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Abstract. This paper presents a method for calculat ing the variance
of schema fitness using Walsh t ransforms. The computation is impor­
tant for underst anding the performance of genet ic algorithms (GAs)
because most GAs depend on the sam pling of schema fitness in popu­
lat ions of modest size, and the variance of schema fitn ess is a primary
source of noise that can prevent proper evaluation of building blocks,
th ereby causing convergence to oth er-than-global opt ima. The paper
also applies these calculations to th e sizing of GA pop ulations and to
the adjust ment of the schema th eorem to account for fitness variance;
the exte nsion of the variance computation to nonun iform populations
is also considered . Taken toget her these results may be viewed as a
step along the road to rigorous convergence proofs for recombin ative
genet ic algorithms.

1. Intr oduction

It is well kn own t hat genet ic algorit hms (GAs) work best when building
blocks- short , low-order schemata containing the op timum or desired near­
opt imum-are expe cte d to grow, thereby permitting crossover to generate
the desired solution or solut ions. The schema theorem [4, 11] is widely and
rightly recogni zed as t he cornerstone of GA t heory that has something to
say abo ut whethe r building blocks are at all likely to grow. It is less widely
acknowledge d that t he schema t heorem in it s pr esent form is only a result
in expecta ti on and do es not guarantee that a building block will grow, even
wh en t he theorem 's inequality is sat isfied. In t he usual small-population GA,
stochastic effects can cause the algorit hm t o st ray from t he traj ector y of the
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mean [3, 10], and surprisingly few studies have considered these effects or
allowed for their existence in the design of genetic algorithms.

In this paper , we consider one important source of stochastic var iation,
the variance of a schema's fitness or what we call collateral noise. Specifically,
a method for calculating fitn ess var ian ce from a function's Walsh transform
is derived and applied to a number of problems in GA analysis.

In t he remainder, Walsh functions and their application to the calcula­
tion of schema average fitness are rev iewed ; a formula for the calculation
of schema fitness var ian ce is derived using Walsh tran sforms. T he variance
computation is then applied to two important problems in genetic algorithm
theory : population sizing and the calculat ion of rigorous probabilist ic con­
vergence bo unds . Ext end ing the technique to the analysis of nonuniform
populations is also discussed.

2. Review of Walsh-schema analysis

Walsh funct ions simplify calculations of schema average fitness, as was first
pointed out by Bet hke [1]. Using the notati on developed elsewhere [5], we
consider fitness functions! f mapping I-bit strings into the reals: f : {O, 1}1 ---->

R . Bit strings are denoted by the symbol x , which is also used to refer to the
integer associated with the bit string, and individ ual bits may be referenced
with an appropriate subscript ; highest order bits are assumed to be left­
most : x = x, . . . X2X! . A schema is denoted by the symbol h , which refers
both to the schema itself (the simi larity subset or that subset of strings with
simi larity at specified positions) or its string representat ion (the similar ity
template or that I-posit ion st ring drawn from the alphabet {O, 1, *}, wher e a°matches a 0, a 1 matches a 1, and a * matches eit her) .

There are a number of different ways of ordering and interpreti ng Walsh
functions, but for this study we may most easily think of the Walsh func tio ns
'lj;j (x ), j = 0, . . . , 21 - 1, as a set of 21 partial parity functions , each return ing
a -1 or a +1 as the number of Is in its argument is odd or even over the
set of bit positions defined by the I s in the binary representation of its index
j. For example, consider the bit strings of length I = 3. F~r j = 6 = 1102 ,

the associat ed Walsh function considers the parity of st rings at bits 2 an d
3 (the bits that are set in the binary representation of the Walsh function
index). Thus, 'lj;6(100) = 'lj;6(011) = -1 and 'lj;6(110) = 'lj;6(001) = +1. T he
man ipul at ions are straightforward, but it is remarkable that the usual table
lookup used to define functions over binary strings (one function value, one
string) may be rep laced by a linear combinat ion of the Walsh functi ons:

f(x) = L;~-i} Wj'lj;j(x).
It is, perhaps , mor e remarkable that schema average fitness may be writ­

ten direct ly as a partial Walsh sum [1]. An intuitive proof is given in

1We adopt th e standard GA practice of calling any non -nega tive figur e of merit a fitness
function, even though doing so is not necessarily cons ist ent wit h biological usage of t he
term.
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Goldb erg [5] , bu t the main result states that the expected fitn ess of a schema
may be calculated as follows:

f (h ) = L wj~j(h) ,
jEJ(h)

(2.1)

where the arg ument of each Walsh funct ion, h , is interpreted as a string by
replacing *s with Os and where the ind ex set J (h) is itself a similarity subset
(J : {O, 1, *}l -. {O, 1}l) created by replacing *s by Os and fixed positions (Is
and Os) by *s:

Ji (h ) = { 0,
*,

if h i = *;
if h i = 0,1.

(2.2)

In word s, the index set contains th ose terms that "make up" the schema in
th e sense that associated Walsh functions determine par ity within the fixed
positions of the schema. Thus, we see tha t a schema's average fitness may
be calculated as a partial, signed sum of t he Walsh coefficient s specified by
its index set , with the sign determ ined by the par ity of the schema at the
positions appropriate to the particular Walsh term.

To make this concrete, we return to three-bit examples. T he expected
fitn ess of the schema *h may be written as f (*h ) = W o - W2 because the
index set J(* h ) = 0 * 0 = {0, 2}, the parity of any schema over no fixed
positions (~o) is even, and the parity of *h is odd over the position associated
with ~2 (t he middle position , 2 = 0102) , Likewise, the expected fitn ess of
schema *10 may be written as follows:

Here the index set generato r is J (*10) = 0** = {O, 1, 2, 3} and the associated
signs may be determined by evaluating the associated Walsh functions using
t he schema . Cont inuing on to consider the fitness of a st ring, the expected
fitness of schema (st ring) 110 may be written as

because J (110) = * * *, which dict at es (as it must ) a full Walsh sum for the
st ring .

Note that as schemata become mor e refined- as they become more
specific- their fitness sums include more Walsh te rms. This cont ras ts starkly
with using the table-lookup basis, where fitness average computations for spe­
cific schemata contain few terms and genera l schemata contain many. If we
are to und erstand the relationships among low-order schemata and how they
lead toward (or lead away from) opt imal points, the Walsh basis is clear ly
th e more convenient. Because of this, and because of the orthogonality of th e
Walsh basis, we use the Walsh-schema calculation to calculate the variance
of schema fitness in the next sect ion.
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3. Computing fitness variance

T he expecte d fitn ess of a schema is an imp ortan t quan ti ty because it indi cates
whether, in a particular pro blem, a GA may be able to find optimal or near­
opt imal po ints through t he recombination of building blocks. On the other
hand , because most GAs depend up on stat ist ical sampling, knowing schema
average fitness is not enough; we must also consider the stat istical variat ion
of fitness to determine the amount of sampling requi red to accept or. reject a
building block wit h respect to one of it s competitors . T his requires that we
calculate the variance of schema fitness or what we call collateral noise .2

3.1 Variance from Walsh transforms

A real, discrete random variable X may be viewed as an ordered pair X =
(S,p), where the variable takes a valu e chosen from a finit e subset S of the
reals acco rding to the pr obability density funct ion p(x). Vari an ce is defined
as the expected squared difference between a random vari abl e and its mean :

var (X) = LP(x)(x- xl ,
xES

(3.1)

where x denot es the expected value of x . From this definition an d assuming
a uniform, full po pul atio n , it is easy to show that the variance of a schema
h 's fitness may be calculate d as

1 --
var(f (h )) = -Ihl L [j(x) - f (h)f

XEh

Expanding and simp lifying yields

-- --2
var (f(h )) = P(h) - f(h) .

