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Abstract. The conventional understanding of genetic algorithms de­
pends upon analysis by schemata and the notion of intr insic par al­
lelism. For this reason, only k-ary string represent ations have had
any formal basis, and nonstandard representat ions and operators have
been regarded largely as heuristics rather than as principled algo­
rithms. This paper extends the analysis to general represent ations
through identificat ion of schemata as equivalence classes induced by
implicit equivalence relations over the space of chromosomes.

1. Introduction

Intrinsic par allelism l-vt.he phenomenon whereby each n-gene chromosome is
an instance of 2n schemata-e-has been the key t heoretical tool for analyzing
and understanding genet ic algorithms. As convent ionally und erst ood, it pro­
vides powerful arguments for using binar y genes to max imize t he degree of
int rinsic par allelism available.

Not all prob lems, however , find na tural expression as binary-t-or indeed ,
k-ary~strings . Ex amples in this class include the mu ch-studied Tr aveling
Sales-r ep Problem (T SP) [12, 13, 23], neural network shaping and training
[14, 16, 3], and graph optimization [17, 18]. Of these, only t he T SP has gen­
erated an alternative to stand ard schema analysis, in t he form of Goldberg's
a-schem ata [8]. Nevertheless , nonst and ard op erators have been applied to all
of t hese problems. Moreover , there has been mu ch controversy over genetic
algorit hms usin g real-valued genes . Goldberg [11] has proposed his t heory of
virtual alphabe ts to explain t he behavior of t hese under standard crossover ,
but a more general formulation that could take in a broader class of op erators
would st ill be valuable.

This paper extends t he notion of intrinsic parallelism and the ass ocia te d
"Schema Theorem" to general non-st ring representa tions throug h the intro­
duction of arbit rary equivalence rela t ions. In doing so it prov ides a framework
wit hin which arbit rary genet ic ope rato rs can usefully be analyzed .

•email: njr@castle .ed .a c .uk
1Also known as implicit parallelism.
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T he paper begins with a br ief but careful review of st andard genet ic algo­
rit hms, reformulati ng slight ly, making the connection between schemata and
the equivalence relations that induce them, and introducing slight ly un con­
ventional notati on to facilit ate t he t ransit ion to the more general formulation
given later. T his more general formulation involves the int roduction in sec­
ti on 3 of general equivalence relati ons, and the Schema Theorem is expressed
in terms of these. In section 4, interacti ons between the convent ional k-ary
representat ion and convent ional operators are discussed . Schemata are gen­
eralized to [ormae in sect ion 5, and "design principles" are suggested for the
construct ion of useful equivalence relat ions, chromosomal representati ons,
and crossover operators. In sect ion 6, standard crossover operators are an­
alyzed in the extended formalism , and decept ion is discussed in the context
of genera l representat ions in section 7. In sect ion 8 t he theory is applied to
the problem of real-valued genes . Results of experiments sugges ted by the
theory are also given in sect ion 8.

2. Traditiona l schemata

To search a space S wit h a genetic algorithm, the space is first mapped by
a cod ing functi on p into a space of chromosomes C, which the algorit hm
actually manipulates:

p : S ----> C.

Ideally p should be a biject ion. A chro moso me TI E C is usually taken to be
a st ring of n genes (TI l, Tl2, . . . ,TIn) drawn from sets of alleles (9 1,9 2, . . . , 9n),
so that the space of chromosomes is

T he convent ional und erstanding of the way in which genet ic algorithms
search depend s on the implicit introducti on of certain equivalence relat ions on
chro mosomes. T hese equivalence relat ions ident ify chromosomes that share
some genes. T he set of all such equivalence relat ions for a chromosome with
n genes can be represented by

where 0 is the "don' t care" symbo l that "matches" any allele, and _ is used
to indica te genes that must match for equ ivalence. Taking n = 4, a particu­
lar equivalence relation is then (0, _, 0, _), which is convenient ly abbreviated
to 0 _ 0 _ . Intuitively, the idea is that two chromosomes are equivalent under
this equivalence relation if they have the same alleles whereve r the definition
has the _ symbo l. More carefully, calling each 0 or _ symbol in the st ring de­
scribing an equivalence relation a component , given any equivalence relat ion

E \Ii , with compo nents "'1, "'2, .. . , "'n and given chromosomes TI , ( E C
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where 7l. n = { I , 2, . . . , n}. T hat ~ satisfies the condit ions of symmetry, re­
flexivity, and transit ivity, and is therefore an equ ivalence rela t ion , follows
immediately from this definit ion and the properties of = . T hese equiva­
lence rela t ion s are in one-to -one correspo ndence with Walsh par t it ions, as
described in Goldberg [9] .

In practi ce t he equivalence rela t ions are rar ely introduced explicit ly, for
the analysis dep ends only on the equivalence classes that t hey induce. In
much the sa me way as for the equivalence rela t ion s, each equivalence class is
convenient ly expresse d as a schem a, a member of the set

:::: ~ g~ x g; x .. . x g~ ,

where

g: ~ gi U {o}.

