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Abstract . We int rodu ce a new class of Markov chain Monte Carlo
search pr ocedures tha t lead to mor e powerful optimization met hods
than simulated annealing . The main idea is to embed det erminist ic
local search techniques into stochas tic algorithms. The Mont e Carlo
explores only local optima, and it is ab le to make large, global changes
even at low temperatur es, t hus overcoming large barr iers in configu­
ration space. We test these pr ocedures in the case of the Tr aveling
Salesman Problem. The embedded local searches we use are 3-opt and
Lin-Kernighan . T he large change or ste p consist s of a sp ecial kind of
4-change followed by local-opt minimization. We test this algorit hm
on a number of instan ces. T he power of the method is illustra ted by
solving to opt imality some large problems such as the LIN318, th e
AT &T532, and the RAT783 problems. For even larger instances with
randomly distributed cit ies, the Markov chain proce dure improves 3­
opt by over 1.6%, and Lin-Kernighan by 1.3%, leading to a new best
heur istic.

1. Introduction

The Traveling Salesman Problem (T SP ) is probably t he most well-known
m ember of t he wider field of Combina torial Optimization (CO) p ro bl ems.

'Electronic mail address: martin~s ci. ccny . cuny .edu
tE lectronic mail address: ot.t oecae .ogi . edu



300 Olivier Martin , St eve W. Otto, and Edward W. Felten

T hese are optimization pr oblems where the set of feasible solut ions (trial
solutions that satisfy the const raints of the pr oblem but are not necessarily
optimal) is a finite, though usually very large set. The number of feasible
solut ions grows as some combinatoric factor such as N ! where N character­
izes the size of the pr oblem. One technique for solving these problems is
exhaust ive search of all feasible solutions. T his method , however, has t ime
complexity typ ically growing as N ! and so is not a viab le technique for prob­
lems of int erest ing size.

One might ask whether there are much faster te chniques than exh austive
search. Am ong optimization problems in general, t he TSP is a member of the
set NP-comp lete. T his is a class of difficult optimization problems whose t ime
complexity is pr obab ly expo nent ial [1]: even the most clever algorithms suffer
from this t ime growt h. T he members of NP -complete are related so that , if
a po lynomi al t ime algorit hm were found for one problem , polynomial t ime
algorit hms would exist for all memb ers of NP- complet e. All CO problems can
be formulated -as optimizing an objective funct ion (e.g., the length) subject
to constraints (e.g ., legal tour s). It has ofte n been the case that progress
on the TS P has led to progress on other CO problems and on mor e general
optimization pr oblems. In this way, the T SP is a playground for the st udy of
NP -comp let e problems. T hough the pr esent work concentrat es on t he TS P,
a number of our ideas are general and apply to all optimization problems.

T he most significant issues occur as one tries to find ext remely good or
exact solutions to the T SP. Many algorit hms exist that are fast and find
feasible solutions wit hin a few percent of the optimum length . In this pap er
we pr esent algorithms that will usually find exac t solutions to substant ial
instances of the TS P, for example, up to N ....., 1000 .

In a general instance of the TS P one is given N "cities" and a mat rix di j

giving the dist ance or cost function for going from city i to city j. Wi thout
loss of generality , the dist ances can be assumed positive. A "tour" consists
of a list of N cit ies, touT[i]' where each city appears once and only once. In
the TSP, the problem is to find the tour wit h t he minimum "length," where
length is defined to be the sum of the lengths along each step of t he tour,

N-l

length = 2: d tour [k j,tour [k+ l j ,
k=O

and tour-[N ] is identified with tour-[O] to make it periodic. Most common
instances of the TS P have a symmetric di j matrix ; we will hereafter focus on
this case, which also is in NP -complete.

2. Over v iew of a lgorithms for the TSP

Before pr esent ing the details of our work , we discuss the main met hods em­
ployed for the TS P. T his helps show where this work fit s in and also provides
some needed background.

There are a number of exact methods (i.e ., which are guarantee d to find
the exac t optimum in a bounded number of steps) for solving the TSP. One

I
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family consists of the Br an ch and Bound algorithm of Held and Karp [2, 3]
and its derivatives [4]. These algorithms attempt to pr ove that sets of links
belong or do not belong to the opt imal to ur , using bounds from minimal span­
ning t rees, for example. There exist tran sformations on the distan ce matrix
that leave the rela tive ranking of all to urs unaffect ed , but that change the
spanning tree sub-problems. One then maximizes over these tr an sform ations
to obtain the t ightest possible spanning tr ee bound, causing the branch and
bound tr ee to prune most rapidly. Though the pruning is dramat ic, br anch
and boun d is st ill an exponent ial (in N) algorithm .

To date, the most effective exac t methods are the cut t ing-p lane or facet­
findin g algorithms [5, 6]. These use an int eger linear programming formula­
ti on of the TSP. Roughly speaking , various constraints are added to a linear
pro gramming pr oblem until the solut ion found is a legal tour. The perfor­
mance of these methods are strongly dep end ent on the kinds of constraints
that are added , and they are st ill to some extent an art form. In t he last
ten years , these exact method s have been pursued so vigorously that it is
now possible to solve exac t ly problems with several hundred cit ies [6, 7].
The state-of-the-art algorithms are quite complex, with codes on the order
of 9000 lines.

There are also many approxim at e or heuristic algorithms. These obtain
good solutions in a (relatively) small amount of t ime, but do not guarantee
that the optimal solut ion will be found.

There is a class of heuristi c algorithms that simp ly an d directl y construct
to urs by some rul e. The simplest of these is the t riv ial "greedy" algori thm,
which goes as follows. Start with some (randomly selected) city. Now t ake as
the first link of t he tour the step from this city to its closest neighb or . From
the second city , ste p to the near est city that st ill has not yet appeared in the
to ur. Continue in thi s fashion until no cit ies remain . The final ste p is from
the last city to the first city. The tours that greedy produces look reasonabl e
for the most par t , except for a few long link s that come from the end of the
process , when few cit ies remain and it is difficult to find a close-by, untaken
city.

Once greedy or something like it has given one a vaguely reasonable tour ,
the idea naturally pr esents it self to look for ways to imp rove a given tour.
This lead s to the class of "local search" algor ithms . T hese methods sequen­
ti ally construct a chain of to urs : usually the ith tour is const ructe d from the
(i - 1)t h tour by changing some numb er of links . Local search algorithms
demand that the tour st rict ly improve as one goes from one tour to the
next-that is, the tours are constructed so as to decrease the length at each
step. T he most effective such algori thms are those of Lin [8] and Lin and
Kerni ghan [9]. Lin starts with the idea of a k-chan ge: take the curre nt to ur
and remove k different link s from it. Now re-connect the dan gling sect ions
in a new way so as to again achieve a legal tour. A tour is considere d to
be "k-opt" if no k-chan ge exists that decreases the length of the tour. Lin 's
algorit hm begins with a random tour and applies 2- and 3-changes until one
reaches a 3-opt (and also 2-opt) tour. He found that the 3-opt heuristi c
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was quite powerful: for a pro blem of moderate size (N = 48), 3-opt from a
random start had a non-negligible probability ("-' 5%) of hitting the exact
op t imum. Therefore by taking many random starts he was almost certain
to find the exact opt imum for pr oblems of this size. Lin also t ried higher
k-changes but decided that t hey were not worthwhile, though it should be
rea lized that this conclusion depends on the speed of the k-opt algorithm
for k > 3. If a fast algorithm can be found for k > 3, it may very well be
worthwhile to go to 4-opt or beyond.

