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Abstract. This paper studies differences and similarities among in-
ductive GMDH, deductive adaline, and back propagation techniques.
All these are considered as parallel optimization algorithms because
each one minimizes the output residual error in its own way. Self-
organizing processes and criteria that help obtain the optimum output
responses in the algorithms are explained through the collective com-
putational approaches of these networks. The differences in empirical
analyzing capabilities of the processing units are described. The rel-
evance of local minima, which depend on various activating laws and
heuristics, is studied by explaining the functionalities of these algo-
rithms. This study is helpful in understanding the inductive learning
mechanism in comparison with the standard neural techniques, and in
designing better and faster mechanisms for modeling and predictions
of complex systems.

1. Introduction

The theory of neural networks began in 1943 with the work of McCulloch and
Pitts [13], who considered the brain as a computer consisting of well-defined
computing elements, the neurons. In 1958 Rosenblatt introduced the theoret-
ical concept of the “perceptron” based on neural functioning [16]. There exist
system theoretic approaches to brain functioning discussed in various disci-
plines like cybernetics, pattern recognition, artificial intelligence, biophysics,
theoretical biology, mathematical psychology, and control system sciences.
Neural networks have been adopted in problem solving studies related to
various applied sciences and studies on the progress of computer hardware
implementations for parallel distributed processing and structures of non-von
Neuman design. One can find studies and developments on perceptron-based
works as early as the 1960s in cybernetics, systems engineering, and other
fields. A number of neural network structures, concepts, methods, and their
applications have been well known in neural modeling literature for some
time [1, 8, 11].
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There has been rapid development in artificial neural network modeling
mainly in the direction of connectionism among the neural units in network
structures and in adaptations of “learning” mechanisms in them. The tech-
niques differ as to the mechanisms adopted in the networks, and are distin-
guished for making successive adjustments in connection strengths until the
network performs a desired computation with certain accuracy. The adap-
tive linear neuron element (adaline) was introduced by Widrow and Hopf
in the early 1960s [19]. The least mean square (LMS) technique used in
adaline is one of the important contributions to the development of the per-
ceptron theory. The back propagation learning technique has become well
known during the past decade [18]. It was widely used by the PDP group
for solving various problems in multilayered feed-forward networks. Else-
where, an induction mechanism called the group method of data handling
(GMDH) was developed using randomly connected inputs, and connection
strengths were established by minimizing the mean square error [3, 6, 9].
Ivakhnenko collected concepts from the perceptron theory and cybernetics
[21], mixed these concepts with traditional system modeling techniques, and
developed the GMDH technique for complex systems modeling during the
1960s. GMDH uses the principle of induction by generating different partial
functionals, the principle of evolution by forwarding the processing flow from
layer to layer, and the principle of natural selection by using the threshold
objective function as a deciding function.

GMDH, adaline, and back propagation techniques are considered here be-
cause of their similarities as parallel optimization algorithms in minimizing
the output residual error, and for their inductive and deductive approaches in
dealing with the state functions. There is no study existing in the literature
comparing inductive and deductive approaches, where the former is activated
with threshold objective functions and the latter is with threshold linear or
nonlinear functions. This paper considers generalization of learning laws
and functionalities used in these approaches. “Generalization” is normally a
helpful phenomenon; it allows us to deal effectively with the statistical mech-
anisms embedded in various existing situations. The term “generalization”
is used here with the aim of studying the differences and the similarities
between the approaches, and of studying their performances.

