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Abstract. The conventional understanding of genetic algorithms de-
pends upon analysis by schemata and the notion of intrinsic paral-
lelism. For this reason, only k-ary string representations have had
any formal basis, and nonstandard representations and operators have
been regarded largely as heuristics rather than as principled algo-
rithms. This paper extends the analysis to general representations
through identification of schemata as equivalence classes induced by
implicit equivalence relations over the space of chromosomes.

1. Introduction

Intrinsic parallelism!—the phenomenon whereby each n-gene chromosome is
an instance of 2" schemata—has been the key theoretical tool for analyzing
and understanding genetic algorithms. As conventionally understood, it pro-
vides powerful arguments for using binary genes to maximize the degree of
intrinsic parallelism available.

Not all problems, however, find natural expression as binary—or indeed,
k-ary—strings. Examples in this class include the much-studied Traveling
Sales-rep Problem (TSP) [12, 13, 23], neural network shaping and training
[14, 16, 3], and graph optimization [17, 18]. Of these, only the TSP has gen-
erated an alternative to standard schema analysis, in the form of Goldberg's
o-schemata [8]. Nevertheless, nonstandard operators have been applied to all
of these problems. Moreover, there has been much controversy over genetic
algorithms using real-valued genes. Goldberg [11] has proposed his theory of
virtual alphabets to explain the behavior of these under standard crossover,
but a more general formulation that could take in a broader class of operators
would still be valuable.

This paper extends the notion of intrinsic parallelism and the associated
“Schema Theorem” to general non-string representations through the intro-
duction of arbitrary equivalence relations. In doing so it provides a framework
within which arbitrary genetic operators can usefully be analyzed.

*email: njr@Qcastle.ed.ac.uk
L Also known as implicit parallelism.
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The paper begins with a brief but careful review of standard genetic algo-
rithms, reformulating slightly, making the connection between schemata and
the equivalence relations that induce them, and introducing slightly uncon-
ventional notation to facilitate the transition to the more general formulation
given later. This more general formulation involves the introduction in sec-
tion 3 of general equivalence relations, and the Schema Theorem is expressed
in terms of these. In section 4, interactions between the conventional k-ary
representation and conventional operators are discussed. Schemata are gen-
eralized to formae in section 5, and “design principles” are suggested for the
construction of useful equivalence relations, chromosomal representations,
and crossover operators. In section 6, standard crossover operators are an-
alyzed in the extended formalism, and deception is discussed in the context
of general representations in section 7. In section 8 the theory is applied to
the problem of real-valued genes. Results of experiments suggested by the
theory are also given in section 8.

2. Traditional schemata

To search a space S with a genetic algorithm, the space is first mapped by
a coding function p into a space of chromosomes C, which the algorithm
actually manipulates:

p:S —C.

Ideally p should be a bijection. A chromosome 7 € C is usually taken to be
a string of n genes (11,72, ...,m,) drawn from sets of alleles (G, Ga, ..., Gy),
so that the space of chromosomes is

CE2G xGy X X Gy

The conventional understanding of the way in which genetic algorithms
search depends on the implicit introduction of certain equivalence relations on
chromosomes. These equivalence relations identify chromosomes that share
some genes. The set of all such equivalence relations for a chromosome with
n genes can be represented by

U= {o,u}"

where o is the “don’t care” symbol that “matches” any allele, and m is used
to indicate genes that must match for equivalence. Taking n = 4, a particu-
lar equivalence relation is then (o, m, o, m), which is conveniently abbreviated
to omom. Intuitively, the idea is that two chromosomes are equivalent under
this equivalence relation if they have the same alleles wherever the definition
has the m symbol. More carefully, calling each o or m symbol in the string de-
scribing an equivalence relation a component, given any equivalence relation
~ € U, with components ~q, ~s,...,~, and given chromosomes 7,( € C

N~ = Vi€, (~i=m) @ pi=(),
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where Z,, = {1,2,...,n}. That ~ satisfies the conditions of symmetry, re-
flexivity, and transitivity, and is therefore an equivalence relation, follows
immediately from this definition and the properties of =. These equiva-
lence relations are in one-to-one correspondence with Walsh partitions, as
described in Goldberg [9].

In practice the equivalence relations are rarely introduced explicitly, for
the analysis depends only on the equivalence classes that they induce. In
much the same way as for the equivalence relations, each equivalence class is
conveniently expressed as a schema, a member of the set

E2GIXxGEx - %xGE,
where
G £ G;u{a}.