For example , ~ = aboo . .. 0 is the equivalence class of all those chromoso mes
TJ t hat have TJl = a and TJz = b. Formally,

TJ E ~ {==} (Vi E 7l. n (~i -# D) : TJi = ~i) .

Plainly every chromosome is a member (or ins tance) of precisely 2n schemata.
(T his can be seen by noting that rep lacing any subse t of a chromos ome 's genes
by 0 generates a schema that contains that chromosom e, and that t here are
2n such subse ts .)

Let t he uti lity functi on that the gene t ic algorit hm uses to guide it s sea rch
be u. This ass ociates with each chromoso me a posit ive, real measure of its
performance:

u : C --7 IR+

It is useful to construct from u a measure

which gives t he ut ility of a schema as t he average ut ility of all it s members:

" 1 '"!-L(~) = -I~ I s: u(TJ) ,
'1E~

where I~I is the size of the equivalence class ~ . Noting that C C :::: , it is then
immediately apparent that

!-Llc = u ,

so that !-L can be used to yield t he utility of eit her a schema or a chromosome .
T he introduction of a few more pieces of not ation allows t he state me nt

of t he "Schema T heorem," also known as t he "Fun damental Theorem of
Genetic Algori thms." The defining posit ions of a schema correspond to the _
charact ers in the equivalence relation that induces it , so the defining position s
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of aobo c are 1, 3, and 5. T he order of a schema, 0(0 , is equal to the number of
defining positions it has, so o(ao boc) = 3. The defining length of a schema,
£(0, is the maximum dist ance between any pair of defining pos it ions, so
£(aoboc) = 5 - 1 = 4.

A fixed-size popu lati on SB (t ) of chromosomes is maintained at ti me-step
t . Each memb er of SB (t + 1) is generated from one or more of the members
of SB (t ) by the application of the idealized genet ic op erators, typically cross­
over and mutation . A select ion algorithm is employed to determine which
chromosomes are to be used as parents. While many schemes are in use,
the t radit ional approac h is to use fitness-proportionate reproduct ion. The
pro bability of picking TJ E SB (t ) as the principal'' parent of any TJ' E SB (t + 1)
is then taken to be:

p _ _ 1_p,(TJ )
(TJ) - ISB (t )J jl (t ) '

where

(2.1)

jl(t) ~ I: p,(().
(ESB(t)

F inally, assume there is a set ~ of op erators and that w E ~ is applied with
(indepe ndent) probability Pw. Then let p~ be the probabi lity that a schema
~ will be disrupted by the applicat ion of this operator. That is, given an
operato r

w : C ----+ C,

p~ is the pr obability that ~ does not contain the child whose parent it does
contain :

(2.2)

(2.3)

The Schema Theorem then bounds the expected number of inst an ces
N~(t + 1) of each schema ~ in the population SB (t + 1) by

(N~ ( t + 1)) ~ N~(t ) ~gj [1-~Pwp~] ,

where P,~(t) is the sample average for utility of ~ over all chromosomes in
the population SB (t ) that it contains. It is, in fact , ext remely easy both to
prove this theorem and to fill in bounds for p~ for the standard operators.
The only subtlety concerns the tr eatment of recombination operators that
introduce ext ra parents.

Assume initially that the operato rs are all unar y (asexual) so that every
child has pr ecisely one par ent. Then the term outs ide the br acket s follows
dir ectly from select ion of the parent on the bas is of fitn ess (equation (2.1)) ,

2T he crossover op erator t akes two par ents, and th e second is also usually selecte d with
t he probability given.
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and the bracketed te rm redu ces the bo und to take account of the fact that
each op erator , when ap plied , can dest roy membership of the schema. The
second term in the bracket is called the disruption rate.

When treat ing binary (sexual) op erators, p~ must be interpreted as the
probability that w destroys memb ership of a schema given the probabil ity
dist rib ut ion used to select the other parent .

For example, using convent ional one-point crossover , if both parents are
select ed according to equation (2.1) then the probability of disrupting a
schema ~ is bounded above by the prob ability that the cross point falls be­
tween the outermost defining posit ions. To see this, it is sufficient to note
that picking both parent s in this way results in a doubling of the expected
number of offspring from each schema to 2N((t ){L( (t )/p,(t ), and that if the
cross point falls out side the defining region one of the two poss ible children
is guara nteed to instan tiate the given schema. Assuming that the cross po int
is chosen uniform ly along the length, this gives p~ = R.(O/ (n - 1) , where the
subscript X denotes crossover.

Similarly, the pr obabili ty of "losing" at least one defining position as
a result of mutat ion is bounded above by Pmo(~) , where Pm is the po int
mutat ion rate. Substit ut ion in equat ion (2.2) restores the familiar form of
the Fundam ental T heorem:

Holland [15J, assuming that only one of the parents was chosen on the bas is
of fitness, showed a closely related result.

