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Abstract . In t his paper we show some pr eliminary resu lts of simu­
lat ions wit h a population of bit st r ings . We present t he ideas of our
model and po int out the difficulti es in imp lem enting t hem . Alt hough
an open evolut ion is one of the final aims , we ca n present some inter­
esting resu lts wit h fini t e and even very small systems. One impor tant
resu lt is t he evidence t hat introducing start codons in the decod ing
scheme is reasonable. T his seems to have biologica l relevance since
star tcodons ar e used in na t ural decoding processes.

1. Int roduction

1.1 General overview

During the last few years, at tempts to mod el systems wit h evolutionary prop­
erties have become more and more num erous. T he fun dam ental quest ion one
wants to answer is essent ially : What are the basic and necessary ingredients
that make evolution from simple building blocks to large and complex struc­
tures possible, likely, or even inevitable?

The whole evolut ion from single-cell bact eria to human beings dep ends on
a very elaborate mechanism for self-reproduction. But it is generally believed
now that even the first self-reproducing molecules had a rather complicated
st ru cture- they were RNA-like-which made their appear an ce by chance
rather improbable. So there remains a gap between a pr imordial soup and
the first self-reproducing molecules, and even more so between these and
primitive organisms like bacteria . There are var ious approaches t ry ing to
solve this puzzle. They include Eigen 's hyp ercycle [1], autocat alyt ic net­
works [2], the Coreworld simulat ions of Rasmussen et al. [3], and Font an a 's
AlChemy [4].

' Part of this work was done while part icipat ing in the Institu te for Scientific Interchange
workshop on "Complexity and Evolut ion."
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The guiding pr inciple in specifying our model was that it should be as
simple as possible, yet incorporate some features that we consider essent ial:

1. Individuals should be built up from several bui lding blocks in order to
pr ovide a huge state space du e to combinatorial explosion.

2. There should be no frequ ency-independ ent fitness, that is, no absolute
goa l.

3. Selection should play at least par ti ally on individual building blocks in
order to have "mild" mu tations, where changes in one block leave most
of the score of an individual unchanged .

4. We want to model a discret e stochas t ic system, not a sys tem of dif­
ferential equat ions. In an infinite system noise could be suppressed by
the law of large numbers, and we could have limit cycles or chaot ic
attractors . In our finite systems we must approach some invari ant dis­
tribution, though this might be reached so extremely slowly that it may
be irrelevan t .

1.2 OUf model

We chose a populat ion of fixed-length bit st rings- t hey can be viewed as
DNA-like molecules having only two inst ead of four bases or some very small
molecules directly decoded by a bit st ring-swimming in a well stirred soup .
This way interact ions between two of them can be simulated by taking them
at random with equal probability. For simplicity, t hese bit st rings will be
called "animals" in the following. For each animal we define a real variable
storing the score (or fitn ess) of that animal. We should st ress here that this
"score" or "fitness" is not a pr especified global fun cti on , because the fitness
of each animal is determined by its interact ions with ran dom ly chosen ot hers .
So there is only a "populat ion-dependent" fitn ess that cont inually changes
as the population chan ges. The pr esent population , considered as a point in
the state space of all possible populati ons, is the local environment for each
animal in which its local fitness is evaluated in a pr especified way.

T he following two element s are necessar y to create a sequence of genera­
tions :

• An interaction scheme that changes the scores of the animals tak ing
part in the interaction ; det ails are given in sect ion 2.1.

• An updating or reprodu ct ion scheme that uses the scores to decide
which an imals go on to the next generation and which drop out and
are replaced by new ones. The reproduction involves err ors produced
by mutations; details are given in section 2.2.

