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Demystifying Quantum Mechanics: A Simple
Universe with Quantum Uncertainty

Gary L. Drescher*
Thinking Machines Corp., 245 First St., Cambridge, MA 02142

Abstract. An artificial universe is defined that has entirely determin-
istic laws with exclusively local interactions, and that exhibits the fun-
damental quantum uncertainty phenomenon: superposed states mutu-
ally interfere, but only to the extent that no observation distinguishes
among them. Showing how such a universe could be elucidates inter-
pretational issues of actual quantum mechanics. The artificial universe
is a much-simplified version of Everett’s real-world model, the so-called
multiple-worlds formulation of quantum mechanics. In the artificial
world, as in Everett’s model, the trade-off between interference and
observation is deducible from the universe formalism. Artificial-world
examples analogous to the quantum double-slit experiment and the
Einstein-Podolsky-Rosen (EPR) experiment are presented.

1. Statement of the paradox

Isaac Newton’s objective, mechanical world, grounded in an elegant collec-
tion of precise rules, seemed for a time to realize an ideal that had been
sought for two millennia. But the preemption of classical physics by quan-
tum mechanics is widely regarded, not least by physicists themselves, as a
fundamental retreat from this ideal. Physics, which was once the best ex-
emplar of the mechanical paradigm, now seems to be its most formidable
detractor.

The well-known apparent nondeterminism of quantum mechanics is the
least of its oddities; probabilistic laws still afford a straightforwardly mechan-
ical model. Far stranger is the apparent observer-dependency of nature. Of
the several states that a particle might be in, it seems that all coexist—as is
shown, statistically, by their mutual interference—unless we try to observe
this so-called superposition of states. Paradoxically, any such observation al-
ways reveals just one of the thitherto-coexisting states. Which of the states
we observe is unpredictable in principle, hence the apparent nondeterminism.
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This paper first highlights the seeming paradox of quantum mechanics,
then presents a simple model that, using little more than high-school mathe-
matics, illustrates Everett’s solution to the paradox—a solution that rescues
the mechanical paradigm, restoring determinism and observer-independent
reality to quantum physics.

1.1 The double-slit experiment

The classic double-slit experiment highlights the quantum paradox. We aim
an electron at a pair of adjacent, narrow slits in a barrier (imagine this
happening in just two dimensions). Beyond the barrier lies a backdrop with
a row of densely-packed electron detectors each of the same resolution as
the width of each of the slits; the distance between the two slits is much
greater than this resolution. If the electron passes through the barrier via
the slits, we find that one and only one detector soon registers the arrival of
the electron.

Suppose we block one of the two slits and conduct many trials of this
experiment, plotting the distribution of electron-arrivals at the various de-
tectors. Not surprisingly, we see a smooth curve with a peak opposite the
unblocked slit. If instead we unblock the other slit, then of course the distri-
bution curve has a peak opposite that other slit. If we conduct a number of
trials, half with one slit blocked and half with the other blocked, the distribu-
tion curve is just the sum of the two single-slit curves. All this is consistent
with an electron particle that is smaller than the width of each slit, and that
passes through the currently unblocked slit.

But now, suppose we try the experiment with both slits unblocked.
Bizarrely, the distribution curve is not the expected sum of the single-slit
curves; rather, the curve shows an interference pattern. At some points along
the backdrop, the frequency of an electron’s arrival is not only less than what
the sum of the single-slit curves predicts, it is less than what either single-
slit curve alone would predict. The distribution seen over a large enough
number of trials must approximate the sum of the probability distributions
of the individual trials; hence, by providing an additional path by which an
electron might arrive at a certain point along the backdrop, we have reduced
the probability of its arriving there on a given trial.

This result is inexplicable if the electron indeed passes through just one
slit or the other. If a given electron encounters just slit A, opening slit B
could not reduce the likelihood of the electron’s reaching a given destination
through slit A. But the interference is just what we would expect if the
electron were not a spatially localized particle, but rather an expansive wave
that passes through both slits, creating usual wave-like interference on the
other side of the barrier. Indeed, the observed interference pattern accords
quantitatively with the predictions of wave mechanics. The wave’s amplitude
at a given point corresponds to the probability (it is actually the square root
of the probability) that the electron arrives there, as seen by a detector at
that point.
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But this raises an apparent paradox. If the electron spreads out in a
wave-like fashion, why does the backdrop detect only a local, discrete arrival
for each electron? Why does only a single detector react, rather than many
adjacent ones? As noted above, the statistical distribution over a large num-
ber of trials warrants an inference about what occurs during each trial. We
can thus infer from the statistical evidence that the electron passes through
both slits on each trial. Thus, the universe seems to be playing hide-and-seek:
whenever we detect the electron, we see a localized particle; but when we do
not observe it, the electron is a wave, passing simultaneously through two
widely separated slits (widely separated compared to the size of the particle),
and exhibiting interference on the other side.

We might seek to clarify the situation by shining a light source on the bar-
rier to see the electron as it passes through. In that case, we unambiguously
see the electron emerge from just one slit or the other. But then, the distri-
bution curve over many such trials no longer shows interference; instead, it
simply equals the sum of the single-slit curves.

1.2 The interference-observation duality

Thus we have the fundamental, paradoxical duality:

e There are coexisting, mutually interfering states, so long as the states
are not distinguished by observation. (Here there is a continuum of
such states that propagate in a wave-like fashion.)

e Whenever an observation is made, only one of the superposed states is
seen. (Here a conventional particle, much smaller than the wave, is all
we see when we look.)

This is known as the quantum-mechanical wave-particle duality. A standard
understatement of this duality is that an electron (or other physical entity)
acts sometimes like a wave, sometimes like a particle. More strikingly, we
have here an interference-observation duality: there are many superposed,
mutually interfering states whenever we are not “looking,” but only one such
state whenever we do look. Heisenberg’s uncertainty principle says, moreover,
that no matter how precise an observation we perform, some superposition
must remain. Indeed, the more precisely we measure a given attribute, the
more superposition there is with respect to some other attribute.

To see how dramatic the interference-observation duality really is, con-
sider Wheeler’s delayed-choice modification of the double-slit experiment:
one does not decide until after the electron passes the barrier whether to col-
lect the electron against the backdrop or pull the backdrop out of the way and
observe which slit the electron came through (by using a pair of “telescopes,”
each focused on one slit). If we choose to remove the backdrop and make
the observation, we see that the electron passed through just one of the slits.
If we choose not to observe, the distribution we see over many such trials is
once again consistent with the “particle” having passed, wave-like, through
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both slits on each trial, the two parts of the wave then mutually interfering.
What, then, does the electron do when it reaches the barrier prior to the
decision whether to observe where it comes from? Does it pass through one
slit or both? It seems that the answer is determined in retrospect when the
distinguishing observation is made, or when the electron instead reaches the
backdrop.

1.3 Interpretations: Copenhagen and Everett

The standard interpretation of such phenomena, the Copenhagen interpreta-
tion, shows the profound effect of this paradox on physicists’ sense of reality.
According to the Copenhagen interpretation, no physical phenomenon is real
until it has been observed. Nothing real passes through both slits of the ap-
paratus; there is a potential for a real particle to pass through either slit, but
that potential is not realized unless the passing-through is observed. This
interpretation does, indeed, accord with the fact that the particle cannot
simply pass through just one of the slits (else the interference would not be
seen statistically), and with the fact that that is just what the particle has
done whenever we look. But it gains this accord at the price of denying the
observer-independent existence of the building blocks of reality.

Thus, quantum mechanics seems to challenge not just the world’s deter-
minism, but the very objectivity of its existence. Indeed, the Copenhagan
interpretation provides no way to express the state of the universe as a whole,
since a system’s state is real only with respect to an external observer, and
the universe as a whole has no external observer.