For example, £ = aboo - - - o is the equivalence class of all those chromosomes
7 that have 7, = @ and 7, = b. Formally,

nef <= (VieZ,(&#o0): m=§&).

Plainly every chromosome is a member (or instance) of precisely 2" schemata.
(This can be seen by noting that replacing any subset of a chromosome’s genes
by o generates a schema that contains that chromosome, and that there are
2™ such subsets.)

Let the utility function that the genetic algorithm uses to guide its search
be u. This associates with each chromosome a positive, real measure of its
performance:

uw:C — RT.
It is useful to construct from u a measure
u=— RT,
which gives the utility of a schema as the average utility of all its members:

u(&) = Egu(n),

where |€] is the size of the equivalence class £. Noting that C C =, it is then
immediately apparent that
e =

so that 4 can be used to yield the utility of either a schema or a chromosome.

The introduction of a few more pieces of notation allows the statement
of the “Schema Theorem,” also known as the “Fundamental Theorem of
Genetic Algorithms.” The defining positions of a schema correspond to the m
characters in the equivalence relation that induces it, so the defining positions
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of anbocare 1, 3, and 5. The order of a schema, o(£), is equal to the number of
defining positions it has, so o(aoboc) = 3. The defining length of a schema,
£(¢), is the maximum distance between any pair of defining positions, so
f(anboc) =5—1=4.

A fixed-size population %B(t) of chromosomes is maintained at time-step
t. Each member of ®B(t + 1) is generated from one or more of the members
of 9B(t) by the application of the idealized genetic operators, typically cross-
over and mutation. A selection algorithm is employed to determine which
chromosomes are to be used as parents. While many schemes are in use,
the traditional approach is to use fitness-proportionate reproduction. The
probability of picking n € B(t) as the principal® parent of any 7' € B(t + 1)
is then taken to be:

P(n) = — #(n)

B ()’ ol

where

®2 Y wo

¢eB(t)

Finally, assume there is a set §2 of operators and that w € Q is applied with
(independent) probability p,,. Then let p¢ be the probability that a schema
& will be disrupted by the application of this operator. That is, given an
operator

w:C—C,

P, is the probability that & does not contain the child whose parent it does
contain:

= Plw(m) ¢&lned). (2.2)

The Schema Theorem then bounds the expected number of instances
Ne(t + 1) of each schema & in the population %B(t + 1) by

<N5(t + 1)> > Ne(t) [ ¥, pwpw} ; (2.3)

weN

where fi¢(t) is the sample average for utility of £ over all chromosomes in
the population ®B(t) that it contains. It is, in fact, extremely easy both to
prove this theorem and to fill in bounds for p¢ for the standard operators.
The only subtlety concerns the treatment of recombination operators that
introduce extra parents.

Assume initially that the operators are all unary (asexual) so that every
child has precisely one parent. Then the term outside the brackets follows
directly from selection of the parent on the basis of fitness (equation (2.1)),

2The crossover operator takes two parents, and the second is also usually selected with
the probability given.
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and the bracketed term reduces the bound to take account of the fact that
each operator, when applied, can destroy membership of the schema. The
second term in the bracket is called the disruption rate.

When treating binary (sexual) operators, p$ must be interpreted as the
probability that w destroys membership of a schema given the probability
distribution used to select the other parent.

For example, using conventional one-point crossover, if both parents are
selected according to equation (2.1) then the probability of disrupting a
schema £ is bounded above by the probability that the cross point falls be-
tween the outermost defining positions. To see this, it is sufficient to note
that picking both parents in this way results in a doubling of the expected
number of offspring from each schema to 2Ng(t)/e(t)/n(t), and that if the
cross point falls outside the defining region one of the two possible children
is guaranteed to instantiate the given schema. Assuming that the cross point
is chosen uniformly along the length, this gives p§< ={(¢)/(n—1), where the
subscript X denotes crossover.

Similarly, the probability of “losing” at least one defining position as
a result of mutation is bounded above by p,,0(§), where p,, is the point
mutation rate. Substitution in equation (2.2) restores the familiar form of
the Fundamental Theorem:

e (t L
<N&(t * 1)> 2 Nf(t)‘:‘fT(t) [1 —Px_——7 — Pmo(§)
Holland [15], assuming that only one of the parents was chosen on the basis
of fitness, showed a closely related result.