Lin and Kernighan improved on these ideas both by speeding up the 3­
opt pr ocess and by includin g some of the higher-order k-changes . In their
algorithm, the order of a change is not predet ermined ; rather , k is increased
until a stopping criterion is sat isfied . T hus many kinds of k-changes and all 3­
changes are included. In pract ice there are many ways to choose the st opping
crite ria , and the best codes are rather involved . The Lin and Kernighan
method is a powerful heuristic and is considered to be the benchmark against
which all ot her heuristi cs are compared . Surprisingly, there have not been
significant improvements in performan ce of local search algorithms since the
work of Lin and Kernighan , which dates back to 1973.

Local sear ch algorithms tend to get tr apped in local minima of the ob­
ject ive functi on. They pr oceed downhill for a while, making much progress,
but then stop . In order to make more progress, many link s would have to be
changed simult aneously in a single k-change, for some large value of k. An­
ot her class of algorithms is pos sible in which one relaxes the strict downh ill
restrict ion of the chain of to urs and actually lets the to ur length (occasion­
ally) increase. In this way, one can hope that the to ur will climb out from the
cur rent local minimum and cross over a bar rier to a bet ter solut ion . We call
this class of algorithms "iterat ive sampling." This class includes simulated
annealing and genetic algorithms.

In simulat ed an nealing [10, 11], the uphill moves are accomplished by in­
troduc ing a "temperature" and updating the system according to th e Metro­
po lis rule. A trial move is mad e, for inst an ce, by applying a 2- or 3-change
to the curre nt tour; if this gives a downhill change, it is always accepted ,
while an uphill move is accepte d wit h condit ional probab ility e - 6.L / T. 6.£ is
the change in the length du e to the t rial move, an d T is the temperature,
a free par am eter that cont rols the typ ical size of 6.£. One thus constructs
what is called a "Markov chain" of tours . Markov chains are distinguished
from mor e general types of chains by the requirement that the i th to ur is
const ructed st rict ly from the (i - 1)th tour (and not , for instance, from bot h
the (i - 1) and (i - 2) tours) .

If t he trial moves satisfy a certain symmet ry property (we will return to
this later) then a to ur of length L will appear with probab ility proportional to
e- L / T . The exact optimum is the single most likely configurat ion to appear ,
but this is counte r-acted by the fact that there is such a large number of tour s
even slightl y above the optimum. This means that wit h simulated annealing
the system will almost always be in a sub-opt imal to ur. To fight this, one
attempts to dri ve the system toward the true optimum by slowly lowering
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the temperature T , and this is t ermed annealing. If t he annealing is done
"sufficient ly" slowly, one is guara ntee d to find the t rue optimum if one wait s
long enough, but t his is almost imp ossible to achieve in prac tice. See Bentley
and Jo hnson for an exte nsive comparison of the above heuristics [12J.

Ano ther type of it erative samp ling algorithm is the class of so-called "ge­
net ic algor ithms" [13, 14, 15J. Here one starts with an ensemble of tours that
"compete ": the best tours replicate and the worst tours are eliminate d . To
create new kinds of tours, one applies "mut at ions" such as random k-changes
and "crossovers" where two or mor e tours are in some way put together to
create a new tour. This approach has not yet been systemat ically exp lored
and probabl y can be significant ly improved .

A very different appr oach has genera ted much interest recentl y-e-th e neu­
ral network approach of Hopfield and Tank [16J. In this method, the con­
straint of "legal" tours is not st rict ly enforced during the computat ion. (Note
that this also occurs in cut ti ng-plane algorithms .) In pr acti ce, the method
has not yet been success ful at solving problems of size 40 or greater [17J.

In sect ion 3 we introduce a class of Markov chains in which each st ep
is produced by a "kick" followed by a local search opt imizat ion . The local
search method is describ ed in sect ion 4, and a number of ot her pro gram
opt imizations are given in sect ion 5. Section 6 pre sents our results for local
search timings and the applicat ion of the enti re method to a number of solved
Euclidean T SPs . Some background mat erial on the density of tours of the
TSP is given in App endix A, and Appe ndix B discusses some properti es of
Markov chains .

3 . Large-step Markov chains

T he algorithms of Lin and Lin-Kerni ghan are powerful becau se they consider
many possible changes to a tour. T his means that the "local-opt" crite rion is
rather st ringent , and only a very small subset of all pos sible tours are gener­
ated. Furthermore, the length of such tours ar e typi cally near the optimum.
In this sect ion we show how to combine this goo d feature of the local search
method wit h Markov chains to produce a mor e powerful type of Monte Carlo
pr ocedure than the standard simulate d annealing method .

Throughout this pap er we will concent rate on TSPs that use a two­
dimension al Euclidean metr ic, that is, the di j elements corres pond to dis­
t anc es in a plane , though our methodology doe s not depend on this. The
densit y of "states" (i.e., to urs) away from t he optimum of a TSP inst an ce
increases rapidly as a fun ction of length. As discussed in App endix A, the
density of states near the optimum is a rapidly rising functi on becaus e dist ant
parts of the to ur can be modified almost independently. T his ind ependence
then leads to a combinato ric factor in the number of tours away from the
opt imum.

If an algorit hm samples all these states it will not find the optimal solution
for problems of significant size: the density of states strongly biases the
system away from the opt imum , and the odds of actually hitting the optimum
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Figure 1: Binned density of 3-opt tours for a random-scat ter N = 100
Euclidean TSP in two dimensions. Th e curve is the prediction of the
model described in Appendix A. The histogram contains 6138 distinct
3-opt tours-these were found by running the large-step Monte Carlo
at high T for a long time.

become negligible. The first thing to do to make the TSP mor e manageab le
is to thin the set of tours to be considere d. T his is what the local search
algorithms do.

Figur e 1 shows the (binned) density of 3-opt tours for a par ti cular instance
of a 100-city TS P (the cit ies were randomly scat te red in a square and the
curve is from the model given in Append ix A) . The st riking featur e here is
that the dist ribu tion falls off very quickly beyond a few percent from the
minimum length. In fact, even in this ran ge, the density of 3-opt tours
is much smaller than the density of all to urs . On e can say the Lin and
Lin-Kernighan algorit hms are effect ive because they dr amati cally redu ce the
size of the search space. Empirically it appears that the set of all the 3­
opt to urs are sampled relatively flat ly: each 3-opt tour appears wit h similar
probability if one beg ins wit h random starts . In particular , there is no strong
bias toward the opt imum. This is not surprising since there is not hing built
into the algori thm that would pr od uce this bias, apart from the fact that
3-opt tours are fairly close to t he opti mum lengt h. For small N , t he set of
3-op t tours is manageable and the algor it hms can actually find the opt imum
by repeated trials, which almost amounts to enume ration .

However , for large N, the set of 3-op t (and more generally, locally op ti­
mal) to urs it self becomes too large to enumerate . To improve the efficiency of
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t he algorit hm, we need to bias the sampling of locally optimal tours towar d
tours of shorter length. By using a Markov chain it is possible to sample the
set in a more intelligent way. The idea is to construc t locally optimal to urs
from pr evious ones , not from rand om starts. Such an algor it hm superficially
resembles simulated annealin g (t here is an accept/reject step and an ana­
logue of temperature) , but the important difference is that one restricts the
tours in the chain to be locally optimal.