The Copenhagen interpretation exhibits the usual rigor of physics to
say what happens to the world between observations. This is given by
Schrédinger’s equation, which governs the (fully deterministic) propagation
of a (wave-like) quantum state of the universe. This state is a superposition
of many individual, sometimes mutually interfering states, such as the state
of an electron being at one slit or the other. When an observation occurs,
Copenhaganists insist that the superposition of states collapses, leaving just
one member of the previous superposition. Schrodinger’s equation itself does
not predict any such event as this collapse.

The Copenhagen interpretation has no formal criterion for what consti-
tutes an observation, and hence for when the putative collapse occurs. Is the
detection of a quantum event by a laboratory instrument an observation?
In [10], it is shown that the same prediction is made whether one stipulates
a collapse at that point or, on the contrary, one regards the superposition
as persisting! so that the macroscopic instrument is itself in a superposition
of more than one detection state. Von Neumann’s conclusion: only when
a conscious being observes the state of the instrument and sees that it is
unambiguously in one state or the other does it become clear that only one
outcome really occurred. Thus was von Neumann led to conclude that hu-

! Actually, the same prediction is made only when some trace of the observation persists.
See section 5.3 for elaboration.
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man consciousness plays a fundamental role in physics: conscious observation
precipitates the collapse of the quantum superposition.

Most physicists, unlike von Neumann, accept that inanimate observation
suffices to bring about the collapse. Still, a number of eminent theoretical
physicists share von Neumann’s version of the Copenhagen interpretation—
quantum mechanics’ most profound departure from the mechanical paradigm.

However, there is an alternative interpretation of quantum mechanics that
restores a mechanical understanding of the universe. Quantum phenomena
such as the double-slit experiment show that, prior to observation, the su-
perposed states have symmetric status; that is, no one of the superposed
states is already the unique real one. (Hidden-variable theories try to deny
this, but such theories are provably wrong; see section 5.4.) Logically, then,
there are two ways to achieve this symmetry: either none of the superposed
states is real, or all of them are. The Copenhagen interpretation says none
of the yet-unobserved states are yet real. Everett’s so-called multiple-worlds
interpretation [7] says all of them are real.

In Everett’s formulation, the quantum collapse never occurs. Superposed
states remain in superposition even after observation (whether by inanimate
objects or by conscious observers). It remains to account for the apparent
collapse—the fact that we see only one outcome of the quantum observation.
Everett’s crucial insight is that the deterministic Schrodinger formalism al-
ready predicts an apparent collapse, even while denying an actual one. Ac-
cording to the formalism, observing a superposed state results in different
versions of the observer in different versions of the universe, each version of
the observer seeing a different outcome to the exclusion of all other outcomes.
Of course, it makes no difference whether the observer is animate. Thus, ver-
sions of the observers themselves are in superposition, but they are mutually
isolated so each sees a seemingly unique outcome. Following Everett, I argue
here that this interpretation is actually the more parsimonious, but it takes
a formal model to demonstrate that claim.

In this paper, I try to make sense of the quantum-mechanical universe.
Often, the best way to understand a thing is to build one. Hence, I build
a universe, a qualitative model of quantum mechanics. That is, I define a
universe whose physics are quite different from (and much simpler than) our
own world’s, and I demonstrate that this universe exhibits an interference-
observation duality analogous to that of real physics. We can call this model
quantish physics. The analogy runs deep enough to support a comparison
between the “Everett” and “Copenhagen” interpretations with respect to the
qualitative model, and this comparison elucidates an interpretation of real
physics.

I present three artificial “universes”: Ul, U2, and the quantish-physics
model. The first of these universes, Ul, has straightforwardly “classical” me-
chanics. U2 attempts to incorporate quantum-like uncertainty in its physics,
but fails in instructive ways. Finally, the quantish-physics model, building
from the U2 attempt, succeeds in reconstructing the fundamental quantum
interference-observation duality.
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Figure 1: A Fredkin gate.

2. Ul: “Classical” physics, configuration-space representation

Let us define a universe consisting of a circuit built from Fredkin gates [8].
A Fredkin gate has three binary (0 or 1) inputs and outputs. Each output
computes a boolean function of the inputs, as specified by figure 1(a). But the
gate is more easily understood as having a control path going across the top of
the gate, and two switch paths below. If the first input (the control input) has
a 0, then the second and third inputs (the switch inputs) simply propagate
to the second and third outputs respectively, as suggested by figure 1(b). If
instead the control wire has a 1, then the two switch wires “cross,” so the
second input comes out at the third output, and vice versa (figure 1(c)).
The control wire simply propagates its input to its output. All three paths
through a gate impose a delay of one time unit between the appearance of an
input value and its propagation to the corresponding output,? and all gates
in the circuit are synchronized. Fredkin gates, unlike some logic gates, do
not allow fan-in or fan-out; rather, each output must connect to exactly one
input.

Fredkin gates, like NAND gates, are universal. Loosely speaking, their
universality means that any logic circuit that can be built at all can be
built using only Fredkin gates. Fredkin gates have the further property of
conserving ones and zeros—that is, the number of ones (or zeros) that leave a
gate equals the number that entered the gate one time unit earlier, hence the
total number of ones (or zeros) coursing through the circuit remains constant.

For a given “universe” (that is, a given Fredkin-gate circuit), one might
represent the state of the universe at a given time by listing, for each wire,
whether that wire has a one or a zero. Hence the state can be represented by
a vector vy,...,V,, where v; is 0 or 1 according to the state of the ith wire,
and n is the number of wires in the universe. (A wire goes from an output
to an input; a gate’s output wires are distinct from its input wires.)

Alternatively, because Fredkin gates conserve ones and zeros, we can
index the world-state the other way around: for each 1—think of 1s as
“particles”—we can say in which wire it currently resides. We will con-
strue a particle as passing through a gate in the obvious fashion: a particle

2In [8], delays occur in the wires rather than in the gates.
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Figure 2: A state moves through configuration space.

on a gate’s control-wire input emerges from the gate’s control-wire output;
a particle at one of the two switch inputs either proceeds straight across
or crosses over, depending on the control-wire state. To specify which wire
a particle is in is to fully specify the particle’s position. No gradations of
position along a wire are recognized.

Let us now present the particle-indexed state geometrically. If the uni-
verse has k particles, we define a k-dimensional space, and each dimension
has discrete coordinates ranging from 1 to n (the number of wires in the
universe). For a given point (pi,...,pr) in this space, the point’s ith di-
mension says which wire the ith particle is in. Call this space configuration
space.® A single point in configuration space represents the entire state of the
universe. Rephrasing the physics of this universe in terms of configuration
space, we get a rule for moving from one point in this space to another at
each unit-time interval.

Figure 2 illustrates this formulation. Suppose gate g appears in the Fred-
kin circuit that defines our model universe, and suppose for now that there
exist just two particles, p; and p,. Particle p; appears at g’s control wire,
p2 at g’s upper switch wire. Figure 2 shows the configuration space point sg
that designates this state of the universe. At the next time unit, the state
of the universe becomes s;. In that state, p; has moved to w;, and p, has
crossed over to ws,.

The configuration space representation is equivalent to, but more cumber-
some than, the more obvious wire-vector representation. But in the following
sections, we shall see how this representation supports the introduction of
quantum-like phenomena to our Fredkin-gate universes.

3Configuration space is analogous to phase space in real-world classical physics. For a
system with k objects, phase space has 6k dimensions: three dimensions for each particle’s
position and momentum. Thus, a single point in phase space specifies the position and
momentum of every object.
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3. U2: A universe with non-interfering superpositions

Suppose we modify the classical physics to allow a superposition of states to
coexist. Rather than representing the state of the universe by a single point
in configuration space, we assign a weight (in [0, 1]) to each configuration-
space point, where the weights sum to unity. In Ul, a single point changed
its configuration-space coordinates at each unit-time interval. In U2, all
weighted points move simultaneously, carrying their respective weights along;
each moves according to the same rules that governed the single point in U1l.

