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Abstr act. This paper st udies differences and similarit ies among in­
ductive GMDH, deductive adaline, and back prop agat ion techniques.
All these are considered as parallel opt imizat ion algorithms because
each one minimizes the out put residual error in its own way. Self­
organizing processes and criteria that help obta in the optimum output
responses in the algorithms are explained through th e collect ive com­
putational approaches of these networks. The differences in empirical
analyzing capabilit ies of the pro cessing units are described. T he rel­
evance of local minima, which depend on various act ivat ing laws and
heuristics, is studied by explaining the funct iona lit ies of these algo­
rithms. This study is helpful in und erst and ing the inductive learning
mechanism in comparison with the sta ndard neural techniqu es, and in
designing better and faster mechanisms for modeling and predict ions
of complex systems.

1. Introduction

T he t heory of neural network s began in 1943 wit h the wor k of McCulloch and
P it t s [13], who conside red t he brain as a comp ute r cons ist ing of well-defined
com put ing eleme nts, t he neurons. In 1958 Rosenbla t t int roduced the t heoret­
ical conce pt of t he "percep tron" based on neural fun ctioning [16]. There exist
system t heoretic approaches to brain funct ion ing discussed in various disci­
plines like cybe rnet ics, patte rn recogni tion , art ificial intelligence, biop hys ics,
t heoreti cal biology, mathem ati cal psychology, and control sys te m sciences .
Neural networks have been ado p ted in problem solving studies rela ted to
various applied sciences and studies on t he progress of computer hardware
im plem enta tion s for par allel di st r ibuted pro cessing and st ructures of non-von
Neuman design . One can find st udies and development s on percept ron-based
works as early as t he 1960s in cybe rn et ics , sys tems engineering, and other
field s. A number of neur al network st ruc t ures , conce p ts , method s, and t heir
applicat ions have be en well known in neural modeling lit era ture for some
ti me [1, 8, 11].
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There has been rapid development in art ificial neural network mod eling
mainly in the direct ion of conne ct ionism among the neural uni ts in network
st ructures and in adaptat ions of "learn ing" mechan isms in them. T he tech­
niques differ as to the mechani sms adopted in t he networks, and are dist in­
guished for making successive adjust ments in connect ion st rengt hs until the
network performs a desired computat ion with certain accuracy. T he adap­
tive linear neuron element (adaline) was int roduced by Widrow and Hopf
in the early 1960s [19J. T he least mean square (LMS) technique used in
adaline is one of the imp ortan t cont ribut ions to the developm ent of the per­
ceptron theory. T he back pr opagation learni ng technique has become well
known during the past decad e [18J. It was widely used by the P DP group
for solving var ious problems in multilayered feed-forward networks. Else­
where, an induction mechanism called the group met hod of dat a han dling
(GMDH) was developed using ran domly connected inputs, and connect ion
st rengths were est ablished by minimizing the mean square error [3, 6, 9J.
Ivakhnenko collect ed concepts from the percept ron theory and cyberne t ics
[21], mixed these concepts wit h tr adit ional sys tem modeling techn iques, and
developed the GMDH technique for complex systems modeling dur ing the
1960s. GMDH uses the principle of induct ion by generat ing different part ial
funct ionals, the principle of evolution by forwardin g the pr ocessing flow from
layer to layer , and the principle of natural select ion by using the threshold
obj ect ive funct ion as a decidin g fun ct ion.

GMDH, adaline, and back propagat ion techniques are considered here be­
cause of their similarit ies as par allel op t imizat ion algorithms in minimizing
the output residual erro r, and for their inductive and deductive approaches in
dealin g wit h the st ate functi ons. T here is no st udy exist ing in the literature
comparing inducti ve and deducti ve approaches, where the former is act ivat ed
wit h thres hold objective funct ions and the lat ter is with threshold linear or
nonlinear functi ons. This paper considers generaliza t ion of learning laws
and funct ionaliti es used in these approaches. "Generalizat ion" is normally a
helpful phenomenon ; it allows us to deal effect ively wit h the st at ist ical mech­
anisms embedded in various exist ing situat ions . The term "generalizat ion"
is used here with the aim of st udying the differences and the similarit ies
between the approaches, and of st udying their performances.

