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Structure and Uncomputability
in One-Dimensional Maps
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Abstract. We study uncomputable behavior for families of diffeomor-
phisms of the circle and unimodal maps of the interval. We find that
the set of parameters that correspond to simple behavior contains a
set that is open and dense. The set that corresponds to uncomputable
behavior has positive measure.

1. Introduction

In this paper we study the computational properties of families of one-
dimensional maps. We find that even simple maps can display an abun-
dance of both uncomputable behavior and computationally simple behavior.
Complex behavior, which is computable but not simple, appears to be rare.

We define computability in terms of the natural symbolic dynamics on the
map. A map displays simple computational behavior if its symbolic dynamics
can be computed on a machine with finite memory. It is uncomputable if
there is no Turing machine that can compute its dynamics.

In terms of formal language theory [11] simple refers to regular languages
that can be computed on a finite automata, and uncomputable refers to lan-
guages that are not recursively enumerable. Complez specifies computable
languages that are not regular.

Specifically, for certain families of homeomorphisms of the circle and uni-
modal maps of the interval we find that the set of parameter values for which
the dynamics is simple (A,) contains a set that is open and dense. The set
of parameters that generate uncomputable dynamics (A,) has positive mea-
sure. The remaining set (A.), which contains those parameter values for
which the dynamics is computable but not simple, has zero measure. We
believe that these results are generic to families of one-dimensional maps.
Analogous structures seem to exist in higher dimensional maps.

*Current address: Department of Industrial Engineering and Operations Research,
University of California, Berkeley, CA 94720, USA
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2. Outline of paper

In this paper we analyze the computational complexity of parameterized
mappings. It turns out that if we choose a mapping at random from these
families then typically one of two things will occur. First, the mapping could
be simple. That is, its symbolic dynamics could be simulated on a computer
with only a finite amount of memory. This does not imply that the map itself
is computable. As is well known, most parameter values are uncomputable,
yet many of these lead to simple symbolic dynamics. Nor does it imply that
the map is periodic. The logistic map f(z) = rz(l — z) at r = 4 is fully
chaotic, yet its symbolic dynamics is very simple in the computational sense.
Second, the mapping could be uncomputable. This implies that no computer
could exactly simulate its symbolic dynamics.

To prove that something is simple we explicitly construct the computer
(finite automaton) that computes it. However, proving that a mapping’s
symbolic dynamics is uncomputable is itself uncomputable in general, thus
no explicit proof of its uncomputability can exist. We prove uncomputability
by using a counting argument. If we have an uncountable set of distinct
symbolic dynamics, then most of these must be uncomputable since there
are only a countable number of computer programs.

The proofs in this paper proceed in the following manner. First, we ex-
plicitly construct finite automata for a dense open subset of parameter space.
Then we show that the remaining set of symbolic dynamics is uncountable,
and thus “most” of these are uncomputable. However, showing that “most”
actually correspond to positive measure is nontrivial. It is possible to con-
struct families of maps that are arbitrarily close to those considered in this
paper, which have zero measure of uncomputability.

3. Definitions

We define the symbolic dynamics of a map in the standard way [4]. Given a
space X and a map T : X — X we define a partition P = {Py, P,..., Po_1}
where P, C X, PLNP; =0, and UP, = X. We then study the sequence of
partition elements visited by an orbit of the map.

In order to study the computational properties of a dynamical system we
must first define words and languages and the operations on these structures.
We can then apply the techniques of formal language theory to analyze these
languages. (These definitions are based on the work of Crutchfield and Young

6, 7]).

Definition. A word is a finite sequence of partition elements: w = w;w,
... Wn, w; € P (1 <1< n). The length of a word is denoted by |w| = n.

Definition. Given a word w = wjws ... w,, the shift operator is defined in
the following way: 0™wW = Wpt1Wmt2 . .. Wy, M < N
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Definition. The language L generated by a map T (with partition) is the
set of allowed words for that map. That is,

L(T) = {w | 3z such that V0 < i < |w|, T*z € w;}

We associate the computational properties of this language with the dy-
namical system (7, X, P). In particular the dynamics of a map is uncom-
putable if the associated language is not recursively enumerable, and the
dynamics is simple if the language is regular.