3. From schemata to equivalence

Schemata, fundamental as they have been to understanding genetic algo-
rithms, are merely a mathematical tool for analyzing and designing their
behavior. The population of a genetic algorithm consists of individual chro-
mosomes, and it is the utility of these that is actually measured. Holland
observed that each evaluation of a chromosome can be regarded as a statis-
tical sampling event that yields information about the sample averages for
utility of each of the 2™ schemata of which it is an instance—the phenomenon
referred to as intrinsic parallelism. However, the significance of the hat in
equation (2.3), indicating the observed utility fig(t) of a schema rather than
its true fitness pg, cannot be overstated: only provided that there are cor-
relations between the performance of different members of the equivalence
classes (schemata) can the information collected in the population accurately
guide the further exploration of the space. This critical point is discussed in
greater detail in Radcliffe [19].

This observation suggests that any representation is useful only insofar as
correlations between different portions of the search space can be expressed
in terms of schemata. Of course, there is freedom to analyze the algorithm
in any way desired, through the introduction of such equivalence relations
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and classes as may be useful, and the objective of this work is to suggest a
framework within which nonstandard equivalence relations and equivalence
classes may be exploited. The careful formulation of the schema theorem in
equation (2.3) is equally valid if £ is interpreted as an arbitrary subset of C
provided only that the coefficients pf are calculated correctly according to
equation (2.2). In particular, it applies to an arbitrary equivalence class of
any equivalence relation ~ on C (or equivalently, given a bijective coding
function, on the real search space §). A general method for bounding these
coefficients is now discussed.
A fairly general recombination operator X has the functional form

X:CxCxAx —C,

where Ay is a set of control parameters that determine which of the typically
many possible crosses between two chromosomes occurs. For example, in the
case of one-point crossover [15] Ax = Z,_,, the set of possible cross points.
Both two-point crossover [5] and Goldberg’s partially-mapped crossover [12]
use the control set Ax = ZZ2_,, the set of all pairs of cross points, while
uniform crossover (see, for example, [22]) has Ax = {0,1}", the set of all
n-bit binary masks. In the case of a few crossover operators (such as the
Grefenstette’s “Heuristic” Crossover [13]) the control set—if it is meaningful
to talk of one at all—depends on the two chromosomes being crossed, but
such operators are beyond the scope of this paper.

Given this structure, an often useful upper bound on the coefficient p, of
equation (2.2), with w = X, can be calculated as follows. Let.4% be defined

by
AL 2 {ac Ax |Vneeviel : X(n,¢a) €€}

This is the set of parameter settings for which membership of £ is passed to
the child from the principal parent (n), regardless of the partner (¢) chosen.
Then pfx can be bounded by

Aé
Pk < (1 - wﬁﬁ) : (3.1)

where w¢ is a weight to take account of the possibility that control parameters
from Ay are not all selected with equal probability. In most cases (including
all the crossover operators listed above) the choice is conventionally unbiased
so that w® = 1. This bound (3.1) is, in effect, the one used by Holland to
derive the Schema Theorem, and is typically used in deriving variations for
other operators.

A similar approach can be taken for mutation operators. Conventional
point mutation can be viewed as a collection of n operators

Mi 1 C % .A,L = C,
with A; = G;, the allele sets. Then
Mi(7h772 My @) = TN 1 GTig] - - - T
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The coefficients p¢ are then given by

& {O’ if 61 =0,
= (IGi] = 1)/|G:], otherwise.

If each gene is drawn from a set of k alleles, this yields
e k-1
= i
;pz o(¢) < . )

4. Representations

There is little theory surrounding good representations for genetic algorithms.
Holland [15] suggested subjecting the representation itself to adaptation, but
the author is aware of no implementation in which this approach is adopted
outside the domain of classifier systems. Schaefer’s Argot Strategy [20] does
alter the representation during the course of the search, but not in the manner
suggested by Holland, nor in a way that is amenable to this analysis. Walsh
function analysis is also sometimes used for postmortem analysis of why a
genetic algorithm fails [10]. Goldberg [8], however, suggested the following
two principles for good representations:

The Principle of Meaningful Building Blocks:

The user should select a [representation] so that short, low-order
schemata are relevant to the underlying problem and relatively
unrelated to schemata over other [defining] positions.

The Principle of Minimal Alphabets:
The user should select the smallest alphabet that permits a nat-
ural expression of the problem.

The analysis presented here focuses on the interaction between the chro-
mosomal representation, some set of equivalence relations ¥ over the chromo-
somes, and the genetic operators used. Goldberg’s principles are formulated
with respect to conventional chromosomal representations (n-tuples of genes
drawn from sets of alleles) analyzed with conventional schemata.

