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Confirmation in Experimental Mathematics:
A Case Study
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Abstract. On the basis of experiment, two groups arrived indepen-
dently at similar conjectures on the nature of optimal strategies em-
ployed in large random games. The first conjecture was made by Kuhn
and Quandt in 1963; the second was made by the present authors in
1987. In traditional mathematics such duplication is superfluous. In
experimental mathematics it may provide mutual confirmation.

1. Introduction

The thesis of this note is that independent experimental confirmation may
play a role in mathematics that is close to its role in traditional experimental
science. However there is this difference: Experimental confirmations may
be made almost obsolete at the moment a proof is found.

The case begins with a 1963 paper by Kuhn and Quandt [1]. (See also [2]
for related work.) Their paper deals with the properties of large random
matrices, which may be regarded as payoff matrices in a game between two
opponents. Each matrix has a value, in the sense of game theory. Their
paper contains a theorem on the asymptotic convergence of the value to a
constant. It also presents the results of a numerical experiment that gives
evidence on the average number of strategies given non-zero weight by each
player, provided that the players are playing optimally.

For square matrices the result is the following. Each player has an optimal
mixed strategy, given by a probability vector. The expected fraction of non-
zero components of this vector in the random game experiment approaches
one-half for large games. (The conjecture of Kuhn and Quandt is actually
more general as it deals with rectangular games.)

Our subsequent work [3] was done without knowledge of these results;
in fact its inspiration came from some ecological results of Cohen and New-
man [4]. We used the methods of Cohen and Newman to prove a theorem
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giving a bound on large deviations of the value of the random game. This
bound did not appear to be optimal, so we undertook numerical investiga-
tions on the standard deviation of the value of the random game. In the
course of this numerical work we rediscovered the apparent fact about the
asymptotics of the average number of strategies given non-zero weight by
each player. Furthermore we found numerical evidence for asymptotics of
higher order.

Our other research on random matrices has dealt mainly with spectral
properties, and we had not been dealing with their game-theoretic aspects.
Thus we went to some effort to perform a computer search to find relevant
literature. We also checked other sources, such as the bibliography in the
book [5]. However we did not learn of the earlier work of Kuhn and Quandt
until we were informed of it in a letter from Kuhn [6].

On learning of this, we realized that the conjecture on the average num-
ber of strategies had received independent experimental confirmation. The
chances of programming or statistical error thus seemed much reduced. This
is a situation that is familiar from traditional experimental science; it is likely
to become increasingly frequent in the mathematics of complex systems.

2. The Kuhn-Quandt experiment

The theoretical result of Kuhn and Quandt applies to an n-by-n random
matrix with entries independently distributed by a uniform distribution that
is symmetric about zero. For such a matrix the expected value of the game is
zero, by symmetry. Kuhn and Quandt proved that the standard deviation of
the value goes to zero as n approaches infinity. They obtained this by using
a bound obtained in the situation where one player uses a uniform strategy.

Data generated in the course of their numerical experiments led to a con-
jecture. We quote from their paper [1]: “A count was kept of the number of
slack variables appearing in the solution, that is, the number of constraints
which are satisfied as strict inequalities at the maximum. Denoting the num-
ber of slack variables in the solution as a fraction of the total number m
of non~ero variables in the solution of a problem with m constraints and
n variables by F.,, we state as a conjecture ... If lim, noo m/(m+n) = L,
then limy, 0o E(Finn) = L.” In the context of game theory, with square
game matrices, this conjecture predicts that the mean fraction of non-zero
weights a player will use in an optimal mixed strategy converges to one-half.
(In general it converges to the proportion of the total number of strategies
available to both players that are available to the other player.)

Kuhn and Quandt regard the statistical evidence for the conjecture as
“very good.” However the conjecture is “somewhat counterintuitive.” In the
course of their discussion they suggested: “If the conjecture is true, it appears
likely therefore that convergence will be from below.” We shall return to this
remark below.

We quote the following historical comments from Kuhn’s letter.
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I have stated this conjecture [that a rational player in a square
random game tends to employ a strategy that has half its com-
ponents zero| many times in scientific meetings as a result in
stochastic programming that is easy to state, has substantial com-
putational evidence in its favor, and seems to be very difficult to
prove.

As a sidelight on the history of this problem, one of the reasons
that we undertook this experiment was the availability of 40 hours
a week free time on one of the first CDC 1600 computers. The
catch was that the only input was via paper tape and the only
language was machine language. When our programs did not
run, we stepped them through 3 x 3 examples on the console and
thereby discovered two wiring errors in the machine.

In a subsequent letter [7] Kuhn adds the following.

A major point of our paper was that an experimental study
had led to a conjecture in pure mathematics that was counter-
intuitive and yet simple to state. This point is strengthened when
the conjecture was rediscovered 28 years later by another experi-
mental study but, as yet, although the conjecture has been widely
publicized, no one has come forward to prove it.

3. The Faris-Maier experiment

In the subsequent work of the present authors [3] there is a theoretical result
that sharpens the Kuhn-Quandt result on convergence of the value of the
game to zero by giving a bound on the probability of a fluctuation. This
result is for the general case of independent, uniformly distributed entries of
the game matrix. The bound is sharp for the situation where one player uses
a uniform strategy. It should be remarked that such a large deviation bound
gives more information than is contained in a moment bound. In our work
there is also a rigorous bound on the probability of strategy vectors that have
all components non-zero.

Our numerical experiment was also begun in part to test out a new com-
puter, namely a mini-supercomputer manufactured by Scientific Computing
Systems. The question of original interest was the standard deviation of the
value of the random game. For simplicity all game matrices were n-by-n
square matrices. Experiments were done in which the entries were uniform,
as in the Kuhn-Quandt experiment, and in which the entries were Gaussian.
In both cases the standard deviation was found numerically to approach zero
at a rate proportional to 1/n. This gives a quantitative aspect to the previous
results on approach to zero.

During this experiment it was noticed that the proportion of strategies
actually employed by each player tended to be about 1/2. The numerical
evidence gathered supports an asymptotic behavior 1/2 — 1/(4n). This ex-
perimentally discovered higher-order term lends support to the Kuhn-Quandt
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hypothesis that convergence will be from below. Presumably further numer-
ical work will reveal the next few higher-order terms in an asymptotic series
in 1/n for this quantity. A rigorous proof of the existence of such a series is
lacking, however.

4. Conclusions

In retrospect the numerical experiments of Kuhn and Quandt and of the
present authors make clear that mathematics has a component that is very
similar to experimental science. In the absence of a rigorous proof of a
conjecture, one can only “confirm” a conjecture by subjecting it to repeated
experimental test. These confirmations may give rise to new conjectures,
such as our conjecture on the existence of an asymptotic series in 1/n.

Experimental confirmation may become obsolete at the moment a proof
is found. This is not, however, an absolute matter. A proof is mechanically
checkable in principle; however most mathematicians take at least a few
intuitive shortcuts. One is justified in feeling more confident about a proof
if its conclusion agrees with simulations.
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