2 . Neural approach a n d self organization

Rosenb lat t described the perceptron as a pro babilist ic model. He po int ed ou t
that single layered networks could not solve the problem of pattern recogni­
tion [17], and that at least two stages are requ ired: X -> H t ransformation
and H -> Y t ran sformation . He insisted t hat X -> H t ransformat ion is re­
alized by random link s, bu t H -> Y t ran sform at ion is more determini st ically
realized by learn ed links. T his correspo nds to the a pr iori and condit ional
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probabilistic links in the Bayes formula :
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j = 1, 2, . . . , m (2.1)

where Po is the a prior i link corresponding to the X ----> H tran sformation ,
P(Yj/ Xi) are condit ional links corres ponding to the H ----> Y transformation ,
N is t he sample size, and n and m are the number of vect or compo nents in
X and Y , resp ectively. Consequent ly perceptron structures are of two types:
probabilistic and algebr aic or nonparam et ric and paramet ric. Here our con­
cern is with parametric netwo rk st ruc tures. Connect ion weight s among the
H ----> Y links are established using ad aptive techniques. T he main emphasis
is on an optimum adjus tment of the weights in the links for achieving de­
sired output. Neural net s have gradually become mu lti layered feed-forward
network stru ctures of information processing used to solve various problems.

We underst and that information is passed on to the layered network
thro ugh the input layer , and the resu lt of the netwo rk 's computatio n is read
out at the out put layer. The task of the network is to make a set of associa­
ti ons of the input pat terns x with th e output patterns y. When a new input
pattern is put in the configuration , the associa tion must be able to ident ify its
out put pattern. A process is said to undergo self organization when identifica­
tio n or recognition categor ies emerge thro ugh the syst em 's environment; t he
self organ ization of knowledge is mainly form ed in adaptat ion of the learn ing
mechanism in the network st ructure [2, 4]. Self organiza tion in the netwo rk is
considered while bu ilding up the connections among the pr ocessing un its in
the layers to represent discret e inpu t and output ite ms . Adaptive pr ocesses
(interact ions betwee n state variab les) are considered wit hin the uni ts. An
important charac te rist ic of any neural network like adaline or back propa­
gati on is that output from each un it passes thro ugh a thresh old logic un it
(T LU) . A standard TLU is a thresho ld linear function that is used for bin ar y
categoriza t ion of feature patterns. Non linear transfer fun cti ons such as sig­
moid funct ions are used as a sp ecia l case for the cont inuous out pu t. When
the output of a neuron is activated through the TLU , it mimics a biological
neuron as "on" or "off." In network s like GMDH, the T LU uses a measur e
of an objective fun cti on to make the unit "on" or "off" ; that is why this is
called as threshold obj ective fun ct ion. A state fun ct ion is used to compute
the cap acity of the un it . Each unit is analyzed independ ently of the others .

T he next level of interaction comes from mut ua l connections between the
units ; the collect ive ph enomenon is considered from loops of the network.
Becau se of such connections , each uni t depends on the states of many ot her
uni ts. Such a network st ructure can be switched over to self-organizing mode
by using a stat ist ica l learn ing law. A learning law is used to connect a specific
form of acquired change through the synaptic weights-one that connects
pr esent to past behavior in an adapt ive fashion so that posit ive or negative
outcomes of events serve as signals for something else. This law could be
a mathematical funct ion, such as an energy function th at dissipates energy
into the network or an err or func t ion that measures the output residual



242 H. Madala

(2.2)

err or. A learn ing method follows a pro cedure that evaluates this function to
make pseudorandom changes in the weight values, ret aining those changes
that resul t in impr ovements to obtain the optimum out put response. Several
different procedures have been develop ed that minimize the average squared
error of the unit output

E = ~ L (1/i - Yi)2N i

where Yi is the est imated output depending upon a relationship, Yi is the
desired output , and N is the sample size. The ult imate goal of any learn ing
pr ocedure is to sweep through the whole set of associations and obtain a
final set of weight s in the dir ecti on that redu ces the erro r function . This is
realized in different forms of the networks [9, 10, 18, 19].

The statist ical mechani sm helps evaluate the uni ts un til the network per­
forms a desired computation to obtain certain accuracy in response to the
input signals. It enables the network to adapt itself to the examples of what it
should be doin g and to organize information within it self and thereby learn.
The collect ive computation of the overall process of the self organizat ion
helps in obtaining the optimum output response.

3. N etwork algorithms

The focus here is on presentation of empirical analyzing capabilit ies of the
networks GMDH , adaline , and back propagation in representi ng the inp ut­
output behavior of a system . Aspects considered are the basic functioning
at the unit level based on th ese approaches , and the connect ivity of uni ts for
recogniti on and pr ediction .

3.1 GMDH

Suppose we have a sample of N observations, a set of input-output pairs
(l1 ,01)' (12, 02), " " (IN,ON) E 0 , where 0 is a dom ain of certain data
observat ions , and we have to train the network using these input-output
pair s to solve an identification problem . For the given inpu t I, (1 :::; j :::; N)
it is expec ted to reproduce the output OJ and to identify the physical laws, if
any, embe dded in the system. The pr edicti on problem is that a given input
I N+! is expected to predi ct exactly the output ON+! from a model of the
domain it has learned duri ng the training.