To avoid ambiguity, we now say that each point in configuration space
represents a classical state of the universe, and the entire set of weight as-
signments in configuration space is a quantum state. In U2, the state of
the universe is the quantum state, which we say is a superposition of its
nonzero-weighted classical states. (When no ambiguity results, I will con-
tinue to speak of a “state,” with “classical” or “quantum” left implicit.)

We may think of the weights in configuration space as probabilities. The
set of weight assignments specifies a probability distribution as to what clas-
sical state the universe is in. But note that the physical laws of U2 are not,
in fact, probabilistic. They are deterministic laws that push weights through
configuration space, though it will be helpful to think of these weights as
probability measures.

Figure 3(a) shows a fragment of a Fredkin-gate circuit. (Here and through-
out, unconnected wires are understood to connect to gates not shown.) Par-
ticle p; is in a superposition of two positions, w; and ws; particle ps is at ps;
and p3 is at wy. Figure 3(b) shows this situation from a three-dimensional
cross-section of configuration space, with dimensions corresponding to the
positions of the three particles. States s;, and sy, each with weight .5,
correspond to the superposed positions of p;.

Initially, the three particles’ positions are mutually independent. In par-
ticular, po’s position and p3’s position are the same whether p; is at w; or ws.
One time unit later, though, the gates have correlated p; with p, and p3 (as
shown in figure 3(c)). There is still a superposition of two world states, sa,
and sg; in each, ps is at ws, and p; at ws, if and only if p; is at wq,. Hence,
the position of p; has been “observed” by p, and ps;. Although the universe
still contains a superposition of two states for p;, p;’s state relative to py’s
(to use Everett’s terminology) is unambiguous: p; is at wy, relative to p, at
Wa,; P1 1S at wq, relative to ps at we,. Similarly, p;’s state is unambiguous
with respect to ps’s state.

Note the consistency of the two observations of p;. There are only two
possible outcomes: one state where p, crosses over and p; does not, so that
only p, is diverted by p;; and, symmetrically, a state where only ps is diverted
by p;. Hence, either state is consistent with p; being at w; or wq, but not
both. Moreover, it is easily verified that any subsequent observations of p;, ps,
or p3 will maintain this consistency. By virtue of this consistent repeatability,
the interactions with p; are what Everett calls good observations.
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Figure 3: Particles p, and p3 observe p;’s position.

Prior to the observation, p; was in a superposition of two states. Sub-
sequently, although this superposition continues, there are two branches of
the universe, each consistently and unambiguously showing one state of p;.
Thus, we might try to construe this interaction to model the apparent col-
lapse of the quantum superposition—apparent, that is, from the standpoint
of any observer embodied in U2.*

But that construal would be wrong. In fact, from within U2 there was
never any apparent superposition to begin with. Hence the observation did
not appear to collapse any superposition. The problem is that there is no
“interference”—no interaction at all—among the superposed classical states.
Each such state has a unique immediate predecessor as well as a unique
immediate successor (because, as is readily seen, a Fredkin gate’s outputs
uniquely specify what the inputs must have been, as well as vice versa).

“Here, in a large leap of imagination, I suppose a Fredkin-gate circuit that implements—
or, if one prefers, simulates—a universe vaguely like our own, with complicated physical
objects, including those that have the machinery of intelligence. Hence, that universe could
embody intelligent observers. This should seem possible in principle to those who accept
the possibility of artificial intelligence, or who believe that intelligence has a mechanistic
explanation. For present purposes, nothing need be specified about the workings of the
hypothetical embodied intelligence other than that it is implemented by some sort of
computer program or program-like mechanism.



216 Gary L. Drescher

Thus, two superposed classical states never converge; each evolves entirely
independently of the other, moving through configuration space without in-
terfering with the other. Therefore, the superposition is evident only to an
observer external to the entire universe who can examine configuration space
directly. To any observer embodied in any “branch” of the universe (any
element of the superposition), there is never any evidence of the existence
of any other branch. Hence, as seen from within this universe, the universe
appears entirely classical and is indistinguishable from U1. In particular, the
1s behave like ordinary “particles,” just as in Ul.

4. The laws of quantish physics

In this section I present laws of physics that are analogous to real quantum
mechanics under the Everett interpretation. Indeed, this section largely re-
capitulates Everett’s relative-state formulation of quantum mechanics, but
with Fredkin-gate mechanics substituted for quantum-wave mechanics. The
interference-observation duality of real-world physics, that superposed states
interfere with one another if and only if no observation has distinguished
among them, is a property of quantish physics as well.

The quantish-physics model extends and modifies the U2 model. Quan-
tish physics has three characteristics that distinguish it from U2 physics:
multiple successor and predecessor states, complex rather than real-valued
weights, and a binary-valued gender associated with each particle. A parti-
cle’s gender is analogous to spin in real quantum mechanics.

In U2, each classical state has a unique successor and predecessor, so
distinct states do not interfere. In the quantish model, a classical state
can have multiple immediate successors and predecessors. The weight of a
configuration-space point splits into components that each contribute to one
of the point’s immediate successors; the contributions of multiple predecessor
points to a common successor simply add.

To facilitate interference, quantish classical states are assigned complex
weights rather than real-valued weights. The probability measure associ-
ated with a classical state is the squared magnitude of its weight, and in
every quantum state the probability measures of the classical states sum to
unity. When a classical state splits into two successors, its weight splits into
two orthogonal components of the original weight, so the sum of the succes-
sors’ probability measures equals the predecessor’s probability. When several
configuration-space points contribute to a common successor point, the sum
of the contributing weights has a squared magnitude that may be less than,
equal to, or greater than the sum of the contributing squared magnitudes.
This provides for destructive and constructive interference.

Each quantish particle has a gender whose value is either female or male,
and each gate has a measurement angle. A gate’s measurement angle can-
not change; like the circuit topology, it is simply built into the universe.
But a particle’s gender can change, so each particle’s gender is part of each
quantish classical state and must be represented in quantish configuration
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space. Therefore, quantish configuration space has two dimensions for each
particle: one, as in U2, for the particle’s position, and the other for the par-
ticle’s gender. Each gender-dimension has just two discrete coordinates, one
corresponding to female, the other to male.

4.1 Definition of quantish physics

As with U2, quantish physics is defined by laws that say, for any classical
state, where each particle next moves to (and, now, what its next gender is).
As in the previous model, these laws translate into a rule that specifies the
coordinates of a classical state’s successor point in configuration space. The
weight associated with the predecessor point moves to the new point.

But in the quantish model, a given particle in a given classical state can
have two next positions and two next genders, rather than just one of each.
This multiplicity of destinations and genders corresponds to a four-fold split
in the given classical state. That is, the given state has four successor states
rather than a single successor: there is one successor state for each of the
four combinations of destination and gender for the given particle. Thus, no
successor state shows the particle simultaneously at more than one position
or with more than one gender. Rather, there is a distinct classical state for
each of the alternatives.

The given state’s weight divides among the four successors, as described
below. More generally, in a given classical state there may be n particles with
two next positions and genders each. Then there are 4™ successor states, one
for each combination of the binary next-position and next-gender choices for
each of the n particles.

Defining quantish physics, then, requires specifying:

e How particles move through gates—the rule for a particle’s next po-
sition (or positions) and next gender (or genders); and, in the event
of multiple destinations or genders, the rule by which the weight of a
configuration-space point divides among its successor points.

e The rule by which weights combine when multiple predecessors have
one or more successor points in common.

