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Abstract. The genetic algorithm is a powerful heuristic for the so­
lution of hard combinatorial problems and has been investigated by
numer ous authors. Many problems, arising for example in communi- .
cation networks, possess stro ng two-dimensional characteristics. We
describe a genetic algorit hm with a new crossover operator called
block-uniform crossover, which exploits the two-dimensional charac­
ter of a problem. Th e concept was tested on a version of the Ising
model, which is important in physics. Thi s new algorit hm outper­
forms genetic algorithms with traditional crossover operators in all
tri als.

1. Introduction

Genetic algorit hms (GAs) are designed to mimic biol ogical evolut ion . As part
of the class of heuristic methods, they do not always produce opt imal solu­
tions; rather , they are intended to provid e reasonable answers to problems
where the known method s of obtaining optimal answers are unreason ably
time-con suming or ot herwise un sui t able. They have been succes sfully ap­
plied to various problems that could not have been readily solved by more
conventio nal t echniques. Genetic algorit hms were inven ted by J ohn H. Hol­
land and first wid ely disseminated in reference [5]. Holland 's formulation was
motivated by the observat ion that sexual reproduct ion in conjunct ion with
the pressure of natural select ion has resul t ed in t he development of highly
adapte d sp ecies in the process of natural evolution . The principle impact
of Holland 's work is the central role played by the crossover ope rato r as the
underlying discovery mechanism .

In many problems of interest-for examp le, in communication networks­
there is a strong two-dimension al nature to problem solutio ns . In the stan­
dard genet ic algorithm , a chromosome-like bit vector is usually t aken to
represent a problem solution. Thus two-dimension al information is generally
lost or not t aken into account in designing a crossover operato r. In t his study,
a number of crossover op erators that attempt to exploit t he two-dimensional
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nature of a problem space are considered. The Ising problem was chosen as
a test bed for the algorithm because of its strong two-dimensional st ruc ture ,
the ease of manipulating the data st ructures , and known optimal solutions to
certain tes t problems. The most effective of these new operato rs is a general­
ization of the standard uniform crossover , which has been observed by many
authors to be an ext remely reliab le operator [1, 8]. Results indicate that this
new crossover operator is quite effective in exploit ing the two-dimens iona l
st ructure of the Ising model. T he purpose of this resear ch was solely to
st udy the effect of the two-dimensiona l crossover. We have not concerned
ourse lves wit h comparisons to other algorit hms, bu t merely the comparison
of the var ious crossovers within the GA .

In sect ion 2 we discuss the Ising model. In sect ion 3 we discuss the genetic
algorit hm and our implementat ion with a population of two-dimensiona l
chromosomes. Finally, in sect ion 4 we present comparison data on several
problems.

2. The Ising spin problem

The Ising model was first st udied by Ernst Ising [6] in the early twent ies. It
has remained an import ant model in physics in the study of thermody namic
properti es, magnetic spin correlat ions , phase tr ansitio ns, and other applica­
t ions. For a more det ailed treatment of the two-dimensional model that we
have used to study our algorit hms, see [7]. The basic model is a square lat­
t ice or grid of elements ("spin" vari ab les) CY00 which have two states, +1 and
- 1 (up , down or positi ve, negative). T here is a mut ual interaction energy
between nearest neighbors a and a ' in the grid defined by

which is negat ive if the spins are par allel and positive if not . (Note: E(a , a') =

o unless a and a ' are nearest lat ti ce neighbors . Typically E (a , a') is +1 or
- 1 when a and a' are neighb ors.) Addit ionally a spin may interact wit h an
external magnetic field H with energy

T he generaLproblem is-to-find an assignment of the spin variables tha t min­
imizes the total energy funct ion for a given matrix E of interaction energies
and external field H. Frequently one assumes that the energies affecting rows
are the same as those affect ing t he columns of the grid , and that the exte rnal
inpu t is uniform or ha s a small percentage of -Is. In our test ing, we have
assum ed that H == O.

3. The genetic algorithm

The genet ic algorithm introduced by J ohn Holland in 1975 is a heuristic
that solves hard combina torial problems by simulat ing biological evolut ion.
The algorit hm (GENSPIN) that we have developed is based on the standard
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Holland-style genetic algorit hm. A thorough overview of genetic algorit hms
can be found in [4]. The standard GA proceeds in three phases:

1. An init ial populat ion is generated, usually randomly or greedily. In
t he standard GA , the individua ls of the populat ion are represented by
chromosome-like bit vectors or genotypes. T he population size remains
fixed from generation to generation an d is typically between 50 and 200
ind ividua ls.

2. The populat ion is repr odu ced according to the relative fitness (dete r­
min ed by an evalu ation fun ction that is application dependent ) of an
individual in the population . Reproductive t rial s are allocated accord­
ing to t he fitness of the genotype relative to the fitness of the remaining
population.