3. From schem ata t o eq uiva le n ce

Schemata , fundam ent al as they have been to understandin g genetic algo­
ri thms, are merely a mathemati cal tool for analyzing and designing their
behavior . The populat ion of a genetic algor it hm consists of individual chro ­
mosomes, and it is the uti lity of these that is act ually measured . Hollan d
observed that each evaluation of a chromoso me can be regar ded as a statis­
t ical sampling event that yields information ab out the sa mple averages for
utili ty of each of the 2n schemat a of which it is an inst ance-the phenomenon
referr ed to as intrinsic parallelism. However , the significance of the hat in
equat ion (2.3), indi cating the observ ed utility (L((t) of a schema rather than
its t rue fitness f-l( , cannot be overstate d: only provid ed that there are cor­
relati ons between the performance of different memb ers of the equivalence
classes (schemata) can the information collected in the popula tion accurately
guide the fur ther explorat ion of the spac e. T his crit ical point is discussed in
greater det ail in Radcliffe [19J.

This observa t ion suggests t hat any representat ion is useful only insofar as
corre lations between different portions of the search space can be expressed
in terms of schemata . Of course , there is freedom to analyze the algorit hm
in any way desired , t hro ugh the introduction of such equivalence relati ons
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(3.1)

and classes as may be useful, and the object ive of this work is to suggest a
fram ework wit hin which nons tandard equivalence relations and equivalence
classes may be exploited . The careful formulation of the schema theorem in
equat ion (2.3) is equally valid if ~ is interpreted as an arbitrary subset of C
pro vided only that the coefficients p~ are calculated correc tly accord ing to
equat ion (2.2). In part icu lar , it applies to an arbitrary equivalence class of
any equivalence relation rv on C (or equivalent ly, given a bijective coding
function, on the real search space S). A general method for boun ding these
coefficients is now discussed.

A fairly general recomb ination op era tor X has the funct ional form

X : C x C x Ax --> C,

where A x is a set of control parameters that determine which of the typically
many possible crosses between two chromoso mes occurs . For example, in the
case of one-po int crossover [15J A x = 2n - 1 , the set of possible cross point s.
Both two-point crossover [5] and Goldb erg's partially-m apped crossover [12]
use the control set A x = 2; _1 ' t he set of all pairs of cross points, while
uniform crossover (see, for example, [22]) has Ax = { O, 1r the set of all
n-b it binary masks . In the case of a few crossover op erators (such as th e
Gre fenst ette's "Heur ist ic" Crossover [13]) the cont rol set - if it is meaningful
to talk of one at all- depends on the two chromosomes being crossed , but
such operators are beyond the scope of this pap er.

Given this st ruc ture, an often useful upper bound on the coefficient p~ of
equation (2.2), with w = X , can be calculated as follows. LetA\ be defined
by

A\ ~{a E AxI V 1') E~V(EC: X (1') ,(,a) EO ·
T his is the set of parameter settings for which membersh ip of ~ is passed to
the child from the principal parent (1')), regardless of the partner (() chosen .
T hen p\ can be bo unded by

P~ < ( l _ w~ IA\ I)
x - IAxl '

where w~ is a weight to take account of the possibi lity that cont rol parameters
from A x are not all selected with equal probab ility. In most cases (including
all the crossover op erators listed above) the choice is convent ionally unbiased
so that w~ :::::: 1. T his bound (3.1) is, in effect, the one used by Holland to
derive the Schema T heorem, and is typically used in deriving variat ions for
other op erators .

A similar approach can be taken for mutat ion operators. Convent iona l
po int mut ation can be viewed as a collection of n op erators

M, : C x A; --> C,

wit h A; :::::: 9i, the allele sets. Then
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The coefficients p1are then given by

189

~ { 0,
Pi = (19il- 1)/ 19i l,

if ~i = 0,

otherwise.

If each gene is dr awn from a set of k alleles, this yields

4. R epresen t a tions

There is lit tle theory sur rounding good representations for genetic algorithms.
Hollan d [15] suggested subjecting the representati on it self to adaptation , but
the author is aware of no implementation in which thi s approach is adopted
outs ide the domain of classifier systems . Schaefer 's Argot Str a tegy [20] does
alter th e representation during the course of the search, but not in the manner
suggested by Holland , nor in a way tha t is amenable to this analysis. Walsh
function analysis is also sometimes used for postmortem .analysis of why a
genet ic algorit hm fai ls [10]. Goldb erg [8], however , suggested the following
two principles for good representa tions:

Th e Principle of Meaningful Building Blocks:
T he user should select a [represent at ion] so that shor t, low-order
schemata are relevant to th e underlying problem and relat ively
unr elated to schemata over other [defining] positions.

Th e Principle of Minim al A lphabets:
The user should select the smallest alphabe t that permit s a nat­
ur al expression of the problem .

The analysis pr esented here focuses on th e interaction between the chro­
mosom al representation , some set of equivalence relati ons \[1 over the chromo­
somes , and the genetic op era tors used. Goldb erg's principles are formul ated
wit h respect to convent ional chromosomal representa tions (n-t uples of genes
drawn from sets of alleles) analyzed wit h convent ional schemata.