Implementi ng these two points leads to problems that are of either a tec hnical
or a conceptual nature. Let us explain what we mean by techni cal versus
conceptua l.
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Mut ation that can be implemented in different ways is used to add new
mat erial to the population during the reproducti on phase. We apply single­
point mutation , that is, "single-bit flip" (except in sect ion 5 where we add
"cut and splice" [5]), when an animal pro duces "offspring ." This is simple to
implement because it t akes only one random number. There are other pos­
sibilit ies that cause on average the same mutation rat e [6] . But as the main
feature of mutation is to introduce new material , the results do not depend
mu ch on how it is done. We thus claim that how mutation is implement ed
is only a technic al probl em.

Whether to use mutation as a source of variability or other genetic op­
erators such as inversion , replica t ion, or the parasit e model [7], is more a
concep t ual problem. The same is val id for sexual reproduction, which can
employ crossover, assortive mating, recomb ination [8], and cut and splice, as
described in sect ion 5.3.

The decoding scheme that is pr esented in det ail in sect ion 3 is also a
conceptual pr oblem. If decoding is done in an unsuited way our final goal-a
"t rue" evolutio n-can never begin.

We should point out , however , that for many feat ures of an evolving
system one cannot decide right from the start whether an implemental alte r­
native is merely a technical or a conceptual problem .

2. Interaction and reproduction

2.1 The interaction scheme

Each time ste p of the simulat ion consists of two parts: first an interaction
ph ase that calculates the scores of all anima ls, and thereaft er a reproduction
ph ase as describ ed in section 2.2. The interact ion phase first sets all scores to
zero and then executes a number of "bas ic interactions." A basic int eraction
takes two animals i and k purely at random , selects one gene in each of them
(gi and gk)- again at random- and pe rforms the following updat e of the
scores Si and Sk:

Si <---- Si +A(gk, gi)
Sk <---- Sk+ A (gi ,gk)

(2.1)

where A denot es a random matrix with values taken from the int erval [-1, +1].
The number of bas ic int eractions was typi cally chosen to be a mul tiple, called
a, of the number of animals. Most simulat ions were done with a = 10. Since
two animals part icipate in one basic int eract ion , each animal takes par t in
20 interacti ons on average . But we also cond ucted simulations with a = 20,
30, and 40.

2.2 R eproduction

In all simulat ions we implemented synchro nous reproducti on throughout t he
population. Let us consider som e alte rnat ives:
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1. One simp le reproduction scheme calculates the average score and re­
moves all animals that are below average and replaces them by mu­
tating survivors . Notice that this imp lies t he somewhat "unbiological"
feature that well adapted animals do not die, but survive without be­
ing changed by mutations. But this mechanism is easy to implement ,
needs no sort ing, and is carried out in t ime O(n) where n is the number
of animals in the simulation.

2. Another scheme we implemented rep laces a constant fraction of the
population by mutants afte r every t ime step (i.e., in every reproduction
phase) . We chose the worst quarter of the population to be replaced.
The new animals are mutants from

(a) the best animals according to score (we choose from t he best quar­
ter) ,

(b) all sur viving an imals, and

(c) all an imals, even from t hose that will be replaced .

One arg ument for case (c) is the fact that even a mutant that is at first
unsuccessful cou ld cont ain som e genet ic material that proves useful in the
future ( "hopeful monsters") . Nevertheless we favored (a) because we have
another poss ibility to pr eserve neutral genetic material (see sect ion 3.3) and
we wanted to simulate a fairly small population (64 or 128 ind ividuals) for
reasons of computational economy.

Another aspe ct of our model is the probability P(Si) for an animal i with
score Si to be chosen for reproduction. Very often a Fermi distribution of the
form

( )
_ constant

PSi -
1 + exp[(Si - s)/C]

(2.2)

is taken. Here , s = (liN) . 2:I:1 s, denotes the average score and C is a
temperature-like parameter. We used C = 0, which chooses all ani mals
above average with equal probability. In addition we rep laced s by s, where
s denotes a value that is smaller than the highest quarter of all scores but
strictly larger than the rest (correspo nd ing to case (a) above). We favored
this case because it lets us use simple, equally distributed random numbers.
Another advantage of this implementation is that we can easily estimate the
number of animals nt that die afte r a certain number of t ime ste ps t if the
animals die purely at random. Explicit calculations ar e given in appendix A.