2. Neural approach and self organization

Rosenblatt described the perceptron as a probabilistic model. He pointed out
that single layered networks could not solve the problem of pattern recogni-
tion [17], and that at least two stages are required: X — H transformation
and H — Y transformation. He insisted that X — H transformation is re-
alized by random links, but H — Y transformation is more deterministically
realized by learned links. This corresponds to the a priori and conditional
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probabilistic links in the Bayes formula:

N n
plyi) = [Po Hp(yj/fci)} i=12,...,m (2.1)
1 i=1
where py is the a priori link corresponding to the X — H transformation,
p(y;j/z;) are conditional links corresponding to the H — Y transformation,
N is the sample size, and n and m are the number of vector components in
X and Y, respectively. Consequently perceptron structures are of two types:
probabilistic and algebraic or nonparametric and parametric. Here our con-
cern is with parametric network structures. Connection weights among the
H — Y links are established using adaptive techniques. The main emphasis
is on an optimum adjustment of the weights in the links for achieving de-
sired output. Neural nets have gradually become multilayered feed-forward
network structures of information processing used to solve various problems.

We understand that information is passed on to the layered network
through the input layer, and the result of the network’s computation is read
out at the output layer. The task of the network is to make a set of associa-
tions of the input patterns z with the output patterns y. When a new input
pattern is put in the configuration, the association must be able to identify its
output pattern. A process is said to undergo self organization when identifica-
tion or recognition categories emerge through the system’s environment; the
self organization of knowledge is mainly formed in adaptation of the learning
mechanism in the network structure [2, 4]. Self organization in the network is
considered while building up the connections among the processing units in
the layers to represent discrete input and output items. Adaptive processes
(interactions between state variables) are considered within the units. An
important characteristic of any neural network like adaline or back propa-
gation is that output from each unit passes through a threshold logic unit
(TLU). A standard TLU is a threshold linear function that is used for binary
categorization of feature patterns. Nonlinear transfer functions such as sig-
moid functions are used as a special case for the continuous output. When
the output of a neuron is activated through the TLU, it mimics a biological
neuron as “on” or “off.” In networks like GMDH, the TLU uses a measure
of an objective function to make the unit “on” or “off”; that is why this is
called as threshold objective function. A state function is used to compute
the capacity of the unit. Each unit is analyzed independently of the others.

The next level of interaction comes from mutual connections between the
units; the collective phenomenon is considered from loops of the network.
Because of such connections, each unit depends on the states of many other
units. Such a network structure can be switched over to self-organizing mode
by using a statistical learning law. A learning law is used to connect a specific
form of acquired change through the synaptic weights—one that connects
present to past behavior in an adaptive fashion so that positive or negative
outcomes of events serve as signals for something else. This law could be
a mathematical function, such as an energy function that dissipates energy
into the network or an error function that measures the output residual
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error. A learning method follows a procedure that evaluates this function to
make pseudorandom changes in the weight values, retaining those changes
that result in improvements to obtain the optimum output response. Several
different procedures have been developed that minimize the average squared
error of the unit output

= ]% Z(ﬁz ~ i) (2.2)

where g; is the estimated output depending upon a relationship, y; is the
desired output, and N is the sample size. The ultimate goal of any learning
procedure is to sweep through the whole set of associations and obtain a
final set of weights in the direction that reduces the error function. This is
realized in different forms of the networks [9, 10, 18, 19].

The statistical mechanism helps evaluate the units until the network per-
forms a desired computation to obtain certain accuracy in response to the
input signals. It enables the network to adapt itself to the examples of what it
should be doing and to organize information within itself and thereby learn.
The collective computation of the overall process of the self organization
helps in obtaining the optimum output response.

3. Network algorithms

The focus here is on presentation of empirical analyzing capabilities of the
networks GMDH, adaline, and back propagation in representing the input-
output behavior of a system. Aspects considered are the basic functioning
at the unit level based on these approaches, and the connectivity of units for
recognition and prediction.

3.1 GMDH

Suppose we have a sample of N observations, a set of input-output pairs
(I1,01), (I2,02),..., (In,on) € O, where O is a domain of certain data
observations, and we have to train the network using these input-output
pairs to solve an identification problem. For the given input I; (1 < j < N)
it is expected to reproduce the output o; and to identify the physical laws, if
any, embedded in the system. The prediction problem is that a given input
Iy, is expected to predict exactly the output oy4; from a model of the
domain it has learned during the training.