In GMDH, a general form of a summation functi on is considered as a
Kolmogorov-Gabor po lynomial that is in the discrete form of the Volterra
funct ional series:

m mm mm m

if = ao + L aiXi + L L aij XiXj + L L L aijkXiXjXk + ...
i=1 i= 1 j=1 i=1 j=1k= 1

ao + al xl + a2x2 + ... + al1xi + a12x l x2

+... + a111x~ + a112xix2 + ...
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ao + alxl + a2x2 + ... + a UXm+l + a 12Xm+2 + .. .+ ammXml

(3.1)

where the est imated output is designated by f), the external input vector x
is designated by (Xl , X2, . .. , Xml), and the a ' s are the weight s or coefficients .
This funct ion is linear in par ame ters a and nonlinear in x. The nonlinear
functions were first introduced by W idr ow [20]. The inpu t variables X could
be independ ent variables, fun ctional terms, or finit e difference terms; that is,
the function is either an algebraic equation , a finit e difference equat ion, or
an equation wit h mixed te rms. The par ti al form of this function as a state
fun ctional is develop ed at each simulated unit and is activated in parallel to
bu ild up the complexity.

3 .2 Function at unit level

Let us assume that uni t n receives input vari ab les, for instance (X2 ' xs) C x ;

that is, t he state functi on of the uni t is a par ti al function in a finite form of
(3.1):

(3.2)

where the ws are the connect ion weights to the un it n. If there are m1 input
var iab les and two of them are randomly fed at each un it , t he network needs
C';l (= m1(m1- 1)j2) uni ts at the first layer to generate such par ti al forms.
If we let yP be the act ual value and s~ be the estimated value of the output
for the funct ion being considered for the pth observat ion, the output error is
given by

(p EO) (3.3)

The total squared error at unit n is

(3.4)

This corres ponds to the minimization of the averaged error E in est imat­
ing the weights w , which is the least- squares technique. The weights are
compute d using a spec ific training set at all uni ts that are represented with
different input arguments of ml. This is realized at each un it of the GMDH
structure .

GMDH multilayer structure is a par allel bounded st ructure built up based
on the connectionist approach, and information flows forward only. One of
the important functions built into the st ruc t ure is the ability to solve im­
plicitly defined relational functionals, t he units of which are det ermined as
independent elements of the par t ial functionals. All values in the domain of
the variables that sat isfy t he conditio ns expressed as equat ions comprise the
possible solutions [5, 9]. Each layer contains a group of units t hat are inter­
connecte d to the units in the next layer. The weights of the state fun ct ions
generated at the unit s are est imated using a training set 0 A , which is a part
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of O . A thr esho ld object ive funct ion is used to act ivate the units "on" or
"off" in comparison with a test ing set DB, which is another part of O. T he
unit outputs are fed forward as inpu ts to the next layer. T he out put of the
nth unit in the domain of a local thr esho ld measur e would become an input
to uni ts in the next level. T he pr ocess continues layer afte r layer. The est i­
mated weigh ts of the connec ted uni ts are memorized in the local memory. A
global minimum of the object ive function would be achieved in a particular
layer. This is guaranteed because of steepest descent in the output error
with respect to the connect ion weights in the solut ion space , in which it is
searched per a spe cific object ive by cross-validat ing the weight s.

3 .3 Learnin g by induction

The schemat ic func tional flow of the mult ilayer st ructure can be described
as follows. Let us assume that there are m 1 input vari ab les of x, including
nonlinear terms fed in pairs at each uni t of the first layer. T here are C;'1
uni ts in this layer , which uses state functions of the form (3.2) :

x~ ! (x;,Xj)
(3.5)

where x~ is the estimated output of unit n for n = 1, 2, . .. , C;'1; ~ , J =
1, 2, . . . , m 1; i # j ; and w' are the connect ing weights. Outputs of m 2
(::; C;'1) uni ts are turn ed "on" by the threshold funct ion and pass to the
second layer as inputs. T here are C;'2 units in t he second layer , and st ate
funct ions of the form (3.2) are considered :

x~ f(x~ , xj )
w~o + W~1X; + w~2Xj (3.6)

wher e x~ is the est imated output , n = 1,2, ... ,C;'2; i , j = 1,2, . .. ,m 2; i i- j ;
and w" are the connecting weights . Ou tputs of m3 (::; C;'2) un it s ar e pas sed
to the third layer per the threshold funct ion . In the third layer C;'3 un it s
are used wit h the st at e funct ions of the form (3.2):

! (X;',X'j)

w~~ + W~'1 x~ + w~~x'j (3.7)

where x~' is the est imated out put , n = 1, 2, .. . , C;'3; i, j = 1,2, . .. , m 3;
i i- j ; and Will are the connect ing weight s. T his provides an indu cti ve learn ing
algorit hm that cont inues layer afte r layer and is stopped when one of the units
achieves a global minimum on the object ive measure. The state function of
a unit in the third layer might be equivalent to the function of some original
input variables of x :