Let us now schematically present our algorithm. To be specific, we will
consider the local-opt procedure to be 3-opt; but the methodology applies
to any local-opt , in particular Lin-Kern ighan . Suppose the curre nt tour is
3-opt. Figure 2 is a schemati c representation of the obj ective functi on versus
tours; the 3-opt tour s are at local minima of th is fun ction . The goal is
to construct a Monte Carlo step (a ste p in the Markov chain from the ith
tour to the (i + 1)t h tour) that goes direct ly from local minimum to local
minimum, biased toward shorter lengths. We accomplish this in the following
way. St arting at the current 3-opt tour (labeled Start in figure 2) , we give
the tour a large "kick," taking it to Interm ediate . We will describ e in mor e
det ail later what we use for the kick-for now it can be thought of as a
randomly selecte d k-change for some k > 3. We now apply an efficient 3-opt
pr ocedure to Interm ediat e. This brings us to a new local minimum, labeled
Trial in figure 2. So far we have stepped from one 3-opt tour to another. We
do not merely accept this new tour, however , since we wish to bias toward
short lengths: we apply an accept/reject pr ocedure to Trial. If the lengt h
has decreased , Trial is accepted and beco mes the new cur rent tour. If t he
length has increased , it is accepted with condit ional probabili ty e- 6.L/T ; if
t he acceptance tes t fails, t he tour is ret urne d to St art. This forms one step of
the Markov chain. This pr ocedure is repeated many times, exploring local­
opt to urs in a biased way. In particular , one expects to sample more often
the local-op t to urs of shortest lengths than with algorit hms that sample the
locally optimal tours randomly.

This algorithm gives rise to a lar ge-step Mar kov Chain becau se, afte r the
kick and local-opt are applied , typically many links have been changed . If
we take as the metric of the TSP the number of links by which two tours
differ , we may say that Trial is often quite "far" from St art. Large-step
Markov Chains are powerfu l because they can redu ce the auto-correlat ion
t ime of the Markov chain and the search space is exp lored rapidly. Append ix
B discusses these points in great er depth . It is impo rtant to real ize that
findin g a practical large-step Markov Chain is not a simp le matter. Aft er all,
we could have taken as the large ste p simply a k-change for some large value
of k. The performance, however , would be te rr ible since a randomly selected
k-chan ge would just take Start to a random locat ion in the space of all tours;
Trial would then almost always be reject ed. Furthermore, it is essent ial to
employ a very good tour improvement method to bring us not only to a new
tour , bu t to a new, high-quality tour. Our approach is reminiscent of the
"spin wave" moves suggested by Ceperly and Kalos for physics Monte Carlos
[18]. For an efficient algorithm, the choice of the large step must be tailored
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Figure 2: Schematic representation of the object ive function and of
the tour modification procedure used in the large-step Markov chain.

specifically to the problem at hand , which is why we have chosen a specific
kind of "kick" that is well suited for the TSP.

Another way of thinking of the ad vantage of large-step versus small-step
Monte Carlo (e.g ., simulated annealing) is the following. In going from one
local-op t solution to another by some number of link changes, a barr ier (i.e. ,
a longer to ur) is encountered. In a small-step Mont e Carlo, the intermediate
tour with larger length must first be accepted in orde r to pro ceed. If one
wants to samp le very near the optimal lengt h, this forces the "temperature"
to be low, lead ing to a very low acceptance of such int erm ediate ste ps : the
algorithm thus gets st uck for exponentially long times in valleys of the ob­
jecti ve functio n. The large ste ps allow one to climb over some of t he barr iers
and have the accept/reject test only after having return ed to a valley. Thus
large st eps should be constructed so that barriers are easily jumped over.
In effect , the objective function landscap e has been smoothed and many of
the ridges have been eliminated. T his shows up quite dr am ati cally duri ng
our runs: even at very low T , near the optimum , the large-step Monte Carlo
cont inues to explore new tours . It is very effect ive at avoiding trapping.

For the "kick" we have chosen the particular typ e of 4-change drawn in
figure 3. It consists of a pair of improper 2-changes. Each improper 2-chan ge
is a "bridge" ; that is, it t akes a legal , connected tour int o two disconnected
parts . T he combinat ion of bot h br idges, of course, must be chosen to produce
a legal final tour. The mot ivat ion for this type of kick is evident from the
figure- it allows a penin sula to hop from one place in the tour to another
without much of an increase in the to ur length . Obvi ously this is just one
choice for the kick, but we have found it an effect ive way of getting the
Monte Carlo to rapidly explore the space of local-opt tours. T he double-
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Figure 3: Example of a double-bridge kick (shown in dashed lines).
Th e bridges rearrange the connect ivity of the tour on large scales.

bridge kick enables large-scale changes in the current to ur to take place.
The double bridges can be generated randomly, or wit h some bias toward
allowing nearby peninsulas to hop as in figure 3. The important point is t hat
the doub le-bridge move is the simplest move that cannot be built from the
composit ion of a local sequence of 2- and 3-changes.

T he ideas of this sect ion are quite general. For any optimization prob lem
for which powerfu l local search methods or other heuri sti cs are kn own, one
can incorp orat e these into large-step Monte Carlos that generate only inter­
est ing feasible solut ions and also bias the sampling of these solut ions toward
the t rue optimum. We are aware of one pr evious work that uses large-step
Markov chains [19]. In that reference, the authors presented a method for
finding the ground states of pr oteins , bu t they did not consi der it a general
optimization method . In addit ion , they had rather limi ted success with their
method , perhaps because their large step was not very suited to their prob ­
lem . Not e also that , contrar y to their claim, their algorithm does not sat isfy
detailed balan ce, so the Bolt zmann dist ribution is not obtained .

Lack of d etailed balance

In the case of standard simulated annealing, the t rial moves that one feeds
to the accept/reject par t of the Metropolis pro cedure appear with symmetric
pr obab iliti es. That is, if TA .....B is t he pr obability of the trial move A ~ B (be­
fore one applies t he accept/reject tes t) , then TA .....B = TB ..... A . This, combined
wit h the form of the Metropolis accept/reject pr ocedure, leads to a to tal t ran­
sit ion probabili ty that has t he property of "detailed balance." T his ensures
that the syste m asympt ot ically reaches thermal equilibrium (the ensemble
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reac hes a steady state) and that the states are populated wit h probability
proportional to C L/T (the Boltz mann distribution ). The algor it hm is thus
closely analogous to a physical system in thermal equilibrium.

This is not the case for the lar ge-step Mont e Carlo. TStart~Trial is the
probability that the move Start ----+ Trial in figur e 2 is at tempted. T here
is no reason for the inverse trial move, Trial ----+ Start, to appear wit h the
same probability. Thus the algorit hm does not satisfy detailed balance an d
there is no direct physical (st ati sti cal mechani cal) analogue of t he large-st ep
Monte Carlo . The sampling of the tours is biased toward the optimum, but
not necessarily by the Boltzmann factor e- L / T .

4. Fast local sea r ch es

Fundamental to the large-step Monte Carlo is an efficient local search proce­
dure . The Lin-Kernighan algorithm takes a tour to 3-opt and beyond because
it includes some of t he higher order k-chan ges. It is very fast : checking that
a to ur is L-K-opt takes on the order of N operations . T his is in cont rast wit h
the k-opt algorit hms introduced by Lin , which require O(Nk

) steps. More
recently, an O(N ) check-out t ime approximation to 3-local-opt was pr esented
[20] as a heuristi c way of getting close to 3-opt quality to urs. T he pur pose
of t his sect ion is to show t hat 3-opt can, wit h no approximation , be realized
so that check-out t ime is O(N) rather than O(N3

) , as is commonly used by
pr actitioners in the field [4]. T he running t ime for our fast 3-opt is similar
to Lin-Kerni ghan restricted to 2- and 3-changes giving rise to 3-opt to urs. A
possible advantage of the algorithm be low is t hat the method generalizes to
all "connected" graphs for any k .

We beg in wit h t he case of 2-opt, which consists of improving a tour unt il
it s length cannot be decreased by any 2-changes. If a 2-chan ge lead s to a
decrease of the to ur length, we implement t he exchange and this requires in­
verting and re-writing part of the to ur. This single 2-change costs an amount
of computation t ime, d(N), which depends on the qu ality of the cur rent to ur .
If t he curre nt to ur is very bad- for instance, a random to ur-d(N) is pro ­
port ional to N . For "good" tours, d(N) can be much less, proportional to
NO< with a < 1. Let us sup pose from now on that the tour is "reasonable,"
for example it was obtained by "kicking" a 3-opt tour as is the case in our
large-st ep Monte Carlo .