3. Offspring are generat ed by the excha nge of information from the par­
ent genotypes. This is typically accomplished by the use of crossover
operators. The simplest variant selects two par ent s at random from the
gene pool as well as a crossover pos it ion within the bin ary encoding.
The parents excha nge information in the portion of the string to the
right (say) of the crossover point . This is called I-point crossover.

4. Steps 2 and 3 are repeated for a fixed number of generations or until
the process converges .

The GENSPIN algorit hm proceeds as follows:

1. An init ial population is generated randomly. T he indi vidu als of the
population are n x n grids of spins that are + 1 or - 1.

2. T he total energy of each indi vidual (grid) is calculated for a fixed ma­
t rix E of interaction energies between nearest neighbors, and then a
fitness function is defined that assigns a prob ability of repro duction to
the most fit individual that is propor tionately larger tha n the proba­
bility of reproduct ion of the least fit indi vidual. GE NSPIN contains a
mod ification here tha t exploits some a priori knowledge of the problem
space. Since the fitness of each individual dep ends on the parity of
nearest neighbors , individuals with equa l fitness occur in pair s. For
each individual with a given fitness, another individual with the same
fitness can be obtain ed by excha nging + Is and -Is. Thus we intro­
duce d a "switching" ope rator that tends to drive the algorithm toward
solutions with a maj ori ty of +ls.

3. GE NSPIN uses a variety of crossover operators: standard ones such
as two-point and uniform , and ot hers that attempt to exploit the two­
dimensionality of the probl em space. T hese are vert ical an d horizontal
band operators , block ope rators , and (t he most successful) a general ­
ization of uniform crossover called block-uniform crossover.
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4. GENSPIN has been tested on generat ion sizes of 150, 200, and 300.

In it ial t rials were run with a version of GENSPIN that used none of
the standard techniques to produce better solutions in a GA , such as using
mutation as an infrequent operator to preserve populat ion diversity. A later
version incorporated mutation operators as well as a test for convergence.
In this latter version when the populati on was approaching convergence,
an "invers ion" operator was applied to introduce mor e diversity into the
population . This inversion operator , which we call "complementat ion ," is
described in section 4 below.

4; C omparison of crossover operators

T he primar y emphasis of this resear ch is to study the be havior of vari ous
crossover operators for chro mosomes that are represented by an n x n grid .
T hus , we deliberat ely designed a "plain van illa" Holland-style geneti c algo­
rithm incorporat ing no special techniques to improve pr oblem solutions.

In initi al trials, we test ed six different crossover op erat ions :

1. Two-p oint : Here the grid is treated as a vector oflength n 2
, two random

points are generated , and information is exchanged between the points
according to fixed pro babilit ies.

2. Uniform crossove r: Information is exchanged between individual grid
points based on a fixed prob ability.

3. Vertical band crossove r: Two random numbers are generated , and in­
form ation inside the vertical region of the grid determined by the num­
bers is exchanged based on a fixed probability .

4. Horizontal band crossover : T his is the same as vertical, except exchange
occurs within hori zont al bands.

5. Block crossover: Exchange occurs inside a rect angular block whose size
and locat ion are determined randomly.

6. Mixed crossover: T he ope rator , taken from the above five types, is
determined randomly.

We test ed these operators on a 10 x 10 grid wit h Eio,u' ) == 1 for all nearest
neighbors o and a' : For this problem , the optimum solut ion can be deter­
mined exac tly. We learn ed that these two-dimensional operato rs did not
perform as well as uniform crossover or even as well as two-point crossover
for various choices of pr obab ilities . Thus, as noted in various places in the
GA literature [2, 3], two-point and uniform are very robust crossover oper­
ators even though they do not exploit the st ructure of the pr oblem space.
However , with the introduction of the block-uniform crossover op erator , we
obtain ed significant ly improved resul ts.
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The block-uniform crossover divides the grid into i x j blocks where i
and j are chosen ran domly. Then each block of one parent is interchan ged
ran domly with the correspo nding block of the second parent based on a pre­
assigned percent age. The best results were obtained wit h 50% and 60% block
exchange . GE NSPIN seems to be relatively insensiti ve to the percentage of
tot al crossover . We ran the remaini ng t rials with a 75% chance that two
individuals would excha nge inform ation.

In generating an original population of size 100, the best solution obtained
is on average 60% of the optimal solution . Using uniform crossover, we obtain
on average a best solution that is 79% optimal and is found in generation
111. Wi th block-uniform crossover , a best solution that is 80.5% optimal on
average is found in generation 110. T he best solution found in all t rials was
90% optimal and was found by using block-uniform crossover.

In an attempt to deter premature convergence we introduced a "com­
plement ation" operato r , which excha nged +ls an d -ls in a small random
proportion of the population . This process mimics standard "inversion" pro­
cesses that are often int roduced in GAs to create diversity in a stagnating
population . T his had a devastating effect on GENS PI N for bo th uniform
and block-uniform crossover , an d reduced the best solutions to 66.5% and
69% optimality, resp ectively.