In GMDH, a general form of a summation function is considered as a
Kolmogorov-Gabor polynomial that is in the discrete form of the Volterra
functional series:

m m m
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(3.1)

where the estimated output is designated by g, the external input vector z
is designated by (z1,22,...,Zm1), and the a’s are the weights or coefficients.
This function is linear in parameters a and nonlinear in z. The nonlinear
functions were first introduced by Widrow [20]. The input variables z could
be independent variables, functional terms, or finite difference terms; that is,
the function is either an algebraic equation, a finite difference equation, or
an equation with mixed terms. The partial form of this function as a state
functional is developed at each simulated unit and is activated in parallel to
build up the complexity.

3.2 Function at unit level

Let us assume that unit n receives input variables, for instance (z2,z5) C x;
that is, the state function of the unit is a partial function in a finite form of
(3.1):

Sn = Wno + Wn1T2 + WnaTs (3.2)

where the ws are the connection weights to the unit n. If there are m1 input
variables and two of them are randomly fed at each unit, the network needs
C2%. (=ml1(ml—1)/2) units at the first layer to generate such partial forms.
If we let y? be the actual value and s? be the estimated value of the output
for the function being considered for the pth observation, the output error is
given by

el = sP —yP (p€O) (3.3)
The total squared error at unit n is

B =2 () (34)

peEO

This corresponds to the minimization of the averaged error E in estimat-
ing the weights w, which is the least-squares technique. The weights are
computed using a specific training set at all units that are represented with
different input arguments of m1. This is realized at each unit of the GMDH
structure.

GMDH multilayer structure is a parallel bounded structure built up based
on the connectionist approach, and information flows forward only. One of
the important functions built into the structure is the ability to solve im-
plicitly defined relational functionals, the units of which are determined as
independent elements of the partial functionals. All values in the domain of
the variables that satisfy the conditions expressed as equations comprise the
possible solutions [5, 9]. Each layer contains a group of units that are inter-
connected to the units in the next layer. The weights of the state functions
generated at the units are estimated using a training set O, which is a part
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of O. A threshold objective function is used to activate the units “on” or
“off” in comparison with a testing set Op, which is another part of O. The
unit outputs are fed forward as inputs to the next layer. The output of the
nth unit in the domain of a local threshold measure would become an input
to units in the next level. The process continues layer after layer. The esti-
mated weights of the connected units are memorized in the local memory. A
global minimum of the objective function would be achieved in a particular
layer. This is guaranteed because of steepest descent in the output error
with respect to the connection weights in the solution space, in which it is
searched per a specific objective by cross-validating the weights.

3.3 Learning by induction

The schematic functional flow of the multilayer structure can be described
as follows. Let us assume that there are ml input variables of z, including
nonlinear terms fed in pairs at each unit of the first layer. There are C%,
units in this layer, which uses state functions of the form (3.2):

T, = f(zi 1)
= Wpg + Wiy i + WnyT; (3:5)
where 2, is the estimated output of unit n for n = 1,2,...,C2; 4,5 =
1,2,...,ml; ¢ # j; and w' are the connecting weights. Outputs of m2

(< CZ)) units are turned “on” by the threshold function and pass to the
second layer as inputs. There are CZ, units in the second layer, and state
functions of the form (3.2) are considered:

z, = f(x,z))
= wZO + wp ) + wiizwé (3.6)
where 2/ is the estimated output,n = 1,2,...,C2,; 4,7 = 1,2,...,m2; i # j;
and w” are the connecting weights. Outputs of m3 (< C2,) units are passed

to the third layer per the threshold function. In the third layer C2, units
are used with the state functions of the form (3.2):

m . " "
Tyn = f(xl ’ xj)
_ " mo_n m o
= Wy F Wy Ty + wn2$j (37)
where z// is the estimated output, n = 1,2,...,C2,; i, = 1,2,...,m3;

i # j; and w" are the connecting weights. This provides an inductive learning
algorithm that continues layer after layer and is stopped when one of the units
achieves a global minimum on the objective measure. The state function of
a unit in the third layer might be equivalent to the function of some original
input variables of z:

o= )
F(f (g, z3), fzh, 21))
FU(f(zp, ), £(2p, Z2)), F(f(2gs 21), [(Zus T0)))