How particles move through gates is explained just below. The rule for
combining weights is trivial: as mentioned above, when several configuration-
space points each contribute a portion of their weight to a common successor
point, the contributed weights simply add. This, together with the fact that
a classical state’s successors are a function of that state alone (regardless of
any other classical states superposed in the quantum state), ensures that the
quantish state-succession, like real-world quantum-state evolution, is linear.
That is,

successor (g;) + successor (g2) = successor (q; + g2)

where the successor function maps a quantum state onto its successor quan-
tum state, q; and ¢, are quantum states, and g, + g2 is the quantum state
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Figure 4: A classical state with weight ¢; splits into four successors.

whose weight at each configuration-space point is the sum of the weights of
¢ and ¢, at that point.

A particle at the control-wire input to a quantish gate simply passes
through to the control-wire output, as in Ul and U2; its gender remains
the same. However, a particle that is at a gate’s switch-wire in a given
classical state behaves differently than in Ul and U2. Roughly speaking, the
particle emerges at both of the gate’s switch-wire outputs with both genders
at each destination, as suggested by the bracket notation beside gate ¢g; in
figure 4(a). (The gate’s measurement angle is @, as depicted in the figure.)
More precisely, as mentioned above, the different destinations and genders
occupy four distinct successor states. The original weight ¢; splits among
those as follows:

e First, we define a measurement vector in the complex plane. If, as in
figure 4, the switch-wire particle is female, then the measurement vector
is the weight ¢; rotated in the complex plane by the gate’s measurement
angle @ (figure 4(b)). If, instead, the switch-wire particle is male, the
measurement vector is the weight rotated by @ — pi/2. The rationale
for this orthogonal twist will become apparent in the following section.

e The weight ¢; divides into two orthogonal components, ¢, and c3. One
is parallel, the other perpendicular, to the measurement vector in the
complex plane (figure 4(b)). Call these the measurement-parallel and
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measurement-perpendicular components of the original weight. They
are rotated by @ and @ + pi/2 respectively from ¢;, and their magni-
tudes are |¢;|cos @ and |¢;|sin @, respectively.

e If, as in figure 4, the classical state. has no particle at the gate’s control
wire, the measurement-parallel component subdivides further (as speci-
fied just below), dividing itself between the successor states in which the
switch-wire particle passes straight across. The measurement-perpen-
dicular component similarly divides between the successors in which
the switch-wire particle crosses over. If instead a control-wire par-
ticle is present, the opposite correspondence holds: the measurement-
parallel component corresponds to crossing over, and the measurement-
perpendicular component corresponds to passing straight across.

e The measurement-parallel and measurement-perpendicular components
each subdivide into two components, one parallel and one perpendic-
ular to the original weight ¢; (figure 4(c)). The parallel components
move to the successors in which the switch-wire particle has the same
gender it had in the original classical state. The perpendicular compo-
nents move to the other successors, in which the particle’s gender has
changed (figure 4(d)).

Thus, the weight-splitting rule twice decomposes a weight into a pair of
orthogonal components. The sum of the components therefore equals the
original weight: ¢; = ¢o + ¢3 = Coq + Cop + €34 + €35. Also, at both steps the
probability measure, defined as a weight’s squared magnitude, is conserved:
2 =ck+cd= (2, +c3)*+ (2 +3)? Finally, note that in the special case
of the measurement angle being zero, the above rule is equivalent to Ul and
U2 state-succession. Since the measurement-orthogonal component is zero,
no state-splitting occurs and the particle entirely passes straight across or
entirely crosses over, depending on whether a control-wire particle is present.
The next section shows that a measurement angle of zero is not privileged in
this respect; any measurement angle can fail to produce state-splitting under
certain circumstances.

The above description specifies the four-fold split of a classical state for
a single switch-wire particle in that classical state. When a classical state
has n particles at switch wires, there are 4™ successor states, as noted above.
The n four-way splits are applied in succession, in any order.® As the reader
may verify, each of the four successor weights split apart for a given switch-
wire particle equals the original weight multiplied by a complex factor. Since
such multiplication is commutative and associative, one may think of the
n splits as occurring in any order, or simultaneously. This 4"-fold splitting
also conserves both probability and weight, and is equivalent to n successive
four-fold splits, each conserving probability and weight.

5If a gate has particles at both switch-wire inputs, this formulation allows some suc-
cessor states that have two particles at the same position. However, that does not occur
in any of the examples in this paper.
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Figure 5: Using the same measurement angle twice in a row causes
no further state-splitting.

4.2 Successive measurements

The laws of quantish physics are now completely specified.® A brief look at
the effects of passing a particle through the switch-wire inputs of successive
gates will elucidate important properties of these laws in preparation for
examining their quantum-like properties.

Figure 5 extends figure 4: in figure 5, g;’s upper switch-wire output con-
nects to g;’s upper switch-wire input, and g, has the same measurement
angle as g;. (The gate’s other switch-wire output diverts to some other gate,
not shown.) The arrow at wire w, designates the weight ¢; (from figure 4(a))
associated with the state in which p; is at that wire, with female gender. The
arrow at wire ws, designates the measurement-parallel component weight cs,
which is divided between the two successor states in which p; reaches Wag;
analogously for the arrows at ws, and wq,. It turns out, as explained just
below, that the second gate causes no further state-splitting. That is, p;
proceeds straight across to ws, with no change in the weights assigned to the
states that assign its genders, and p; never emerges from wire wszy.

Actually, the two states (with weights ¢y, and ¢,) in which p; reaches wy,
each have the usual four successor states, two for each of p;’s next position
and gender. But both states have the same four successors, so each of those
successors receives a component of ¢z, and of ¢y;. In each of the two successor
states in which p; crosses over to way, the two components sum to zero. In
the other two successors, the components sum to recreate cs, and cg,. That
this happens can be verified by applying the state-splitting rule in detail, but
there is also a more intuitive explanation:

e The second gate, go, decomposes each of the weights ¢, and ¢, with
respect to the same measurement vector that was used for g;’s decom-
position of ¢; into ¢y, and cg. This is so for ¢y, because ¢y, is parallel
to c1. On the other hand, ¢g is perpendicular. But p; has become male

6We must also specify an admissible set of initial quantum states. Clearly, an initial
quantum state must at least satisfy the constraint that the squared magnitudes of its
weights sum to unity. Moreover, it turns out that for some initial quantum states, the
quantish laws do not conserve probability. A sufficient condition for conservation of prob-
ability is that the initial quantum state have just one nonzero-weighted classical state.
(There are alternative conditions, less restrictive but more complicated, that also ensure
conservation.)
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Figure 6: Again, reusing the same measurement angle causes no fur-
ther state-splitting.

in the state whose weight is cop, so the hitherto unmotivated rule that
adds an orthogonal twist to the measurement vector for a male particle
now cancels cg’s perpendicularity, so that the measurement vectors of
both states are the same.

e Once the components have been decomposed with respect to the same
measurement vector as before, the measurement-parallel component
moves to configuration-space points that have p; passing straight across,
and the measurement-orthogonal component moves to points that have
p1 crossing over. But the measurement-orthogonal component is zero;
that component of ¢; was diverted away by the first gate. Thus, the
measurement-parallel component undergoes no further decomposition
due to the second gate.

e Finally, the states that distinguish p;’s genders keep the same respec-
tive weights. The state-splitting rule either leaves a particle’s gender as
well as the orientation of the corresponding weight unchanged, or com-
plements the particle’s gender along with making an orthogonal twist
to the corresponding weight. A sequence of two such complements and
twists both restores the original gender and reestablishes parallelism
with the original weight. Thus, all resulting weights are either paral-
lel to the original and assign the same gender to the particle, or are
perpendicular and assign the opposite gender. Thus, the reconstructed
measurement-parallel weight ¢; must decompose into the same compo-
nents as before, respectively assigning the same genders to p;.