Finally, we test ed t he initial version of GENSPIN wit h the "switching"
operator (describ ed in sect ion 3 above). This has the effect of cut t ing the
search space in half. (Not e: The search space is of size 2n 2

. ) The resul t s
were dramatic. Both uniform and block-uniform crossover produced much
bet ter solut ions. On average, uniform gave solutions 86% optimal and block­
uniform gave solut ions 89% optimal. The bes t solut ion was 97% optimal and
was found by GEN SPIN wit h block-uniform crossover. The best solutions
were st ill found on average in generation 110.

Observation of our results at this point led us to conclude that block­
uniform crossover was exploit ing the two-dimensional st ructure of the Ising
model but , though superior to uniform crossover , failing to produce opt imal
solutions. The algorit hm was converging too fast before an optimal solu­
t ion was obtained. In order to forcibly prevent premature convergence we
int roduced a measure of "variation" in the population . We fixed a factor p .
If every member of the populat ion had a value wit hin p% of t he "best-so­
far ," a concerted effort was made to introduce new genetic material into the
population . This was accomplished using the "complementat ion" inversion
operator described above on a randomly chosen (but large percentage) of
the populat ion . This procedure had the desired effect of forcing the GA to
cont inue its explorat ion. In add ition we int roduced a st raight forward hill­
climbing procedure as a post-processor to improve the best solution found by
the GA . These enhancements to the algorit hm imp roved results significant ly.

In particular , on the test problem describ ed above, the resul t s were 87.5%
of opt imal on average using uniform crossover. Using the block-uniform
crossover , the results were 97.8% of opt imal on average , and the optimal
solut ion was found in 40% of the runs. We t est ed the final version of our
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algorithm on a variety of test pr oblems to ensure that our ea rlier observations
were not pr oblem depend ent .

In the table below, we summarize some of the test data from the com­
pari son of GENSP IN using block-uniform crossover versus using uniform
crossover. The parameter settings for all tests are the following: populati on
size is 150 and the number of generat ions is 300. We always do crossover
on t he parent genoty pes. The likelihood of crossover of a block in block­
uniform crossover , or of a bit in uniform crossover, is 50%. In previous tes ts
we determined that GE NSPIN is relat ively insensitive to the tot al amount of
crossover, bu t gives slightly improved result s when the percentage of block
(or bit ) crossover is between 50% and 60%. The test pr oblems are 10 x 10
grids and the interacti on energy matrices for test pr oblems are randomly
generate d. The result s reported are averages for five trials. The pr evious
best reported is the result of applying a simple t abu search to the same
pr oblem . This comparison is given only to verify that the GA was finding
near- op timal solut ions . The best value found by randomly genera t ing 1500

. solut ions is reported in the last column below.

Average Average Average
gener at ion best best with Previous

Problem Cro ssover found found hillclimb best Random

lOa Block 264 -164 - 172 - 180·
lOa Uniform 34 - 127 - 135
lOb Block 70 - 125 - 126 - 122 - 46
lOb Uniform 25 - 112 - 115
lOc Block 74 -122 - 123 - 130 - 42
lac Uniform 32 -98 - 109
l ad Block 56 - 120 - 123 - 126 -48
l ad Uniform 31 - 108 -111

• known optimal solut ion

GENSPI produces solut ions that compare favorabl y wit h those found
by the tabu search. The resul ts of these tests are encour aging. Among
vari ous types of crossover op erators designed to exploit the two-d imensional
nature of a solution , we have identified an operator that is qui te successful.
Incorporat ing the block-uniform crossover operator has resul ted in a GA
that produces solut ions superior to a GA that uses a t radit ional crossover
operato r .

5 . Conclusion

In this study we invest igated several crossover operators designed to incor­
porat e two-d imensional inform ation in a solution space, and we compared
the performanc e of the geneti c algorithm using these op erators to traditional
crossover operators. The block-uniform crossover operator has proved to be
superior to all other op erators t est ed in a genet ic algorithm to solve the Ising
pr oblem . This suggest s that , in pr oblems with st rong two-dimension al char­
acte rist ics, performance in a genet ic algorithm can be improved by exploita­
ti on of these charac te rist ics using a variation of block-uniform crossover. In
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a pr oblem without the st rong nearest neighb or pr operties of the Ising model,
partitioning of the domain may be the appropriate const ruct for using block­
uniform crossover. Preliminary work has been done on designing a GA using
this vari ation of block-uniform on a network topology pr oblem . Initial tests
indi cate that , as in the Ising problem , simple crossover operators that use
single blo cks or bands do not give improved result s. Additional resear ch will
establish whether a vari ation of block-uniform crossover is a mor e effect ive
crossover ope rator than those commonly used in other problem dom ains .
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