His first principle requires three things. First, it emphasizes the point
made in the previous section that as many equivalence classes (schemata) as
possible should contain chromosomes that have correlated performance. Sec-
ond, by seeking to reduce the defining length and order of good schemata,
it attempts to minimize the likelihood of disruption by the genetic opera-
tors. Finally, it tries to ensure that recombination of (instances of) different
schemata works in a useful manner. The second principle attempts to maxi-
mize the degree of intrinsic parallelism available to the algorithm by ensuring
that each chromosome is an instance of many schemata.
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5. Formae

The above considerations (and others) lead to the following proposals for
constructing useful equivalence relations, good representations, and suitable
sets of operators. These principles are not all necessary for an effective ge-
netic algorithm and are certainly not sufficient for it, but might be expected
to characterize good representations. To emphasize the link between these
equivalence classes and schemata, the former will be referred to as formae,®
and the number of formae induced by an equivalence relation will be referred
to as the precision of the relation and the formae it induces.# From this point
on, = will be interpreted as the set of all formae induced by the equivalence
relations in .

Two formae £ and ¢ will be said to be compatible if it is possible for a
chromosome to be an instance of both £ and £.°> Denoting this by £ 1 €/, a
more careful statement is

g = N #3 .

Design principles

1. (Minimal redundancy) The representation should have minimal redun-
dancy; such redundancy as exists should be capable of being expressed in
terms of the equivalence relations used.

Ideally, each member of S should be represented by only one chromosome in
C. This is highly desirable in order to minimize the size of the search space.
If redundant solutions are present, but are related by one of the equivalence
relations used, then the genetic algorithm should effectively be able to “fold
out” the redundancy (see principle 4); otherwise it is doomed to treat redun-
dant solutions as unrelated.

2. (Correlation within formae) Some of the equivalence relations, including
some of low precision, must relate chromosomes with correlated performance.
This ensures that useful information can be gathered about the performance
of a forma by sampling its instances. Such information is used to guide the
search. The emphasis is placed on low-precision formae because these will
generally be less likely to be disrupted by the application of genetic operators,
and are also more likely to be compatible with one another.

3. (Closure) The intersection of any pair of compatible formae should itself
be a forma.

3 Although Holland chose the neuter form for the Latin noun schema, there is no option
but to choose the feminine form of its synonym, forma.

“In the case of schemata and genes with k alleles, the precision is k°, where o is the
order of a schema.

5The term competitive schemata has sometimes been used to describe those that here
would be called incompatible.
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This ensures that solutions can be specified with different degrees of accuracy
and allows the search to be refined gradually. Clearly the precision of formae
thus constructed will be at least as high as that of the higher precision of the
intersecting formae.

4. (Respect) Crossing two instances of any forma should produce another
instance of that forma.
Formally, it should be the case that

VEEEVn etV eEVae Ay X(n,(,a) €E,

where X is the crossover operator. In this case the crossover operator will be
said to respect the equivalence relations (and their formae). This ensures that
the algorithm can converge on good formae, and implies, for example, that
X(n,n,a) = n (assuming that equivalence relations of maximum precision
specify chromosomes completely). It also effectively reduces the disruption
rate in the Schema Theorem, though a more accurate value for pi( than that
given in equation (3.1) is needed to see this. Informally, respect requires
that any properties that parents share, and that are capable of expression in
terms of the formae, be passed on to all their children.

5. (Proper assortment) Given instances of two compatible formae, it should
be possible to cross them to produce a child that is an instance of both formae.
Formally,

VEEZVE €eZ(Exl)VnelVn €& Jae Ax: X(n,m,a) € ENE.
(5.1)

This relates to Goldberg’s “meaningful building blocks,” of which he writes
([8], page 373)

Effective processing by genetic algorithms occurs when building
blocks—relatively short, low order schemata with above average
fitness values—combine to form optima or near-optima.

A crossover operator that obeys equation (5.1) seems much more likely to be
capable of recombining “building blocks” usefully, and any crossover operator
that obeys this principle will be said properly to assort formae. Informally,
proper assortment requires crossover to be capable of mixing compatible
properties from the two parents.

6. (Ergodicity) It should be possible, through a finite sequence of applications
of the genetic operators, to access any point in the search space S given any
population B(t).