We now define the families of maps that we will study.

Definition. A parameterized map is set of functions T' = {7} with a smooth
projection 7 : T'— A, where A denotes the parameter space.

We will consider the case when A is an interval on the real line, with the
standard Lebesque measure.

Definition. The hump map is a family of C' unimodal maps from the in-
terval [0, 1] to itself defined by T,z = 2*~1r ((1/2)(”’“) — |z - %|(1+k)), where
0 < kand r € A = [2,4]. The partition for the hump map is {[0,1/2),1/2,
(1/2,1]}, which we will denote by {L, C, R}, respectively.

The hump map reduces to the tent map when k = 0, and to the logistic
map T,z = rz(1 — z) when k = 1. Both of these are well-known examples of
unimodal maps.

Definition. The circle map is a set of diffeomorphisms from the circle
St to itself defined by T,z = z + r + (k/27)sin(27z) (modl) [z € 0,1),
where 0 < k < 1 and 7 € A = [0,1]. The partition for the circle map is
{[0,7(0)],(T(0),1)}, which we label {L, R}, respectively.

Given the above definitions we now formally define our computational
classes.

Definition. Given a parameterized map T with a partition, we define the
set A, to be the set of parameter values for which the dynamics is simple,
and can be computed on a finite automaton.

Definition. Given a parameterized map T with a partition, we define the
set A, to be the set of parameter values for which the dynamics is complez;
that is, the language generated by the symbolic dynamics is computable on
a machine with infinite memory, but is not simple.

Definition. Given a parameterized map T with a partition, we define the set
A, to be the set of parameter values for which the dynamics is uncomputable;
that is, the language generated by the symbolic dynamics is not recursively
enumerable on a Turing machine.



338 Eric J. Friedman

4. Results

In this section we present our main results. We find that for both the logistic
map and the circle map both sets A; and A, have positive measure, and
therefore both simple and uncomputable dynamics occur for a wide range of
parameter values. The simple dynamics typically occur on a set containing
an open and dense subset. Formally we have the following theorems.

Theorem C1. For the circle map with 0 < k < 1:
(a) Both As and A, have positive measure.

(b) The set A contains a set that is open and dense. The set A, has zero
measure, and is relatively dense with respect to A,.

(¢c) Atk =0, the set A, has full measure, and this decreases monotonically
as k s increased, for k small. At k =1 the set A, has full measure.

Theorem H1. Given the hump map, then

a) For k > 0, As has positive measure. For k = 1, Au has positive
p
measure.

(b) Assume that k =1 and A is restricted to [4 — €, 4], € sufficiently small.
Then:

The set Ay contains a set that is open and dense;
The set A. has zero measure. It is relatively dense with respect to A,,.

(¢) Atk =0 the set A, has full measure.

Remark. It is an open question whether there exists a value of k for which
A, confains the full measure.

Remark. If we assume that the set of » which generate periodic kneading
invariants is dense (as conjectured in [14], page 547) we can remove the
restriction on A in Theorem H1b.

Before proceeding we point out that these ideas are far more general than
is shown in the above theorems. The techniques used to prove Theorem H1
for the logistic map apply to any generic parameterized sets of C! unimodal
maps. This is because the kneading calculus applies to any C! unimodal
map, and the proofs should carry through in most cases. Even multi-modal
maps should obey these theorems since the kneading calculus can be gener-
alized to them without much difficulty. Similarly, these ideas should apply to
most parameterized diffeomorphisms of the circle, as long as their parameter-
ization allows a full range of winding numbers to be obtained. For example if
sin(27z) in the circle map is replaced by any g(z) that is nonlinear, periodic,
and smooth, then Theorem C1 should hold.

The surprising generality of these results leads us to conjecture that
the structures we have described occur for generic smooth families of one-
dimensional maps.
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5. Proof for the circle map

In this section we prove Theorem C1. First we need some basic definitions.