3. Decoding the bit str ings

We subdivided the bit strings into functional gro ups that we call "genes."
The name genes was chosen for convenience and should not be taken too
literally. The concept of genes is closely connec ted wit h the distinction of
genotype and phe notype , as sketched in figur e 1. The genotype is the set of
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populations
(interaction)

----+ ph enotyp e ----+
development (cha racter fitness

of animal)

1__-----'

genotype
(set of genes)

F igure 1: Genotyp e-phenotyp e relation.

genes stored in the DNA. This determines the phenotyp e, which in turn de­
termines the fitness. The fitness we can ascribe to an animal is not evaluated
by looking at the genotype; it follows indirectl y via the phenotype.

As a consequence the genotyp e-fitn ess relation is very nonlinear and un­
predictab le. In our model we have no explicit distinction between genotype
and phenotype . The genes can interact direct ly via the interaction matrix
A as described in section 2.1. T his matrix implicitly contains the gene­
phenotyp e map . T he randomness of the values of the matrix elements is
suppose d to mod el the complexity and unpredictabi lity of the gene ---+ phe­
notype ---+ fitn ess map.

The genes are decoded using a binary t ree. To read ~it st ring from
any prescrib ed posit ion forward , one starts at the root and moves down the
t ree while the bits in the animal decide which way to go- O t urns left , 1
turns right - and stops if a leaf (which contains the number of the gene)
is encountered . This procedure is cont inued until the whole bit st ring of an
animal is decoded. In most simulations we worked wit h a rando mly generated
t ree that is shown in table 1 and in figur e 2. It decodes 20 genes wit h lengths
between 3 and 8 bits.

The main reason for using a binary t ree instead of a randomly generated
list of genes (t hat can also be list ed in a table like tab le 1) is t ha t this way
we are able to decode every possible bit st ring without ambiguity. Each path
t hrough the binary tree leads to a gene afte r at most 8 left-right decisions.
There is neither arb itrariness (one sequence ---+ many interpret at ions) nor
uninterpret ab le sequences. In addit ion this tree allows a simple extension
of the model where t he tree is able to grow: A leaf can be replaced by a
node that adds two genes to the tree in the next level, so new and longer
genes can be int rodu ced and effect ively cha nge the environment the animals
are living in. But don 't forget that even wit hout a growing tree we have no
static environment .

Even with a given represent ation there are different ways to decode a bit
st ring. We describe some of them in detail in the following subsections .

3 .1 G enes packed in highest density

The largest number of funct ional groups in a bit st ring can be obtain ed
by joining the beginning and t he end of the animal , creat ing a circular



284 Harald Freund and Robert Wolt er

Gene Length Bit repr esentati on

A 3 001
B 3 011
C 3 110
D 3 111
E 4 0000
F 4 0100
G 4 0101
H 4 1000
I 4 1010
J 4 1011
K 5 10011
L 6 000100
M 6 000101
N 6 000110
0 6 000111
P 6 100100
Q 8 10010100
R 8 10010101
S 8 10010110
T 8 10010111

sc 3 110

Tab le 1: Bit representa tion of the genes and of the startcodon (see sec­
t ion 3.3) that were used in all simula t ions. T he startcodon is denoted
by "sc."

sequence. A gene starts at every position ; that is, an an imal with 32 bits
stores 32 genes. In this case the genes overlap maximally and we see st rong
correlations between genes. So the int eraction between animals is not the
sum of ind ependent interactions between single genes, but of interact ions
between groups of genes. This is also known as the hi tchh iker effect . For a
detailed example see figur e 3. Simul ati on results are pr esented in section 5.1.