This provides the raison d’étre for the mutation operator.
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6. Crossover and formae

It is instructive to examine the way standard crossover operators interact
with schemata (the “standard” formae) to see whether they respect and
properly assort them in the sense of principles 4 and 5. The crossover op-
erators that have traditionally been used are one- and two-point crossover.
More recently, attention has focused on multi-point crossover and the so-
called “uniform” crossover operator. Eshelman, et al. [7] have also discussed
“shuffle” crossover operators. Recall that uniform crossover makes an inde-
pendent random choice as to which of the parents the allele at each locus is
drawn from, and shuffle crossover shuffles the (effective) order of the genes
before crossing over, removing “positional” bias in the sense of Eshelman, et
al. [7]. All of these operators respect schemata, for it is plain that under all
of them a child will be an instance of any schema containing both its parents.
Only the uniform and shuffle crossover operators, however, properly assort
schemata.

To see this, consider the chromosomes and schemata 1010 € 1lolo and
0101 € olol. Plainly the two given schemata are compatible, with intersec-
tion 1111, but neither one- nor two-point crossover can cross them to produce
1111 in a single step.® It should be clear that this kind of problem will arise
for n-point crossover with any fized n. Both uniform and shuffle crossovers,
however, can recombine the two chromosomes as required (albeit with low
probability) and it should be apparent that they always respect schemata.

7. Deception

Deception, like most work on genetic algorithms, has only hitherto been
considered in the context of classical schemata, and has been rigourously
defined by Goldberg [10]. If, however, more general formae are considered,
then it becomes necessary to consider deception in terms of the formae under
consideration.

Recall that, classically, a function-coding combination is said to be par-
tially deceptive if some low-order schemata lead away from the optimum, and
is fully deceptive if all lower-order schemata lead away from the optimum.
This indicates that defining positions on a schema that are “wrong” (carry
a different allele from the optimal chromosome at that locus) lead to higher
utilities for the schema.

This definition cannot immediately be carried over to the case of general
formae because it is not meaningful to talk of “genes;” “defining positions,”

60f course, Holland [15] advocated using inversion with one-point crossover. The aim of
this was to bring co-adapted sets of alleles closer together on the chromosome, and in these
circumstances proper assortment is probably not relevant. Since inversion is rarely used,
however, this case is not considered in detail here. For a discussions of inversion see Holland
[15], Goldberg (8], and Radcliffe [19].The fact that uniform crossover is more disruptive to
short schemata of a given order than is one-point crossover becomes a consideration only
if the layout of the genes on the chromosome is believed accurately to reflect the degree
of linkage between the properties they code.
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and so forth for an arbitrary forma. The following definitions, however, seem
to capture the spirit of deception, which in the context of formae will be
termed f-deception. Assume that there is a unique global optimum repre-
sented by n* € C, that is,

vne C\{n"}: un) < um).

Let the formae induced by any relation ~ € U of precision k be €1, @) |
fﬂ“_l),&, where n* € ££. Then a representation will be said to be partially
f-deceptive with respect to U if

I~ €T maxpy (69) > (&)

In other words, a representation is partially f-deceptive (with respect to the
equivalence relations in ) if the global optimum is not in the equivalence
class (forma) of highest utility for all of the equivalence relations.

In the same spirit, let U* be the set of equivalence relations of precision
lower than the size of the search space (i.e., those relations that do not induce
only singleton formae). Full f-deception can then be defined as follows:

Vo € U : maxp (€9) > p(€2)-

This says that for every low-precision equivalence relation the optimum n*
falls outside the equivalence class of top utility.

8. Real-valued problems

Conventional wisdom holds that real-valued problems are best tackled using
binary representations because this allows the maximum level of intrinsic
parallelism to be achieved. (Recall that each chromosome is an instance of
2" schemata, and that n is maximized for binary genes.) In practice, however,
this intrinsic parallelism can be exploited only when schemata relate solutions
with correlated performance. To emphasize this critical point, notice that
if the size of the search space S is s, there are s! possible bijective coding
functions

p:8—C,

almost all of which effectively destroy patterns over the search space. To
see this, imagine randomly selecting a mapping from these s! choices, and
notice that this is exactly equivalent to choosing a (unique) random chro-
mosome from C to represent each structure in S. Under these circumstances
it should be clear that gathering information about the performance of any
subset of the chromosomes provides no information about the performance of
the remaining structures—those represented by the untested chromosomes.
Nevertheless, the Schema Theorem (equation (2.3)) will be obeyed for every
one of the s! representations.
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In such circumstances, the search could not be effective except by chance
simply because almost none of the schemata would relate chromosomes with
correlated performance. In other words, schemata are not useful formae
in this context. (Holland’s observations ([15], page 142) about “enriched
schemata” appear initially to refute this claim, but on closer analysis do
not. This is discussed in detail in Radcliffe [19] (pages 17-18, Compressed
Edition).)

