Complex Systems 5 (1991) 279-298

Evolution of Bit Strings:
Some Preliminary Results*

Harald Freund!

Robert Wolter
Physics Department, University of Wuppertal,
Gauss-Strafie 20, D-5600 Wuppertal 1, Germany

Abstract. In this paper we show some preliminary results of simu-
lations with a population of bit strings. We present the ideas of our
model and point out the difficulties in implementing them. Although
an open evolution is one of the final aims, we can present some inter-
esting results with finite and even very small systems. One important
result is the evidence that introducing startcodons in the decoding
scheme is reasonable. This seems to have biological relevance since
startcodons are used in natural decoding processes.

1. Introduction
1.1 General overview

During the last few years, attempts to model systems with evolutionary prop-
erties have become more and more numerous. The fundamental question one
wants to answer is essentially: What are the basic and necessary ingredients
that make evolution from simple building blocks to large and complex struc-
tures possible, likely, or even inevitable?

The whole evolution from single-cell bacteria to human beings depends on
a very elaborate mechanism for self-reproduction. But it is generally believed
now that even the first self-reproducing molecules had a rather complicated
structure—they were RNA-like—which made their appearance by chance
rather improbable. So there remains a gap between a primordial soup and
the first self-reproducing molecules, and even more so between these and
primitive organisms like bacteria. There are various approaches trying to
solve this puzzle. They include Eigen’s hypercycle [1], autocatalytic net-
works [2], the Coreworld simulations of Rasmussen et al. [3], and Fontana’s
AlChemy [4].

*Part of this work was done while participating in the Institute for Scientific Interchange
workshop on “Complexity and Evolution.”
tElectronic mail address: freund@physik.uni-wuppertal.dbp.de

© 1991 Complex Systems Publications, Inc.

280 Harald Freund and Robert Wolter

The guiding principle in specifying our model was that it should be as
simple as possible, yet incorporate some features that we consider essential:

1. Individuals should be built up from several building blocks in order to
provide a huge state space due to combinatorial explosion.

2. There should be no frequency-independent fitness, that is, no absolute
goal.

3. Selection should play at least partially on individual building blocks in
order to have “mild” mutations, where changes in one block leave most
of the score of an individual unchanged.

4. We want to model a discrete stochastic system, not a system of dif-
ferential equations. In an infinite system noise could be suppressed by
the law of large numbers, and we could have limit cycles or chaotic
attractors. In our finite systems we must approach some invariant dis-
tribution, though this might be reached so extremely slowly that it may
be irrelevant.

1.2 Owur model

We chose a population of fixed-length bit strings—they can be viewed as
DNA-like molecules having only two instead of four bases or some very small
molecules directly decoded by a bit string—swimming in a well stirred soup.
This way interactions between two of them can be simulated by taking them
at random with equal probability. For simplicity, these bit strings will be
called “animals” in the following. For each animal we define a real variable
storing the score (or fitness) of that animal. We should stress here that this
“score” or “fitness” is not a prespecified global function, because the fitness
of each animal is determined by its interactions with randomly chosen others.
So there is only a “population-dependent” fitness that continually changes
as the population changes. The present population, considered as a point in
the state space of all possible populations, is the local environment for each
animal in which its local fitness is evaluated in a prespecified way.

The following two elements are necessary to create a sequence of genera-
tions:

e An interaction scheme that changes the scores of the animals taking
part in the interaction; details are given in section 2.1.

e An updating or reproduction scheme that uses the scores to decide
which animals go on to the next generation and which drop out and
are replaced by new ones. The reproduction involves errors produced
by mutations; details are given in section 2.2.

Implementing these two points leads to problems that are of either a technical
or a conceptual nature. Let us explain what we mean by technical versus
conceptual.

Evolution of Bit Strings 281

Mutation that can be implemented in different ways is used to add new
material to the population during the reproduction phase. We apply single-
point mutation, that is, “single-bit flip” (except in section 5 where we add
“cut and splice” [5]), when an animal produces “offspring.” This is simple to
implement because it takes only one random number. There are other pos-
sibilities that cause on average the same mutation rate [6]. But as the main
feature of mutation is to introduce new material, the results do not depend
much on how it is done. We thus claim that how mutation is implemented
is only a technical problem.