3 .2 G ene b eside gene

(a) The next possibility avoids overlap s of functional groups by scanning t he
bit st ring from the beginning to the end and start ing a new gene just afte r
t he previous one is com plet ed. T he last bi t s, which belong to no gene, are
not interprete d . An example is shown in figure 4.

A point mutati on at t he end of an animal, decoded this way, will have
a small affect on t he genet ic conte nts. The same is t rue for a mu tati on at
the beginning of the st ring if this does not change the reading frame. But
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Figure 2: Bit representation of the genes that were used in all simu­
la tions, shown as a tree (as mentioned in section 3).

Bits Gene

0 0 0 1 0 0 L
0 0 1 A

0 1 0 0 F

F igure 3: Bit string decod ed as described in sect ion 3.1. In this
example the genes start at each position in the bi t st ring so the density
of genes is maximal. The substring "000100" is always decod ed as the
sequ ence "LAF ," which is followed by a gene that starts with "100"
(compar e table 1 and figur e 2).

285
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S 1 F 1 D IG I N I A 1-
1011010100 111 1 10 1 01 1000 110 1001 10

1
1 00 1 0 0 11

p
01 1 1001 1001 11 10 11

J 1 A I A I C I
o 1 0 100

I I A
1 11 0 0 0 11 0

H 1- -
Figure 4: Example of a single mutation at bit number 2 that com­
pletely changes the reading frame. The genes are labeled as in tab le 1
and figure 2.

a mu tation in the first gene that converts it to a gene of different lengt h
complete ly changes the contents by alterin g the reading frame (compare fig­
ur e 4) . In this way point mutation can cause big leaps in the space of all
possible animals, and improvements can only result from "jumps" right onto
an imp roved po int. In contrast we want mutat ions to be a minor disturban ce
(or a kin d of low am plit ude noise) that changes only a small amount of in­
formation and allows for gradual improvement. Or , to put it another way,
we want point mutation to be a local operator.

(b) T his locality can be restored by cut ting out the gene that is to be mutated
and put ting it at the end of the animal , so each point mutation resul ts in only
minor changes. Thus it seems that we can avoid the nonlocality of mu tations,
but only by means of a trick that does not seem to be very natural.

3.3 Introducing startcodons

In a third approach the bit string is scanned for appearan ces of a special bit
sequence called a "startcodon ," which signals the beginning of a gene.

On the one hand there can st ill be overlapping genes if a substring of
a gene is equal to the st artcodo n . In the realization shown in table 1 and
figure 2, for example, we chose the sequence "110" (equal to gene C in our
binary decod ing t ree) as the start codon. By this choice no two genes can
overlap .

On the other hand there are par ts of an animal-called "junk" from now
on-that carry no information becau se there is no startcodon . This could
pose a problem if animals wit hout any startcodon could dominate. But, as
these do not interact , t heir score remains zero. Since the average score of the
success ful animals is positi ve, these animals are killed in the long run.

This decoding scheme defines muta tion as a local operator because it can
affect at most two genes (if a startcodon overlapping with a gene is alte red,
compare tab le 1) . Let us explain this with an example. Figure 5 shows the
same bit sequence that was present ed in figure 4. Startcod ons are denoted
by "sc'' and junk by "-". If we now perform the same mutat ion as in figure 4,
only a minor change results. Two genes would be changed if the mutat ed bit
were from the second startcodon.
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sci s I - I s c I 1-- 1 sci A 1-
I sci F I

1 1 01 1 0 0 1 0 11 10 101 00 11 11

!
1 0 11 0 10 100 11 1 0 10 a 110

10 a 100 10 11 10 1010 0 1111 10 110 1 0 100 111 010 0 110
- - - - - - - -Isc / F I-Iscl I 1- - lscIAI -

Figure 5: Example of a single mutation at bit number 2 that changes
only slight ly the contents of the animal because startcodons are used.
The genes are labeled as in table 1 and figure 2.

We see that startco dons are an effect ive metho d of guarantee ing t hat
mutation is a local operator, so we should not be surprised to find startcodons
being used in real DNA sequences .