(3.2)

(3.3)

The not ati on P (h) indicat es that the expectatio n of j2 is calculated , and

the notation f (h)2 indi cates that the expec te d value of f is squared; in both
cases , the argument h ind icates that the expectation operation ran ges over
the elements of the schema. Using the Walsh-schema t ran sform presented

--2 --
in the pre vious sect ion, we derive equat ions for f(h) and P(h) separate ly,
t hereafte r substit ut ing each expression int o equation (3.3) .

2Note that collateral noise arises in t he context of deterministi c fitness fun ctions becaus e
most genetic algor it hms attempt to evaluate subst rings (schemata) in t he conte xt of a full
and varying whole (a full st ring) t hro ugh limited statistical sampling. An experimentalist
with such sloppy tec hn ique would never be sure of his conclusions, and it is for this reason
t ha t a strikingly different type of GA, a so-ca lled messy geneti c algorithm or mGA [8, 9],
seeks to sidestep collateral noise by evaluating substrings in t he conte xt of a t emp orarily
invariant competitive templat e, a locally optimal st ring obtained by a messy GA run at a
lower level. This techn ique appears to have wide applicability, but t he var iance calculat ions
of this pap er are imp or tant to messy GAs becau se t he issue of collateral noise cannot be
sides tep ped once recombination (the juxtapo siti onal phase of an mGA ) is invoked .
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Squaring the expression for schema average fitness yields
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(3.4)

(3.5)

f(h )2 = r L W{l/Ji(h)] 2
G O (h )

L WjWk1Pj (h )1Pk(h) .
j,kE J(h)

The quant ity 1Pj( X)1Pk(X) is somet imes called the two-dimensional Walsh
function 1Pj,k(X). Straightforward arg uments [5] may be used to show that
1Pj,k (X) = 1Pjffik(X), where EEl denotes bitwise addit ion modulo 2. Thus,

f(h / = L WjWk1Pjffik (h) .
j,kEJ(h)

Counting the numb er of quadrati c terms is enlightening. There are IJ(h)1 2 =
22o(h ) possibly non-zero terms in the indicated sum, where o(h) is the schema's
order or number of fixed positions. It is interesting that this number is never
more than t he numb er of terms in j2(h) , as we shall soon see.

To derive an equatio n for j2 (h) in te rms of the Walsh coefficients , start
with the definition

j2(h) = I~ I L f 2(X) ,
xE h

and substitute the full Walsh expansion for f(x) ,

_ 1 (21- 1 )2
j2(h) = -Ih l L L Wj1Pj(x )

xE h ;=0

(3.6)

(3.7)

Exp anding, changing the order of summat ion , and recogni zing the two­
dimension al Walsh functi on , we obtain

Further pr ogress may be made by considering the summat ion

S(h, j, k) = L 1Pjffik (X),
XEh

(3.8)

(3.9)

which is vir tually identi cal to the analogous summation S(h,j) in the Walsh­
schema transform derivation [5]. As in t he earlier derivation , each term of
equat ion (3.9) is +1 or - 1 since each is a Walsh func t ion . Moreover , appeal­
ing to the earlier result , each sum is exactly +Ihl , -Ih l, or zero, the non- zero
terms occur ring when j EEl k E J (h) and the associated sign determined by
1Pjffik(h). Thus, equat ion (3.8) may be rewritten as

j2(h) = L WjWk1Pjffik (h ).
jEllkE J(h)

(3.10)
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Counting the number of terms in this sum is also enlighte ning . Thinking
of the terms as being arrayed in a matrix with the j ind ex naming rows
and the k index naming columns , if we fix a row (if we fix j) there are at
most IJ (h )1 non-zero te rms in the row. Each row has the same number of
terms because ad dit ion modu lo 2 can do no more than translate each term
to another pos it ion . Since there are 21 rows , there are a total of 21IJ(h)[ =
21+o(h ) possibly non-zero terms. This is never less than the number of te rms

- - 2
in the j (h ) sum . Act ually t he relat ionship between the two sums is much
closer than this, as we shall soon see.