To find a 2-change that decreases the tour length, we must consider all
pair s of links for a poss ible exchange . Naively, this requires O(N2

) steps,
but in fact it is silly to consider pairs of links that are very far apart in t he
physical space of the problem. Figure 4 shows such an example. Intuitively,
it is clear that t he 2-change obtained by cutting t he two marked links will
increase rather than decrease the length.

By making this idea precise one arrives at a fast 2-opt algorithm. To do
t his, we need addit ional dat a structures that spec ify which cit ies are close
to any given city. For simplicity, consider using N 2 storage space to do this;
for large problems, one can store say the 20 nearest neighbors only, or to be
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Figure 4: A candidate pair (dashed lines) for a 2-chan ge. Clearly, this
2-chan ge cannot decrease the tour length.

complete ly rigorou s, a tr ee dat a st ructure can be constructed . Let the cit ies
be labeled by an index that runs from 0 to N - 1. T he tour is represented
by a mapping from tour ent ries to city lab els. This is simply t he tour array:

t cur Ij l = i; / * city i i s the jth city in the t our *1

T he neighborhood array is defined by:

nbhd Li.] [j] = k ; / * city k i s the jth closest city t o city i */

This array is found by sort ing each row of the distan ce matrix. This is done
once and for all at the beginning of a run. To efficient ly keep tr ack of where
the cities are in the cur rent to ur, we int roduce the uihic li.slot data structure
defined by:

cft tes Eil . vh i.chcs Lot; = j; / * city i is current ly the jth cit y in the t our */

This st ructure must be updated as the to ur changes; updating uihic li.slot is
an amount of work similar to up dating the tour it self. Finally, there are two
more necessary data items . min.link is defined as the minimum size any link
can take. This is easi ly found once at the beginning of a run simp ly by finding
t he minimum valu e of di j over all i and j. max-link is defined to be the value
of the largest link in the current tour . This quanti ty must be dyn ami cally
updated (this can be done incrementally and wit h few operations) .

C-style pseudo-code for the efficient 2-opt is shown in table 1. The mean­
ings of n l , ml , n 2, and m2 are shown in figur e 5. The crucial ste p is the if
state ment . T he quantity on the left side of the expression wit hin t he if forms
a lower bound on the new length; the quant ity on the right side is an up per
bound on the old length. Moreover , the right side is a cons tant within the
enclosing loop while the left side is monotonically increasing becau se of the
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f or (n_ l =O;n_l <N;++n_l) { / * l oop through t our s lots */
m_l z ( n_l - 1 + N ) % N;
for 0 _2 =O; j_2 <N- l; ++j _2 ) {

c _2 = nbhd[n_1J [j_2];

n_2 = c i t i e s [ c_ 2] .which_slot j 1* n_ 2 goe s out from city t our[n_i] */
m_2 = ( n_2 - 1 + N ) % N;
if ( d [tour [n_l] ] [ t our[n _2] ] +mi n_ link >

d [tour [m_l] ] [ t our [n _l ]] +max_link ) {
break j 1* out of j _2 loop; go to ne xt n_l *1

}

1* try the move */
1* if move ac cepted , break out of j_2 l oop and go to next n_l */

Table 1: The pseudo-cod e for fas t 2-opt.

Figure 5: Lab els used in the pseudo-code for a 2-change. The two
links (mI, n l) and (m2,n2) are exchanged for two ot her links .

way n2 is const ructed. Therefore, wh en these bounds pass each ot her we can
stop consid ering nl as a possible start ing point for a 2-change and can go on
to the next nl '

The t ime complexity of this 2-opt algorithm depends on the quality of
the current to ur through d(N) , an a priori unknown function . At this point ,
we can only discuss the N dependence of the "check-out" period [8], which
is the t ime it takes to verify that a tour is 2-opt . (We referred to this time
at the beginin g of t his sect ion.) The check-out t ime is j (N )N , where the N
comes from the outer loop of the algorit hm: all slots are t ried at least once.
The function j (N ) represents the averag e number of cit ies within a sphere of
radius m ax. link-min. link of city tour[nlJ. As N grows, one expects (at leas t
for random scatter TSPs) t hat this is a very slowly growing function of N.
The simplest way to see t his is by considering th e "scaled" TSP problem,
where th e cit ies are randomly scattered in a square of size VN x VN and
the length of a good tour is proportional to N. In this case, the typical size
of each link in a good to ur is of ord er 1. As N grows, one can have a city­
density fluctuation that causes max-link to grow slowly as a function of N .
If max.link were a constant, the number of cit ies within a sphere of radius
maai.link-min.lmk would be a constant and j(N) would be constant . This
is not always the case , however , so j (N ) may be slowly growing. All this
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Figure 6: Labels used in the pseudo-code for a 3-change. Th e three
links, (ml' nl) , (mz ,nz) , and (m3' n3) are exchanged for three other
links.

depend s on the fact that during the 2-opt it eration the to ur is "reasonable"­
nam ely, t hat m ax. link-min.link is small. T his is true dur ing the large-step
Mont e Carlo , and later we will give t imings.

The above discussion is eas ily extended to 3-op t ; naively, the check-out
time takes O(N 3

) st eps, bu t for a reasonable to ur it is silly to consider cases
where the three links are far apart. If we label the three links to be bro­
ken as (ml, nl) , (mz ,nz) , and (m3,n3) , there are two topologically different
ways to reconnect the points to make a legal tour. Tab le 2 gives the pseudo­
code for the case depicted in figur e 6. As in 2-opt , there are branches that
give early exits from the loops. There are several of these corresponding to
the t ight er bounds, which can be found as more of the po tenti al 3-change
is const ru ct ed . The meaning of the var ious indices is shown in figur e 6.
The time complexity for check-out can again be written as f(N)N , where
now f (N ) counts the average number of cit ies within a sphere of rad ius
2 · (max_link-min_link) of city tour[m IJ . Again , f (N ) has a weak depen­
dence on N and can be measured . T he t ime complexity for the overall 3-opt
pro cedure will be discussed in section 6 (see figur e 8).

Though we used the Euclidean plan ar TS P to mot ivate this algor it hm ,
nothing actually depends on it . The triangle inequ ality is not needed ; the
algorithm given above works for any symmet ric di j . It is fast whenever di j

is such that any given city only has relatively few near neighb ors (e.g., not
all N cit ies equidistant !). T hen f (N ) is nearly constant: one can implement
2- and 3-opt so that the check-out time is O(N ).

The extension to k-opt wit h k > 3 is not st raight forward . In the language
of Lin and Kern ighan , for k > 3 there exist "non-sequent ial" or "discon­
nect ed" k-chan ges. (See figur e 2 of t heir paper.) Indeed , at k = 4 a new
type of edge exchange appears . It consists of a 4-change made out of two
impro per 2-changes. T hese are nothing but the double-bridge moves that
we use for the kick in the large-step Mont e Carlo . For such 4-changes , there
is no locality bo und that constrains the two bridges to be near each ot her .
This is a feature that many k-changes share for k > 3. To understand this,
consider const ruct ing a k-chan ge sequent ially. F irst , br eak one link , creat ing
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f or (n_ l =O;n_l <N;++n_ O { 1* loop t hro ugh t our s l ots */
m_l = ( n_l - 1 + N ) % N;
for (j _2 =O; j_2 <N- l ; ++ j _2 ) {

c_2 = nbhd [m_l] [ j_2] ;
n_2 = cities [ c _2 ] . whi ch _slot; / » n_2 goes out from c i t y tour[m_l] * /
m_2 = ( n_2 - 1 + N ) % N;
i f ( d[t our[m_l]] [ t our [n_ 2]] +2*mi n_ link