= f(2p,%gs Ty Tuiz Tu) (3.8)

Il
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Figure 1: Functional flow to unit n of layer 3 in GMDH.

where (z7, ) C 2" and (z, ), 7}, 7;) C 2’ are the estimated outputs from
the second and first layers, respectively, and (z,, 24, ,, T, 2,) C T are from
the input layer (figure 1). A typical threshold objective function such as

regularization is measured for its total squared error on testing set Op as

A= 3 (ol -y (39)

keOp

where y* is the actual output value and z”’* is the estimated output of unit

n of the third layer for the kth observation. The optimal response per the
objective function is obtained through the connecting weights w, which are
memorized at the units in the preceding layers [12]. There are various forms
of threshold objective functions in these networks based on the objectives
like regularization, forecasting, finding physical laws, obtaining minimum
biased models, or a combination of these, which might vary from problem to
problem.

3.4 Adaline

Adaline is a single-element structure with the threshold logic unit and vari-
able connection strengths. It computes a weighted sum of activities of the
inputs times the synaptic weights, including a bias element. It takes +1 or
—1 as inputs. If the sum of the state function is greater than zero, output
becomes +1, and if it is equal to or less than zero, output is —1; this is
the threshold linear function. Recent literature reveals the usage of sigmoid
functions in these networks [15]. The complexity of the network is increased
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by adding the number of adalines in parallel, which is called as “madaline.”
For simplicity, the functionality of the adaline is described here.

3.5 Function at a single element

Let us consider adaline with m input units whose output is designated by y
and with external inputs z;, (k = 1,...,m). Denote by wy, the corresponding
weights in the interconnections. Output is given by a general formula in the
form of a summation function

s =wy + Zwk Ty, (3.10)
k

where wy is a bias term, and the activation level of the unit output is
S = f(s) (3.11)

Given a specific input pattern z?, and if y? is the corresponding desired value
of the output, the output error is given by

el = s —yP (peN) (3.12)
where N indicates the sample size. The total squared error on the sample is

E=Y () (3.13)

pEN

The problem corresponds to minimizing the average error E in obtaining the
optimum weights. This is computed for a specific training set, and is realized
in the iterative least mean square (LMS) algorithm.

3.6 LMS algorithm or Widrow-Hopf delta rule
At each iteration the weight vector w is updated as

wPt! = wP + ePz?P (3.14)

e
|2 |?
where wP*! is the next value of the weight vector; w? is the present value of
the weight vector; xP is the present pattern vector; e? is the present error per

equation (3.12); and |z?|? equals the number of weights.
The pth iteration is

P = yp_xpTwp
Ae® = Ay — 2P wP) = —z” AuwP (3.15)

where T indicates transpose. From equation (3.14) we can write

= seha? (3.16)

AwP = WPt — P =
|z#|
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This can be substituted in equation (3.15) to deduce the following:

T
Ae? = —zP sera’

= —oaef (3.17)

The error is reduced by a factor « as the weights are changed while hold-
ing the input pattern fixed. Entering a new input pattern starts the next
adaptation cycle. The next error is reduced by a factor o, and the process
continues. The choice of a controls stability and the speed of convergence.
Stability requires that 2 < o < 0. A practical range for « is given by
1.0>a>0.1.

3.7 Back propogation

Suppose we want to store a set of pattern vectors zP, p = 1,2,..., N by
choosing the weights w in such a way that, when we present the network
with a new pattern vector z*, it will respond by producing one of the stored
patterns that it resembles most closely. The general nature of the task to be
performed by the feed-forward network is to make a set of associations of the
input patterns z, with the output patterns y. When the input layer units
are put in the configuration z%, the output units should produce the corre-
sponding y7. S; denote activations of output units based on the threshold
sigmoid function, and 27 are those of the intermediate or hidden layer units.