His first pr inciple requires three things. First , it emphas izes the point
made in the pr evious sect ion that as many equivalence classes (schemata) as
possible should contain chromoso mes tha t have corre lated perform an ce. Sec­
ond , by seeking to redu ce the defining length and order of good schemata,
it attempts to minimize the likelihood of disru pt ion by the genet ic ope ra­
tors. Finally, it t ries to ensure that recombination of (instances of) different
schemata works in a useful manner. The second pr inciple at te mpts to maxi­
mize the degree of intrinsic par allelism available to the algorithm by ensuring
that each chromosome is an inst ance of many schemata.
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5. Formae

The above considerat ions (and ot hers) lead to the following proposals for
constructing useful equivalence relations, good representations, and suitable
sets of operators. These principles are not all necessar y for an effective ge­
neti c algorit hm and are certainly not sufficient for it , but might be expected
to char acterize good representations. To emphasize t he link between these
equivalence classes and schemata, the former will be referr ed to as formae,3
and the number of formae indu ced by an equivalence relat ion will be referred
to as the precision of the relation an d the formae it indu ces." From this point
on , :=: will be interpreted as the set of all formae induced by the equivalence
relations in \[f .

Two form ae ~ and e will be said to be compati ble if it is possible for a
chromosome to be an instan ce of both ~ and e.5 Denoting this by ~ I><J e,a
more careful statement is

D esign princip les

1. (Minimal redundancy) Th e representat ion should have minimal redun­
dancy; such redundancy as exists should be capable of being expressed in
terms of the equivalence relations used.
Ideally, each memb er of S should be represent ed by only one chromosome in
C. This is highly desirable in order to minimize the size of the search space.
If redu ndan t solutions are present , but are related by one of the equivalence
relati ons used , then the genet ic algorithm sho uld effect ively be able to "fold
out" the redundancy (see principle 4) ; otherwise it is doomed to tr eat redun­
dant solut ions as unrelated.

2. (Corre la t ion wit hin form ae) Som e of the equivalence relations, in cluding
some of low precision, must relate chrom osomes with correlated performance.
This ensur es that useful infor mation can be gather ed about the performan ce
of a form a by sampling it s inst ances. Such information is used to guide the
search. The emphasis is placed on low-pr ecision formae becau se these will
generally be less likely to be disru pted by the applica t ion of genetic ope rato rs,
and are also more likely to be compatible wit h one another.

3. (Closure) Th e in tersection of any pair of compatible [orm ae should itself
be a forma.

3 Alth ough Holland chose the neuter form for th e Latin noun schema, th ere is no option
bu t to choose the feminine form of its synonym, forma.

41n the case of schemat a and genes wit h k alleles, th e precision is k" , where a is t he
order of a schema.

5T he term competitiv e schem ata has sometim es been used to describe tho se that here
would be called incompati ble. :
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This ensure s that solut ions can be specified wit h different degrees of accur acy
and allows the search to be refined gradually. Clearly the pr ecision of formae
thus construct ed will be at leas t as high as that of th e higher precision of the
intersecting form ae.

4. (Respect) Crossing two instances of any forma shou ld produce another
instance of that forma .
Form ally, it should be the case th at

V~ E '2 VTJ E ~ V( E ~ Va E A x : X(TJ, (, a) E ~ ,

where X is the crossover operator . In this case the cross over op erator will be
said to respect t he equivalence rela tions (and their form ae). T his ensures that
the algorithm can converge on good form ae, and implies, for example, that
X(TJ, TJ ,a) = TJ (assuming that equivalence relations of maximum precision
specify chromosomes complete ly) . It also effect ively red uces the disruption
rat e in the Schema Theorem , though a more accurate value for p~ than that
given in equat ion (3.1) is needed to see this. Informally, respect requ ires
that any propert ies that parent s share, and that are capable of expression in
terms of the formae, be passed on to all their children .

5. (Proper assortmen t) Given instances of two compati ble forma e, it should
be possible to cross them to produce a child that is an instance of both forma e.
Formally,

V~ E '2 V( E '2 (~t><J () VTJ E ~ VTJ' E (3 a E Ax: X (TJ ,TJ' , a) E ~ n ( .

(5.1)

This relates to Goldberg's "meaningful bui lding blocks," of which he writes
([8], page 373)

Effective processing by genetic algorithm s occurs when building
blocks-relatively short , low order schemata wit h above average
fitn ess values-combine to form optima or near-optima.

A crossover operat or that obeys equation (5.1) seems much more likely to be
capable of recombi ning "building blocks" usefully, and any crossover operator
that obeys thi s principle will be said properly to assort formae. Informally,
proper assortment requires crossover to be capab le of mixing compat ible
properties from the two parents .