Finally, equation (3.3) may be rewrit ten using equations (3.10) and (3.5) ,
producing

var(J (h )) = L WjWk"!f;j ffjk(h) - L WjWk "!f;j ffjk(h) ,
(j,k)EJ~(h) (j ,k)EJ2(h)

(3.11)

where J2 (h) = J (h ) x J (h) and J~ = {(j ,k) : j EB k E J (h )} . Not ing the
two summations have the same form , it is easy to show that the second sum
is taken over a subset of the terms in the first . Remembering that J( h) is
a schema wit h *s replacing t he fixed posit ions of h and Os replacing the *s,
it is immediately clear , for any (j ,k) E J2 (h) , t hat j EB k E J( h ). Thus, the
terms in the second sum are a subset of those in the first . Therefore,

var(J (h) ) = L WjWk"!f;j ffjk(h) ,
(j,k) E J~(h)-J2(h)

(3.12)

where t he minus sign in the summation ind ex denotes the usu al set difference.
In effect , we have converted a difference of summations to a sum over a
difference of index sets.

The calculation is straight forward and not open to question , but counting
the number of poss ibly non-zero terms is useful once again. T he tot al number
of non-zero te rms in the overall sum is 2o(h )+1 - 22o(h ) = 2o(h ) (21 _ 2o(h )) .

Of course when the schemata are st rings (when o(h) = l ), t he sum vanishes
as it must because the fitness funct ion is deterministic. At ot her t imes, it is
interesting that the Walsh sum potent ially requires more computat ion tha n
a direct calculation of variance using the table-lookup basis. We can always
calculate fitness varian ce directly using the table-lookup basis if it is mor e
convenient , bu t the insight gained by understandi ng the relationship between
part iti ons is worth the pr ice of adm ission. To better understand the st ructure
of var ian ce, we next consider the cha nge in fitne ss vari ance that occurs as a
fairly general schema is made more spec ific by fixing one or more of its free
bits.

3.2 Changes in variance

We exa mine changes in varian ce by first considering the varian ce in fitn ess of
the most general schema-by considering t he vari an ce of the function mean .
Using equa t ion (3.12) with l = 3, we obtain that the vari an ce of j (* * *) is
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simply var(j(***)) = wi +w~ +w~+w~ +wg +w~ +w? because J (***) = {O}
and j EEl j = O. In general, the vari ance of the fun ction mean is the full sum
of the squared Walsh coefficients less t he squared Wo te rm . T he reasons for
this are straightforward enough: orthogonality of t he basis insures that all
cross -product terms drop out and subtraction of the square of t he func ti on
mean simply deletes the term w5.

Now consider the variance of a more specific schema, for example * * 0:

Taking the difference between the fitness var ian ce of * * 0 and that of * * *
yields

(3.13)

Note t hat the change in fitness variance comes from two sources :

1. removal of a diago nal (squared) term;

2. addit ion (or deletion) of off-diagonal (cross -p roduct) te rms.

These sources of variance change are the only ones that occur generally, as
we now show by considering the change to the Walsh sum of a fun ction when
a bit is fixed.

Ano ther st udy [5] made the point t hat the Walsh fun ctions may be
thought of as polyn omials if each bit Xi E {O, I } is map ped to an auxiliar y
vari ab le Yi E {-I , I} , where 0 map s to 1 and 1 map s t o - 1 (a linear map­
ping). Each Walsh function may be t hought of as a monomial te rm, where
the YiS included in the product are those wit h Is in the binary representa­
ti on of the Walsh fun ction index . For exam ple, 1!Jl(X) = YI , 'l/Js(x ) = Y3YI,
and 'l/J7(X) = Y3 YZYI, where the change from Xi to Yi is understo od. This
way of thinking about the Walsh funct ions makes it easy to consider changes
in vari an ce and why they occur . To simplify matters further , we examine
the different types of change in variance separately : the removal of diagonal
terms and the addit ion or delet ion of off-diagonal terms .