In effect the results and arguments presented thus far in this paper can
be seen as a critique of the idea that there is a single, all-embracing represen-
tation and set of operators that can reasonably be expected to tackle all or
most search problems effectively. The focus here is on finding sets of formae
that characterize the regularities in the particular problem or class of prob-
lems under consideration, and developing operators that manipulate these to
good effect. Thus, for example, rather than seeing a function-representation
pair as deceptive, deception (or f-deception) is seen as characterizing a mis-
match between the set of formae used (together with the operators used to
manipulate them) and the regularities in the space being searched.

To explore these ideas further, the next sections discuss general binary
representations for real-valued problems and two types of regularities for
which it might be desirable to develop formae to characterize. The ideas are
made more concrete by applying them to a familiar set of functions.

8.1 Binary representations

The great strength of binary representations lies in their versatility: different
schemata relate chromosomes on quite different bases. Indeed, their robust-
ness is demonstrated by the wide variety of problems that have been tackled
successfully using binary representations. For example, consider the natural
coding for a real number in the range [«, 8], with N divisions,

r—a+6
B—a |’

where § = 1/2N. The schema loo--- o then specifies the upper half-space
z > (a+ B)/2, whereas the schema oo---ol specifies alternate strips of
width 26 across the space, capturing some possible periodicities.

The problem lies in the fact that the schemata are far from uniform over
the space. Suppose that @ = 0 and 8 = 1.5 with 16 divisions. Then p(0) =
0000, p(0.7) = 0111, p(.8) = 1000, and p(1.5) = 1111. It is possible to specify
the interval [0.8,1.5] exactly using the low-order schema looo, whereas there
is no schema of any order that specifies any range that crosses the “Hamming
cliff” between 0.7 and 0.8. Caruna and Schaffer [4] advocate using Gray
coding to avoid this (and other) problems, but the interpretation of schemata
is then even less obvious, and serious problems with such schemes have been
pointed out by Goldberg [11]. Nor is locality the only problem: while some
periodicities that are multiples of powers of two in the discretization size are
easily characterized using schemata, periodicities that are multiples of powers

pla) = |
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of three, for example, are incapable of being so represented. The problem
seems to lie in the fact that relatively few of the schemata seem to be induced
by equivalence relations that group together “useful” sets of points.
Whether more useful equivalence relations can be developed depends very
much on how much insight can be gained into likely kinds of structure in
the problem. For function optimization over intervals in R™, locality and
periodicity seem like obvious—though not universal—starting points.

8.2 Locality

Simplifying to functions of one real variable (§ C R), suitable equivalence
relations for capturing locality are intervals specified by a position and a
radius. Let Ble,7) be the half-open interval c —r < z < ¢+ 7, r € RT, and
let Ble,0) = {c}. Then the equivalence relation specified by position p and
radius r is

n~( <= (3keZ: n,(e€Bp+2krrT))
with formae
{Blp+2kr,7) |keZ}.

Thus any interval [¢/, ') is an equivalence class under some equivalence
relation.

Moving back to the more general problem of searching a space S that has
n real-valued parameters,

where

Z; = [, 3] CR,
a suitable set of “locality” equivalence relations ¥ can be defined as

ol = 11z,

i=1

where

T = 12U {a}.
(The “don’t care” character is strictly redundant, but is left in for notational

convenience.) This induces formae that can be described using exactly the
same set as for UZ, namely

n
g =[]z
i=1
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Thus a typical forma £ with n = 3 can be written as (B[0.2,0.1), 3, B[0.5,0.2) ),
with the interpretation that a chromosome 7 is an instance of £ if 0.1 < n; <
0.3 and 0.3 < n3 < 0.7. Formally,

T]Eg = (Vlezn(&#D)’rhE&)

If these equivalence relations are to be used, then a crossover operator should
be constructed that both respects and properly assorts the formae they in-
duce. Standard crossover with real genes would respect them, but would fail
properly to assort them.

An example should make this clear. The sub-formae” B[0.4,0.2) and
B[0.6,0.2) are compatible with intersection B[0.5,0.1), but given genes 0.3 €
B[0.4,0.2) and 0.7 € B[0.6,0.2) it is impossible for standard crossover to
generate any value in B[0.5,0.1) since the result of such a cross will always
be either 0.3 or 0.7. The presence of Hamming cliffs also makes it immediately
clear that standard crossover with binary genes will not respect these formae.