6. (Ergodicity) It should be possible, through a fin ite sequence of applications
of the genetic operators, to access any point in the search space S given any
popu lation 'E (t ) .
This provides the raison d'etre for the mut ation operator.
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6. C rossover a nd formae

It is inst ru ctive to examine the way standard crosso ver operato rs interact
with schemata (t he "standard" formae) to see whet her they respect and
properly assort t hem in the sense of principles 4 and 5. T he crossover op­
erators that have t rad it ionally been used are one- and two-point crossover .
More recently, attent ion has focused on mu lt i-p oint crossove r and the so­
called "uniform" crosso ver operator. Eshelman , et al. [7] have also discussed
"shuffle" crossover ope ra tors . Recall that uniform crossover makes an ind e­
pendent random choice as to which of the parents the allele at each locus is
dr awn from, and shuffle cross over shuffles the (effect ive) order of the genes
before cross ing over , remov ing "pos it ional" bias in the sense of Eshelman, et
al. [7]. All of these operators respect schemata, for it is plain that und er all
of them a child will be an instan ce of any schema containing both it s parents.
Only the uniform and shuffle crossover operators, however , properly assort
schemata.

To see this, consider the chromoso mes and schemata 1010 E 1010 and
0101 E 0101. P lainly the two given schemata are compat ible, with intersec­
t ion 1111, but neither one- nor two-point crossover can cross them to produce
1111 in a sing le step ." It should be clear that this kind of problem will arise
for n-point crossove r with any fixe d n . Both uniform and shuffle crossove rs,
however , can recombine the two chromosomes as required (albeit wit h low
probability) and it should be app arent that they always resp ect schemata.

7 . D ecep tion

Deception , like most work on genet ic algor it hms, has only hitherto been
cons idered in the context of classical schemata, and has been rigourously
defined by Goldberg [10]. If , however , more general formae are considered,
then it becomes necessary to consider deception in terms of the formae under
consideration . '

Recall that , classically, a functi on- coding combinat ion is sa id to be par­
tially deceptive if some low-order schemata lead away from the opt imum, and
is fu lly decept ive if all lower-order schemata lead away from the opt imum .
This indicates that defining positions on a schema that are "wrong" (carry
a different allele from the op t imal chromosome at that locus) lead to higher
utili ties for the schema.

This definition cannot immediately be carr ied over to the case of general
formae because it is not meaningful to talk of "genes ," "defining posit ions,"

60 f course, Holland [15] advocated using inversion wit h one-point crossover. T he aim of
t his was to br ing co-ada pted sets of alleles closer together on the chromoso me, and in t hese
circ ums ta nces prop er asso rtment is probabl y not relevan t . Since inversion is rarely used ,
however , this case is not conside red in detail here. For a discussions of inversion see Holland
[15], Goldberg [8], and Radcl iffe [19].The fact that uni form crossover is more disruptive to
short schemata of a given order tha n is one-po int crossover becomes a considerat ion only
if t he layout of the genes on t he chromosome is believed accurate ly to reflect t he degree
of linkage between t he pro pe rt ies t hey code .
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and so forth for an arbitrar y forma. T he following definitions, however , seem
to capture the spirit of deception , which in t he context of formae will be
termed I -decep tion. Assume that there is a un ique global optimum repre­
sente d by fJ* E C, that is,

'iffJ E C \ {fJ* } : jJ-( fJ) < jJ- (fJ* ).

Let the formae indu ced by any relat ion cv E \lJ of pr ecision k be ~s: ) ,~~) ,.. .,
~~-1 ) , ~: , where fJ* E ~:. T hen a repr esentati on will be said to be part ially
I-deceptive wit h respect to \lJ if

In other words, a repr esentation is par ti ally I -decepti ve (wit h respect to t he
equivalence relati ons in \lJ ) if t he global optimum is not in the equiva lence
class (forma) of highest utili ty for all of the equivalence relat ions.

In the same spirit, let \lJ* be the set of equivalence relations of pr ecision
lower than the size of the search space (i.e. , those relations that do not induce
only singleton formae) . Full I-deception can then be defined as follows:

This says that for every low-precision equivalence relation the optimum fJ*
falls ou tside the equivalence class of top utility.

8 . Real-valued problems

Convent ional wisdom holds that real-valued pr oblems are best tackled using
bin ar y repr esentations becau se this allows the maximum level of int rinsic
parallelism to be achieved. (Recall t hat each chromosome is an inst an ce of
2n schemata, and that n is maximized for binary genes .) In pract ice, however ,
this intrinsic par allelism can be exploite d only when schemata relate solut ions
with correlate d performance. To emphas ize this critical po int , noti ce that
if the size of the search space S is s, there are s ! possible biject ive coding
fun ct ions

p: S ----.C ,

almost all of which effect ively destroy pat tern s over the search space. To
see this, imagine randomly select ing a mapping from these s! choices , and
noti ce that this is exactly equivalent to choosing a (unique) random chro­
mosome from C to represent each st ructure in S . Under these circumst ances
it should be clear t hat gathering information abo ut the performance of any
subset of the chromosomes provides no information abo ut the performance of
the rem aining st ructur es-those represent ed by the un tested chromosomes.
Nevertheless, the Schema T heorem (equation (2.3)) will be obeyed for every
one of the s! representat ions.
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In such circumstances, the search could not be effective except by chance
simp ly because almost none of the schemata would relate chromosomes with
corre lated performan ce. In ot her words, schemata are not useful form ae
in this context . (Holland 's observations ([15]' page 142) abo ut "enr iched
schemata" app ear init ially to refut e this claim , but on closer analysis do
not . T his is discussed in detail in Radcl iffe [19J (pages 17- 18, Comp ressed
Ed it ion). )