III !("")xn x; ,xj
!U(x~ , x~ ) , ! (x~ , x;))
! (! (! (xp,Xq), ! (xp,xr)),!(! (Xq,xr), ! (xu,xv)))
! (xp, Xq, Xr,Xu,xv) (3.8)
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Fi gure 1: Functional flow to un it n of layer 3 in GM DH .

where (x;',x'J) C x" and (x~ , x~ , x~ ,xD c x' are the est imated out puts from
the second and first layers, respect ively, and (xp , xq , x" xu, xv) C x are from
the input layer (figure 1). A typical threshold objective functi on such as
regul arization is measured for its total squared error on test ing set 0 B as

6 = 2:= (x';:k _ yk)2
k EGB

(3.9)

where yk is the actual out put value and x;;'k is the est imated out put of uni t
n of the third layer for the kth observat ion . The optimal response per the
obj ect ive function is ob tained thro ugh the connecting weigh ts w , which are
memorized at the un its in the preced ing layers [12]. There are various forms
of thresho ld object ive functions in these networks based on th e obj ectives
like regulari zation , forecasti ng, finding physical laws, obtaining minimum
biased models, or a combination of these, which might vary from pr oblem to
problem .

3.4 Adaline

Adaline is a single-element struct ure wit h the thresho ld logic unit and vari­
able connect ion strengths. It comput es a weight ed sum of activiti es of the
inputs t imes the synaptic weight s, including a bias element . It takes +1 or
- 1 as inputs. If the sum of the state funct ion is greater than zero, output
beco mes +1 , and if it is equal to or less than zero , out put is - 1; this is
the threshold linear funct ion. Recent literature reveals the usage of sigmoid
funct ions in these networks [15]. The complexity of the network is increased
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by adding the number of ad alines in par allel, which is called as "rnadaline."
For simp licity, the funct ionality of the ad aline is described here.

3 .5 Function at a single element

Let us consider adaline with m input units whose output is designated by y
and with external inputs Xk (k = 1, . .. ,m). Denote by Wk the corresponding
weight s in the interconnections. Output is given by a general formula in the
form of a summat ion function

where Wo is a bias te rm, and the activation level of the uni t output is

S = f(8)

(3.10)

(3.11)

Given a spec ific input pa ttern xP , and if v" is the corresponding desired value
of the output , the output error is given by

(P E N ) (3.12)

where N indicates the sample size. The total squared error on the sample is

(3.13)

The problem corres ponds to minimizing t he average error E in obtaining the
optimum weights. This is computed for a specific tr aining set, and is realized
in the iterative least mean square (LM3) algorithm.

3. 6 LMS algorithm or W id row-H opf delta r u le

At each iterat ion the weight vector W is updated as

(3.14)

where wp+l is the next value of the weight vect or; w P is the present value of
the weight vector; x P is t he present pattern vector; eP is the present err or per
equation (3.12); and jxP

I
2 equa ls the number of weights.

The pth iteration is

T
yP- xP w P

tl (y P - x PTw P) = _ x PTtlw P

where T indicates transpose. From equa t ion (3.14) we can write

(3.15)

(3.16)
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This can be subst it ute d in equat ion (3.15) to deduce the following :
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_ x PT~ePxP
IxpI 2

_XPT xP~eP
IxpI 2

- Ci e P (3.17)

The error is reduced by a factor Ci as the weigh ts are changed while hold­
ing the inpu t pat tern fixed . Ent ering a new input pat tern starts the next
adaptat ion cycle. The next erro r is reduced by a factor o , and the pro cess
cont inues . The choice of Ci cont rols stability and the speed of convergence.
St abi lity requ ires that 2 < Q: < O. A pr acti cal range for Ci is given by
1.0 > Ci > 0.1.

3.7 Back p r opogation

Suppose we want to store a set of pat te rn vectors x" , p = 1,2, ... , N by
choosing the weight s W in such a way that, when we pr esent the network
with a new pat tern vector Xi, it will respond by producing one of the stored
pat terns that it resembles most closely. The general natur e of the task to be
performed by the feed-forward network is to make a set of associat ions of the
input patterns x~ wit h the output pat terns yf . When the input layer uni ts
are put in the configur atio n x~, t he output uni ts should produce the corre­
sponding yf. S , denote act ivat ions of output uni ts based on the threshold
sigmoid function , and zj are those of t he intermediate or hid den layer un its.

1. For a 2-layer ne t, uni t output is given by

Sf = Hi:. Wik xn
k

2. For a 3-layer net,

Sf = f (i:.Wij zj) = f (i:. W ij f (i:. W jk !J.k))
j j k

(3.18)

(3.19)

In either case the connect ion weight s ware chosen so that Sf = yf. This
corresponds to the gradient minimization of the average of E (see equat ion
(3.20) below) for est imat ing the weight s. The computational power of such
a network depends on how many layers it has . If it has only two, it is quite
limited ; the reason is that it must discrimin ate solely on the basis of the
linear combina t ion of it s inputs [14].