Whether to use mutation as a source of variability or other genetic op-
erators such as inversion, replication, or the parasite model [7], is more a
conceptual problem. The same is valid for sexual reproduction, which can
employ crossover, assortive mating, recombination [8], and cut and splice, as
described in section 5.3.

The decoding scheme that is presented in detail in section 3 is also a
conceptual problem. If decoding is done in an unsuited way our final goal—a
“true” evolution—can never begin.

We should point out, however, that for many features of an evolving
system one cannot decide right from the start whether an implemental alter-
native is merely a technical or a conceptual problem.

2. Interaction and reproduction
2.1 The interaction scheme

Each time step of the simulation consists of two parts: first an interaction
phase that calculates the scores of all animals, and thereafter a reproduction
phase as described in section 2.2. The interaction phase first sets all scores to
zero and then executes a number of “basic interactions.” A basic interaction
takes two animals ¢ and k purely at random, selects one gene in each of them
(9; and gx)—again at random—and performs the following update of the
scores s; and Si:

s; — si+ Algr, 9i)
2.1
sg — Sp+ A(gi) 9k) (21)

where A denotes a random matrix with values taken from the interval [-1, +1].
The number of basic interactions was typically chosen to be a multiple, called
a, of the number of animals. Most simulations were done with oo = 10. Since
two animals participate in one basic interaction, each animal takes part in
20 interactions on average. But we also conducted simulations with a = 20,
30, and 40.

2.2 Reproduction

In all simulations we implemented synchronous reproduction throughout the
population. Let us consider some alternatives:

282 Harald Freund and Robert Wolter

1. One simple reproduction scheme calculates the average score and re-
moves all animals that are below average and replaces them by mu-
tating survivors. Notice that this implies the somewhat “unbiological”
feature that well adapted animals do not die, but survive without be-
ing changed by mutations. But this mechanism is easy to implement,
needs no sorting, and is carried out in time O(n) where n is the number
of animals in the simulation.

2. Another scheme we implemented replaces a constant fraction of the
population by mutants after every time step (i.e., in every reproduction
phase). We chose the worst quarter of the population to be replaced.
The new animals are mutants from

(a) the best animals according to score (we choose from the best quar-
ter),

(b) all surviving animals, and

(c) all animals, even from those that will be replaced.

One argument for case (c) is the fact that even a mutant that is at first
unsuccessful could contain some genetic material that proves useful in the
future (“hopeful monsters”). Nevertheless we favored (a) because we have
another possibility to preserve neutral genetic material (see section 3.3) and
we wanted to simulate a fairly small population (64 or 128 individuals) for
reasons of computational economy.

Another aspect of our model is the probability p(s;) for an animal 7 with
score s; to be chosen for reproduction. Very often a Fermi distribution of the
form

p(s:)

constant

= T -expl(s; — 5] (2:2)

is taken. Here, 5 = (1/N)- XN, s; denotes the average score and C is a

temperature-like parameter. We used C' = 0, which chooses all animals
above average with equal probability. In addition we replaced 3 by §, where
5 denotes a value that is smaller than the highest quarter of all scores but
strictly larger than the rest (corresponding to case (a) above). We favored
this case because it lets us use simple, equally distributed random numbers.
Another advantage of this implementation is that we can easily estimate the
number of animals n; that die after a certain number of time steps ¢ if the
animals die purely at random. Explicit calculations are given in appendix A.

3. Decoding the bit strings

We subdivided the bit strings into functional groups that we call “genes.”
The name genes was chosen for convenience and should not be taken too
literally. The concept of genes is closely connected with the distinction of
genotype and phenotype, as sketched in figure 1. The genotype is the set of

Evolution of Bit Strings 283

genotype —_ phenotype —— populations
(set of genes) development (character fitness (interaction)
of animal)

Figure 1: Genotype-phenotype relation.

genes stored in the DNA. This determines the phenotype, which in turn de-
termines the fitness. The fitness we can ascribe to an animal is not evaluated
by looking at the genotype; it follows indirectly via the phenotype.