In effect the results and arguments presented thus far in this paper can
be seen as a critique of th e idea that there is a single, all-embracing represen­
tation and set of operators that can reasonably be expected to tackle all or
most search pr oblems effectively. The focus here is on finding sets of formae
that characterize the regular it ies in the part icular problem or class of pro b­
lems under consideration , and developing op erators that manipulat e these to
goo d effect. Thus, for example, rather than seeing a function-representati on
pair as deceptive, decep tion (or f -deception) is seen as characterizing a mis­
match between the set of formae used (together with the operators used to
man ipulate them) and the regular it ies in the space being searched .

To explore these ideas further , the next sections discuss general bin ary
representations for real-valued problems and two types of regulari t ies for
which it might be desirab le to develop forrnae to characterize. T he ideas are
made more concrete by applying them to a familiar set of fun ctions.

8 .1 Binary representations

The grea t strength of binary representations lies in their versat ility: different
schemata relate chromosomes on quite different bases. Indeed , their robust­
ness is demonstr ated by th e wide variety of problems that have been tackled
successfully using binar y rep resent ations. For example, consider the nat ur al
coding for a real number in the range [a,,6], wit h N divisions,

where 5 = 1/ 2N. The schema 100 ' . . 0 then spec ifies the up per half-space
x > (a + ,6)/2, whereas the schema 00 " ·01 spec ifies alternate strips of
width 25 across the space, captur ing some possible period icit ies.

T he prob lem lies in the fact that the schemata are far from uniform over
the space. Suppose that a = 0 and ,6 = 1.5 wit h 16 divisions. T hen p(O) =
0000, p(0.7) = 0111, p( .8) = 1000, and p(1.5 ) = 1111. It is possible to specify
the interval [0.8, 1.5] exactly using the low-order schema 1000 , whereas th ere
is no schema of any order that specifies any range that crosses the "Ha mming
cliff" between 0.7 and 0.8. Caru na and Schaffer [4J advocate using Gray
coding to avoid this (and other) problems, but the interpretati on of schemata
is then even less obvious, and serious prob lems with such schemes have been
po inted out by Goldb erg [l1 J. Nor is locality the only problem : while some
periodicities that are mult iples of powers of two in the discret izat ion size are
easily characte rized using schemata, periodicities that are multiples of powers
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of three, for example, are incapable of being so represented . T he problem
seems to lie in the fact that relatively few of the schemata seem to be induced
by equivalence relations that group together "useful" sets of points.

Whether more useful equivalence relati ons can be developed depends very
much on how mu ch insight can be gained into likely kinds of structure in
the problem. For function opt imiza t ion over intervals in IRn , locality and
periodi city seem like obvious-v-tho ugh not universal-s-starting po ints.

8.2 Locality

Simplifying to functions of one real variabl e (5 c IR) , suitable equivalence
rela tions for captur ing locality are int ervals specified by a posit ion and a
radius. Let B [c, r ) be the half-op en interval c - r ::;: x < c + r , r E IR+ , and
let B[c,O) = {c}. T hen the equivalence relation spec ified by posit ion p and
radi us r is

TJ "'( -¢=} (:JkE 7/.. : TJ , ( E B[p+2kr, r ))

with formae

{B [p+2kr,r ) IkE 7/..}.

T hus any interval [c/, (3' ) is an equivalence class under some equivalence
relati on .

Moving back to the more general pr oblem of searching a space 5 that has
n real-valued par ameters,

n

5 = II z;
i = l

where

T; = [ai ,(3i]c IR ,

a suitable set of "locality" equivalence relations wL can be defined as

n

wL = IIr, ,
i = l

where

r;= I lu{o}.

(T he "don 't care" charac te r is strict ly redund ant , but is left in for notational
convenience.) This induces formae that can be described using exactly the
same set as for wL , namely

n

:::;L = IIr, .
i = 1
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T hus a typical forrn a f with n = 3 can be written as ( B[0.2, 0.1) , 0 , B[0.5, 0.2) ) ,
wit h the interpr et ati on that a chromosome TJ is an instance of ~ if 0.1 :S TJl <
0.3 and 0.3 :S TJ3 < 0.7. Formally,

If these equivalence relat ions are to be used , t hen a crossover operato r should
be const ruc ted that bot h respect s and properly assorts t he formae t hey in­
duce. Standard crossover wit h real genes would respect them , but would fail
properly to assort them .