> d [tou r [m_l ]] [tou r [n _l]] +2*max_link ) {
br eak ; 1* out of j_2 loop; go t o ne xt n_ l */

} .

if ( d[t our[m_1l ] [t ou r [n_ 2]] +2*min_link
> d[t our [m_l]] [ t our [n_ l]] +d [ t our [m_2]] [t our[n_2]] +max_link ) {

continue ; 1* to next j _2 value *1
}

for (j _3 =O;j _3 <N-l;++j _3) {
c _3 = nhhd [n _ 1l [ j _3];
n_ 3 = cit i e s [c _3J .which_s lot; 1* n_3 goes out f r om city t our[n_1] */
if ( d [tou r [m_ l ]] [t our [n_ 2]] +d [tour [n_l]] [t ou r [n _3 ]] +mi n_link >

d [ t our [m_l]] [t our [n _l]] +d [ t our [m_2]] [t ou r [n _2]] +max_link )
break; 1* out of j_3 l oop ; go to ne xt j_2 */

}

/ * t r y the mov e *1
1* if move accepted, break out of j_3 , j_2 loops , go to next n_l */

}

Table 2: The pseudo-code for fast 3-opt .

two free cit ies, 1 and 2, and a dangling link on each. Choose a new city, 3,
and connect it to one of the dang ling links. Now break one of the old links
at city 3 so there are again a tot al of two dangling links and two free cit ies.
Continue in this manner. At every stage of th is const ruct ion, t here are two
dangling links at tached to citie~ involved in the k-change. At some t ime, the
two dangling links are joined together. If this occurs at th e last st ep, we
call t he result ing k-change sequent ial or "connected"; otherwise, it is called
"disconnected ." Not e that all legal 2- and 3-changes are connected.

The fast algorithm explained for 2-opt and 3-opt can be extended to
connected-k-opt. At each step in th e construct ion of a connected k-change,
the new city can be chosen in a neighb orhood of the city th at it reconnects
to . One can put a bound on the size of th is neighborh ood in the same way as
we did for 2- and 3-changes. This leads to an algorithm for which check-out
time grows as j (N )N , and the tours generated are optimal und er connected
k-changes.

It is much more difficult to deal wit h the discon nected k-changes. T here
seems to be no O(N) algorithm for such k-changes. One role played by these
k-changes is to change the large-scale connect ivity of the to ur . Perhaps
instead of doing these changes explicitly, as in a local search algorit hm, it
is more efficient to sample th em stochastically. This is what our large-step
Monte Carlo does. The choice of th e double-bridge as the kick was made for
this reason. Thus our algorit hm can be viewed as a simple implement ation
of a large-st ep Monte Carlo, where kicks consist ing of disconn ected k-changes
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(which encour age global connect ivity changes, the doubl e-bridge being the
simplest such move) are followed by a local search sub-algorithm such as
2-opt , 3-opt , k-connected-opt , or L-K.

Let us ment ion here how the Lin-Kern ighan algor ithm also achieves a
check-out time prop ort ional to j (N )N (this j need not be the same as the one
above). Note that if we restrict t he Lin-Kernighan algorit hm to k-cha nges for
k ~ 3, then all possible 2- and 3-cha nges are considered . T he Lin-Kern ighan
algorithm can be O(N ) for check-out t ime because it considers a class of
k-cha nges that are connected. Using the notation of [9], suppose there exists
a k-cha nge for which the total gain is positive:

k

L: gi > 0,
i=O

where gi is the gain achieved in the ith excha nge. Lin and Kern ighan show
that there always exists a cyclic permutation of the indi ces such that the
partial sums of the gs are also posit ive. Thus one can imp ose this as a
constraint on the search. This leads to a bound when choos ing each new
exchange, having a similar effect to our locality bounds.

5 . M ore tricks

In thi s sect ion we present some ad dit iona l optimizations to the large-step
Monte Carlo algorithm that allow it to ru n fast and better explore the space
of local-opt tours. We describ e the optimizations in the fram ework of 3-opt ,
but extensions to ot her local searches are straight forward.

The h ash tab le

Let us suppose tha t one has an inst an ce with N not too lar ge and that one
wants to be confident that one has found the opt imal solut ion. T his means
th at as the Monte Carlo proceeds (at low temperatures) , 3-op t tours very
near the optimum should be visited many times. Rather than verify again
and again that a to ur is 3-opt, one can use the well known device of a hash
table 121] to store locally-opt to urs that have previously been visited. If the
lookup can be made fast , the hash table can be queried cont inua lly whether
the current tour is a member of the table (i.e., whether t his tour has been
seen before and is 3-opt) . If the answer is yes, an early exit from the loops
of the 3-opt algorithm can be taken.

A hashing fun ction that maps to urs to locat ions in the hash table should
scatter similar tours. T hat is, two tours that differ even by only a few links
should map to different locat ions in the table. Other useful pro perties for the
hash function are invarian ce under cyclic permutations of the tour (it doesn 't
mat ter which of the N cities is considered the "first" city in the tour ) and
mirror symmetry (invar ian ce under reversal of the tour orient at ion) . To
accomplish this, we const ruct a table of N 2 random int egers, Ti j , where we
assoc iate each Tij with the link l i j , which is one of the N 2 links that may
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appear in the tour. To properly repr esent the links, we symmetrize the
random number table so that Ti j = "» (we are working with a symmetric
di j ) . For a given tour , a useful hash function is given by the following:

H = T tour[O],tou r {l ] 1\ Tt ou r[1],tou r [2] 1\ . .. 1\ Ttour [N-l],tour[O] .

1\ means bitwise XOR. We use a hash t abl e of 216 entries, and the lowest 16
bits of H form the index into this data st ructure. The fun ction H has the
aforement ioned prope rt ies an d does a good job of scattering tours uniformly
across t he has h table. At each place in the hash table we store the full (all the
bit s) hash value, H , plus the length of the tour. If a tour is known to be 3-opt,
an ent ry is made in the table at t he corresponding ind ex. When the table
is queried to get a "match ," both the H and the tour length must mat ch.
If the query says there is a match, the current tour has been seen before
and is 3-opt. Both H and the tour length can be comp uted increment ally
as the cur rent tour chan ges. This means that H and the tour length are
always available, and the query into the hash table is a fast operation. In
our program we can query the hash t able every time the to ur changes, and if
the answer is "match" we immediat ely exit the 3-opt loops. The hash table
form s a rep ository for all known 3-opt tours for this inst an ce of a TSP and
is valu abl e in speeding up the search .

As defined , this procedure does have a finite probability of making a
mistake (matching H s and to ur lengths for different tours). We have ignored
this since it is extremely unlikely and also since it doesn 't lead to a "hard"
mistake-it would cause one to miss a 3-opt tour . If this is thought to be
a problem , however, the reme dy is simple: take mor e bits for H (we use a
32-bit H) or add some other piece of information that describes the tour.

Another problem is collisions . Since ent ries are written into the tabl e but
are never taken out, the table can become full over a long run for a large
problem. When a collision occurs (we want to write to the table, bu t tha t
ent ry is already taken by another to ur) one could just give up and not write in
the ent ry. This would not lead to errors; it merely reduces the effect iveness of
the hash table. However, one can use secondary cha ining to avoid collisions .
In this technique , a hash table ent ry may actually be the head of a linked
list of ent ries, and on both queries and writes , the linked list is scanned, if
necessary.

Finally, the performan ce of the hash table optimization depend s on the
ord er in which the cities are traversed in the 3-opt loops. The point is,
once the "kick" has been made to the tour , the 3-opt subrout ine should first
concentrate in the area nea r the bridges. In this way, all the necessary 3­
changes may be done early, the hash table may rapidly find a match, and an
extremely early exit from the 3-opt loops can often be accomplished. This
possible optimization is somewhat related to the one describ ed below, bu t
we have not explored the idea of heuristi cally changing the looping ord er to
increase the cha nces of early hash table exits .
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Figure 7: The city n l is far from the "action," is not part of the
con_lis t , and thus need not be considered in the outermost loop of
the 3-opt procedure.