As a consequence the genotype-fitness relation is very nonlinear and un-
predictable. In our model we have no explicit distinction between genotype
and phenotype. The genes can interact directly via the interaction matrix
A as described in section 2.1. This matrix implicitly contains the gene-
phenotype map. The randomness of the values of the matrix elements is
supposed to model the complexity and unpredictability of the gene — phe-
notype — fitness map.

The genes are decoded using a binary tree. To read a bit string from
any prescribed position forward, one starts at the root and’ moves down the
tree while the bits in the animal decide which way to go—O0 turns left, 1
turns right—and stops if a leaf (which contains the number of the gene)
is encountered. This procedure is continued until the whole bit string of an
animal is decoded. In most simulations we worked with a randomly generated
tree that is shown in table 1 and in figure 2. It decodes 20 genes with lengths
between 3 and 8 bits.

The main reason for using a binary tree instead of a randomly generated
list of genes (that can also be listed in a table like table 1) is that this way
we are able to decode every possible bit string without ambiguity. Each path
through the binary tree leads to a gene after at most 8 left-right decisions.
There is neither arbitrariness (one sequence — many interpretations) nor
uninterpretable sequences. In addition this tree allows a simple extension
of the model where the tree is able to grow: A leaf can be replaced by a
node that adds two genes to the tree in the next level, so new and longer
genes can be introduced and effectively change the environment the animals
are living in. But don’t forget that even without a growing tree we have no
static environment.

Even with a given representation there are different ways to decode a bit
string. We describe some of them in detail in the following subsections.

3.1 Genes packed in highest density

The largest number of functional groups in a bit string can be obtained
by joining the beginning and the end of the animal, creating a circular

284 Harald Freund and Robert Wolter

Gene | Length | Bit representation
A 3 001
B 3 011
C 3 110
D 3 111
E 4 0000
F 4 0100
G 4 0101
H 4 1000
I 4 1010
J 4 1011
K 5 10011
L 6 000100
M 6 000101
N 6 000110
(0] 6 000111
P 6 100100
Q 8 10010100
R 8 10010101
S 8 10010110
T 8 10010111
sc 3 110

Table 1: Bit representation of the genes and of the startcodon (see sec-
tion 3.3) that were used in all simulations. The startcodon is denoted
by “SC.”

sequence. A gene starts at every position; that is, an animal with 32 bits
stores 32 genes. In this case the genes overlap maximally and we see strong
correlations between genes. So the interaction between animals is not the
sum of independent interactions between single genes, but of interactions
between groups of genes. This is also known as the hitchhiker effect. For a
detailed example see figure 3. Simulation results are presented in section 5.1.

3.2 Gene beside gene

(a) The next possibility avoids overlaps of functional groups by scanning the
bit string from the beginning to the end and starting a new gene just after
the previous one is completed. The last bits, which belong to no gene, are
not interpreted. An example is shown in figure 4.

A point mutation at the end of an animal, decoded this way, will have
a small affect on the genetic contents. The same is true for a mutation at
the beginning of the string if this does not change the reading frame. But

Evolution of Bit Strings 285

[]
Hjsi(s]
]]

N
L
4

i
EIC:
=@l [=]

0 .
LT

Figure 2: Bit representation of the genes that were used in all simu-
lations, shown as a tree (as mentioned in section 3).

Bits Gene

0 0 01 0O L
0 0 1 A
01 0 O F

Figure 3: Bit string decoded as described in section 3.1. In this
example the genes start at each position in the bit string so the density
of genes is maximal. The substring “000100” is always decoded as the
sequence “LAF,” which is followed by a gene that starts with “100”
(compare table 1 and figure 2).

286 Harald Freund and Robert Wolter

C S F D G N A
1101001 0 110{01 00|21 11|01 01000 110|001
!

