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Abstract. The genetic algorithm is a powerful heuristic for the so-
lution of hard combinatorial problems and has been investigated by
numerous authors. Many problems, arising for example in communi-
cation networks, possess strong two-dimensional characteristics. We
describe a genetic algorithm with a new crossover operator called
block-uniform crossover, which exploits the two-dimensional charac-
ter of a problem. The concept was tested on a version of the Ising
model, which is important in physics. This new algorithm outper-
forms genetic algorithms with traditional crossover operators in all
trials.

1. Introduction

Genetic algorithms (GAs) are designed to mimic biological evolution. As part
of the class of heuristic methods, they do not always produce optimal solu-
tions; rather, they are intended to provide reasonable answers to problems
where the known methods of obtaining optimal answers are unreasonably
time-consuming or otherwise unsuitable. They have been successfully ap-
plied to various problems that could not have been readily solved by more
conventional techniques. Genetic algorithms were invented by John H. Hol-
land and first widely disseminated in reference [5]. Holland’s formulation was
motivated by the observation that sexual reproduction in conjunction with
the pressure of natural selection has resulted in the development of highly
adapted species in the process of natural evolution. The principle impact
of Holland’s work is the central role played by the crossover operator as the
underlying discovery mechanism.

In many problems of interest—for example, in communication networks—
there is a strong two-dimensional nature to problem solutions. In the stan-
dard genetic algorithm, a chromosome-like bit vector is usually taken to
represent a problem solution. Thus two-dimensional information is generally
lost or not taken into account in designing a crossover operator. In this study,
a number of crossover operators that attempt to exploit the two-dimensional
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nature of a problem space are considered. The Ising problem was chosen as
a test bed for the algorithm because of its strong two-dimensional structure,
the ease of manipulating the data structures, and known optimal solutions to
certain test problems. The most effective of these new operators is a general-
ization of the standard uniform crossover, which has been observed by many
authors to be an extremely reliable operator [1, 8]. Results indicate that this
new crossover operator is quite effective in exploiting the two-dimensional
structure of the Ising model. The purpose of this research was solely to
study the effect of the two-dimensional crossover. We have not concerned
ourselves with comparisons to other algorithms, but merely the comparison
of the various crossovers within the GA.

In section 2 we discuss the Ising model. In section 3 we discuss the genetic
algorithm and our implementation with a population of two-dimensional
chromosomes. Finally, in section 4 we present comparison data on several
problems.

2. The Ising spin problem

The Ising model was first studied by Ernst Ising [6] in the early twenties. It
has remained an important model in physics in the study of thermodynamic
properties, magnetic spin correlations, phase transitions, and other applica-
tions. For a more detailed treatment of the two-dimensional model that we
have used to study our algorithms, see [7]. The basic model is a square lat-
tice or grid of elements (“spin” variables) o,, which have two states, +1 and
—1 (up, down or positive, negative). There is a mutual interaction energy
between nearest neighbors o and o/ in the grid defined by

—E(a,d)0,04,

which is negative if the spins are parallel and positive if not. (Note: E(a, o) =
0 unless @ and o' are nearest lattice neighbors. Typically E(a, ') is +1 or
—1 when « and o' are neighbors.) Additionally a spin may interact with an
external magnetic field H with energy

—H(a)o,.

The general problem is-to find an assignment of the spin variables that min-
imizes the total energy function for a given matrix E of interaction energies
and external field H. Frequently one assumes that the energies affecting rows
are the same as those affecting the columns of the grid, and that the external
input is uniform or has a small percentage of —1s. In our testing, we have
assumed that H = 0.

3. The genetic algorithm

The genetic algorithm introduced by John Holland in 1975 is a heuristic
that solves hard combinatorial problems by simulating biological evolution.
The algorithm (GENSPIN) that we have developed is based on the standard
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Holland-style genetic algorithm. A thorough overview of genetic algorithms
can be found in [4]. The standard GA proceeds in three phases:

1. An initial population is generated, usually randomly or greedily. In
the standard GA, the individuals of the population are represented by
chromosome-like bit vectors or genotypes. The population size remains
fixed from generation to generation and is typically between 50 and 200
individuals.

2. The population is reproduced according to the relative fitness (deter-
mined by an evaluation function that is application dependent) of an
individual in the population. Reproductive trials are allocated accord-
ing to the fitness of the genotype relative to the fitness of the remaining
population.