Out er-lo op optimization, sub-linear 3-opt

Each step of the lar ge-step Monte Carlo begins with a 3-opt tour. This
to ur is then modified by making a double-bridge move, an d it is then 3­
opted. The intuition behind the "outer-loop optimization" is that, if a link
is sufficient ly far away from either of t he two bridges, it will not be involved
in the 2- or 3-changes, so it need not be considered as a possible star t ing
point for any 2- or 3-changes. We can therefore restrict the start ing point s
of t he oute rmost loop of the opt algorit hm so as not to run over all the
links , bu t just those that are close to the "act ion ." In genera l, of course, the
bridges rapidly get changed; what we really need to do is keep a list of the
cit ies that ar e attached to links that have moved since the last 3-opt . Call
this data struct ure chanqe.lisi. The "considera t ion list " or con.lis t will be
those cit ies that are sufficient ly close to some member of chanqe.list , The
outermost loop of the opt algorithm will then run over only those links that
are at tached to a city that is a member of con. list.

A schemat ic diagram of the outer-loop optimization is given in figure 7.
Drawn there is a potential starting point n l for the outermost loop of the
3-opt algorit hm. Also shown is the set chanqe.list , those cit ies that have had
an attached link move since the last 3-opt . The "sufficient ly close" constra int
defines the set con.li st and comes from the usual type of argument where we
consider the minimum new dist ance versus the maximum old dist ance. The
result is the following. The set con. list is given by th ose citi es nl for which
the following inequality is true for some city p in the chomqe. lisi :

d(n 1>p) + 2 · min.link < 2· m ax.link + max.p.

max.p stands for the maximum length of the two links attached to p. This
result comes about because nl must int eract with one of th e cit ies in the
chasiqe.list since it is already known to be relat ively 3-opt to everything
else. Therefore, if nl is involved in a 3-change, t here must be a link going
from n l to one of the members p of changeJist , and one of the two links
attached to p must be broken .
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This optimizat ion allows the Monte Carlo to concentrat e on the current
region of interest . Using it , sub-linear (in N) t ime complexity for the 3-opt is
possible, and this seems to be born out by our t imings of the 3-opt (discussed
in section 6). Another import an t point is that the max.link that appears in
the above inequ ality need no longer be over the ent ire tour, but rather just
over the set con.List, Since max.link is itself involved in the definiti on of
con.list , one can recurse unti l nothing changes , thus achieving the smallest
possible max-link . The fact that max-link no longer depend s on the ent ire
to ur is satisfying. More comp lex and sharpe r inequalities than the above can
be writ ten down, bu t at some point the computat ional time spent on findin g
coti. lis t outweighs the potential benefit from a small con . list, We have not
thoroughly explored all the possibilities.

Interaction with branch and bound

Non-exact algorithms such as the large-step Monte Carlo can be used to
improve exac t algorit hm s such as br an ch and bound, and vice versa. For a
Eucl idean TS P, many of the possible N(N - 1)/2 link s are long and thus
unlikely to belong to the optimal to ur. Br an ch and bound algorithms begin
by eliminat ing links from considerat ion . For instan ce, for a random city
N = 400 pro blem , typically 75% of the links are eliminated by the first pass
of our br an ch and bound pr ogram [22J. Since we know t hese links cannot
appear in the optimal tour , we can set the corr esponding dist an ces di j to
infinity in the Mont e Carlo, effect ively removing them from considerat ion.
In pr acti cal te rms , this causes the bounds to sat ur ate more rapidly and can
speed up the 3-op t. Inversely, the Monte Carlo rapidly gives very good tours.
The best of these gives a sharp upper bound of use for the exact method s.
Having a good bound lead s to significant improvements in the pruning, and
hence in t he performan ce of the br an ch and bound algorithm and facet find ing
algorit hms.

6. Results

T his sect ion contains t he results of numerical expe riments we have conducted
using the large-step Monte Carlo .

Local se arch benchmarks

Our method cons ists of local-opt searches embedded wit hin a Markov chain.
Almost all of t he computer t ime is spe nt wit hin the local-opt , and here we give
some t imings as a function of N . The runs were done on a SPARCstation-11

compute r and the code was written in the C programming language. Most
of our ru ns atte mpted to solve the Euclidean version of the T SP, where the
cit ies lie in a plan e and the shortes t , st raight-line dist an ce between city i
and city j is taken for di j . However , the algorithm does not make use of this

lSPARCstation is a t rademark of Sun Microsyste ms, Inc.
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Figure 8: SPARCstation-1 timings to 3-opt a tour after a kick. For
each N the dat a has been averaged over 100 Markov chain steps. This
'was done for 20 separate TSP instances and then averaged again. The
3-opt is described in section 4, the twoother optimizations in section 5.

proper ty, an d the Euclidean vers ion is not thought to be an easy subset of
all TSPs.

To t ime the algorit hm , we constructed 20 inst an ces of random-scatter
TSPs for several N values. T he N values considered were N = 50, 100,
200, 300, 400, and 500. For each instan ce we ran 100 steps of the Markov
chai n and computed the average t ime requ ired to local-op t . These numbers
were then averaged over the 20 instan ces. Figure 8 shows the result for the
case of 3-opt. The set of points lab eled "Fast 3-opt" were obtained using
the basic 3-opt algorithm as described in sect ion 4. Fi t t ing these points to a
power law gives an exp onent near 1.5. Following the argum ents given at the
beginning of sect ion 4, the algor ithm should behave at worst as d(N)N , so
one expec ts an exponent less than 2. Also, the check-out time itself requires
j(N)N ste ps, so the exponent should also be greater than 1, as it is. The
set of points labeled "plus hash table" are runs that include the hash table
optimization discussed in section 5. The effect of the hash tab le is not very
large since only 100 tours have been constructe d in each of these benchmark
runs- the hash tab le becomes imp ortan t as one thoroughly samples the tours
around the optimum. The last set of points includes, in addit ion, the outer­
loop opt imizat ion . For large N t he improvement is significant and seems to
indicate a different N depend ence, possibly sub-linear. T he depend ence on N
when L-K is used instead of 3-opt is similar. Since the algorit hm considers
more exchanges, the main difference is that L-K is computationally mor e
expensive, our L-K search taking about 1.8 t imes longer than a 3-opt search.
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Performance of the Markov chain algorithm

Now we turn to the overall performan ce of the large-st ep Markov chain al­
gorithm. We first focus on the ability of the method to solve pr oblems to
optimality. For N = 50, 100, and 200, we compared our resul ts with exact
solutions that were obtained using a br an ch-and-bound progra m written by
one of the authors [22]. We generated inst an ces of the TSP that consiste d
of cit ies sca ttered randomly throughout a square. It was observed that the
large-st ep Monte Carlo was ext rem ely effect ive. For N up to 200 (beyond
N = 200 our br an ch-and-bound program was unable to converge) the Monte
Carl o easily found the true optimum be it with the 3-opt or wit h the L-K
local sear ch. When L-K was used , the average time to solve to optimality
was less than one minute for N = 100 and five minutes for N = 200. For
3-opt embedded in the Monte Carl o, a few minutes was usually sufficient at
N = 100, while for N = 200 less than an hour was necessar y. Note that the
3-opt time to solve to opt imality is not merely a cons tant factor larg er than
the L-K times, it is N dependent. This is becau se there are expo nent ially
more (in N) 3-opt tours than L-K opt tour s.