100 1001 0 110 01|00 1|11 0f1 01000 1|10 0010

P J A A C I A H -

Figure 4: Example of a single mutation at bit number 2 that com-
pletely changes the reading frame. The genes are labeled as in table 1
and figure 2.

a mutation in the first gene that converts it to a gene of different length
completely changes the contents by altering the reading frame (compare fig-
ure 4). In this way point mutation can cause big leaps in the space of all
possible animals, and improvements can only result from “jumps” right onto
an improved point. In contrast we want mutations to be a minor disturbance
(or a kind of low amplitude noise) that changes only a small amount of in-
formation and allows for gradual improvement. Or, to put it another way,
we want point mutation to be a local operator.

(b) This locality can be restored by cutting out the gene that is to be mutated
and putting it at the end of the animal, so each point mutation results in only
minor changes. Thus it seems that we can avoid the nonlocality of mutations,
but only by means of a trick that does not seem to be very natural.

3.3 Introducing startcodons

In a third approach the bit string is scanned for appearances of a special bit
sequence called a “startcodon,” which signals the beginning of a gene.

On the one hand there can still be overlapping genes if a substring of
a gene is equal to the startcodon. In the realization shown in table 1 and
figure 2, for example, we chose the sequence “110” (equal to gene C in our
binary decoding tree) as the startcodon. By this choice no two genes can
overlap.

On the other hand there are parts of an animal—called “junk” from now
on—that carry no information because there is no startcodon. This could
pose a problem if animals without any startcodon could dominate. But, as
these do not interact, their score remains zero. Since the average score of the
successful animals is positive, these animals are killed in the long run.

This decoding scheme defines mutation as a local operator because it can
affect at most two genes (if a startcodon overlapping with a gene is altered,
compare table 1). Let us explain this with an example. Figure 5 shows the
same bit sequence that was presented in figure 4. Startcodons are denoted
by “sc¢” and junk by “-”. If we now perform the same mutation as in figure 4,
only a minor change results. Two genes would be changed if the mutated bit
were from the second startcodon.

Evolution of Bit Strings 287

sc | S -l se | I |--|] sc | A |-
sc F
110/1001 0[1 10[01 00[L]1 1 0]10 10[00]1 1 00010

!
1001001 0|1 1001 00|11 1 0|10 10|/00|1 1 0|00T1]0
- - = =-=-=-=- -| se F -| sc I --| sc A |-

Figure 5: Example of a single mutation at bit number 2 that changes
only slightly the contents of the animal because startcodons are used.
The genes are labeled as in table 1 and figure 2.

We see that startcodons are an effective method of guaranteeing that
mutation is a local operator, so we should not be surprised to find startcodons
being used in real DNA sequences.

The second positive feature of startcodons is the introduction of junk.
Junk can be a source for sudden change because it can accumulate changes
that are not interpreted. When a startcodon is created by a mutation in a
junk region, new information is evoked. But on average the effective rate of
mutation is lowered by the presence of junk since we used only a single point
mutation per new created animal. (This would not be true if we used a fixed
mutation rate per bit).

4. The role of randomness

There are three aspects of randomness in our model:

1. the interaction matrix A(g, ¢'),
2. the choice of the interacting animals, and

3. the choice of interacting genes in the animals.

A possible objection against our model could be that the whole system might
have too much randomness in it; in particular the third aspect could be made
deterministic by defining some genes as “active” in the bit string and using
only these for the score evaluation. Alternatively, for example, we could
implement a “complete” interaction; that is, each gene of the first animal
could interact with each gene of the second animal. We played with different
implementations, but the main features of the system stayed the same.

We now want to give some arguments in favor of the sources of random-
ness mentioned above. The first concerns the randomness of the interaction
matrix. In real nature, the interaction between genes is an extremely com-
plicated process, involving the folding of the DNA itself, the folding of the
expressed protein, its effect on the phenotype, and so forth. All these steps
are most likely very sensitive to small details, and we consider it neither fea-
sible nor desirable to model such a detailed dynamics. Instead of an explicit

288 Harald Freund and Robert Wolter

phenotype/genotype distinction and a deterministic prescription for the in-
teraction between genes, we argue that a random matrix as in our model
accounts best for what can happen in “reality.”

The answer to the second point was also mentioned earlier in this paper.
We consider the environment in our model as a well-stirred fluid where the
animals are floating, so an interaction between two of them is simulated best
by picking them at random.