3. Offspring are generated by the exchange of information from the par-
ent genotypes. This is typically accomplished by the use of crossover
operators. The simplest variant selects two parents at random from the
gene pool as well as a crossover position within the binary encoding.
The parents exchange information in the portion of the string to the
right (say) of the crossover point. This is called 1-point crossover.

4. Steps 2 and 3 are repeated for a fixed number of generations or until
the process converges.

The GENSPIN algorithm proceeds as follows:

1. An initial population is generated randomly. The individuals of the
population are n X n grids of spins that are +1 or —1.

2. The total energy of each individual (grid) is calculated for a fixed ma-
trix E of interaction energies between nearest neighbors, and then a
fitness function is defined that assigns a probability of reproduction to
the most fit individual that is proportionately larger than the proba-
bility of reproduction of the least fit individual. GENSPIN contains a
modification here that exploits some a priori knowledge of the problem
space. Since the fitness of each individual depends on the parity of
nearest neighbors, individuals with equal fitness occur in pairs. For
each individual with a given fitness, another individual with the same
fitness can be obtained by exchanging +1s and —1s. Thus we intro-
duced a “switching” operator that tends to drive the algorithm toward
solutions with a majority of +1s.

3. GENSPIN uses a variety of crossover operators: standard ones such
as two-point and uniform, and others that attempt to exploit the two-
dimensionality of the problem space. These are vertical and horizontal
band operators, block operators, and (the most successful) a general-
ization of uniform crossover called block-uniform crossover.
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4. GENSPIN has been tested on generation sizes of 150, 200, and 300.

Initial trials were run with a version of GENSPIN that used none of
the standard techniques to produce better solutions in a GA, such as using
mutation as an infrequent operator to preserve population diversity. A later
version incorporated mutation operators as well as a test for convergence.
In this latter version when the population was approaching convergence,
an “inversion” operator was applied to introduce more diversity into the
population. This inversion operator, which we call “complementation,” is
described in section 4 below.

4: Comparison of crossover operators

The primary emphasis of this research is to study the behavior of various
crossover operators for chromosomes that are represented by an n x n grid.
Thus, we deliberately designed a “plain vanilla” Holland-style genetic algo-
rithm incorporating no special techniques to improve problem solutions.

In initial trials, we tested six different crossover operations:

1. Two-point: Here the grid is treated as a vector of length n2, two random
points are generated, and information is exchanged between the points
according to fixed probabilities.

2. Uniform crossover: Information is exchanged between individual grid
points based on a fixed probability.

3. Vertical band crossover: Two random numbers are generated, and in-
formation inside the vertical region of the grid determined by the num-
bers is exchanged based on a fixed probability.

4. Horizontal band crossover: This is the same as vertical, except exchange
occurs within horizontal bands.

5. Block crossover: Exchange occurs inside a rectangular block whose size
and location are determined randomly.

6. Mixed crossover: The operator, taken from the above five types, is
determined randomly.

We tested these operators on a 10 x 10 grid with E(o,0’) = 1 for all nearest
neighbors ¢ and ¢’. For this problem, the optimum solution can be deter-
mined exactly. We learned that these two-dimensional operators did not
perform as well as uniform crossover or even as well as two-point crossover
for various choices of probabilities. Thus, as noted in various places in the
GA literature [2, 3], two-point and uniform are very robust crossover oper-
ators even though they do not exploit the structure of the problem space.
However, with the introduction of the block-uniform crossover operator, we
obtained significantly improved results.
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The block-uniform crossover divides the grid into 7 X j blocks where 4
and j are chosen randomly. Then each block of one parent is interchanged
randomly with the corresponding block of the second parent based on a pre-
assigned percentage. The best results were obtained with 50% and 60% block
exchange. GENSPIN seems to be relatively insensitive to the percentage of
total crossover. We ran the remaining trials with a 75% chance that two
individuals would exchange information.

In generating an original population of size 100, the best solution obtained
is on average 60% of the optimal solution. Using uniform crossover, we obtain
on average a best solution that is 79% optimal and is found in generation
111. With block-uniform crossover, a best solution that is 80.5% optimal on
average is found in generation 110. The best solution found in all trials was
90% optimal and was found by using block-uniform crossover.