The second pos it ive feature of startcodons is the introducti on of junk.
Junk can be a source for sudden change becau se it can accumulate changes
that are not interpr eted . When a startc odon is creat ed by a mutat ion in a
junk region , new information is evoked . But on average the effective rate of
mutat ion is lowered by the presence of junk since we used only a single point
mut ation per new created animal. (T his would not be t rue if we used a fixed
mut ation rate per bit) .

4. The role of randomness

There are three aspects of randomness in our model:

1. the interaction matrix A(g,g') ,

2. the choice of the interact ing an imals, and

3. the choice of interacting genes in the animals.

A poss ible object ion agains t our mod el could be that the whole system might
have too much randomness in it ; in particular the third aspec t could be made
determin istic by defining some genes as "ac tive" in the bit st ring and using
only these for the score evaluat ion . Alt ern atively, for exam ple, we could
implement a "complete" int eracti on ; that is, each gene of the first animal
could interact with each gene of the second animal. We played wit h different
implementati ons, but t he main features of the system stayed the same .

We now want to give some arguments in favor of the sources of ran dom­
ness mentioned above. The first concerns the randomness of t he interacti on
mat rix . In real nature, t he interact ion between genes is an extremely com­
plicated pro cess, involving the folding of the DNA its elf, t he folding of the
expressed pr otein, it s effect on the phenotype, and so forth . All these ste ps
are most likely very sensitive to small details, and we consider it neither fea­
sible nor desirab le to model such a det ailed dynamics. Instead of an explicit



288 Harald Freund and Robert Wolter

ph enotyp e/ genotyp e distinction and a deterministic prescription for the in­
teraction between genes, we argue that a random matrix as in our model
accounts best for what can happen in "reality."

The answer to the second point was also mentioned earlier in this pap er.
We consider the environment in our model as a well-stirred fluid where the
animals are floating, so an interaction between two of them is simulate d best
by picking them at random .

Let us now come to the third point . If we think of the bi t st rings as real
one-dimensional st rings , we cannot expect them to line up from head to t ail
when colliding. It is more likely that only a small part of each is in contact
with the other , so we can equa te this par t with one gene. If we consider the
bit string as a three-dimension al st ructure t he arg ument is similar: only parts
on the surface of this structure are active, and again a collision results in just
two genes interacting. Finally, if the interaction passes t hrough some reading
machinery as in real biological systems, then the effect of this machinery will
be highly complex, so again a random model seems most appropriate .

So it seems fairly reasonab le to work with all those random element s we
described before.

5. Computational r esults

5.1 G enes packed in highest density

Under the decoding scheme described in sect ion 3.1 a population evolves
to a kind of (stat ist ically) stationary state after a rather short time. It is
essentially ind ependent of the initi al population and of the interaction rat e Cl!

as defined in sect ion 2.1. The statist ics in this state depend on the interaction
matri x A, which can be seen by cont rasting it with a random population.
Genes of the same length (e.g., A to D or L to P, see table 1) would occur
wit h the same probability and longer genes are suppressed. In our system
the gene frequencies soon reach a state wit h constant averages but st rong
fluctuations around these mean values. The st rong fluctuations are caused
by the replacement of a quarter of the popul ation each t ime step. When
reaching this state, there are st ill many different "species" in the population ,
where a spec ies is defined by it s gene conte nt bu t neglects the order of these
genes (and any junk, see sect ion 5.3) . In cont ras t to the random case , genes
of the same lengt h do not have the same frequencies. Even an enha ncement
of a longer gene comp ared to a short one is poss ible. For example, in a
random population gene L is suppressed by a facto r of 2 relative to gene K;
in our st at ionary state, gene K is suppressed by a facto r of 2.5 relative to
gene L.