An example should make this clear. The sub-forrnae" B[0.4, 0.2) and
B[0.6, 0.2) are compatible wit h intersect ion B[0.5, 0.1) , but given genes 0.3 E
B[OA,0 .2) and 0.7 E B[0.6, 0.2) it is impossible for standard crossover to
generate any value in B[0.5,0.1) since the result of such a cross will always
be eit her 0.3 or 0.7. T he presence of Hamming cliffs also makes it immediat ely
clear t hat standard crossover wit h binary genes will not resp ect these formae.

A mor e suit ab le crossover operator is

x " :C x C x [0, W ----> C

wit h

which will be called flat crossover" (see figur e 1). Given a pair of real-valued
genes, this operator return s a ran dom value wit hin the interval betwee n them .
The choice is uniform provided each r i is chosen uniformly. (T he control set
here is A F = [O, lJn.) P lainly this op erato r respect s form ae from 3 £, for
if the two genes have the same value then the interval they define has zero
width . Moreover , compat ible formae ~ and e have overlapping intervals at
each locus. Given TJ E ~ and TJ' E e, it is clearl y possible to choose a set of
ri such that each gene of the child sits wit hin the intersection ~ n e·

Thus X F resp ects and properly assorts form ae from 3 £, composed of
intervals of ar bitrar y widt hs in the searc h space S . A genetic algorit hm
using this might be expected to perform well on a real-valu ed problem for
which locality is t he appropriate kind of equivalence to imp ose on solutions,
ut ilizing the intrin sic parallelism that derives from each chromosome's being
an inst ance of many locality formae.

T wo related prob lems, however , remain. The first is the question of
a suit ab le mu tat ion operator. The second pro blem concerns a bias in the
operator , namely that it systematically biases the search away from the ends
of the intervals, violat ing ergodicity in the sense of pr inciple 6.

Recall that the role of mutation for k-ary st ring repr esentat ions is usually
und erstood to be that of keep ing the gene pool well-stocked , the fear being
that , if an allele for some gene is not present in any member of the population ,
crossover will never be able to generate it and will thus not have access to

7Defined on a single gene .
8 Affectionately known as "top hat ."
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p p

a

Figure 1: The graph on the left shows the probability distri bu tion
function for the one-dimensional flat crossover opera tor "top hat"
when crossing T/ and (. The graph on the right shows the correspond­
ing distrib ution function for tr aditional crossover with real genes and
uniform crossover with real genes. Th e distri bution function for tra­
ditional crossover with binary genes looks very different according to
the chromosomes being crossed. For example, using 4-bit binary cod­
ing on the range [0, 15]' 7 (=0111B) and 8 (= 1000B) can cross to
produce an y child under uniform crossover , whereas 0 (= OOOOB) and
8 (= 1000B) can only produce copies of themselves.

the enti re sea rch space. This observat ion , which motivated the principle of
ergodicity , suggests that the two problems ment ioned can be tackled together
by defining a mut ation op erator that only inser ts ext remal values int o the
gene pool, t hus countering the bias of X F As before, given n genes per
chromoso me (now real-valued ) , a set of n point muta tion operators is defined
according to

Mi
R

: e x { CY.i, (3i} ---> C

with

Mi
R

(T/1'Y)2 ' " Tin, a) = TllTl2·· · Tli-la Tli+ l · · · Tin·

The difference between this and standard mutation is that , instead of using
the interval [CY.i, (3;] as the control set A; , only the endpo ints CY.i and (3i are
now used . If both parents are selected according to fitn ess, such mutations
should be ap plied before cross ing over to reduce the prob ab ility of generat ing
a child of very low fitness, which then fails to reproduce.

As an illustrati on of these ideas, De Jong's standard test suite of fun c­
ti ons [6] were examined using bot h a standard binary repr esentati on wit h
un iform crossover an d a real-valued representati on using fiat crossover as de­
fined above. Following Eshelm an , et al. [7] the fun ctions are described here
only summarily in table 1.

Of the five fun ctions, good performan ce might reasonably be expec ted on
iI , 12 , and [« , which are (essent ia lly) smooth , whereas very poor performance
wou ld be expected on f s. Reasonable perform ance might also be ant icipated
on I« . which, though not smooth, is reasonabl y local in nature. The result s
for off-line and best -seen perform an ce are shown in figur es 2 through 7. An
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fn. dim space size descripti on

11 3 1.0 X 109 par abola

12 2 1.7 X 106 Rosenbrock 's Saddle

13 5 1.0 X 1015 st ep function
14 30 1.0 X 1072 noisy quadratic
15 2 1.7 X 1010 Shekels foxh oles

16 2 1.7 X 1010 Ran dom foxholes

Table 1: De Jong's test suite of funct ions h through /5, augmented
by random foxholes.

ext ra function 16is also included , which is a var iation on Shekel's foxh oles in
which the pos it ions of the foxh oles are rand om rather t han in a regular grid.