Definition. Given the partition {L, R} = {[0,7°(0)),[T(0),1)}, we define
the winding number to be

o(T) = Jim ~N(z,7)

where N(z,n) is the cardinality of the set {i | T%(z) € L, 0 < ¢ < n}. This
limit exists and is independent of = (see [10]).

Remark. Note that we consider an intrinsic definition of the winding number
that does not use a lift of S*.

The winding number completely determines the language for the circle
map. Any two diffeomorphisms with the same irrational winding number
are topologically conjugate [2], and as the language generated by a map is a
topological invariant they must have the same language. In [8] we explicitly
compute the language generated for any irrational winding number. In ap-
pendix A we compute it for rational winding numbers. Thus we can easily
check that the map between winding numbers and languages is one-to-one.

Lemma C1. If two diffeomorphism of the circle have different winding
numbers (bmod 1/2) then the languages they generate are different. (If two
languages have winding numbers that different by ezactly 1/2 then they are
isomorphic by exchanging R and L.)

Proof. See appendix B and [8] for the explicit construction of these lan-
guages. B

The structure of the parameter space has been well studied in other con-
texts. The following results are crucial to our theorem.

Proposition C1. The following has been proved by Arnold [2]:

(a) For 0 < k, k small, there ezists a dense set of positive measure in A,
such that the winding number is rational and the complement of this
set 1s a Cantor set that contains all irrational winding numbers.

(b) The map from irrational winding numbers to parameter values is one
to one.

(¢) The measure of the set of r that lead to rational winding numbers is
zero for k = 0 and increases monotonically for k small.

Proof. See [2]. B

Proposition C2. The following was discovered in numerical experiments by
Jensen et al. in [13] and later proved by Swiatek under very general conditions
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in [15]: For k = 1 the measure of the set of v that lead to rational winding
numbers contains the full measure.

Proof. See [15]. B
The following proposition describes the set A,.

Proposition C3. In the circle map rational winding numbers generate reg-
ular languages.

Proof. The language is constructed in appendix A. B
The proof of Theorem C1 follows quite easily from the above results.

Proof of Theorem C1.

(a) The set A, has positive measure because the union of A, and A, has
positive measure by Proposition C1; but A, has zero measure, as will
be shown in part (b).

(b) By Proposition C1, part (a), we know that the set of rational winding
numbers contains a set that is open and dense. By proposition C3 the
same must be true of A,.

There are only a countable number of languages and thus a countable
number of irrational winding numbers that are computable. Since the
map between irrational winding numbers and parameters is one-to-one
this set must have zero measure. Finally, we note that the computable
irrationals are dense in the set of irrationals, and maps with computable
winding numbers are obviously computable.

(¢) At k = 0 the map from A to languages is one-to-one. As the set of
computable languages is countable, so is its inverse image. As k is
increased the measure of the rational winding numbers increases. At
k = 1 the set of rational winding numbers has full ineasure. Applying
Proposition C3 we get the desired result. B

6. Proof for the hump map

In this section we prove Theorem H1. The proof is similar in structure to
that for the circle map. It depends on properties of the kneading invariant
K. The kneading invariant is the symbolic trajectory of the critical point of
the map, and completely determines the symbolic dynamics of the map. Our
explanation of the kneading invariant will be brief as it is well described in
several references. (See [14] and [5].) We will follow the notation of Collet
and Eckmann [5].

Definition. The kneading invariant is the semi-infinite symbol sequence
generated by the critical point (z = 1/2) of the hump map. (We always
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consider infinite kneading sequences, namely the extended itinerary in Collet
and Eckmann’s terminology.)

Definition. We define an ordering on the set of sequences in the usual
manner. Consider two sequences s and t. Let ¢ be the smallest integer for
which s; # t;, if it exists. If ¢ does exist, define L < C < R. Now consider
the prefix p = $185...8;_1 = tity...t;_1. If p has an even number of Rs and
s; < t;, or p has an odd number of Rs and s; > t;, then we say that s < t;
otherwise s > t. Now if 7 as defined above does not exist, then the shorter
string is defined to be the smaller one. If it does not exist and both strings
are the same length or infinite then they are equal.

Now we show that the kneading invariant defines the language generated
by the hump map.