We blame this appearance of a stat ionary state on the st rong corre lat ions
shown in figure 3. Correlations are less pronounced when we start a gene
at every second bit positi on . Although this cha nges the kind of st ationary
st ate, the syste m sti ll reaches a st ationary state . In contrast to the case
where a gene started at each bit , it can be described as one "quas ispecies"
consist ing mainly of one successful group of genes (for a complete definition of
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"quasispecies" see [1]). The whole populat ion consists of the optimal species
and of animals that have a small Ham ming dist ance from this optimum,
the latter corres ponding to recent mutation . This behavior was also rob ust
against changes in the iriteract ion rate.

Because this decoding scheme lacks the ability to cha nge, we did not
cont inue using it .

5 .2 G en es b eside genes

T he next mechanism we impl emented was the decoding scheme described in
section 3.2. In most simulat ions we chose variant (b), where the mutated
gene is cut out and pu t at the end of the animal. Though this is a somewhat
art ificial t rick to make mutation local , systems simulated this way showed
promising results.

During a simulat ion one gene can be absent for a long int erval, but may
later reappear and dominate (compare gene 0 in figur e 6). So a continu­
ally chan ging environment is possible, which implies there is no frequency­
independent fitness function that can be evaluated exte rnally. In par ticular
there may be cooperation between genes (genes H and 0 in figur e 6) and
mutual suppression (genes F and B in figure 7) that could not be obtained
from a global fitness function .

T he characte rist ic behavior of our system- bist ability and genet ic take­
over- is independent of the ini ti al population and ind ependent of the random
matrix chosen. But it strongly depend s on the value of the int eraction pa­
ramet er 0: (as defined in sect ion 2.1) . Higher values of 0: result in long-living
metastable states or "punctua te d equilibria" (compare figur e 6) where no re­
curre nce of an earlier state is seen. The number of possible stat ionary states
depends on the interaction mat rix. Lower values of 0: lead to faster decay of
such states , where the same state recurs frequently (compare figure 7). T here
are longer phases where genes A and B dominat e, alternating wit h ph ases
where genes F and H lead .

Figures 6, 7, 10, and 11 show the frequencies for several genes of the
binary t ree present ed in figur e 2 for different simulat ions with 64 indi vidu als
each. The abscissae describ e the simulat ion time steps and the ordinates
ind icate the gene frequ encies. Note that the ordina tes show different scales.

Figur es 6 and 7 result from runs that used the decoding scheme describ ed
in sect ion 3.2, with the same interaction matrix and the same initial popula­
tion ; they differ only in the interaction param eter 0: . Each animal consists of
32 bits. We see a rich behavior wit h at least three met astab le states (genes
A and B, genes F and H, and genes H and 0 ).

To sum up , like natural evolving systems our system shows stab ility on
the one han d and the possibili ty to change on the other. T his is so in spite
of our assump t ion of spatial homogeneity, which prevents the form ation of
different niches and further suppresses the form ation of struct ure .
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Figure 6: Ex ample for a "gene t ic t akeover. " In the beginning two
genes , A and B dominate for a rathe r long time but then two different
genes , H and 0, t ur n up an d take over. We do not show genes with
small frequenci es; for example, H and 0 are accompanied by N, but
its amplit ude is below 50. Here and in t he following figures only
the most successful genes are shown. Typically a t least 12 of the 20
possible genes have negligib le frequencies. The mult iple a defined in
section 2.1 is 20.
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F igur e 7: Bistabili ty of the gene frequencies. On e stable state is
characterized by the dominance of the genes A and B, the other one
is dominated by genes F and H. The same init ial population as in
figur e 6 was used , but wit h a = 10.
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Figure 8: This plot compares the bit length (which was held consta nt )
to the info-length as defined in section 5.3. Except for the initial
700 time steps, the info-length stays below 60 bits, so only 38% of
an average animal's bits are decoded as information. This way the
mutation rat e is effectively decreased.