Let us now come to the third point. If we think of the bit strings as real
one-dimensional strings, we cannot expect them to line up from head to tail
when colliding. It is more likely that only a small part of each is in contact
with the other, so we can equate this part with one gene. If we consider the
bit string as a three-dimensional structure the argument is similar: only parts
on the surface of this structure are active, and again a collision results in just
two genes interacting. Finally, if the interaction passes through some reading
machinery as in real biological systems, then the effect of this machinery will
be highly complex, so again a random model seems most appropriate.

So it seems fairly reasonable to work with all those random elements we
described before.

5. Computational results
5.1 Genes packed in highest density

Under the decoding scheme described in section 3.1 a population evolves
to a kind of (statistically) stationary state after a rather short time. It is
essentially independent of the initial population and of the interaction rate «
as defined in section 2.1. The statistics in this state depend on the interaction
matrix A, which can be seen by contrasting it with a random population.
Genes of the same length (e.g., A to D or L to P, see table 1) would occur
with the same probability and longer genes are suppressed. In our system
the gene frequencies soon reach a state with constant averages but strong
fluctuations around these mean values. The strong fluctuations are caused
by the replacement of a quarter of the population each time step. When
reaching this state, there are still many different “species” in the population,
where a species is defined by its gene content but neglects the order of these
genes (and any junk, see section 5.3). In contrast to the random case, genes
of the same length do not have the same frequencies. Even an enhancement
of a longer gene compared to a short one is possible. For example, in a
random population gene L is suppressed by a factor of 2 relative to gene K;
in our stationary state, gene K is suppressed by a factor of 2.5 relative to
gene L.

We blame this appearance of a stationary state on the strong correlations
shown in figure 3. Correlations are less pronounced when we start a gene
at every second bit position. Although this changes the kind of stationary
state, the system still reaches a stationary state. In contrast to the case
where a gene started at each bit, it can be described as one “quasispecies”
consisting mainly of one successful group of genes (for a complete definition of

Evolution of Bit Strings 289

“quasispecies” see [1]). The whole population consists of the optimal species
and of animals that have a small Hamming distance from this optimum,
the latter corresponding to recent mutation. This behavior was also robust
against changes in the interaction rate.

Because this decoding scheme lacks the ability to change, we did not
continue using it.

5.2 Genes beside genes

The next mechanism we implemented was the decoding scheme described in
section 3.2. In most simulations we chose variant (b), where the mutated
gene is cut out and put at the end of the animal. Though this is a somewhat
artificial trick to make mutation local, systems simulated this way showed
promising results.

During a simulation one gene can be absent for a long interval, but may
later reappear and dominate (compare gene O in figure 6). So a continu-
ally changing environment is possible, which implies there is no frequency-
independent fitness function that can be evaluated externally. In particular
there may be cooperation between genes (genes H and O in figure 6) and
mutual suppression (genes F and B in figure 7) that could not be obtained
from a global fitness function.

The characteristic behavior of our system—bistability and genetic take-
over—is independent of the initial population and independent of the random
matrix chosen. But it strongly depends on the value of the interaction pa-
rameter « (as defined in section 2.1). Higher values of @ result in long-living
metastable states or “punctuated equilibria” (compare figure 6) where no re-
currence of an earlier state is seen. The number of possible stationary states
depends on the interaction matrix. Lower values of « lead to faster decay of
such states, where the same state recurs frequently (compare figure 7). There
are longer phases where genes A and B dominate, alternating with phases
where genes F and H lead.

Figures 6, 7, 10, and 11 show the frequencies for several genes of the
binary tree presented in figure 2 for different simulations with 64 individuals
each. The abscissae describe the simulation time steps and the ordinates
indicate the gene frequencies. Note that the ordinates show different scales.

Figures 6 and 7 result from runs that used the decoding scheme described
in section 3.2, with the same interaction matrix and the same initial popula-
tion; they differ only in the interaction parameter a. Each animal consists of
32 bits. We see a rich behavior with at least three metastable states (genes
A and B, genes F and H, and genes H and O).