Proposition H1. Consider the hump map:

(a) The kneading invariant completely determines the language generated
by the map.

(b) There is a one-to-one map from kneading invariants to languages.

Proof.

(a) Collet and Eckman [5] show that the set of allowed sequences in a C*
unimodal map with kneading sequence K is just the set of all sequences
s that satisfy the condition ¢™s < K, Vm > 0. The language is just
the set of all words that occur in these sequences, since the hump map
is C*.

(b) Assume we have two maps with different kneading sequences K; < Ko.
Assume that K; and K, disagree on their (n— 1)th symbol. Now let w
be the first n letters of K5. W is a word in the language generated by
K, since it is part of K,. However, it is not in the language generated by
K since any extension of it to an infinite sequence creates a sequence
that is larger than the kneading invariant. B

We show that A, is related to periodic kneading sequences.

Proposition H2. Periodic kneading invariants give rise to regular lan-
guages.

Proof. We construct the finite automaton that recognizes the language in
appendix B. B

That the aperiodic kneading sequences have positive measure was first
shown by Jacobson [12]. We require a slightly stronger result.

Proposition H3. The following has been proved by Benedicks and Carlson
[8]. For k =1 and A restricted to [4 — €,4], € sufficiently small, the set of
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periodic kneading invariants contains a set that is open and dense, and the
set of aperiodic kneading invariants has positive measure.

The proof for Theorem H1 readily follows from the above results.

Proof of Theorem H1.

(a) For k > 0, periodic kneading sequences correspond to maps with stable
periodic orbits. It is easy to show that superstable periodic orbits
exist for hump maps with £ > 0. Now for small changes in r the
periodic orbit ‘must persist; therefore the periodicity of the kneading
sequences of these maps also persists and, by Proposition C3, A; must
have positive measure. By Proposition H3 and part (b) of this theorem
A, must have positive measure.

(b) The first part follows trivially from Proposition H2 and Proposition
H3.

In [14] it is shown that the map from A to kneading invariants

is monotonic. Since A, is open and dense, this implies that A/A,

is completely disconnected. Thus the map from A/A; to kneading

invariants must be one-to-one. The set of computable languages is

countable, so the set A, must be countable. Therefore it has measure
zero.

(¢) At k = 0 the map from A to kneading invariants (and hence to lan-
guages) is one-to-one. Therefore both A, and A, are countable and
must have zero measure. B

7. Some thoughts on higher dimensional dynamics

In this section we discuss the extension of these ideas to two-dimensional
maps. The extrapolation of our results for one-dimensional systems to higher
dimensions is meant to be suggestive, as perhaps higher dimensional systems
have a generic computational structure.

In R* consider an integrable hamiltonian H. In this case the phase space
is foliated by tori (with occasional degeneracies). If we take a Poincaré
section of the space, at constant energy, we get a map from R? to itself,
which is essentially a collection of independent diffeomorphisms of the circle.
Most of these maps will correspond to uncomputable winding numbers with
uncomputable dynamics. Thus for typical integrable systems the full measure
of the space will contain uncomputable dynamics, with the simple dynamics
occurring on a dense set of zero measure.

Now consider a small hamiltonian perturbation that renders the system
non-integrable. By the KAM theorem [1] we know that each circle with
a rational winding number will break up, usually into stable and unstable
periodic orbits. The stable orbits should be dense in the space, and each one
should have an open neighborhood of stability. These will correspond to an
open dense subset of computable behavior.
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However, a finite measure of the irrational tori will still remain. Most of
these will be uncomputable.! The computable ones should have zero measure.
Thus we have the analog of our results for parameter space in an actual
system.

8. Conclusions

We have shown that for two well-known and well-studied maps the set of
parameter values on which the dynamics is simple is dense and has nonzero
measure. Also, uncomputable dynamics also occurs with positive measure.
The set of simple dynamics grows as the nonlinearity of the map increases.
Thus, nonlinearity actually simplifies the description of the dynamics.

Complex but computable dynamics occurs very rarely in these maps (zero
measure). We call these maps critical and believe that they are very impor-
tant in organizing the structure of parameter space (see [8]).