In an attempt to deter premature convergence we introduced a “com-
plementation” operator, which exchanged +1s and —1s in a small random
proportion of the population. This process mimics standard “inversion” pro-
cesses that are often introduced in GAs to create diversity in a stagnating
population. This had a devastating effect on GENSPIN for both uniform
and block-uniform crossover, and reduced the best solutions to 66.5% and
69% optimality, respectively.

Finally, we tested the initial version of GENSPIN with the “switching”
operator (described in section 3 above). This has the effect of cutting the
search space in half. (Note: The search space is of size 2”2.) The results
were dramatic. Both uniform and block-uniform crossover produced much
better solutions. On average, uniform gave solutions 86% optimal and block-
uniform gave solutions 89% optimal. The best solution was 97% optimal and
was found by GENSPIN with block-uniform crossover. The best solutions
were still found on average in generation 110.

Observation of our results at this point led us to conclude that block-
uniform crossover was exploiting the two-dimensional structure of the Ising
model but, though superior to uniform crossover, failing to produce optimal
solutions. The algorithm was converging too fast before an optimal solu-
tion was obtained. In order to forcibly prevent premature convergence we
introduced a measure of “variation” in the population. We fixed a factor p.
If every member of the population had a value within p% of the “best-so-
far,” a concerted effort was made to introduce new genetic material into the
population. This was accomplished using the “complementation” inversion
operator described above on a randomly chosen (but large percentage) of
the population. This procedure had the desired effect of forcing the GA to
continue its exploration. In addition we introduced a straightforward hill-
climbing procedure as a post-processor to improve the best solution found by
the GA. These enhancements to the algorithm improved results significantly.

In particular, on the test problem described above, the results were 87.5%
of optimal on average using uniform crossover. Using the block-uniform
crossover, the results were 97.8% of optimal on average, and the optimal
solution was found in 40% of the runs. We tested the final version of our
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algorithm on a variety of test problems to ensure that our earlier observations
were not problem dependent.

In the table below, we summarize some of the test data from the com-
parison of GENSPIN using block-uniform crossover versus using uniform
crossover. The parameter settings for all tests are the following: population
size is 150 and the number of generations is 300. We always do crossover
on the parent genotypes. The likelihood of crossover of a block in block-
uniform crossover, or of a bit in uniform crossover, is 50%. In previous tests
we determined that GENSPIN is relatively insensitive to the total amount of
crossover, but gives slightly improved results when the percentage of block
(or bit) crossover is between 50% and 60%. The test problems are 10 x 10
grids and the interaction energy matrices for test problems are randomly
generated. The results reported are averages for five trials. The previous
best reported is the result of applying a simple tabu search to the same
problem. This comparison is given only to verify that the GA was finding
near-optimal solutions. The best value found by randomly generating 1500

" solutions is reported in the last column below.

Average Average | Average

generation | best best with | Previous
Problem | Crossover | found found hillclimb | best Random
10a Block 264 —164 —172 —180*
10a Uniform 34 —127 —135
10b Block 70 —125 —126 —122 —46
10b Uniform 25 —112 —115
10c Block 74 —122 —123 —130 —42
10c Uniform 32 —98 —109
10d Block 56 —120 —123 —126 —48
10d Uniform 31 —108 —111

* known optimal solution

GENSPIN produces solutions that compare favorably with those found
by the tabu search. The results of these tests are encouraging. Among
various types of crossover operators designed to exploit the two-dimensional
nature of a solution, we have identified an operator that is quite successful.
Incorporating the block-uniform crossover operator has resulted in a GA
that produces solutions superior to a GA that uses a traditional crossover
operator.

5. Conclusion

In this study we investigated several crossover operators designed to incor-
porate two-dimensional information in a solution space, and we compared
the performance of the genetic algorithm using these operators to traditional
crossover operators. The block-uniform crossover operator has proved to be
superior to all other operators tested in a genetic algorithm to solve the Ising
problem. This suggests that, in problems with strong two-dimensional char-
acteristics, performance in a genetic algorithm can be improved by exploita-
tion of these characteristics using a variation of block-uniform crossover. In
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a problem without the strong nearest neighbor properties of the Ising model,
partitioning of the domain may be the appropriate construct for using block-
uniform crossover. Preliminary work has been done on designing a GA using
this variation of block-uniform on a network topology problem. Initial tests
indicate that, as in the Ising problem, simple crossover operators that use
single blocks or bands do not give improved results. Additional research will
establish whether a variation of block-uniform crossover is a more effective
crossover operator than those commonly used in other problem domains.
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