3. 8 Learning by evalu a t ing the delta r u le

One way to iteratively compute the weight s is to change them lit tle by little
so the total squared erro r decreases at each ste p:

E = ~ I) S;- yf)2
t ,P

(3.20)
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This can be guarant eed by taking the change in W pr op ortional to the nega­
ti ve gradient E with resp ect to W (slid ing downhill in w space on the sur face
E).

(3.21)

where 'r/ is a learning rate constant of proport ionality . This implies a gradient
descent of the total error E for the ent ire set p . This can be computed from
equ ation (3.18) or (3.19).

For a 2-layer net,

(3.22)

where sf = 2:k W ik x~ is the state function and 1'0 is the derivative of the
act ivation function 10 at the output unit i . This is called the generalized
delt a rul e.

For a 3-layer net, input pat terns are repl aced by the zj of the intermediate
units:

OWij = 'r/L of zj
p

By using the chain rul e the derivative of (3.19) is evaluated :

OWjk = 'r/L 0; W i j f' (s'j) x~ == L ojx~
i 1P P

(3.23)

(3.24)

This can be generalized to more layers. All the changes are simply expressed
in terms of the auxiliary quant it ies 0;, oj, . .., and the Se for one layer are
computed by simple recursions from those of the subsequent layer. This
provides a training algorithm where the responses are fed forward and the
erro rs are propagated back to compute the weight changes of layers from the
output of the previous layers.

4 . Discussion

The maj or difference between the networks is that GM DH uses a bounded
network st ruct ure with all combinat ions of input pair s as it is trained and
tested by scanning the measure of the threshold object ive function through
the optimal connect ion weights. This typ e of structur e is useful for mod eling
mul ti-input- single-ou tput (MISO) systems . In cont ras t, adaline and back
propagation use an unb ounded network st ru cture to represent a mod el of
the syst em as it is trained and tested through the uni t tran sform ations for
it s opt imal connec t ion weights. This typ e of structure is used for modeling
mul ti-input-multi- output (MIMO) systems . Studies have shown that any
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unb ounded network can be replaced by a bounded network per the capac it ies
and energy dissipat ions in their architectures [7]. Mecha nisms in both cases
are easily worked out for any type of system, MISO or MIMO. In ad aline
and back propagation , inpu t and output dat a are considered either {- 1, +1}
or {O, 1}. In GMDH, input and out put data are in discrete ana log form , but
one can norm alize data between {-1 , + 1} or {0,1 }. Orthogonalization of
the input dat a could be done in bot h cases as initi al processing to reduce the
noise. T he relevance of local minima depend s on the complexity of t he task
for which the system is trained .

The learning adaptat ions considered in these networks differ in two ways:
how they activate and how they forward the uni t outputs . In back prop­
agat ion the uni t output s are transform ed and fed forwar d , an d the err ors
at the output layer ar e propagated back to compute the weight changes in
the layers. In GMDH the outputs are fed forward based on a decision from
the threshold function . Back pro pagation handles the problem tha t gradient
descent requires infini tesimally small steps to evaluate the output error , and
man ages wit h one or two hidden layers. Adaline uses the LMS algorithm
wit h its sample size to minimize the err or measure, whereas GMDH uses
the least-squares techn ique. T he param eters wit hin each unit of GMDH are
est imated so that , on a t raining set of observations, the sum of the squared
err ors of the fit of the uni t to the final desired output is minimized .

Simulat ion experiments are conducted to compare 'the perform an ces of
inducti ve versus dedu cti ve networks by evaluat ing the output error as a
learning law. Here two general types of bound ed network structures with
inpu ts fed in pairs are considered: one is a dedu ctive network (figure 2) with
the sigmoid transfer fun ction tanh(y * uo) where Uo is t he gain factor , and
anot her is an inducti ve network (figure 3) wit h t he threshold object ive fun c­
tion , which is a combined measure of regularizat ion (3.9) and mini mum-bias
error. In both st ructures the complexity of the state function is increased
layer-by-layer . T he least-squares technique is used in estimating the weights .
Various rand omly generate d data and actua l empirical data in the discrete
ana log form in the range {- 1,+1} are used in these experiment s. T he net ­
work st ructures are unique in their performances in obtaining the opt imal
weights. Here examples for linear and nonlinear cases and for a dedu ctive
network wit hout any act ivations are discussed .

1. In the linear case, the out put dat a is generate d from the equat ion

y = 0.433 - 0.195xl + 0.243x2 + 0.015x3 - 0.18x4 + E (4.1)

where Xl> . . . , X 4 are randomly generated input variables, y is the output
variab le, and E is the noise added to the data .