In the alternative circuit of figure 6, g;’s lower switch wire, rather than its
upper one, connects to g. By reasoning similar to the above, g again causes
no further state-splitting. In this case, it is only the measurement-orthogonal
component of the original weight that reaches the configuration-space points
corresponding to p; reaching g». Rather than entirely passing straight across,
here p; entirely crosses over, arriving back at the top at switch wire wa.

Figure 7, which combines the results of figures 5 and 6, shows the result of
connecting both of g;’s switch-wire outputs to the corresponding inputs of gs.
Since quantish state-succession is linear, the weights reaching the four states
in which p; emerges from g, are the sums of those weights in the previous two
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Figure 7: Connecting both switch wires to a gate with the same mea-
surement angle undoes the first gate’s splitting.
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Figure 8: A succession of different measurement angles makes states
split.

examples. The measurement-parallel component of ¢, follows the states that
have p; passing straight across the upper switch path at both gates. The
measurement-perpendicular component follows p; crossing over at the first
gate, then back again at the second, thus also arriving at g»’s upper switch-
wire output. The two components sum there to recreate the original weight
(and with p; restored exclusively to its original gender). Thus, a quantish
gate separates and reassembles components of a state’s weight in a manner
that is symmetrically invertible: the prior quantum state is the same function
of the subsequent state as the subsequent state is of the prior state.

Finally, figure 8 illustrates the effect of a succession of different mea-
surement angles. For the states in which p; appears at gy’s upper switch
wire, go divides the corresponding weights into measurement-parallel and
measurement-perpendicular components, but with respect to a different mea-
surement vector than at g; (in figure 8, the weight corresponding to the
arrow at w,, divides into the orthogonal components shown at wsg, and
wap). The measurement vector at the second gate differs from that at the
first by Q2 — Q1; hence, at the second gate the the measurement-parallel
and measurement-perpendicular components have squared magnitudes of
cos?(Qy — Q1) and sin?(Q, — @), respectively. Figure 5 was the special
case in which Q1 = Q..

5. Quantum-like properties of quantish physics

The laws of quantish physics, like the laws of Ul and U2, are local. The
destinations (and new genders) of a particle at a switch wire of some gate in
some classical state depend only on the particle’s current gender, the gate’s
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Figure 9: Particles p2 and p3 observe p;’s position.

measurement angle, and whether there is a particle at the control wire of the
same gate in the same classical state. Similarly, the destination and gender
of a control-wire particle at some gate in some state depend only on that
gate and that particle in that state.

Thus, there is no action at a distance with respect to circuit-topology
space, or with respect to configuration space. And, of course, the quantish-
physics laws are entirely deterministic. I now demonstrate that these local,
deterministic laws support phenomena like those of the real quantum world:
apparent indeterminacy of quantum states, interference of superposed out-
comes, and interference-observation duality.

5.1 Apparently nondeterministic outcomes and the uncertainty
principle

In figure 9, particle p; “splits” at g; (as in figure 4(a)), and is then observed
at gates g and g3 (as in figure 3). (Here and throughout, when I show gates
wired in series, inputs shown at gates later in the series are synchronized by
circuitry not shown to arrive there simultaneously with inputs from earlier in
the series. Thus, in figure 9, p, and p; arrive at gates g, and g simultaneously

In the successor states that have p; arriving at g»’s control wire, p, entirely
crosses over. There is no state-splitting because g’s measurement angle is
zero. In those same states, particle p; passes straight across since the states in
which p; arrives at g,’s control wire do not have p; arriving at g3’s. Similarly,
in states in which p; does arrive at g3, ps crosses over and p, passes straight
across. Thus, as in figure 3, the two observations are consistent: p; is always
observed at exactly one of its two possible destinations.

From within the quantish universe, then, it appears that p; arrives at
one gate or the other, but never both. Every successor state is consistent
with there being just one destination. Although different successors with
different destinations remain in superposition, they have no effect on one
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Figure 10: An observation distinguishes between two outcomes of
passing p; through a succession of gates with distinct measurement
angles.

another (unless they later reconverge in configuration space, as addressed in
the next section). However, because g;’s measurement angle is oblique, which
destination the particle will have cannot be specified in advance because, in
reality, it will have both destinations, notwithstanding appearances to the
contrary from the point of view of any superposed classical state in the
quantish universe. If observers embodied in the quantish universe conduct a
number of trials with an apparatus such as in figure 9 and record the result
of each trial, the cumulative records (in most states) will show a mixture of
results. Statistically, by virtue of such cumulative records, the outcome of
such trials appears from within the quantish universe to be nondeterministic.

Moreover, the apparent nondeterminism is quantifiable. Given enough
trials, almost all the weight in configuration space will be assigned to states
whose cumulative records show that p; passed straight across in approxi-
mately cos? Q of the trials, and crossed over in approximately sin® @ of the
trials. If we think of the weights as being the actual stuff of the quantum
universe, each weight being an actual quantity of universe-branch, then in
almost all of the universe-stuff there is a distribution of trials in which the
particle has passed straight across or crossed over approximately cos? @ or
sin® Q of the time. Those, then, are the apparent probabilities of the two out-
comes as seen from almost everywhere within the quantum universe. (This
argument for quantifying apparent nondeterminism by appeal to cumulative
records is adapted directly from Everett.)

Figure 10 extends figure 8, observing (as in figure 9) whether p; emerges at
wap, oF wzp. Over many such trials (counting only those occasions on which
p1 passes through g, at all), the typical cumulative record would show p;
emerging at wy, with frequency cos?(Q, — @1), and from ws;, with frequency
sin(Q2 — Q1)

Thus, if both gates have the same measurement angle, p; will always
be observed to emerge at g»’s upper switch wire. We may therefore say
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that p;, having passed through ¢;, has a definite state with respect to g;’s
measurement angle (Q;—meaning that there is no apparent nondeterminism
(in reality, no multiplicity of outcomes) as to p;’s next destination if p; runs
through another gate with that measurement angle.

But having a definite state with respect to one measurement angle always
means having an indefinite state with respect to all angles oblique to that
angle. Quantish configuration space does not separately encode (i.e., provide
a distinct configuration-space dimension for) a particle’s state with respect
to each possible measurement angle. Rather, configuration space designates
a single binary attribute for each particle, namely its gender. That attribute
corresponds to a definite state with respect to particular measurement angles
(m/2 and its multiples) but not with respect to other angles. Alternatively,
for any other angle there is a superposition of genders that creates a definite
state with respect to that angle (and angles parallel or orthogonal to it), but
not with respect to oblique angles. Thus, a particle’s inclination to cross
over at the next gate cannot be made definite with respect to all possible
measurement angles at the next gate. Eliminating apparent nondetermin-
ism by observing a particle’s inclination to cross over with respect to one
measurement angle thereby creates apparent nondeterminism with respect
to other angles. This fact recapitulates Heisenberg’s uncertainty principle in
the quantish universe.

Similarly, in real-world quantum physics, configuration space does not
separately encode a particle’s position and momentum; only position is en-
coded (or, equivalently, only momentum, or only some linear combination of
the two). The basic physical law of motion says that an undisturbed particle
spreads in all directions at light speed—or rather, that a weight in configu-
ration space spreads at light speed (with no change in phase) into a filled-in
sphere along the three configuration-space dimensions corresponding to the
particle’s position. The particle thus has a maximal superposition of mo-
menta. But the spread can be confined to a smaller envelope by arranging
a superposition of appropriately phased weights for the particle’s position.
The weights assign a superposition of positions to the particle, but interfer-
ence among them constrains their spread, limiting the superposition of the
particle’s momenta. The sharing of a single configuration space dimension
for a given particle’s position and momentum along a given spatial dimen-
sion creates an unavoidable trade-off between superposition of positions and
superposition of momenta.