To isolate the change in variance due to the removal of diagonal terms,
consider a fun ction f(x ) = Wo + WI'l/JI(X) only. T he fun ct ion 's mean has
variance wi. W hen the first bit is fixed , we note an interesting thing:
f (* * 0) = Wo + WI'l/JI(* * 0) = Wo + WIYI = Wo + WI ' Fixing bit 1 fixes
the associate d Wa lsh fun ction fully, causing t he once-linear coefficient to be­
come a constant . Since constant terms in a Walsh sum do not cont ribute to
the variance , wi must be removed . Viewed in this way, it is no t sur prising
that the same reasoning applies to anyon-diagonal term whose associated
Walsh funct ion becomes fixed by the schema under consideration .

To isolate the change in var iance that occurs t hrough the ad dit ion or
deletion of off-diago nal terms, consider a fun cti on f (x) = Wo + wz'l/Jz(x) +
W3'l/J3(X) only. The fun ction mean has variance w~ + w~ . When bit one is set
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to 0, we note an int erest ing thing:
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tVo+ W2'!f;2(* * 0) + W3'!f;3(* *0)
% +~~ +~~~ =% + ~~ +~~

Wo + (W2 + W3)'!f;2 (* *0).

In words, the fixed position of the schema fixes a bit in the once-quadratic '!f;3.
The new linear term has variance (W2 +W3)2 = w~ + 2W2W3+ w~, but the two
squared terms in this sum are already contained in the origina l computation
for the lower order schema. Thus, the cha nge in vari an ce as a resul t of the
fixing is 2W2W3. Dependi ng on whether the bit is set to a 0 or a 1, this cha nge
in varian ce can be positive or negative. For example, if we had considered
the schema * * 1, the change in fitness would have been negative because
(W2 - W3)2 = w~ - 2W2W3 + w~ (as before, t he squared terms are already
accounted in the mor e general schema) . It should also be noted that what
bit fixing can giveth, bit fixing can taketh away. In the exa mple, the fixing
of the second bit aft er the right-most bit has already been fixed will cause
the prev iously added, off-diagonal vari an ce term to be removed. This type
of mechan ism is analogous to that discussed above in connect ion with the
removal of on-diagona l terms.

Although we simplifi ed matters to isolate the different types of variance
chan ge, the correct variance given by equation (3.12) may be thought of as
t aking the vari an ce of the mean and simp ly removing all diagonal terms whose
Walsh functions are fixed by the schema, adding all off-diagonal terms tha t
result when a schema transmutes a high-degree Walsh te rm to one of lower
degree, and removing all previously added off-diagonal terms that become
fully fixed . This view may be followed fairly easily level-by-level, as was done
elsewhere [5J in connection with schema averages by using an approximate
variance var (k) at level k and considering the differen ce in var ian ce t.var (k)

at each level. T he calculations are straightforward and are not pursued here.
Instead , we consider some examples of vari an ce calcu lations.

3.3 Examp le : linear functions

The vari ance of linear fun ctions and their schemata is easy to calculate using
the Walsh basis. Since the fun ction is linear , the only non-zero te rms in
the summation are those assoc iated wit h the constant and order-1 Walsh
functions. Thus,

f (x ) = Wo + I: Wj'!f;j(x).
j :o(j) = l

(3.14)

As a result , the fitness varian ce of a linear function is t he sum of the squa red
linear te rms, and schema fitness vari an ce is simply the sum of the squa red
linear te rms whose assoc iated Walsh functions are not fixed by the fixed
positions of the schema. Here, the change in vari an ce with progressively
more spec ific schemata is all of the diagonal-r emoving var iety because the
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Schem a Symbo lic Numeric

*** w~ + w~ + w~ 5.25

**f w~ + w~ 5.00

*f* w~ +w~ 4.25

f** w~ + w~ 1.25

*ff w2 4.004

f*f w2 1.002

fh w2 0.25I

fff 0 0.00

Table 1: Variance tabulat ion for a linear 3-bit function.
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lack of nonlinearity preclud es the t ransmutat ion of a high-degree monomial
into one of lower degree as bits are fixed .