1. For a 2-layer net, unit output is given by

ST =f(Q wiz}) (3.18)
%

2. For a 3-layer net,
S = FQ wii 25) = FQ_wiy FOQ_win f4)) (3.19)
J J k

In either case the connection weights w are chosen so that S? = yf. This
corresponds to the gradient minimization of the average of E (see equation
(3.20) below) for estimating the weights. The computational power of such
a network depends on how many layers it has. If it has only two, it is quite
limited; the reason is that it must discriminate solely on the basis of the
linear combination of its inputs [14].

3.8 Learning by evaluating the delta rule

One way to iteratively compute the weights is to change them little by little
so the total squared error decreases at each step:

B =38 -y (3.20)

5]
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This can be guaranteed by taking the change in w proportional to the nega-

tive gradient E with respect to w (sliding downhill in w space on the surface

oF
Bwij

6’U}ij ==n (321)
where 7 is a learning rate constant of proportionality. This implies a gradient
descent of the total error E for the entire set p. This can be computed from
equation (3.18) or (3.19).

For a 2-layer net,

sw. — _n OB _ OE dS; dz;

*= 1 8wzk = ; 85, d:L‘.L aw,k
= nZ[yz ]f (s =n) 6} (3.22)

4,p

where s = 3", wy, o}, is the state function and f/() is the derivative of the
activation function f() at the output unit 4. This is called the generalized
delta rule.

For a 9-layer net, input patterns are replaced by the 2 of the intermediate
units:

bwi; =nYy 627 (3.23)
P

By using the chain rule the derivative of (3.19) is evaluated:

dwjr, =1 Z 8% w;; Z & (3.24)

ip
This can be generalized to more layers. All the changes are simply expressed
in terms of the auxiliary quantities 67,6,..., and the és for one layer are

computed by simple recursions from those of the subsequent layer. This
provides a training algorithm where the responses are fed forward and the
errors are propagated back to compute the weight changes of layers from the
output of the previous layers.

4. Discussion

The major difference between the networks is that GMDH uses a bounded
network structure with all combinations of input pairs as it is trained and
tested by scanning the measure of the threshold objective function through
the optimal connection weights. This type of structure is useful for modeling
multi-input-single-output (MISO) systems. In contrast, adaline and back
propagation use an unbounded network structure to represent a model of
the system as it is trained and tested through the unit transformations for
its optimal connection weights. This type of structure is used for modeling
multi-input-multi-output (MIMO) systems. Studies have shown that any
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unbounded network can be replaced by a bounded network per the capacities
and energy dissipations in their architectures [7]. Mechanisms in both cases
are easily worked out for any type of system, MISO or MIMO. In adaline
and back propagation, input and output data are considered either {—1,+1}
or {0,1}. In GMDH, input and output data are in discrete analog form, but
one can normalize data between {—1,+1} or {0,1}. Orthogonalization of
the input data could be done in both cases as initial processing to reduce the
noise. The relevance of local minima depends on the complexity of the task
for which the system is trained.

The learning adaptations considered in these networks differ in two ways:
how they activate and how they forward the unit outputs. In back prop-
agation the unit outputs are transformed and fed forward, and the errors
at the output layer are propagated back to compute the weight changes in
the layers. In GMDH the outputs are fed forward based on a decision from
the threshold function. Back propagation handles the problem that gradient
descent requires infinitesimally small steps to evaluate the output error, and
manages with one or two hidden layers. Adaline uses the LMS algorithm
with its sample size to minimize the error measure, whereas GMDH uses
the least-squares technique. The parameters within each unit of GMDH are
estimated so that, on a training set of observations, the sum of the squared
errors of the fit of the unit to the final desired output is minimized.