5.3 Using sta r t codons

The use of startcodons leads to systems wit h prop erti es similar to those we
described in sectio n 5.2. We could present plots similar to figur es 6 an d 7,
but this is not very instructive. Due to the pr esence of junk, animals of
32 bits now have fewer genes (compare figures 4 an d 5) . So we incre ased
the length to 64 (and later up to 160) bits and introduced what we call the
information-length or , for short , "info-length ." The info-length is the number
of bi ts decod ed as information (i.e., belonging eit her to a startcodon or to a
gene). The animal shown in figur e 5 has an info-length of 28 bi ts before and
20 bits afte r the mutation . When measured this way, we see that t he lengths
of the animals can change.

An average random populat ion of animals of 64 bits has an average info­
length of 40 to 45 bits; that is, two-t hird s of the animals are decoded as
information and one-third as junk. The info-length drops to 20 to 25 bits
very soon (this leads to animals with at most 5 genes). What are the reasons
for t his behavior? As described in sect ion 2.2, one-fourth of t he population is
replaced each t ime st ep by l-bit-flip mutants of the highest ranking quarter.
Thus t here is a rather high mutation rate, which is effect ively decreased when
animals have large regions of junk where a bit flip usually lead s to no change
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Figure 9: Th e three curves present (from top to bottom) the maximal
bit length of animals (which could ,B'e 160 in this run ), the average
bit length , and the minimal bit length (which could be at least 2).
The average value has st rong fluctuations about the mean value of
approximate ly 80 bits.

(b ecause no startcodon is produced). This is reminiscent of Hollan d 's schema
theorem [9] .

To fur ther examine the decreasing info-length we increased the bit length
of the animals to 160 bits. A random ini ti al population has an average info­
length of 110 to 120 bits; that is, more than two-t hirds of an animal are
decoded as information. Figure 8 shows a typica l simulat ion result . At first
t he info-length drops to approx imately 20 bits and later increases to 40 to
60 bits. Thus the relative info-length (i.e. , info-length normali zed by the
bit length) is 0.25 to 0.38 both for short (64 bits) and for long (160 bit s)
animals.

To get deeper insight into this phenomenon we introduced a second ge­
neti c op erator , "cut and splice" [5]. Cut and splice takes two animals, cuts
each at a random pos it ion-not necessarily the same po sit ion- and builds
two new animals , each consisting of two parts, one from each ances tor. T his
way length changes ar e po ssibl e. We allow animals of a length between 2
and 160 bit s, start ing with animals all havin g the same length. We st ill find
punctuated equilibria where some gene (s) dominates the population . During
some periods longer animals prevail, and during others short or medium sized
animals (see figure 9) . Figures 10 and 11 show result s for a system us ing the
same interaction matrix as the one used to pr oduce figures 6 and 7. Different
initializati ons lead t o different sequences of met astab le states. In addit ion to
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the three met astable states we described in sect ion 5.2, we now see out bursts
of gene P pr eceeding eit her the newfound stable state with high frequ encies
of genes J and M, wh en the ini t ial bit length is 20, or the pr evious stable
st ate of genes H and 0 , when the init ia l bit length is 60. Bu t there is no
trend con cerning the bit length of the animals.

Since we only conducted simulations lasting 10,000 to 50,000 time steps
we are never sure that there could not be a change of state in even longer
runs, alt hough some populations seem to settle into what looks like a "global
optimum" (compare figure 10) .

In this paper we only used the gene frequ encies to discuss the enco untered
ph enom ena. But, in addition, we also print ed out successful animals (i.e.,
those animals t hat stayed in the simulation for more than 20 to 25 time
st eps). We found that those animals contained only the successful genes
and could be grouped toget her in "species." In the simulation leading to
figure 10 we saw mainly the followin g species: "0 ," "H," "HO," and "OH."
It is interesting to explore these spec ies, to look at t heir age distribution and
their relative strength (i.e. , number of animals belonging to this spec ies).
But as this goes beyond the scope of t his work we have to defer to a future
pap er .