To sum up, like natural evolving systems our system shows stability on
the one hand and the possibility to change on the other. This is so in spite
of our assumption of spatial homogeneity, which prevents the formation of
different niches and further suppresses the formation of structure.

290

400

400

400

400

Harald Freund and Robert Wolter

Gene A

0 50000
Gene B

0 50000
Gene H

b b

0 50000
Gene O

0 50000

Figure 6: Example for a “genetic takeover.” In the beginning two
genes, A and B dominate for a rather long time but then two different
genes, H and O, turn up and take over. We do not show genes with
small frequencies; for example, H and O are accompanied by N, but
its amplitude is below 50. Here and in the following figures only
the most successful genes are shown. Typically at least 12 of the 20
possible genes have negligible frequencies. The multiple « defined in
section 2.1 is 20.

Evolution of Bit Strings 291

Gene A
400
I}
0
0 50000
Gene B
400
[
0 !
0 50000
Gene F
400
0 Maind .HM Mu MJ%M
0 50000
Gene H
400
0 -
0 50000

Figure 7: Bistability of the gene frequencies. One stable state is
characterized by the dominance of the genes A and B, the other one
is dominated by genes F and H. The same initial population as in
figure 6 was used, but with o = 10.

292 Harald Freund and Robert Wolter

180 T T T T

160 -]
140 - info-length — 4
bit-length ——-
120 + g
100
80
60

40

20

0 1 L ! L
0 2000 4000 6000 8000 10000

Figure 8: This plot compares the bit length (which was held constant)
to the info-length as defined in section 5.3. Except for the initial
700 time steps, the info-length stays below 60 bits, so only 38% of
an average animal’s bits are decoded as information. This way the
mutation rate is effectively decreased.

5.3 Using startcodons

The use of startcodons leads to systems with properties similar to those we
described in section 5.2. We could present plots similar to figures 6 and 7,
but this is not very instructive. Due to the presence of junk, animals of
32 bits now have fewer genes (compare figures 4 and 5). So we increased
the length to 64 (and later up to 160) bits and introduced what we call the
information-length or, for short, “info-length.” The info-length is the number
of bits decoded as information (i.e., belonging either to a startcodon or to a
gene). The animal shown in figure 5 has an info-length of 28 bits before and
20 bits after the mutation. When measured this way, we see that the lengths
of the animals can change.

An average random population of animals of 64 bits has an average info-
length of 40 to 45 bits; that is, two-thirds of the animals are decoded as
information and one-third as junk. The info-length drops to 20 to 25 bits
very soon (this leads to animals with at most 5 genes). What are the reasons
for this behavior? As described in section 2.2, one-fourth of the population is
replaced each time step by 1-bit-flip mutants of the highest ranking quarter.
Thus there is a rather high mutation rate, which is effectively decreased when
animals have large regions of junk where a bit flip usually leads to no change

Evolution of Bit Strings 293

180

|

0 10000

Figure 9: The three curves present (from top to bottom) the maximal
bit length of animals (which could be 160 in this run), the average
bit length, and the minimal bit length (which could be at least 2).
The average value has strong fluctuations about the mean value of
approximately 80 bits.

(because no startcodon is produced). This is reminiscent of Holland’s schema
theorem [9].

To further examine the decreasing info-length we increased the bit length
of the animals to 160 bits. A random initial population has an average info-
length of 110 to 120 bits; that is, more than two-thirds of an animal are
decoded as information. Figure 8 shows a typical simulation result. At first
the info-length drops to approximately 20 bits and later increases to 40 to
60 bits. Thus the relative info-length (i.e., info-length normalized by the
bit length) is 0.25 to 0.38 both for short (64 bits) and for long (160 bits)
animals.