Simulation experiments are conducted to compare the performances of
inductive versus deductive networks by evaluating the output error as a
learning law. Here two general types of bounded network structures with
inputs fed in pairs are considered: one is a deductive network (figure 2) with
the sigmoid transfer function tanh(y * ug) where ug is the gain factor, and
another is an inductive network (figure 3) with the threshold objective func-
tion, which is a combined measure of regularization (3.9) and minimum-bias
error. In both structures the complexity of the state function is increased
layer-by-layer. The least-squares technique is used in estimating the weights.
Various randomly generated data and actual empirical data in the discrete
analog form in the range {—1,+1} are used in these experiments. The net-
work structures are unique in their performances in obtaining the optimal
weights. Here examples for linear and nonlinear cases and for a deductive
network without any activations are discussed.

1. In the linear case, the output data is generated from the equation
y = 0.433 — 0.195z; + 0.243z2 4 0.015z5 — 0.18z4 + € (4.1)

where x4, ..., x4 are randomly generated input variables, y is the output
variable, and € is the noise added to the data.

The inductive network with the threshold objective function is fed with
five input variables (z1, Zs, . .., zs5). The global measure is obtained at a unit
in the sixth layer (combined = 0.0247). The average residual error of the
unit is computed as 0.0183.
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Figure 2: Bounded network structure with 5 input terms using a

sigmoid function.
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Figure 3: GMDH structure with m1 = 5, m2 = 5, and m3 = 5 using
threshold objective function.
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The deductive network with the sigmoid transfer function, which uses the
same input and output data, converges to a global minimum at a unit in the
third layer. The average residual error of the unit is 0.101.

2. In the nonlinear case, the output data is generated from the equation
y = 0.433 — 0.095z; + 0.243z5 + 0.3527 — 0.187175 + € (4.2)

where z; and z, are randomly generated input variables, y is the output
variable, and ¢ is the noise added to the data.

In the inductive network, z;, T2, 2%, 2, and z;z, are fed as input vari-
ables. The global measure is obtained at a unit in the third layer (combined =
0.0453). The average residual error of the unit is computed as 0.0406. Table
1 gives the connecting weight values (wp, w;, and w;), combined measure,
and residual error at each node.

The deductive network, which uses the same input and output data, con-
verges to a global minimum at a unit in the second layer. The average residual
error of the unit is computed as 0.0223. Table 2 gives the connecting weight
values (wp, w;, and w;) and residual error at each node.

3. Further, the deductive network structure is tested for its performance
without any threshold activations at the units; that is, the unit outputs
are directly fed forward to the next layer. A global minimum is not
achieved; the residual error is reduced layer-by-layer as it proceeds, and
ultimately the network becomes unstable. This shows the importance
of the threshold functions in the convergence of these networks.

The resulting robustness in computations of self-organization modeling
is one of the features that has made these networks attractive. It is clear
that network models have a strong affinity with statistical mechanics. The
main purpose of the modeling is to obtain a better input-output transfer
relation between the patterns by minimizing the effect of noise in the input
variables. This is possible only by providing more knowledge to the network
structures, thereby improving the network performance and achieving better
computing abilities in problem solving. In the inductive learning approach
the threshold objective function plays an important role in providing more
informative models for identifying and predicting complex systems. In the
deductive case the unit output transformation through the sigmoid function
plays an important role when the functional relationship is sigmoid rather
than linear. Overall, one can see that performance of the neural modeling
can be improved by providing one’s experience and knowledge to the network
structure as a self-organization mechanism. It is an integration of various
concepts from conventional computing and artificial intelligence techniques.
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LAYER= 1 (mi= 5)
J=1 I= 2

.411 .186 .147;
=1 I=3

.454 .145 .134;
J= I= 4

.425 .213 «120
J= I=5

.455 .069 .268;
J= 2 I= 3

.434 .155 .179;
J= 2 I= 4

.405 .629 =376
=2 I=5

.458 .052 .284;
J=3 I= 4

.452 .203 .133;
J=3 I=5

.465 .073 .260;
J= 4 I= 5

.466 .008 .329;