5.2 Interference of superposed states

Having seemingly nondeterministic outcomes is a step towards having quan-
tum-like phenomena; but it falls short of the fundamental quantum duality,
which requires superposed states that mutually interfere unless distinguished
from one another by observation. I now demonstrate such interference in the
quantish-physics model.
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Figure 11: Superposed states remerge and interfere.
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Figure 12: Here, one path diverts from merging at gs.

In figure 11 the first gate, go, prepares particle p; by putting p; in a
definite state with respect to @, before sending p; to g;. Particle p; also
diverts away from g, but the discussion that follows only addresses the case
in which it reaches g;. The states in which p; diverges do not interfere with
the states under discussion since they are separated along their p;-position
dimension.

At g1, p1 splits using measurement angle Q. Then at g, p; remerges
(as in figure 7), reconstructing the weight with which p; entered g;. thereby
reestablishing p;’s definite state with respect to Q. Finally, g3 verifies that
p1 has a definite state with respect to Q1. Suppose p; were then observed
emerging from gs. (This observation is not shown here, but would be similar
to the observation of p;’s emergence from g, in figure 10). Over many such
trials, particle p; would always be observed to arrive at g3's upper switch-wire
output.

In figure 12, one path to g is disconnected (as in figure 6), circumventing
the merging. In those states in which p, does reach g, p» already has a
definite state with respect to @, so p, entirely passes straight across and
keeps its definite state with respect to Q5. Thus, p, does not have a definite
state with respect to @)y so, unlike in figure 11, p; is split by gs.

We are now in a position to see the effects of interference between su-
perposed states in the quantish-physics model. Contrasting figures 11 and
12, we see a genuine quantum interference phenomenon: figure 11, compared
to figure 12, provides an additional path by which p; might reach g3’s lower
switch-wire output, yet p; emerges there less often (in fact, never) with the
extra path provided than without that path. This contrast is inexplicable
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on the assumption—which otherwise seems correct from within the quantish
universe, as seen in the previous section—that p; is a particle-like entity that
exists at just one wire at a time.

Only by acknowledging the simultaneous reality of p;’s superposed posi-
tions at both of g;’s switch-wire outputs can we (or any observer embodied
in the quantish universe) account for the possibility that those states can
interfere with one another when a path is provided to convey the interfering
influence. The interference is achieved, of course, by the addition of complex
weights at common successor states, as discussed in section 4.2; opposite
weights cancel when added. In figure 12, diverting p; from reconverging to
the same position thereby diverts the corresponding configuration-space path
from reconverging, thus circumventing its interference.

The setup of figures 11 and 12 is analogous to the real-world double-
slit experiment, in which a particle is in a superposition of states (passing
through slit 1 or slit 2).” Destructive interference among the superposed
states reduces the likelihood of the particle’s arrival at certain points along
the backdrop, but blocking one of the two possible paths thereby blocks that
interference, returning the probability to normal. (The two slits are like the
two switch-wire inputs to g» in figures 11 and 12. The diversion away from
the lower input to g, in figure 12 is like blocking one of the two slits.) A
less dramatic paradox, constructive interference increases the probability of
arrival at certain points so that the probability exceeds what the sum of the
two single-slit curves would predict. Correspondingly the frequency of arrival
at g3’s upper switch-wire output is greater with both paths provided than
the sum of the probabilities when just one or the other is provided.

5.3 Blocking interference via observation

If inhabitants of a quantish-physics universe perform the above experiments,
they face the same apparent paradox as physicists in the real universe. When
a “split” particle is observed as in figure 9, the results consistently and un-
ambiguously show that the particle reached one destination or the other, but
not both. Yet, comparing the behavior of the figure 11 circuit with that of
figure 12, there is a demonstrable interference effect that is explicable only
on the assumption that the particle indeed reaches both destinations (which
is indeed the case, as we privileged observers of configuration space, looking
from outside the quantish universe, can see).

Let us sharpen the “paradox” further. Suppose inhabitants of the quan-
tish universe try to observe p; on its way to g, that is, after its path splits
and before it remerges. Figure 13 shows a setup in which p,, at gate gy,
crosses over depending on whether p; passes through g4. Particle p; is then
routed into g, as before, and delay gates (labelled D) are inserted at the other

"We might also take this setup as an analog of the Stern-Gerlach experiment (see, for
example, [3]). Particle p;’s gender is analogous to a real-world particle’s spin; g1 and go
together correspond to a Stern-Gerlach module that diverges and then reconverges paths
of the particles according to their spins with respect to a certain axis (analogous to the
gates’ common measurement angle).
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Figure 13: An observation circumvents subsequent interference.

two paths to g to maintain synchronization. (A delay gate is an ordinary
Fredkin gate. The wire shown is its control wire. The switch-wire inputs,
not shown, have no particles present.)

Particle p; is unaltered by the observation. Classically, then, the obser-
vation should not change the outcome of the experiment. But in quantum
physics, making an observation to distinguish two superposed states blocks
any subsequent interference between those states. And that is precisely what
happens here.

We find the same bizarre result as in the real universe when we observe
which slit the electron came through: the interference disappears, and p;
can emerge from either of g3’s switch-wire outputs. The configuration-space
explanation of this phenomenon is straightforward. Although p; reconverges
after passing through g,, occasioning a reconvergence on the correspond-
ing states’ p;-position dimension in configuration space, the states remain
separated along their p,-position dimension because p, does not reconverge.
Since the states thus fail to reconverge, their weights do not add together and
interfere. (The pair of vectors shown at g,’s upper switch-wire output rep-
resents the superposed weights separated along the py-position dimension.)
The outcome, as seen from any of the successor states, is just as though p,
had traversed just one path or the other (as the classical view would have
it), but not both.

Note, by the way, that even a so-called negative observation results in
the absence of interference. In the states in which p; does not reach g4, py
does not interact with p,. But that very absence of interaction—that is, a
negative observation—is fully informative as to p;’s whereabouts: if p, does
not cross over, p; must be on g;’s upper switch-wire output. Accordingly,
even the states in which the observation at g4 was negative have successors
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that exhibit no interference, as shown by the fact that p; emerges from g3’s
lower switch-wire output with the expected nonzero frequency following a
negative observation at gy.

Renninger (see [4]) cites negative observation to demonstrate the incor-
rectness of one naive account of eliminating interference via observation—the
account that attributes this elimination to the inevitable disturbance of an
observed entity by the observer. But a negative observation can cause no
such disturbance (since there is no interaction at all), yet the interference
disappears all the same. Looking at the situation from configuration space,
this is just as we would expect. The fact that p, encounters p; in one of
two superposed states makes those two states differ along their ps-position
dimension, moving them out of “interference range” of one another and thus
circumventing interference in both states.

At this point, the quantum interference-observation duality becomes a
comprehensible—indeed, deducible—property of the quantish universe. The
quantish physical laws say that the configuration-space destination of a clas-
sical state’s weight is determined only by that state; other superposed states
are irrelevant. Therefore states that are separated from one another along
some particle-position dimension in configuration space can interfere with
one another only by reconverging to the same point in configuration space
(as happens, for example, in figure 11). Any observation that distinguishes
the superposed states must (as in figure 13) create a corresponding separa-
tion along a distinct dimension in configuration space, and any additional
such observations, or any observations of the observations, compound the
separation along still other dimensions. Then, reversing the original sepa-
ration creates no interference, since there is still separation in one or more
other dimensions. (But if those separations are also reversed, interference
is reestablished, as in figure 14.) Thus, given the laws of quantish physics,
there is a necessary trade-off between an interfering superposition and any
observation that distinguishes among the superposed states.