A more suitable crossover operator is

XF.cxex[0,1]"—cC
with
XZF(TI,CKF) = T1|77_ CI +m1n{ U,C}

which will be called flat crossover® (see figure 1). Given a pair of real-valued
genes, this operator returns a random value within the interval between them.
The choice is uniform provided each r; is chosen uniformly. (The control set
here is Ap = [0,1]*.) Plainly this operator respects formae from =%, for
if the two genes have the same value then the interval they define has zero
width. Moreover, compatible formae £ and £ have overlapping intervals at
each locus. Given n € £ and 1/ € €', it is clearly possible to choose a set of
r; such that each gene of the child sits within the intersection £ N ¢’.

Thus X respects and properly assorts formae from =L, composed of
intervals of arbitrary widths in the search space S. A genetic algorithm
using this might be expected to perform well on a real-valued problem for
which locality is the appropriate kind of equivalence to impose on solutions,
utilizing the intrinsic parallelism that derives from each chromosome’s being
an instance of many locality formae.

Two related problems, however, remain. The first is the question of
a suitable mutation operator. The second problem concerns a bias in the
operator, namely that it systematically biases the search away from the ends
of the intervals, violating ergodicity in the sense of principle 6.

Recall that the role of mutation for k-ary string representations is usually
understood to be that of keeping the gene pool well-stocked, the fear being
that, if an allele for some gene is not present in any member of the population,
crossover will never be able to generate it and will thus not have access to

"Defined on a single gene.
8 Affectionately known as “top hat.”
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a n 4 B o n ¢ B

Figure 1: The graph on the left shows the probability distribution
function for the one-dimensional flat crossover operator “top hat”
when crossing 7 and (. The graph on the right shows the correspond-
ing distribution function for traditional crossover with real genes and
uniform crossover with real genes. The distribution function for tra-
ditional crossover with binary genes looks very different according to
the chromosomes being crossed. For example, using 4-bit binary cod-
ing on the range [0,15], 7 (=0111B) and 8 (=1000B) can cross to
produce any child under uniform crossover, whereas 0 (=0000B) and
8 (=1000B) can only produce copies of themselves.

the entire search space. This observation, which motivated the principle of
ergodicity, suggests that the two problems mentioned can be tackled together
by defining a mutation operator that only inserts extremal values into the
gene pool, thus countering the bias of X¥. As before, given n genes per
chromosome (now real-valued), a set of n point mutation operators is defined
according to

MiR:C X {ai;ﬂi} —>C
with
MiR(Thnz My @) =TT - T 1 ATt - - - T

The difference between this and standard mutation is that, instead of using
the interval [y, ;] as the control set A;, only the endpoints «; and f; are
now used. If both parents are selected according to fitness, such mutations
should be applied before crossing over to reduce the probability of generating
a child of very low fitness, which then fails to reproduce.

As an illustration of these ideas, De Jong’s standard test suite of func-
tions [6] were examined using both a standard binary representation with
uniform crossover and a real-valued representation using flat crossover as de-
fined above. Following Eshelman, et al. [7] the functions are described here
only summarily in table 1.

Of the five functions, good performance might reasonably be expected on
f1, f2, and f4, which are (essentially) smooth, whereas very poor performance
would be expected on fs. Reasonable performance might also be anticipated
on f3, which, though not smooth, is reasonably local in nature. The results
for off-line and best-seen performance are shown in figures 2 through 7. An
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fn. dim space size description

fi 3 1.0x10° parabola

fo 1.7 x 108  Rosenbrock’s Saddle
fs 5 1.0 x 10'® step function

fa 30 1.0x 10 noisy quadratic

fs 1.7 x 10*°  Shekels foxholes

fe 2 1.7 x 10" Random foxholes

[\S]

3]

Table 1: De Jong’s test suite of functions f; through f5, augmented
by random foxholes.

extra function fg is also included, which is a variation on Shekel’s foxholes in
which the positions of the foxholes are random rather than in a regular grid.

A comparison is shown between the same genetic algorithm using both
binary and real representations, with parameters selected to give good perfor-
mance with binary representations. Following Schaffer, et al. [21], the point
mutation rate was made inversely proportional to the chromosome length,
and was thus higher when using real representations (with fewer genes) than
for their binary counterparts. Baker’s Stochastic Universal Sampling proce-
dure [2] and rank-based selection, broadly a la Baker [1], were used. Flat
crossover and extremal mutations, as described above, were used for the real-
valued case, and uniform crossover was used for the binary trials. The results
are all averages over 100 runs.