LAYER= 2 (m2= 5)
J=1 I= 2

.024 1.097 =.151;
J=1 I=3

.033 2.313 -1.363;
4= 1 I= 4

-.033 .208 .822;
J=1 I= 6

.004 -.451 1.423;
J= 2 I=3

-.079 .186 .933;
J= 2 I= 4

-.054 .076 .989;
J= 2 I= b

.020 -.099 1.045;
J=3 I= 4

~+ 019 -.665 1.664;
J= 3 I= 5

.020 -.437 1.388;
J=4 I=5

.023 -.794 1.747;

Table 1: Network structure with threshold objective function.
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.103E+00

.406E-01

.137E+00

.997E-01

.589E-01

.102E+00

.109E+00

.523E-01

.609E-01

.527E-01

.412E-01

.523E-01

.536E-01

.443E-01

.598E-01

.381E-01

.417E-01
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LAYER= 3 (m3= 5)

=1 I= 2

.008 1.439 -.472; COMBINED= .919E-01, RES ERR= .390E-01
J=1 I=3

.001 .098 .886; COMBINED= .548E-01, RES ERR= .374E-01
J= I= 4

-.008 .399 .596; COMBINED= .119E+00, RES ERR= .399E-01
J= I= 5

.008 4.123  -3.144; COMBINED= .453E-01, RES ERR= .406E-01x*
J= 2 I=3

.000 .047 .939; COMBINED= .642E-01, RES ERR= .374E-01
=2 I= 4

=.013 .146 .858; COMBINED= .111E+00, RES ERR= .404E-01
=2 I= 5

.003 -.456 1.430; COMBINED= .128E+00, RES ERR= .411E-01
=3 I= 4

.004 1.154 -.174; COMBINED= .969E-01, RES ERR= .372E-01
=3 I=5

.001 -929 .065; COMBINED= .537E-01, RES ERR= .373E-01
=4 I= 6

-.009 .715 .281; COMBINED= .105E+00, RES ERR= .406E-01
LAYER= 4 (m4= 5)

J=1 I=2

.004 =.390 1.372; COMBINED= .896E-01, RES ERR= .353E-01
J=1 I= 3

.004 -.400 1.385; COMBINED= .699E-01, RES ERR= .353E-01
J=1 I= 4

-.007 .713 .283; COMBINED= .918E-01, RES ERR= .363E-01
J=1 I=5

.002 =172 1.156; COMBINED= .121E+00, RES ERR= .351E-01
J= 2 I=3

.001 .001 .986; COMBINED= .636E-01, RES ERR= .350E-01
J= 2 I= 4

.000 .867 .121; COMBINED= .636E-01, RES ERR= .350E-01
J= 2 I= 5

.002 2.012 -1.025; COMBINED= .819E-01, RES ERR= .351E-01
J=3 I= 4

.001 .992 -.005; COMBINED= .636E-01, RES ERR= .350E-01
J=3 I= 56
.001 1.118 -.130; COMBINED= .716E-01, RES ERR= .350E-01
J= 4 I= 5
-.002 .253 .738; COMBINED= .669E-01, RES ERR= .351E-01

Table 1: Continued
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LAYER= 5 (mb= 5)

= i I= 2

.004 1.419 -.436; COMBINED= .971E-01, RES ERR= .352E-01
J= I=3

.003 3.864 -2.879; COMBINED= .105E+00, RES ERR= .354E-01
=1 I= 4

.001 .337 .649; COMBINED= .484E-01, RES ERR= .350E-01
J= I=5
.001 -.137 1.123; COMBINED= .484E-01, RES ERR= .350E-01
=2 I=3
.004 -.585 1.567; COMBINED= .113E+00, RES ERR= .351E-01
J= 2 I= 4
.004 -.438 1.421; COMBINED= .983E-01, RES ERR= .352E-01
J= 2 I= 5
.004 -.446 1.429; COMBINED= .964E-01, RES = .352E-01
=3 =4