Thus the quantish universe, like the real quantum universe, behaves clas-
sically to just the extent that we try to catch it in the act of behaving
otherwise. The quantish-physics formalism shows how such behavior can be
exhibited by deterministic mechanical laws that support only local interac-
tions and that have no peculiarity with respect to there being a definite,
objective, observer-independent (quantum) state of the universe. The fol-
lowing section shows that the quantish formalism also supports an analog of
the crucial EPR experiment.

5.4 Coupled particles: the EPR experiment

As a final example, this section presents the quantish parallel of the Einstein-
Podolsky-Rosen (EPR) experiment [6]. The experiment disproves all so-
called hidden-variable accounts, which postulate that there is no superposi-
tion of distinct states, but rather a definite state that is merely unknown.
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Figure 14: Particle p, must cross over 0 or 2 times, always emerging
at gs’s upper switch wire, erasing the observation made at g4 and
thus reestablishing interference at go, as manifested by the definite
outcome at gs.

In figure 15, p3 compares p;’s position to py’s. If both particles have
emerged from the upper switch-wire outputs of the splitting gates g; and
go, p3 encounters both particles and crosses over at both gz and g4. If p;
and p, both emerge from the splitting gates’ lower outputs, p3 encounters
neither and passes straight across gs and g4. In either case, p3 emerges from
g4’s upper switch-wire output. But if p; and ps do not emerge from the
corresponding outputs of their respective gates, ps emerges from g,’s lower
output.

Let us say that p; and p, are coupled in those states in which p3 has
emerged from g,’s upper switch wire. The following discussion concerns only
the states in which p; and p, are coupled (which are not affected by the
other states due to separation in configuration space along the ps-position
dimension). In the coupled states, neither p; nor p, has a definite position;
rather, each is in a superposition of positions. But that superposition is
definite as to the correspondence of the particles’ positions: each is on an
upper wire if and only if the other is also.

At gates gs and g, p1 and py encounter measurement angle @;. The
outcome is remarkable: regardless of the value of the shared measurement
angle @1, p; and p, remain coupled, both emerging from the upper wires or
both from the lower wires of their respective gates g5 and gs. The continued
coupling is explained as follows (this explanation is optional; the subsequent
discussion rests only on the conclusion):

e Consider the combined weight cypper Of the states in which p; and p, are
both on upper wires before passing through gs and gs, and the similarly
defined weight cjower Of the states in which p; and p, are on the lower
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Figure 15: Particle p3’s observation couples p; and ps.

wires. The weight cypper is the measurement-parallel component with
respect to @ of the measurement-parallel component with respect to
Q@ + pi/2 of the original weight Corigina. Hence, it equals Coriginal rotated
by 2Q + pi/2 (the sum of the two measurement-parallel rotations),
with magnitude |Coriginal| + cos @ cos(Q + pt/2) (the product of the two
attenuations). Similarly, Ciower; a doubly measurement-perpendicular
component of Coriginal, 1S Coriginal Totated by 2Q+3pi/2 (the extra rotation
by p is due to the two orthogonal projections), and its magnitude is
|Coriginal| + sin @ sin(Q + pi/2). Hence, the magnitudes are equal and
the directions opposite, S0 Cypper = —Clower-

At g5 and ge, the two superposed states with weights cypper and —cypper
each undergoes a four-fold decomposition into measurement-parallel
and measurement-perpendicular components for angle ;. The out-
come in which p; emerges from the upper wire and p, from the lower
has two predecessors: one in which p; and p, arrived at gs’s and gg’s
upper wires and only p, crossed over; and one in which they arrived at
the lower wires and only p; crossed over. Since gs and g¢ share measure-
ment angle @), both outcomes correspond to the same decomposition
of exactly opposite weights, so the weights are exactly opposite. Thus,
they converge in configuration space and sum to zero. Similarly for the
other outcome in which p; and p, emerge from opposite wires.

Finally, consider the outcome in which p; and p, both emerge from
the upper wires of g5 and g¢. This outcome has two predecessors,
one corresponding to a doubly measurement-parallel component from
the states in which p; and p, entered gs and gs at the upper wires,



232 Gary L. Drescher

the other to a double measurement-perpendicular component from the
states in which they entered at the lower wires. By an analysis similar
to the above, the rotation of the doubly-perpendicular component is
just opposite the rotation of the doubly-parallel component, and the
magnitudes remain the same. But the weights being rotated started
out opposite, so they end up equal. Thus, these components converge
to double rather than cancel, and similarly for the outcome in which
p1 and p, both emerge from their lower wires. Thus, p; and p, remain
coupled.

The state-splitting achieved by g5 and g¢ simultaneously is the same as
if p; and p, encountered one gate before the other. Hence, either gs or gs
alone gives both particles the same definite state with respect to @Q; (recall
the discussion of figure 10 in section 5.1). Checking the other particle’s state
with respect to the same measurement angle is like checking the same particle
twice with respect to that angle—the outcomes are always consistent.

That the particles remain coupled after gs and gs can be demonstrated
from within the quantish universe by observing the positions of both particles
over a large number of trials, using a different @; on each trial. But the
indefiniteness of their positions is harder to show. Proponents of a classical
world view—a view that denies the reality of multiple superposed states of the
universe—would want to explain the demonstrated correspondence between
the positions by postulating that, from the outset of the experiment and prior
to the comparison performed by ps, p; and p, already had a definite (albeit
unknown) state for every measurement angle, thus violating the quantish
analog of Heisenberg’s uncertainty principle, as discussed in section 5.1. In
particular, on each trial both particles start with the same definite state with
respect to that trial’s @, which explains the observed correspondence.

From our privileged vantage point, we know that the hidden-variable
account is false. We see that configuration space provides a superposition of
outcomes at both gates, not a single, definite outcome at each. But can the
hidden-variable account be disproved from within the quantish universe? A
subtle theorem due to Bell [2] facilitates such a proof.

Let us say that gs measures p; with respect to Q1; p;’s binary state for
that measurement is whether its inclination is to pass straight across or to
cross over. Suppose we modify the experiment by substituting a distinct
angle @, for Q; at g, so ge now measures p, with respect to @,. The
discrepancy rate between the measurements at gs and gg is the probability
that, after passing through those gates, p; and p, will not be both on upper
or both on lower wires. Since, as noted above, g5 puts both p; and p, in the
same definite state with respect to Q1, p»'s measurement with respect to Q5 is
effectively the same as measuring p; with respect to @ (having just measured
it with respect to Q). As in figure 10, that sequence of measurements has a
discrepancy rate of sin?(Qy — @), which of course is zero if Q; = Q.

Let us consider whether the observed discrepancy rates for various val-
ues of (); and @, are explicable by postulating that the particles have prior
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definite states for the @1 and @, measurements. Bell’s theorem states that,
if each pair of coupled particles already has a single definite state for each
of three arbitrary measurement angles Q,, @, and @Q., and if we perform
measurements on many pairs of coupled particles, then the discrepancy be-
tween @, and @, measurements (that is, the discrepancy rate over trials in
which one coupled particle is measured with respect to @, and the other with
respect to Q.) cannot exceed the sum of the discrepancy between @, and Q,
measurements and the discrepancy between @, and @, measurements. This
is Bell’s inequality. The inequality follows simply from the fact that any
particle with a different state with respect to @, than with respect to Q.
must also have a difference between its @, and Q, states or between its @
and Q. states, since its @, state cannot match both its @, state and its Q.
state if its @, and Q. states differ.

Let us take Q, to be 0, @, to be pi/8, and Q. to be pi/4. If we perform
a series of experiments in the quantish universe using the setup of figure 15
and variously choosing the values of ; and Qs from Q,, @, and Q., we
will find that the discrepancy between Q, and Q. is sin®pi/4 = .5, and the
discrepancy between @, and @, and also between @, and Q,, is sin® pi/8,
which is about 0.146. This clearly violates Bell’s inequality.