As predicted, flat crossover with real genes performs extremely well on
the smooth fi, fo, and f4, out-performing binary representations. On f3,
although less effective than the binary case, the global optimum is still con-
sistently found in reasonable time.

The results for Shekel’s foxholes are rather more surprising. With the
standard foxhole configuration (a 5 x 5 grid with spacing 16), the binary rep-
resentation appears superior, though the real representation performs amaz-
ingly well considering the crossover operator it uses was only designed to
respect locality formae, which have no obvious relevance to this problem.
Notice, however, that points differing by 16.384 are very close in Hamming
distance under the binary representation, making it easy to hop from one
foxhole to another. For this reason, a second set of trials was performed
using foxhole coordinates chosen at random. In this case, the real represen-
tation using flat crossover gives slightly superior performance to the binary
representation.

8.3 Periodicity

Dealing with general periodicities, unsurprisingly, is harder. Constructing
equivalence relations WP capable of capturing general periodicities is not
difficult: suitable relations are specified by a position p, a radius r (to allow



Equivalence Class Analysis of Genetic Algorithms
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Evaluations

Jong’s fi. The “real” traces use the “flat” crossover

operator, which chooses a random value in the range bounded by the

parents’ genes. The binary trace is the same algorithm using binary
uniform crossover.
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Figure 3: De Jong’s f5.
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Figure 5: De Jong’s fs.
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Figure 6: Results for De Jong’s fs.
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& 0 5 10 15 20
& 0 4 8 12 16 20
& 0 20
& 4 10 16

Figure 8: Four “locality” formae. Each number is the center of a
half-open interval of width half. 35 = & N &;, and & is compatible
with both & and &.

for fuzziness), and a period T that is an integral multiple of r. Given these,
and again simplifying to functions of one real variable, two chromosomes are
equivalent if they lie in intervals of radius r centered about points separated
by a multiple of the period T'. Formally,

gl it (E\k,k’el: n € Blp + kT, ) andn'EB[p—!—k'T,r)).

These equivalence relations are extremely flexible, subsuming the previous
“locality” relations immediately by setting 7' to zero. If a crossover oper-
ator could be constructed that both respected and properly assorted these
relations it might be expected that an extremely powerful algorithm for real-
valued problems would result.

Sadly, no such operator exists. To see this, consider the formae & to &
in figure 8, each with radius 7 = 0.5. The numbers in figure 8 indicate the
centers of the intervals that the formae comprise, so & consists of BJ[0,0.5)
and B[20,0.5). Notice that & = & N& # @, so & 1 &,. Consider chromo-
somes 10 € £, N &, and 4 € & N&,. If a crossover operator X7 is to respect
&, then it must be the case that for all a € Ap: XF(4,10,a) € &; that is, all
possible children of 4 and 10 must be members of &;. If it is to assort &; and
&, properly then there must be some a’ € Ap for which X (4,10,4d’) € & N&,,
that is, it must be possible to cross 4 and 10 to produce a chromosome that
is an instance of both & and &. These conditions are incompatible, however,
because &,NENE =G -

It should be emphasized that this is not a failure of the forma analysis,
which has simply revealed that general periodicities are extremely hard for
a genetic algorithm to be sensitive to. It has been demonstrated that no
crossover operator can both fully respect and properly assort the formae =¥
induced by ¥, but it is quite possible for an operator partially to respect
and assort them. Indeed, uniform crossover does this. Whether an operator
can be constructed that better respects and/or assorts =F remains an open
question.
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9. Conclusion

Intrinsic parallelism, the key concept underpinning genetic search, has been
shown not to be restricted to k-ary string representations. Given a suitable
set of equivalence relations and a crossover operator that both respects and
properly assorts its equivalence classes (formae) without excessive disruption,
any genetic algorithm will exhibit intrinsic parallelism. These ideas have been
applied to standard crossover operators to provide another insight into the
sometimes-claimed superiority of the uniform crossover operator over tradi-
tional one- and two-point crossover, and to apply genetic algorithms more
effectively to some real-valued problems. They could equally well be applied
to other problems for which k-ary string representations and schemata are
not obviously appropriate. Such areas include neural networks, the TSP, and
graph optimization.
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