To get deeper insight into this phenomenon we introduced a second ge-
netic operator, “cut and splice” [5]. Cut and splice takes two animals, cuts
each at a random position—not necessarily the same position—and builds
two new animals, each consisting of two parts, one from each ancestor. This
way length changes are possible. We allow animals of a length between 2
and 160 bits, starting with animals all having the same length. We still find
punctuated equilibria where some gene(s) dominates the population. During
some periods longer animals prevail, and during others short or medium sized
animals (see figure 9). Figures 10 and 11 show results for a system using the
same interaction matrix as the one used to produce figures 6 and 7. Different
initializations lead to different sequences of metastable states. In addition to

294 Harald Freund and Robert Wolter

the three metastable states we described in section 5.2, we now see outbursts
of gene P preceeding either the newfound stable state with high frequencies
of genes J and M, when the initial bit length is 20, or the previous stable
state of genes H and O, when the initial bit length is 60. But there is no
trend concerning the bit length of the animals.

Since we only conducted simulations lasting 10,000 to 50,000 time steps
we are never sure that there could not be a change of state in even longer
runs, although some populations seem to settle into what looks like a “global
optimum” (compare figure 10).

In this paper we only used the gene frequencies to discuss the encountered
phenomena. But, in addition, we also printed out successful animals (i.e.,
those animals that stayed in the simulation for more than 20 to 25 time
steps). We found that those animals contained only the successful genes
and could be grouped together in “species.” In the simulation leading to
figure 10 we saw mainly the following species: “O,” “H,” “HO,” and “OH.”
It is interesting to explore these species, to look at their age distribution and
their relative strength (i.e., number of animals belonging to this species).
But as this goes beyond the scope of this work we have to defer to a future

paper.

6. Conclusion

Our model for evolution of bit strings showed some general properties that
are summarized here.

When we compare the theoretical numbers of individuals reaching a spec-
ified age with our results, we see directly the effect of selection: it leads to
a deviation from an exponential age distribution due to successful animals
becoming older and unfit mutants dying very soon (see also appendix A).
This is independent of the decoding scheme.

When we decode the bit sequences without using startcodons, we see
that our system tends to develop into (meta)stable limit states. There is
bistability if the interaction parameter is rather small; whereas a stationary
state takes over when this parameter is increased. If startcodons are im-
plemented the dynamics more likely shows multistability without a defined
limit state. We still see some of the states that appeared in the system when
using different decoding schemes.

Another positive feature of introducing startcodons is the presence of
junk. Thereby the system is able to compensate for the selection pressure
caused by the relatively large mutation rate by using only a fraction of the bit
string as information. This leads to a lower number of genes in the animals
and also implies the possibility of sudden change that ends the dominance of
successful genes.

The models we implemented do not really lead to an open evolution, but
they also do not get stuck in a local maximum of fitness without having a
chance of further development.

300

150

150

Evolution of Bit Strings 295
Gene A Gene P
} 300
, 0
0 10000 0 10000
Gene B Gene H
150
il 0
0 10000 0 10000
Gene F Gene O
150
0
0 10000 0 10000

Figure 10: Figures 10 and 11 result from runs that used the decod-
ing scheme described in section 3.3 and employed crossover to allow
changes in bit length (see section 5). They illustrate the sensitive de-
pendence on the initial bit length of the start-population, that is, the
lack of a unique optimal state.

This figure shows the result of a simulation with an initial popula-
tion of bit length 20 and a maximal bit length of 160. Notice that, in
the start phase with high fluctuations of all frequencies, gene P shows
strong outbursts, but it vanishes after a very short time of domina-
tion. After its second burst a (meta)stable state with genes H and O
emerges.

296

200

0

200

0

200

Harald Freund and Robert Wolter

Gene F Gene J
400
W\\A |
0 10000 0 10000
Gene H Gene M
200
/\/WH/\& N, O
0 10000 0 10000
Gene A Gene P
300
\M/M W o 0
0 10000 0 10000

Figure 11: Results of a simulation with the same parameters as the
one described in figure 10, but the population started with a bit length
of 60. It shows similar results, but in this case the genes J and M take

over.

Evolution of Bit Strings 297

When we consider only the gene frequencies, we do not get all the im-
portant information about a population. We also have to take into account
“species” to get a complete picture of the dynamics. This will be part of
future work.

