exactly one kth
order predecessor of z(/3). This proves

Theorem 10. Let z(3) € [0,1]. The set Py(x(3)) of kth order predecessors
of 8 is uniformly distributed with respect to the uniform partition of [0, 1]
into 2% segments.
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