The inducti ve network with the t hreshold object ive fun ct ion is fed wit h
five input variables ( Xl , X2 "" ,xs). T he global measure is obtained at a unit
in t he sixth layer (combined = 0.0247). The average residual err or of t he
uni t is computed as 0.0183.



250

input
layer layer 1 layer 2 layer 3

H. Madala

Fi gure 2: Bounded net work st ru ct ur e with 5 inpu t terms using a
sigmoid function .

input
l aye r layer 1 layer 2 layer 3

Figure 3: GMDH struct ur e with m l = 5, m 2 = 5, and m 3 = 5 using
thresh old objective fun ction.
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The deductive network with the sigmoid transfer fun ction, whi ch uses the
same input and output data , converges to a global minimum at a unit in the
third layer. The average residual erro r of the uni t is 0.10l.

2. In the nonlinear case, the output data is generated from the equation

y = 0.433 - 0.095xI + 0.243x2+ 0.35xi - 0.18xIX2+ E (4.2)

where X l and X2 are randomly generated inp ut vari abl es, y is the output
vari abl e, and E is the noise added to the data.

In the inductive network, Xl , X2 , xi , x~ , and XI X2 are fed as input vari­
ables. The global measure is obtained at a uni t in the third layer (combined =
0.0453). The average residual erro r of the unit is computed as 0.0406. Table
1 gives the connec ting weight values (wo, Wj , and Wi) , combined measure,
and residual erro r at each node.

The deductive network, which uses the same input and output data, con­
verges to a global minimum at a uni t in the second layer. The average residual
error of the uni t is computed as 0.0223. Table 2 gives the connect ing weight
values (wo , Wj , and Wi) an d residual erro r at each node.

3. Further , the deduct ive network structure is tested for it s performan ce
without any threshold act ivat ions at the uni ts; that is, t he uni t outputs
are dir ectl y fed forward to the next layer. A global minimum is not
achieved; the residual error is reduced layer-by-layer as it pro ceeds , and
ultimately the network becomes unstabl e. This shows the importan ce
of the threshold functions in the convergence of these networks.

The resul ti ng robustness in computations of self-organization modeling
is one of t he features that has made these networks at t ract ive. It is clear
that network mod els have a st rong affinity with statist ical mechani cs. The
main purpose of the mod eling is to obtain a better input-output transfer
relation between the patterns by minimizing the effect of noise in the inpu t
vari abl es. This is possible only by providing more knowledge to the network
st ruc tures , thereby improvin g the network performan ce and achieving bet ter
computing ab ilit ies in probl em solving. In the inductive learning approach
the threshold objective function plays an imp ortant role in providing more
informative models for identifying and predicting complex systems. In the
deductive case the unit output transformation through the sigmoid functi on
plays an important role when the functional relationship is sigmoid rather
than linear. Overall, one can see that performan ce of the neural mod eling
can be improved by providing one's experience and knowledge to the network
st ructure as a self-organization mechani sm . It is an int egrati on of various
concepts from convent ional computing and artificial intelligence techniques.
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LAYER= 1 (ml= 5)
J= 1 I= 2
.411 . 186 . 147 ; COMBI NED= . 138E+00, RES ERR= . 513E- Ol
J= 1 I= 3
.454 .145 . 134 ; COMBINED= .416E+00, RES ERR= . 122E+00
J= 1 I= 4
.425 .2 13 . 120 ; COMBINED= . 218E+00 , RES ERR= .657E-Ol
J= 1 I= 5
.455 .069 .268; COMBI NED= .279E+00 , RES ERR= . 103E+00
J= 2 I= 3
.434 . 155 . 179 ; COMBINED= .907E- Ol , RES ERR= . 406E- Ol
J= 2 I= 4
.405 . 629 - .376 ; COMBINED= .215E+00, RES ERR= . 137E+00
J= 2 I= 5
.458 .052 .284 ; COMBINED= . 226E+00 , RES ERR= .997E-Ol
J= 3 I = 4
.452 . 203 . 133 ; COMBINED= . 207E+00 , RES ERR= .5 89E- Ol
J= 3 I = 5
.465 . 073 .260 ; COMBINED= . 266E+00 , RES ERR= . 102E+00
J= 4 I= 5
.466 .008 . 329; COMBINED= . 257E+00, RES ERR= . 109E+00
----- ----------------