An illustrative numerical example can be generate d by considering the
fun ction f (u) = u, where u is a 3-bit unsigned int eger u(x) = L:~=12i- I Xi '

Xi E {O, I}. Calcula t ing t he Walsh tran sform of f [5], we obtain Wo = 3.5,
WI = -0.5, W 2 = -1.0, W4 = - 2.0, and W i = 0 otherwise. The varian ce
values are tab ulated for all schemat a in table 1, where the shorthand notat ion
of an "f" is used to denote a fixed positi on in the schema .

Besides illust rating the simple st ru cture of schema fitness variance in
linear functi ons, t he tabulation may be used to make an important point
abo ut GA convergence. It has often been observed that high bit s in binary­
coded GAs converge mu ch soo ner than low bit s. T he table helps expla in
why this is so. Scanning the table, we see that the high-bi t schemata have
lower variance than the ot hers. T hink ing of the square root of the fitness
vari ance as the amount of noise faced by a schema when it is sampled in a
ran doml y chosen population , we see that high-bit schemata exist in a less
noisy environment than their low-bi t cousins . Moreover , t he signal difference
between compe t ing high-bi t schemata is also higher than that of low-bit
schemata. The double whammy of higher signal difference and lower noise
forces the higher bi t s to convergence fas ter . Explicit and rigorous account ing
of the signal-d ifference-to-no ise rat io will be necessary in a moment when we
calculate the pop ulation size necessar y for low error rates in t he presence
of collate ral noise. Before considering this, however, we examine whet her
spec ific schemat a are always less noisy than their more general forebears.
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3.4 Example: refinement does not imply variance red u ct ion

In linear functions, fixing one or more bits mean s that a more spec ific schema
will have lower fitn ess varian ce than one in which that schema is properly con­
tained. In nonlinear functions, this need not be the case . Here, we construct
an example of a simple funct ion where fixing a bit increases the vari an ce.

Doing so is st raightforward. Set ting the expression for Cl.var(**O) grea ter
than zero yields:

Similar inequ alities may be derived for the other zero-con taining , order-l
schemata. Set ting all Walsh coefficients of ident ical order i equal to w;, each
of these inequalities has the sa me form : 2(2w~w; + w;w~ ) > W~2 . Choos ing
not to use the third-order coefficient (set t ing w~ = 0) yields w; > wU 4. Thus,
we have create d a fun cti on that varies more at order 1 (with a 0 set) than at
order O. It is interesting that the order-I schemata with I s set are less noisy
than their compet ito rs (and less noisy than the most general schema ). This
is so because the signs on the cross-pro duct te rms are negative. In general, it
is also interesting that if the variance valu es for all compe ti ng schemata over
a particular partition are summed, the cross-p roduct terms drop out becau se
each compe t ing schema has the same terms with half the signs pos iti ve and
half negative. Although refinement need not lead to variance reducti on for
an individual schema, it do es insure non-in creasing par ti ti on variance .

These examples lead us to consider more general applications and exten­
sions of t he vari an ce calculat ion in the next sect ion .

4. Applications and extensions

In this sect ion, we consider two app licat ions of the variance calculat ions :
population sizing and a colla te ral-noise ad justment to the schema theorem.
Additionally, we consider the extension of the Walsh-vari an ce computatio n
to nonuniform populations.