These ideas seem to extend to higher dimensional systems. It appears that
open dense sets of computable behavior could intermix with uncomputable
behavior in generic chaotic systems, and both types of behavior have positive
measure. This could have strong implications for the study of dynamics.

Finally we emphasize that these results appear to be generic to families of
one-dimensional maps. The structure of the computable and uncomputable
sets does not seem to depend on the detailed structure of the maps.

Appendix A. Construction of finite automata
for rational winding numbers

In this appendix we construct the regular language that is generated by the
circle map with a rational winding number. Our construction applies to all
diffeomorphisms of the circle with a finite number of periodic orbits. The
circle map has a single stable periodic orbit and a single unstable one.

The result would be trivial if the point = 0 was part of a periodic orbit.
Then the symbolic dynamics would just be a repeating sequence of Rs and
Ls. However, this is unusual and typically the language is more complicated.

First we will need some elementary results from the theory of dynamical
languages [9].

Definition. Given a word w = wyws ... w,, a word v is a substring of w if
V= WiWig ... wj for 0 <i<j<n.

Definition. Given a language L, the substring closure of L is the language
SC(L) = {v | 3w € L such that v is a substring of w}.

Proposition Al. Assume that the language L is regular. Then SC(L) is
regular.

!Note that the uncomputable tori do not correspond to the most irrational tori dis-
cussed so much in reviews of KAM theory. For example, the golden mean torus is easily
computable on a Turing machine.
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Proof. See [9]. B

We now define a set of useful intervals that will allow us to deduce the
language.

Definition. Consider a diffeomorphism of the circle with a finite number of
periodic orbits with rational winding number p = p/q, where p,q € Z* and
p/q in lowest terms. Define its fundamental stable (respectively unstable)
orbit to be the set Oy = {z1,Z2,..., 24} (resp. Ou = {y1,¥2,...,Yq}) Where
O, (resp. O,) is the stable (resp. unstable) periodic orbit such there are no
points from O, and O, between z; (resp. y;) and 0.

Definition. The fundamental intervals I, I, . .., I,, are defined in the fol-
lowing way. If z; < 0 then I} = (z1,z,), otherwise I; = (z4,1). Now define
[i+1 = T(Il) for0<i< q.

Remark. Note that T(I;) = I;, and that the union of the fundamental
intervals and the fundamental orbit is S*.

Now we study the dynamics on the interval to get the symbolic dynamics.

Proof of Proposition C3. First notice that, for the intervals I3, ..., I,
each interval is contained in a single element of the partition. Thus define A
to be this sequence of partition elements:

A=PB,P,...F,_,suchthat I; C F;,.

We consider this as a sequence of Rs and Ls.

In the remainder of the proof we will assume that z; > 0 for notational
convenience. The case z; < 0 can be treated similarly; the case z; = 0 is
trivial. Divide the intervals into three sections:

Ila = (‘rq7yl]1 Ilb = (y170]7 Ilc = (Oazl)
I, = (Ij,yz], Iy, = (yz,T(O)], I = (T(O),ml)
where z; the nearest element of the fundamental stable orbit to the left of

yo. These divisions have been chosen such that each one corresponds to a
single element of the partition:

L,€R, I)yeR, I,,€L
IwweeLl, Iyne L, I,,€R

Now we can write down the symbolic sequences that are possible.
Starting from [; we get the following regular expressions for the sequences,
starting from different parts of I:

L, : (RLA)", L, : (RLA)*(LRA)*, L. : (LRA)",
and the regular expressions for the fundamental orbits are:

O, = (RLA)*, O, = (LRA)".
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Figure 1: The minimal DFA that accepts the language generated by
the circle map for p = 1/3.

Clearly the union of these regular expressions is L; = (RLA)*(LRA)*. The
full language is just the set of all substrings in this union, SC(L;). This
language is regular by Proposition Al. B

In figure 1 we show the minimal deterministic finite automaton that ac-
cepts the language for p = 1/3.

Appendix B. Construction of finite automata
for periodic kneading sequences

In this appendix we construct the automata that accepts the language for
any periodic kneading invariant.