We then ran tests on larger problems solved to optimali ty by ot her groups
using cutt ing plane method s. The first inst an ce is the LIN318 prob lem [9].
The problem is posed as an open tour with fixed ends, bu t it is easy to recast
as a TSP by setting the length of the "link" between the two ends to some
large and negative value. Padberg and C rotsc hel, using a comb inat ion of
cutting-plane and br an ch-and-bound method s, were able to find the opt imal
tour for this problem [6]. The original [9] Lin-K ernighan heuristi c using
repeat ed random starts achieved an answer of 41,871, which is 1.3% above
the optimal value of 41,345 (see [6] for a discussion of what roundin g st ra tegy
was used when construct ing the dist ance matrix). We have confirmed this
behavior with our coding of L-K. Simulated annealing achieves a similar
result to Lin-Kerni ghan for this pr oblem [23].

Cons ider now our large-st ep Marko v chain approach . We mad e many sep­
arate attempts on t he LIN318 probl em with different random starts . When
the temperature is zero , the tour get s st uck in local minima, though these are
of high qu ality. This is easily underst ood by comparing these local-opt tours
to the exact solution: the link s connect ing the three "columns" are not easily
moved. They can be shifte d by applying a bridge move, but unl ess the other
bridge is at the "right" place, the move is rejected. Thus we found it neces­
sary to use either multiple starts or non-zero temperatures . After adjust ing
the temperature, the large-st ep Monte Carlo consiste ntly found the' opti mal
tour of length 41,345 [6] . T his fact gives us confidence in the robustness of
the procedure. Another indi cator is the fact that the Monte Carlo visit s large
numbers of tours just above the optimum and, in fact , visits them mul tiple
times. For inst an ce, it visits the tour of length 41,349 given in [24] and the
evidence from the Monte Carlo is that this is the first sub-opti mal tour ; the
Monte Carlo found no tours between 41,345 and 41,349. In terms of spee d ,
when the local sear ch was ~-K , the average t ime to find the optimum was less

I

I
I
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Run CP U hours Best tour % above min

1 100 27,693 0.025%
2 15 27,705 0.069 %
3 15 27,706 0.072%
4 30 27,697 0.040%
5 30 27,686 0.000%

Table 3: SPARCstation-l CPU times and best tour lengths for our
four longest runs with 3-opt local search. A post-reduction method
as described in the text was applied to the four best tours and the
result of this is run number 5.

than one hour of SPARCst ation-1 time. When the local sear ch was 3-opt,
the average run time was four times longer.

We also tackled the so-called AT&T532, a 532-city problem solved to
optimality by Padberg and Rinaldi [7] using bran ch-and-cut methods. T hey
determined the exact optimum to be of length 27,686. The runs t hat used
L-K for t he local search always found the optimum, and the average time
to solve to optimalit y was three SPARCst ation-1 hours. If inst ead one uses
3-opt for the local search, the optimum is much mor e difficult to obtain. In
table 3 we pr esent the results of our four longest runs from different random
starts for this case. The best tour length from a random start is 27,693, that
is, 0.025% above the opt imum. (Note that the average int ercity length in
these uni ts is 55.) The average of the best length of these runs is 27,700.
Thus the Markov chain provides very high qu ality to urs. In order to push
the 3-opt Monte Carlo to the limi t , we then used a method inspired by the
"reduct ion" procedure of Lin ' and Kernighan [8, 9]. In our "post-reduct ion,"
we took the best tour from each of our four long runs an d create d a list of
cit ies that have the sam e incoming and out going link s in this set of to urs .
The Mont e Carlo was then run start ing with tour 27,693 and with the ext ra
const raint that the bridges used in the kick cannot connect to these cit ies.
The number of cit ies to which the bridges could connect was less than 100,
leading to a mu ch smaller space to sample. This allowed the post-reduction
run to find the exact optimum of length 27,686. Note that the constra int
imposed by this pr ocedure is not very "hard" since the const raint is used
only for the location of the bridges , not in the subsequent 3-opt.

To see how ordinary Lin-Kern ighan repeated from random st arts performs
on this problem , we first used the data of Bent ley an d Johnson (privat e com­
munication), who have written a fast L-K code . For the AT&T 532 problem ,
their local search from a random start takes on the order of 400 seconds on
a VAX/750, and lead s to an average excess length of 1.1%. For 100 random
starts , their best tour length is 27,797, or 0.4% ab ove the optimum. The
probability distribution of tour lengths given by their L-K has an average of
28,500 and a vari an ce of 400. Our coding of L-K gives very similar results .

Finally, we also considered a 783-city problem (RAT783) solved to op­
timality by plane-cut ting methods by Cook et al. [25]. The city positions
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were obtained by small, random displacement s from a regular 27 x 29 lat tice
[26]. This instance turned out to be very easy to solve using our Monte Carlo
heurist ic. The runs reached the optimal to ur (of length 8,806) in an average
of one hour of SPARCstation-1 t ime (using the L-K local search). This t im­
ing is similar to one for the LIN318 instance. It is clear tha t the difficulty of
a problem is not given only by its size.

To really compare the stochast ic and local search methods requires fixing
t he tot al amount of CPU time allowed. For very long runs, a Markov chain
approach leads to better results than random sampling because the density
of states is simply too small near the optimum, so random sampling is not
competit ive. On the ot her hand , local search methods are much bet ter than
simulated annealing for short runs, for inst ance. A big advantage of our
method is that a local search is incorporated into the algorit hm. This allows
our method to be bet ter than simulated annealing and local searches for both
short and long runs.

7. Conclusions

Many heuri sti c methods have been proposed for the TS P. To date, the most
effect ive of t hese are th e local search and the stochas t ic sampling algorithms.
In this pap er , we have shown that it is possible to combine these met hods
into what we call a large-step Markov chain. In this way, only locally op­
t imal tours are sampled, t hus redu cing the search space dramatically. In
addition , to sample t his space effect ively, a special kind of 4-change is made
(the "kick") followed by the local search. For ot her optimization problems
(graph partit ioning, spin glasses , and so forth), t he "kick" should correspond
to a change tha t is not easily accessible to the local search moves and th at
is thought to be relevant .

We have implemented this algorithm and applied it to a numb er of large
TSP instances. In par t icular, it is ab le to find the exact solut ion to the
LIN318, t he AT& T532, and the RAT783 prob lems in a very modest amount
of CPU time. Our method prov ides a substant ial improvement over the
hereto state-of-t he-art algorit hm of Lin and Kern ighan . We also showed how
th e local searches can be accelerated , prov iding a method for doing 3-opt
that makes the O(N ) complexity of the check-out time explicit , and that can
be extend ed to k-connected-opt. Also, the set of Jinks to be considered in
t he tour improvement can be drastically reduced by a dynamic outer-loop
opt imizat ion.

A ppendix A : D ensit y of states

For an N -city problem, there are (N -1)!/ 2 to urs if one uses orient at ion and
cyclic permutat ion symmetry. It is of interest to know the length dist ribut ion
of these tours . For clar ity, we consider random scatter problems and scale the
di j so th at the average distan ce between neighboring cit ies is N independent .
In two dimensions this is achieved by having the cities in a region whose
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length scales as -IN. We will consider a square -IN on a side, bu t for ot her
sha pes the argument st ill holds. In these uni ts, t he tour lengths scale as N
since one can crudely think of a 4N problem as being four problems of size
N past ed tog ether. For any particular instance, the minimum tour length is

u: = coN + x ..JN

where Co is ind epend ent of both the par ticular instan ce of the TSP and the
sha pe chosen above, and x is a number tha t depend s on the instan ce. We
can think of x as a random vari ab le describing the fluctuations in the length
as we consider different inst ances of the TSP.