4.1 Population sizing in the presence of collateral noise

A pr evious study [7] considered po pulation sizing from the standpoi nt of
schema turnover rate; that study knowingly ignor ed varian ce and its effects,
but explicitly identified stoc hastic variat ion as a poss ibly impor tan t factor in
det ermining appropria te populati on size. Here we atone for that previous,
albeit consc ious, omission by considering a simple, yet rational , sizing formula
that accounts for collateral noise.

We start by assuming that the functi on is linear or approximately linear
and that all order-I terms in the Walsh expansion are equal to w~. We
consider all pairwise comparisons of compe t ing k-bit schemata and choose a
population size so the probability that the sample mean fitness of the best
'schema is less than the sample mean fitness of the second best schema is less



Genetic Algorithms and the Variance of Fitness 275

than some specified value, a. Posed in this way, we have a straight forward
problem in decision theory.

Assum ing that all vari ance is due to collateral noise (i.e., assuming that
operator vari ance is small with respect to that of the function) , and assum ing
that popul ation sizes are large enough so the cent ral limi t theorem applies,
the vari an ce of the samp le mean fitness of a single order-k schema is

(4.1)

where the hat is used to denote the sample mean and n is the popul ati on
size. T he numerat or resul ts from the Walsh-vari ance computat ion, and the
denominator assumes that the schema is rep rese nte d by its expected number
of copies in t he sample po pulation. T he sample mean fit ness of the best and
second best schemata have the same var iance; the vari an ce of the difference
between their values is twice that amount. Taking the square root we obtain
the standard deviation of the difference in sample mean fitness values:

(]"= (4.2)

(4.3)

Calculating the unit random normal deviate for the difference in sample mean
fitn ess values , Z, we obtain the following:

2w'
Z= __1

a

Squ aring Z and rearran ging yields an expression for t he populati on size,

n = c(l - k )2k- 1, (4.4)

where c = z 2 and Z is chosen to make the prob ability that the difference
between the sample mean fitness of the best and second best schemata is
negat ive as small as desired. Valu es of Z and c for different levels of signifi­
cance a are shown in tabl e 2. For example, consider ing k = 1 at a significance
level of 0.1 , the population sizing formula becomes n = 1.64(1 - 1) . Many
problems are run with st rings of length 30 to 100, from which the formula
would sugges t population sizes in the ran ge 49 to 164. T his range is not
inconsistent with standard sugges tions for po pul ati on size [3] that have been
derived from empirical tests. Similar reasoning may be used to derive formu­
las for population sizing if the building blocks are scaled nonuniformly or if
the function is nonlinear. Instead of pursuing these refinements, we consider
collateral noise adjustment s to the schema t heorem.

4 .2 Variance adjustments to the schema t heorem

The schema theorem is a lower bound on t he expec ted prop agation of building
blo cks in subsequent generations, but it is imp ortant to keep in mind that
it is only a result in expectati on and does not bound the actual performan ce
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a z c

0.1 1.28 1.64

0.05 1.65 2.71

0.01 2.33 5.43

0.005 2.58 6.66

0.001 3.09 9.55

Table 2: One-sided normal deviates z and c = z2 values at different
levels of significance Q .

of any GA . By explicit ly recognizing the importance of variance, however ,
we can calculate a lower bound that, to some specified level of significance,
does account for the potential stochas t ic vari ations caused by collatera l noise.
Here we consider select ion only-and even then limit the adjustment we make
to one for collatera l noise-but the technique can be genera lized to include
variance adjustments for the select ion mechani sm itself an d ot her operators.