Appendix A

We now derive results for a simulation where animals are killed in a purely
random way. We calculate the number of animals n; that die at age t for a
simulation of NV animals that lasts T" time steps, and where in each time step
a part p € [0,1] of the animals is killed. The total number of killed animals

Znt=p~N-T (A1)
t=1
considering the recursive relation

Ngyr = (1 —p) -my (A.2)

leads to
2
n; = p°- N .T
Y = (1-p)*t-p-N-T. (A3)

The highest age in the population is on average given by the lowest value 7
that satisfies 37,5, n: < 1.0 :

.- [1 Ly -T) Tﬂ | (A1)

In(1 - p)

[a] denotes the smallest integer larger than a. A usual simulation conducted
with the values p = 0.25, N = 64, and 7" = 10,000 results in n; = 40,000
and 7 = 43. From this we conclude that if all animals were killed purely at
random the oldest ones should live for approximately 42 time steps. In our
simulations, typically 20 to 30 reached this age or older. This is clearly an
effect of selection, but it is surprisingly small. The latter is due to the fact
that during a simulation we approach punctuated equilibrium for rather long
intervals. This causes the fact that all animals are nearly equal, so they are
again chosen at random. Among short living animals we see a better hint
at the positive effect of selection. 40,000 animals should die right after their
creation if they were randomly chosen, but in our simulations this number
was larger than 50,000 and sometimes even reached 60,000, which cannot be
attributed to statistical fluctuations. So we see that most mutations produce
less fit animals just like in real nature.

298 Harald Freund and Robert Wolter

Acknowledgments

We would like to thank Peter Grassberger for proposing the subject, for
many stimulating and helpful discussions, and also for a critical reading of
this manuscript. One of us (H. F.) wants to thank the organizers of the
Institute for Scientific Interchange research workshop on “Complexity and
Evolution” for their hospitality. Part of this work was conducted while at-
tending the workshop, held in Villa Gualino, Torino, from April 17 to July
31, 1990. A lot of discussions with other participants—in particular with
Steen Rasmussen, Walter Fontana, and Norman H. Packard—gave deeper
insight into the problems and knowledge about related works. We especially
want to thank Aviv Bergman, who critically read this paper and helped with
his knowledge about population genetics. Last but not least we would like
to thank the referee for giving us helpful hints concerning the main structure
of this work.

References
[1] M. Eigen and P. Schuster, The Hypercycle (Berlin, Springer Verlag, 1979).

[2] See S. A. Kauffman, “Autocatalytic Sets of Proteins,” Journal of Theoretical
Biology, 119 (1986) 1-24; J. D. Farmer, S. A. Kauffman, and N. H. Packard,
“Autocatalytic Replication of Polymers,” Physica, D22 (1986) 50-67;
R. J. Bagley, J. D. Farmer, S. A. Kauffman, N. H. Packard, A. S. Perelson,
and I. M. Stadnyk, “Modeling Adaptive Biological Systems,” BioSystems, 23
(1989) 113-138.

[3] S. Rasmussen, C. Knudsen, R. Feldberg, and M. Hindsholm, “The Core-
world: Emergence and Evolution of Cooperative Structures in a Computa-
tional Chemistry,” Physica, D42 (1990) 111-134.

[4

Walter Fontana, “Algorithmic Chemistry: A Model for Functional Self-
Organization,” Technical Report LA-UR-90-1959, Los Alamos National Lab-
oratory (1990).

[5] D. E. Goldberg, B. Korb, and K. Deb, “Messy Genetic Algorithms: Motiva-
tion, Analysis, and First Results,” Complez Systems, 3 (1989) 493-539.

[6] For example, see page 65 in D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning (Reading, MA, Addison-Wesley, 1989).

[7] Stephen T. Barnard and Aviv Bergman, “Adaption in Signal Space,” SRI
International preprint submitted to the International Workshop on Parallel

Problem Solving from Nature (1990).

[8] Aviv Bergman and Marcus W. Feldman, “More on Selection for and against
Recombination,” Journal of Theoretical Population Biology (forthcoming).

[9] See John H. Holland, Adaptation in natural and artificial systems (Ann Arbor,
University of Michigan Press, 1975); David E. Goldberg, “Genetic Algorithms
and Walsh Functions: Part I, A Gentle Introduction,” Complez Systems, 3
(1989) 129-152.