6. Conclusion

Ou r model for evolut ion of bit st rings showed some general properties that
are summarized here.

When we compar e the theo ret ica l numbers of individuals reaching a spec­
ified age with our results, we see dir ectly the effect of select ion: it lead s to
a deviation from an exponential age dist rib ution du e to successful an imals
becoming older and unfit mutants dying very soon (see also appe nd ix A).
This is ind ependent of the decoding scheme .

When we decode the bit sequences withou t using startcodons, we see
that our system tends to develop into (meta)stable limi t states. There is
bist ability if t he interaction paramete r is rather small; whereas a stat ionary
state takes over when this parameter is increased . If startco dons are im­
plemented t he dyn amics more likely shows mult istability wit hout a defin ed
limit state. We st ill see some of the states that appeared in the system when
using different decoding schemes .

Another positive feature of introducing startcodons is the pr esence of
junk. Thereby t he system is able to compensate for the selectio n pr essure
caused by the relatively lar ge mutation rate by using only a fracti on of the bit
string as inform ation . T his leads to a lower number of genes in the animals
and also implies the possibility of sudden change that ends the dominan ce of
successful genes .

The models we implemented do not really lead to an open evolut ion , but
they also do not get st uck in a local maximum of fitness without having a
chance of further development .
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Figure 10: F igures 10 and 11 result from runs that used the decod­
ing scheme desc ribed in section 3.3 and employed crossover to allow
changes in bit length (see section 5) . T hey illustr a te t he sensit ive de­
pend en ce on the init ial bi t length of the start -population , that is , t he
lack of a uni qu e optimal state.

This figure shows t he resul t of a simulation wit h an initi al popula­
tion of bit length 20 and a maximal bit lengt h of 160. Notice that, in
t he start phase wit h high fluctuati ons of all frequencies , gene P shows
strong ou t burst s , but it vanishes aft er a very sho rt t ime of domina­
ti on . After it s second burst a (meta)stable state wit h genes Hand 0
emerges .
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Figure 11: Results of a simula t ion with the same parameters as the
one desc ribed in figur e 10, bu t the populati on started wit h a bit length
of 60. It shows similar resul t s, but in this case the genes J and M take
over.
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When we consider only the gene frequencies, we do not get all the im­
portant information abo ut a population. We also have to take into account
"species" to get a complete picture of the dynamics. This will be par t of
future work.

A ppendix A

We now derive result s for a simulation where animals are killed in a purely
random way. We calculate the number of animals nt that die at age t for a
simulation of N animals that lasts T t ime steps , and where in each t ime step
a par t p E [O, IJ of the animals is killed. The total numb er of killed animals

(A.1)

cons idering the recursive relation

leads to

(A.2)

p2 ·N .T
(1 - p)k- l . P . N . T . (A.3)

T he highest age in the population is on average given by the lowest valu e T

that satisfies L:t~T n t < 1.0 :

T = f1-ln(P. N . T )l .
In(l- p)

(A.4)

Ia1denotes the smallest integer larger than a. A usual simulation conducted
with the values p = 0.25, N = 64, and T = 10,000 results in nl = 40,000
and T = 43. From this we conclude that if all animals were killed purely at
ran dom the oldest ones should live for approxim at ely 42 time steps . In our
simulat ions, typi cally 20 to 30 reached this age or older. T his is clearly an
effect of select ion, bu t it is sur prisingly sm all. The lat ter is du e to the fact
that during a simulation we approac h punctuated equilibrium for rather long
intervals. This causes the fact that all animals are nearl y equal, so they are
again chosen at random . Am ong short living animals we see a bet t er hin t
at the posit ive effect of select ion. 40,000 animals should die right aft er their
creat ion if they were randomly chosen, bu t in our simulat ions this number
was larger than 50,000 and som etimes even reached 60,000, which cannot be
at t ributed to statist ical fluctuations. So we see that most mutations produce
less fit animals just like in real nature.
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