LAYER= 2 (m2= 5)
J= 1 I= 2
. 024 1 . 097 -. 151 ; COMBINED= . 154E+00, RES ERR= . 523E-Ol
J= 1 I= 3
. 033 2 .313 -1. 363 ; COMBINED= . 144E+00, RES ERR= .609E- Ol
J= 1 I = 4
- . 033 .208 .822 ; COMBINED= . 295E+00, RES ERR= .527E- Ol
J= 1 I= 5
.004 - .451 1.423 ; COMBI NED= . 113E+00, RES ERR= . 412E- Ol
J= 2 I= 3
- .079 . 186 . 933 ; COMBINED= .224E+00 , RES ERR= .5 23E-Ol
J= 2 I= 4
- . 054 . 076 . 989 ; COMBINED= . 165E+00, RES ERR= . 536E-Ol
J= 2 I= 5
. 020 - .099 1 .045 ; COMBI NED= . 102E+00 , RES ERR= .443E- Ol
J= 3 I= 4
- . 019 - .665 1. 664; COMBINED= .263E+00, RES ERR= . 598E- Ol
J= 3 I= 5
.020 - .437 1. 388 ; COMBI NED= .613E- Ol , RES ERR= . 381E- Ol
J= 4 I= 5
. 023 - .794 1. 747 ; COMBINED= . 581E- Ol , RES ERR= .417E-Ol

Table 1: Network st ruct ur e with thres hold ob jective function .
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LAYER= 3 (m3= 5)
J= 1 I= 2
. 008 1 .439 -.472 ; COMBINED= .919E-Ol, RES ERR= .3 90E-Ol
J= 1 I = 3
. 001 .098 . 886 ; COMBINED= .548E-Ol , RES ERR= . 374E-Ol
J= 1 I = 4
- .008 .399 .596 ; COMBINED= . 119E+00 , RES ERR= . 399E-Ol
J= 1 I = 5
.008 4. 123 - 3.144 ; COMB I NED= .453E- Ol , RES ERR= .406E-Ol*
J= 2 I = 3
.000 .047 .939; COMBINED= .642E- Ol , RES ERR= .3 74E-Ol
J= 2 I = 4
-.013 . 146 .858; COMBINED= . 111E+00 , RES ERR= .404E-Ol
J= 2 I= 5
. 003 - .456 1.430 ; COMB INED= . 128E+00 , RES ERR= .411 E-Ol
J= 3 I= 4
.004 1.154 - . 174 ; COMBINED= . 969E- Ol , RES ERR= .372E-Ol
J= 3 I = 5
. 001 .929 .055; COMBINED= .537E- Ol , RES ERR= .373E-Ol
J= 4 I= 5
-. 009 .7 15 . 281 ; COMBI NED= . 105E+00, RES ERR= . 406E- Ol
- ----- --- - - --- - --- - - -

LAYER= 4 (m4= 5)
J= 1 I= 2
. 004 - .390 1.372; COMBINED= .896E-Ol, RES ERR= . 353E- Ol
J= 1 I= 3
.004 - .400 1. 385; COMBINED= .699E- Ol , RES ERR= .353E-Ol
J= 1 I = 4
- . 007 .713 .283; COMBINED= .918E-Ol, RES ERR= . 363E-Ol
J= 1 I = 5
.002 - . 172 1.156 ; COMBINED= . 121E+00 , RES ERR= .3 51E-Ol
J= 2 I = 3
.001 .001 . 986 ; COMBINED= .636E- Ol , RES ERR= . 350E-Ol
J= 2 I = 4
. 000 .867 . 121 ; COMBINED= .636E-Ol, RES ERR= . 350E-Ol
J= 2 I = 5
.002 2 .0 12 -1. 025 ; COMBINED= .8 19E-Ol, RES ERR= .3 51E-Ol
J= 3 I = 4
. 001 .992 - .005 ; COMB INED= . 636E- Ol , RES ERR= .350E -Ol
J= 3 I = 5
. 001 1. 118 - .1 30 ; COMBINED= .7 16E-Ol , RES ERR= . 350E- Ol
J= 4 I = 5
-.002 . 253 .738; COMBI NED= .6 69E-Ol , RES ERR= .351E- Ol