For proportionat e reproduction act ing alone th e schema theorem may be
writ ten [4]

f (h , t )
m( h , t + 1) = m (h, t ) f (0., t ) ' (4.5)

where t is the generation number, m (h , t ) is the numb er of representat ives
of a schema in the curr ent generat ion, f (h , t ) is the average fitn ess of the
schema h in the current population , f (0.,t ) is the average fitness of the
current population , and t he overbar is the expectat ion opera to r as before.
To adjust for the variance of the fitness funct ion, we assume that we are
consistently unlucky in both the numerator and the denominator:

f (h ,t) - zcy(J( h, t)) / Vm(h , t)
m(h , t + 1) ;::: m(h, t ) f (0., t) + zcy (J (0., t ))/ ..jii , (4.6)

where the expectat ion operation (the bar ) has been dropp ed , z is the criti­
cal value of a one-sided normal test of significance at some specified level, CY

denotes the standard deviation of the specified quantity (cy(x) = vvar( x)) ,
and n is the population size. In this way, we have conservat ively assumed
that the fitness of the schema will be ext raordinarily low, and the aver­
age fitness will be extraordinarily high (t o some level of significance) . If
the popul ation is sized prop erly, the desired schema will st ill grow when
m( h, t + l )/m(h, t ) > 1. Note that , st rictly speaking , these computat ions
require t hat we calculate variance over the nonuniformly dist ributed popu­
lation that exists at generation t . We will outline that computat ion in a



Geneti c Algorithms and th e Variance of Fitness 277

moment , but the variance computat ion for a uniform populati on should give
a useful estimate . Moreover , although here we have only made adjustments
for collatera l noise, it is clear that further adjustments can and should be
mad e to the schema theorem to include all addit ional stochas t ic varia t ions :

1. true functi on noise (nondet erministic j s) ;

2. vari an ce in the select ion algorit hm (aside from collate ral noise) ;

3. variance from expected disrupt ion rat es du e to crossover , mutation ,
and other geneti c op erators.

Any such adjustments should be conservative an d assume that mean perfor­
man ce is worse than expec t ed by an amount z times the standard deviation
of that operator acting alone. If all adjustments are made , then the resulting
inequ ality will be a proper bound at a calculable level of significance . In ot her
words, satis fact ion of such a variance-adjuste d schema theorem will assure
that the probabili ty that an advantageous schema loses proportion in some
generation is below some specified amount. When don e properly, these cal­
culations should lead to rigorous convergence pr oofs for genetic algor ithms.

4.3 Nonuniform populations

The calculat ion of the pr evious sect ion assumed that the variance of a par­
ticular schema's fitn ess is well repr esent ed by the uniform, full populati on
valu e. In a nonuniformly distributed population , a more accurate value can
be obtain ed by calculat ing the vari an ce of a schema's fitn ess directl y.

Definin g a pro porti on-weight ed fitn ess value ¢ (x ) = j(x)P(x )21 as in
Bridges and Goldberg [2], the calculation of var iance proceeds immediately
if we recognize that we must mul tiply two different Walsh expansions, one
for j (the usual transform, Wi ) and one for ¢ (t he tr an sform of pro porti on­
weight ed fitness, call it w;'). The mathematics follows exactly as in sect ion 3,
except that the terms of p involve only products of the w;' terms, while the
terms of j2 involve products of Wi and w'J terms. As a result the overall sum
does not collapse to a single sum over a difference of index sets. Nonetheless ,
the st ruct ure of the terms pr esent in t he two sums (the ordered pair s in J~

and ]2) is the same as before becau se the ind ex sets are the same .

5. Conclusions

This paper has pr esent ed , int erpreted, app lied , an d extended a method for
calculating schema fitn ess vari an ce using Walsh tran sforms. For some time,
geneti c algorithmists have been content to use result s in expectat ion such as
the schema theorem. Serious efforts at rigoro us convergence proofs for re­
combinat ive GAs dem and that we consider var ian ce of the functi on , vari an ce
of the operato rs , and other sources of stoc has t icity. Some of these issues have
been tackled here, and a rigorous approac h to the others has been outlined .
Bu t it is apparent that thi s line of inquiry clear s a first path to fully rigorous
GA convergence theorems for populations of modest size .
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