.003  -2.476 3.461; COMBINED= .814E-01, RES ERR= .353E-01
J=3 I=5
.003 -2.602 3.587; COMBINED= .935E-01, RES ERR= .353E-01

J= 4 I=5

.001 -.172 1.158; COMBINED= .340E+01, RES ERR= .350E-01
LAYER= 6 (m6= 5)

J= I= 2

-.004 -.141 1.132; COMBINED= .836E-01, RES ERR= .364E-01
J=1 I=3

.004 -.555 1.539; COMBINED= .899E-01, RES ERR= .353E-01
J= I= 4

.004 -.557 1.542; COMBINED= .883E-01, RES ERR= .353E-01
J= I=5

.003 -7.773 8.758; COMBINED= .983E-01, RES ERR= .352E-01
J=2 I= 3

.004 -.456 1.439; COMBINED= .972E-01, RES ERR= .352E-01
J= 2 I= 4
.004 -.445 1.428; COMBINED= .982E-01, RES ERR= .352E-01
=2 I= 5
-.004 .666 .323; COMBINED= .895E-01, RES ERR= .363E-01
J=3 I= 4
.001 .492 .494; COMBINED= .483E-01, RES ERR= .350E-01
J=3 I= 5
.004 1.659 -.675; COMBINED= .870E-01, RES ERR= .353E-01
=4 I=186
.004 1.677 -.693; COMBINED= .888E-01, RES ERR= .354E-01

Table 1: Continued



LAYER= 1

=1 I= 2

.411 .186 .147;
=2 I=3

.434 .155 479
J=3 I= 4

.452 .203 .133;
J= 4 I= 56

.466 .008 .329;
=5 I=

.455 .268 .069;
LAYER= 2

J=1 I= 2

-.500 -1.100 2.489;
J= 2 I=3

-.477 1.803 -.436;
J=3 =4

-.489 1.989 -.613;
J= 4 I=§

-.856 .115 1.709;
J=5 I=

= (57 1.304 .402;
LAYER= 3

J= 1 I= 2

-.484 1.052 .329;
J= 2 =3

-.456 1.464 B i B
J=3 I= 4

-.614 .960 .577;
J= 4 I= 5

-.722 1.497 .169;
J=5 I=

-.488 .158 1.229;

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

RES ERR=

Table 2: Network structure with sigmoid function.
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.513E-01
.406E-01
.589E-01
.109E+00

.103E+00

.223E-01%*

.336E-01

.328E-01

.102E+00

.824E-01

.242E-01

.368E-01

.393E-01

.764E-01

.249E-01
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LAYER= 4

J= I= 2

-.458 .905 .454;
J=2 I=3

-.441 1.641 -.304;
J=3 I= 4

-.502 1.757 -.349;
J= 4 I= b

-.467 290 1.080;
J=5 I=

-.436 -4.405 5.736;
LAYER= &

J= I= 2

-.437 1.088 .263;
=2 I= 3

-.455 .954 .405;
J=3 I= 4

-.476 .560 .830;
=4 I= 6

-.422 19.103 -17.783;
=5 I=

-.426 -.459 1.786;
LAYER= 6

J= I= 2

-.427 1.159 : 17563
= 2 I=3

-.428 gt I [ 8 1.444;
J=3 I= 4

-.441 1.755 -.406;
J=4 I= 5

-.413 121 1.195;
J=5 I= 1

-.417 -.i037 1.358;

Table 2: Continued

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

RES

ERR=

ERR=

ERR=

ERR=

ERR=

ERR=

ERR=

ERR=

ERR=

ERR=

ERR=

ERR=

ERR=

ERR=

.438E-01

.492E-01

.410E-01

.456E-01

.465E-01

.643E-01

.591E-01

.586E-01

.642E-01

.651E-01

.T78E-01

.741E-01

.T29E-01

.T96E-01

.7T91E-01
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