Therefore, the observed correlation between paired particles’ measure-
ments with respect to angles 0, pi/8, and pi/4 cannot possibly be explained
by saying that on each trial, the two particles already had, prior to their
measurement, a single definite state for each possible measurement angle
(the states for different angles Q; and @, being the same on sin?(Qs — Q)
of the trials). By Bell’s theorem, that interpretation is impossible. If one
were to deny the reality of multiple superposed states of the universe, the
only remaining way to account for the observed correlation among the cou-
pled particles’ measurements with respect to the three angles would be to
postulate that the indefinite (i.e., unpredictable) outcome of measuring one
particle is then communicated to the other coupled particle—by some un-
known, unexplained mechanism—in such a way as to force the other particle
into the same state with respect to whatever measurement angle was used
for the first particle.

In fact, given quantish physical laws, no such mechanism is or could be
involved when there is no circuitry between the two measuring gates to com-
municate the outcome from one gate to the other. The quantish-physics
model instead accounts for the correlation by saying that there is a super-
position of appropriately weighted entire classical states of the universe, and
each superposed state shows the coupled particles having corresponding po-
sitions. Interference among these states creates correlations that would be
impossible by Bell’s theorem if there were only one such state.

The foregoing is adapted from the proposed EPR experiment, later carried
out in modified form by several investigators (e.g., [1]). These experiments
reveal correlations that Bell’s analysis proves impossible if each particle al-
ready has a single, definite state with respect to each possible measurement,
and if the two particles cannot communicate with one another at the moment
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of measurement. Since the two measurements can be performed arbitrarily
far from one another and arbitrarily close in time, physicists who reject the
reality of multiple superposed states of the universe are thereby forced to
postulate an unexplained, faster-than-light interaction. Moreover, this inter-
action has the curious property that it cannot be harnessed for the trans-
mission of information from one measurement site to the other—though this
curiosity is just what one would expect were there not in fact an interaction,
but rather just a manifestation of a preestablished correlation.

6. Multiple worlds or quantum collapse?

The multiplicity of worlds in the multiple-worlds interpretation of quantum
mechanics stems from what we might call the contagion of a particle’s su-
perposition when its state is observed by another particle—the other not
only assumes a superposition of states, but it assumes a correlated superpo-
sition. The resulting quantum state therefore cannot be expressed simply as
the product of two independent superpositions, but must instead designate
superpositions of configurations of both particles. And as observations of
observations cascade, arbitrarily many particles may join the correlated su-
perposition, effectively splitting the universe into separate versions, at least
as far as the participating particles are concerned. An elegant formalism
for this process, explored herein as an analog of Everett’s formulation, is to
represent the quantum universe in terms of weights on total classical states
of the universe. These weights flow deterministically through configuration
space, and a “split” occurs when an observation causes weights on already
distinct classical states that are already separated along some configuration-
space dimension to separate along another dimension as well.

The Copenhagen interpretation is almost identical. In particular, the con-
tagion of superposition when particles interact is also present in the Copen-
hagen formalism, which is, indeed, indentical to the Everett formalism. Con-
tagion of superposition is what explains the quantum hide-and-seek game,
providing a correlation between the observer and the observed, and a con-
comitant inherent complementarity between that correlation and quantum
interference.

But the Copenhagen interpretation diverges from the formalism by pos-
tulating an extra event, the collapse of the superposition into just one of
its superposed states, which contradicts the formalism. According to the
Copenhagen interpretation, this collapse occurs at some unspecified point
along the cascade of microscopic observations so that, at least by the time
the observations culminate in a conscious observation by a human being (or
perhaps by the time they culminate in a macroscopic observation by, say, a
laboratory instrument), the superposition has vanished.

The original motivation for postulating the collapse was straightforward:
following a quantum experiment, the formalism predicts a continuing su-
perposition of states. But the experimenter clearly observes only one state
from that superposition; therefore, the superposition has collapsed into a
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unique state, contrary to the formalism. Everett’s central contribution was
to demonstrate that the formalism already accounts for the seemingly unique
outcome since, although the formalism describes a continuing superposition
of states, it also describes a corresponding superposition of mutually isolated
observers, each of whom will therefore see only one outcome.

Thus, contrary to how the interpretational debate is typically framed,
the difference between the Copenhagen and Everett interpretations is not
a dispute between a single universe or multiple universes. The multiplicity
of universes, in the sense of the contagion of superposition when particles
interact, is a property of the formalism shared by both interpretations. The
actual difference is whether or not to postulate an extra kind of event, namely
the collapse of the superposition.

In view of Everett’s explanation, the seemingly unique outcome of a quan-
tum observation does not provide evidence for a collapse. Nor does any other
such evidence exist. Postulating the collapse thus becomes a gratuitous com-
plication and contradiction of the massively confirmed formalism. Moreover,
the collapse renders quantum theory incomplete and ambiguous:

e The theory becomes incomplete because it cannot describe a quantum
state of some portion of the universe, except relative to some other
portion that embodies an observer. The theory cannot in principle
describe the quantum state of the universe as a whole and give laws for
the evolution of that state. The Everett formulation can and does.

e The theory is ambiguous as to what sort of physical interaction con-
stitutes a superposition-collapsing observation. Yet the theory makes
different predictions depending on whether such an observation has oc-
curred. In particular, if the observation is later “reversed,” reconverg-
ing the superposed states (as in figure 14 in section 5.3), interference
occurs if the superposition is intact, but cannot occur if the superpo-
sition had collapsed, leaving nothing to interfere with. (But a collapse
is only postulated when reversal is prohibitively unlikely, so that the
distinguishing experiment is prohibitively impractical.)

Not only is the postulated collapse gratuitous, and incompletely and
ambiguously specified, but furthermore all of the problematic features of
quantum physics—the apparent non-objectivity of the state of the universe,
apparent nonlocality of the effects of a measurement, and apparent nondeter-
minism—result from postulating the collapse.

7. Conclusion

Quantish physics, while not identical to actual quantum physics, shows by
example how it could be that local, deterministic laws produce a quantum-
like interference-observation duality. Everett’s formulation does the same for
a more complicated example—the real world.
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Everett’s interpretation of quantum mechanics accounts for actual quan-
tum phenomena in terms of an elegant formalism—one so basic to the phe-
nomena that even the Copenhagen interpretation invokes that formalism,
together with a gratuitous complication, the quantum collapse. Everett'’s
model ezplains quantum observation—its nature can be deduced from the
model—instead of requiring an ad hoc, imprecisely specified distinction be-
tween observation interactions and all other physical interactions.

The quantish-physics model is much simpler than, but deeply similar to,
Everett’s formulation. Quantish physics faithfully exhibits not only the fun-
damental quantum interference-observation duality, but also (with respect to
definite states) Heisenberg’s impossibility of eliminating interfering superpo-
sition without thereby introducing some complementary superposition. The
quantish model captures the fundamental issues that the interpretational
debate appeals to, and captures them in a precise formalism, but without
appeal to the training required of physicists. By substituting trivial Fredkin-
gate mechanics for real-world wave mechanics, quantish physics allows one
to devote full attention to what is special and perplexing about quantum
uncertainty.

Quantish physics may be helpful for introducing quantum mechanics to
undergraduates (perhaps even to many high school students®), and for ex-
plaining quantum uncertainty to the technically oriented segment of the gen-
eral population. I think doing so would be important for more than the
usual reasons of scientific literacy. The difference between a mechanistic and
nonmechanistic universe is as profound a philosophical matter as humanity
has ever grappled with. To the extent that this dispute focuses on quantum
mechanics, a simplified model such as quantish physics may provide a com-
mon ground on which laypersons, philosophers who are not physicists, and
physicists who are not philosophers can communicate with precision.
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