A comparison is shown between the sa me genetic algorit hm using both
binary and real representations, with parameters selected to give good perfor­
mance wit h binary representations. Following Schaffer , et al. [21], t he poin t
mutation rate was made inversely propor tional to the chro mosome length ,
and was thus higher when using real representations (with fewer genes) than
for their binary counterparts. Baker 's Stochas tic Universa l Sampling proce­
dure [2J and ran k-based select ion, broadly Ii la Baker [1], were used . Flat
crossover and ext remal mu tations, as described above, were used for the real­
valued case , and uniform crossover was used for the binary t rials. The result s
are all averages over 100 runs .

As predict ed , flat cross over with real genes performs ext remely well on
the smooth 11, 12 , and 14, out-p erforming binary representati ons. On 13 ,
alt hough less effective than the binar y case, t he global opt imum is st ill con­
sistent ly found in reasonab le time.

The resul ts for Shekel' s foxholes are rather more sur prising . Wi th the
standard foxh ole configurat ion (a 5 x 5 grid with spacing 16) , the binar y rep­
resentation app ears superior , t hough the real rep resent ation performs amaz­
ingly well considering the crossov er operator it uses was only designed to
resp ect localit y form ae, which have no obvious relevan ce to this prob lem .
Not ice, however , that points differing by 16.384 are very close in Hamming
dist an ce under the binar y representation , making it easy to hop from one
foxhole to another . For this reason , a secon d set of t ria ls was performed
using foxhole coordinates chose n at random . In this case, the real represen­
tation using flat crossover gives slight ly supe rior performan ce to the binary
representati on .

8.3 Per io dicity

Dealing with general per iodicit ies , un surprisingly, is harder. Const ru ct ing
equivalence relations iII? capable of captur ing general periodicities is not
difficult: suitable relati ons are specified by a po sition p , a radius r (to allow
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Figur e 2: De Jong's h . The "real" t races use t he "fla t" crossover
operator , which chooses a random value in t he range bounded by t he
parent s' genes. The binary t race is the same algorit hm using binary
uniform crossover.
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Figure 8: Four "locality" formae. Each number is the center of a
half-open interval of width half. 6 = 6 n 6 , and ~4 is compatible
with both 6 and 6·

for fuzziness) , and a period T that is an integral multiple of r . Given these,
and again simplifying to functi ons of one real vari abl e, two chromosom es are
equivalent if they lie in intervals of radi us r centered about points separated
by a mult iple of the period T . Formally,

TJ rv TJ' -¢=? (:3 k , k' E 71.: TJ E B[p + kT,r ) and TJ' E B[p + k'T, r) ).

These equivalence relations are ext remely flexible, subsuming the pr evious
"locality" rela t ions immediately by set t ing T to zero . If a crossover oper­
ator could be const ruc ted that both respect ed and properly assorted these
relations it might be expected that an ext remely powerful algorit hm for real­
valued problems would resu lt .

Sadly, no such operator exists . To see this, consider the form ae 6 to ';4
in figure 8, each wit h radius r = 0.5. T he numb ers in figure 8 indicate the
centers of the intervals that the formae comprise, so 6 consists of B[O, 0.5)
and B[20, 0.5) . Noti ce that 6 = 6 n 6 =10 , so 6 1><l6. Consider chromo­
somes 10 E 6 n ';4 and 4 E 6 n ~4 ' If a crossover operator xr is to respe ct
~4 t hen it must be the case that for all a E A p : X p (4, 10, a) E ';4; t hat is, all
possible children of 4 and 10 must be memb ers of ';4. If it is to assort ';1 and
6 properly then ther e must be some a' E A p for which X (4, 10, a') E 6 n 6 ,
that is, it must be possible to cross 4 and 10 to produce a chromoso me that
is an instance of both 6 and 6 . T hese condit ions are incompatible, however ,
becau se ';4n ';1n 6 = 0 .

It should be emphasized that this is not a failure of the form a analysis,
which has simply revealed that general periodi cities are ext remely hard for
a genetic algorithm to be sensit ive to. It has been demonstrat ed that no
crossover operator can both fully respect and properly assort the formae 3 P

ind uced by lIIP , but it is quite possible for an operator parti ally to respect
and assort them . Indeed , uniform crossover do es this. Whether an operato r
can be const ructed that better respect s and/or asso rts 3 P remains an open
question .
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Intrinsic par allelism , the key concept underpinning genetic search, has been
shown not to be rest ricted to k-ary string representations . Given a suitable
set of equivalence relations and a crossover op erator that both respects and
prope rly assorts it s equivalence classes (formae) without excess ive disruption ,
any gen etic algorithm will exhibit int rinsic par allelism. These ideas have been
applied to standard crossover ope rators to provid e another insight into the
somet imes-claimed supe riority of the un iform crossover ope rator over trad i­
t ional one- and two-point crossover , and to apply gene tic algorithms more
effect ively to some real-valued problems. They could equally well be applied
to other pr ob lems for whi ch k-ar y st ring representation s and schemata' are
not obv iously appropria te . Such areas include neural networks, t he TSP, and
graph optim ization .
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