Table 1: Continued.
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LAYER= 5 (m5= 5)
J= 1 I = 2
.004 1 .41 9 -.436; COMBINED= . 971E-Ol , RES ERR= .352E-Ol
J= 1 I= 3
.003 3 . 864 -2 . 879 ; COMBINED= .1 05E+00, RES ERR= .354E- Ol
J= 1 I= 4
. 001 .337 .649 ; COMBINED= .484E- Ol , RES ERR= .350E-Ol
J= 1 I= 5
. 001 -.137 1. 123 ; COMBINED= .484E-Ol, RES ERR= .350E- Ol
J= 2 I= 3
.004 - .5 85 1. 567; COMBINED= . 113E+00 , RES ERR= . 351E- Ol
J= 2 I= 4
.004 - .438 1 .421 ; COMBI NED= . 983E- Ol , RES ERR= .352E-Ol
J= 2 I= 5
.004 - .446 1.429; COMBINED= . 964E-Ol , RES ERR= .352E-Ol
J= 3 I= 4
. 003 -2 .476 3.461 ; COMBINED= .8 14E- Ol , RES ERR= .353E- Ol
J= 3 I= 5
. 003 -2 . 602 3 . 587; COMBINED= . 935E-Ol , RES ERR= .353E-Ol
J= 4 I= 5
.001 - .172 1. 158 ; COMBI NED= .340E+O l , RES ERR= .350E-Ol
-------------------- -
LAYER= 6 (m6= 5)
J= 1 I= 2
- .004 - .141 1 .1 32 ; COMBINED= .836E- Ol , RES ERR= .364E-Ol
J= 1 I= 3
. 004 - .555 1. 539 ; COMBINED= .899E- Ol , RES ERR= .353E-Ol
J= 1 I = 4
.004 - .557 1. 542 ; COMBINED= .883E- Ol , RES ERR= .353E-Ol
J= 1 I= 5
. 003 - 7 .773 8. 758; COMBINED= .983E-Ol , RES ERR= . 352E-Ol
J= 2 I= 3
.004 - .456 1 .439 ; COMBINED= . 972E- Ol , RES ERR= . 352E-Ol
J= 2 I= 4
.004 - .445 1. 428; COMBINED= . 982E-Ol , RES ERR= .352E-Ol
J= 2 I= 5
- .004 . 666 . 323; COMBINED= .895E-Ol , RES ERR= .363E-Ol
J= 3 I= 4
. 001 .492 .494 ; COMBINED= .483E- Ol , RES ERR= .350E- Ol
J= 3 I = 5
.004 1. 659 - .675 ; COMBI NED= .870E- Ol , RES ERR= .353E- Ol
J= 4 I= 5
. 004 1 . 677 - .693 ; COMBINED= .888E-Ol , RES ERR= . 354E-Ol

Table 1: Continued.
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LAYER= 1
J= 1 1= 2
.411 .186 . 147 ; RES ERR= .5 13E-Ol
J= 2 1= 3
.434 . 155 . 179 ; RES ERR= .406E-Ol
J= 3 1= 4
.452 .203 . 133 ; RES ERR= .589E-Ol
J= 4 1= 5
.466 .008 .329; RES ERR= . 109E+00
J= 5 1= 1
.455 .268 .069; RES ERR= . 103E+00
---------------------

LAYER= 2
J= 1 1= 2
- .500 - 1 .100 2.489 ; RES ERR= .223E-Ol*
J= 2 1= 3
- .477 1 .803 - .436 ; RES ERR= .336E-Ol
J= 3 1= 4
-. 489 1.989 - .613; RES ERR= .328E-Ol
J= 4 1= 5
- .856 . 115 1. 709 ; RES ERR= . 102E+00
J= 5 1= 1
- .757 1 . 304 .402; RES ERR= .824E-Ol
--------------- - -----
LAYER= 3
J= 1 1= 2
-.484 1 .052 .329 ; RES ERR= .242E- Ol
J= 2 1= 3
-.456 1. 464 -.117 ; RES ERR= .368E- Ol
J= 3 1= 4
- .614 . 960 .577; RES ERR= .393E- Ol
J= 4 1= 5
-.722 1.497 . 169 ; RES ERR= .764E-Ol
J= 5 1= 1
- .488 . 158 1. 229; RES ERR= .249E-Ol

Tabl e 2: Network structure with sigmoid fun ct ion.



256

LAYER= 4
J= 1 1= 2
- . 458 .905 . 454; RES ERR= . 438E-Ol
J= 2 1= 3
-. 441 1. 641 - . 304 ; RES ERR= .492E-Ol
J= 3 1= 4
- .502 1.757 - . 349 ; RES ERR= .410E-Ol
J= 4 1= 5
- . 467 .2 90 1. 080; RES ERR= .456E-Ol
J= 5 1= 1
- .436 -4 .405 5 . 736 ; RES ERR= .465E-Ol
---------------------

LAYER= 5
J= 1 1= 2
- .437 1 . 088 .253; RES ERR= . 643E- Ol
J= 2 1= 3
- . 455 . 954 . 405 ; RES ERR= . 591E- Ol
J= 3 1= 4
- .476 .560 .830; RES ERR= . 586E-Ol
J= 4 1= 5
- . 422 19 . 103 -17 . 783 ; RES ERR= .642E- Ol
J= 5 1= 1
- .426 - . 459 1. 786 ; RES ERR= . 651E- Ol
- --- - - ---------------

LAYER= 6
J= 1 1= 2
- . 427 1. 159 .175 ; RES ERR= . 778E-Ol
J= 2 1= 3
- .428 - .111 1.444 ; RES ERR= .741E-Ol
J= 3 1= 4
- . 441 1 .755 - .406 ; RES ERR= . 729E- Ol
J= 4 1= 5
- .413 . 121 1. 195 ; RES ERR= . 796E-Ol
J= 5 1= 1
- . 417 - .037 1. 358 ; RES ERR= . 791E- Ol

Tab le 2: Continued.
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