Now we would like to est imate the density of states near the minimum,
that is, the number of tour s of length between l and l + dl , divided by dl . The
main questi on is: how fast does this grow with l and wit h N ? T he answer is
not known, but several distributions have been suggest ed [27, 28J. Here we
present a model that is very simp le, bu t that seems to describ e well the dat a
for randomly scattered Euclidean TSPs.

Let us first consider the set of all tour s. T he (N - 1)!/ 2 to urs have lengths
that vary between lmin and lmin . 0 (-IN), so clearly the range is very broad.
Most of these tours are of no interest , for inst an ce they have very long links
of lengt h rv -IN. To model the density of to urs near the min imum, we
start with the optimum tour and consider doing 2-, 3-, and so forth cha nges.
We will restrict ourselves to localized k-cha nges where the k links occur in
a small spatial region, that is, are near one anot her . Specifically, consider
only connected k-cha nges, for any k . Each connected k-chan ge increases the
tour length by an amount that we take to be a random var iab le wit h an
N -independent probability distribu t ion . To keep the modeling of the density
of states simple, we replace the random variables by a typical value f that is
some fraction of the inter-city nearest -neighbor distance (and thus is 0 (1)).
When const ruct ing the set of low-lying tours, we first perform a k1-change
at some location , then follow this by a k2-change at another locat ion , and so
forth. The -IN x -IN squa re is approximated by M independent pat ches,
where N /M = a (t he area of the patch) is taken to be N ind ependent . A
k-cha nge as considered above is then viewed as increasing the length of the
to ur in one of these pat ches. Each patch is considered to be "on" or "off,"
and when one is "on" the to ur length is increased by f . The total number of
tour s in this mod el is 2M

. To get the density of to ur lengths, simp ly count the
number of ways to choose a fixed number of patches. This gives a binomial
dist ribution, so that (~) tour s have length lmin + p -f. The above modeling
has int roduced two scale param eters , f and a, which are required to be N
independent . If the model were extended so that k-changes for different k s
were treated separat ely, a multinomial would have resulted bu t this would
not affect the result ing distribu tion much. We have empirically found that
good fits are obtained to the numerical data extracted from inst an ces wit h
randomly distributed cit ies. We expect the model to be reliab le when p » 1
so that the inst ance fluctuations are unimportant . Also, when too many
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pat ches are "on" one does not expect them to stay ind ependent , so the model
is inaccur ate as P approaches M / 2. Anot her effect is due to t he fact that
we threw away many of the longer to urs by t he connect ivity constraint on
the k-changes. This leads to the wrong scaling in the total number of to urs ,
2N / a , whereas the correc t result is, of course , (N - 1)!/2.

The model as described above was for the density of all tours. We can
also specialize to the case of the density of k-opt tours and it is here that we
expec t the model to be most accurate. The dilute gas picture now consists
of patches of area ak. As before , our predicti on for the density of to urs at
lmin+P!k is (~) , where N = Mru : The curve in figure 1 shows this pred ict ion
for the density of 3-opt tours for a par t icular lOG-city TSP. M (and therefore
a3) was fixed by the requ irement that the total number of 3-opt to urs be 2M .

h was adjusted to give the correct average tour length. It is important to
note that h is t he only free paramet er. The fit to the data , as seen in figure
1, is qui te good .

As we consider higher and higher connected k-opt- that is, as the local
search is improved-we expec t ak to increase since a larger number of link
changes is required to go from one k-opt tour to another (at least k +1). The
total number of k-opt tours is given in t his model by 2N / ak , a parameterization
that has been given previously by Lin [8]. It would be interesting to determine
whether the inclusion of disconnected graphs (say all the 4-opt to urs) leads to
a different N dependence, such as 2NQ

/ ak . Note that this model is valid also
.for higher dimensional randomly scattered Euclidean TSPs, and for ot her
local searches besides k-opt . For instan ce, it applies to the Lin-Kerni ghan
density of states. The model predicts that any local search method gives a
distribution for the relative excess length (l - lmin)/lmin, which has an N ­
ind ependent average, an d a width that sca les as N - 1

/
2

. A consequence of
this is that, when comparing at large N different local sea rch algorit hms that
use random starts, the only important cha racte ristic is the average relative
tour length obtained by the algorithm.

Appendix B: Markov chains

This ap pendix reviews some general properties of Markov chains in order to
answer the quest ions:

will an algorit hm always find the optimal solution?

how long should one run if one wants to reach the opt imal solution
with a given confidence level?

The first questi on is related to the ergodicity of the Markov cha in; the second
to its auto-corre lation t ime.

Since the set of all to urs in the T SP is a finite set , the Markov cha in can
be characterized by a transit ion matrix T . The matrix element Tmn is the
prob ability to go from to ur n to m. In practice, the select ion of m requires
random numbers. Given a starting tour , the application of T prod uces a
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sequence, or chain of tours. After some transients , usually the "memory"
of the st art ing point decays, and to urs ap pear with a limit ing probability
distribution P . P depend s on the matri x T , and the goal is to find Ts that
lead to P (C) large for tours C of short lengt h . T his is called biased sampling ,
and it leads to sampling the to urs of interest more efficient ly. The simplest
way to create such a biased sam plin g is to use a Metropolis-style algorit hm:
the cur rent to ur is cha nged in some small random way, and the change is
accepted with high probab ility only if the new tour is shorte r than the old
one.

If C is the optimal tour , is P (C) i- O? In the case of simulated annea ling ,
the distribution P is known because T satisfies detailed balan ce. In par tic­
ular , the probability of all to urs is non-zero (t he Markov cha in is ergodic)
and P (C ) depends only on the length of C . For general Markov cha ins (i.e.,
for general choice of the matrix T ), very lit t le can be said of the probab il­
ity distribut ion P . It is plausible nevertheless t hat within local-opt to urs
our large-step Markov cha in is ergodic, and all our runs are consistent with
this. In particular , we have checked that P(C) i- 0 for many inst an ces (see
section 6).

How many tours M must be sampled to have a high pro bability of reach­
ing C? T here are two const raints here. First , one must have M P(C) » 1,
corres ponding to the expecte d number of visits to C being much great er
than 1. It is then improbable to have 0 visits. Second, M should be lar ge
enough so that the probab ility dist ribu tion of tours is indeed given by P : t he
above mentioned transient s must have died away. This decay t ime can be
made quant itative by the introduction of the auto-correlation t ime T of the
Markov cha in. T is defined by

where ),1 is the eigenvalue of T of largest modulus and tha t is different from
1. T can be thought of as t he longest characterist ic time occurring in the
dyn ami cs generated by T . T he second constraint now reads M » T. Note
t hat there is not much point in working so hard as to find a T such t hat T is
as small as N (t he number of cit ies) because the first condit ion also has to be
satisfied: if one t akes t he analogue of "temperature" to be high (small bias ),
then T is O(N) (for modifying every link). Thus one is almost sure to do
bet ter than local search wit h random starts by simp ly embedding t he local
search into a Markov cha in and int rod ucing some bias into the sampling.
On the other hand, one must make sure that T does not get astronomically
large. When simulated annealing is used for the TSP, T diverges fast as
the temperature is lowered because barriers become overwhelming . (Some
of these barriers can be visualized by the t ransformations induced by double
bridges.) But if the te mperature is not low, there are too many configurat ions
to sample, so again t he algorithm is not effect ive for large N . Thus it is
imp erat ive to use large-step Markov chains t o keep T from growing too fast
as one increases the bias.
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In pr actice, T can be measure d without having to determine the eigenval­
ues of a large matrix. Ideally, one should find some ope rator on configurat ion
space that projects out as much as possible the eigenvec tor corresponding to
the eigenvalue AI, though in pr acti ce this is difficult . We suggest for the
TSP taking the ope rator D , which counts the number of links a to ur has in
common wit h a given good to ur. Then the observable (en means the nth
configuration in the Markov chain)

is proportional to A l P = e- p/ T for large p .
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