Definition. Given a kneading invariant K the language L generated by K is
the set of words w such that, if |w| = n, then c™w < K, Ym < n.

Definition. A finite automaton A = (@, ¢, F, %, 6) is a set @ of states with
an initial state gy € @ and final states F' C @, ¥ is an alphabet, and § is the
transition function from Q x @ — 2%. A word w is in the language generated
by A if there exists a sequence of states ¢;,g;, - . . ¢;, such that w; € 6(g¢;;, ¢jiy,)
for: <n, ¢, = q, and ¢, € F.

We now construct an automaton that accepts the language.

Lemma B1l. Given a periodic kneading invariant with period p, there is a
deterministic finite automaton (DFA) that accepts the language Lo, which is
the set of all words that satisfy 0’Pw < K, j € Z, |lw|=n, 0 < jp < n.

Proof. We construct the DFA explicitly. The DFA has 3p — 1 states, which
we divide into 3 classes: kneading, critical, and small. The basic idea is
that the kneading states track whether or not the word is larger than the
kneading invariant. If a letter is seen that makes the word less than K, we
then switch over to the small states, which allow any letter. If we see a C
we move to the critical states, which check whether the following sequence
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is exactly the kneading sequence. (The sequence following a C' must be the
kneading sequence.) Finally (except in the case a C is seen) the DFA is
strictly periodic of period p, and thus repeats every p symbols. Thus after
every p symbols we start the process again, which is equivalent to checking
all p-shifts of the word.

The set of states is

Q:k17k2a"'7kpvclac27'"7cpas2as3)"'7sp

where k; is the initial state and all states are final. The transitions are defined
so that the kneading and critical states accept the kneading sequence:

6(kivki+1) = {Kl}7z <p
8(ci, cip1) = {Ki},i < p.

Now we have two possibilities depending on whether K, = C. If K, = C
then

8(kp, k1) ={ gé}} %i% } and  8(ky,c1) = {C}

where L < C' if the number of Rs in the first p — 1 symbols of the kneading
sequence is even; otherwise R < C. If K, # C then

6(kpa ki) = {Kp}'
Now we define the transitions for the small states,
6(si, si1) = {R, L} I<i<p,
and from the small states to the other states,
8(sp, k1) = {R, L}, 8(siyc1) =C 1<i<p.

Finally we define the transitions from the kneading states to the other states,

8(kiy si41) = { }% Ifzi?{ }

8(ki,c1) = {C} if C<K.

This is the complete set of states and transitions, which have been con-
structed to accept L,. B

Lemma B2. Given a periodic kneading invariant with period p, there is a
DFA that accepts the language L,,. L., is the set of all words that satisfy
Pty < K, jE€Z, jp+m < |w.

Proof. For m > 1 this DFA is a slight modification of the one in the previous
lemma. All we do is add m new states at the beginning of the DFA, which
discard the first m letters. Formally, we add the following delay states to
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(b)

Figure 2: For the logistic map at » = 3.83..., which corresponds to
the hump map when K = (RLC)*: (a) The DFA for the language
Ly constructed in Lemma B1. (b) The DFA constructed for the full
language L. (¢) The minimal DFA for the full language, which accepts
the same language as (b).

347
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the previous DFA, di,...,d,,, with the modification that d; is now the new
initial state. The new transitions are

8(d;,dig1) ={R,L,C} i<m, and 6(dm, k) ={R, L,C}. g

Proposition B1. The intersection of a finite number of reqular languages
18 regular.

Proof. This is proved in [11]. B

Remark. There is a simple algorithm for constructing a DFA that accepts
the intersection of a finite number of languages generated by known DFAs
[11].

Applying the above proposition to the languages defined in Lemmas Al
and A2 we get the desired result.

Proof of Proposition H2. The language is just the intersection of the
previously defined languages,

p—1
L=1{ L
=0

Because finite intersections of regular languages are regular, the full language
must be regular and hence has a description in terms of a DFA. R

In figure 2 we show the DFAs for L; and L for logistic map at r = 3.83. . .,
which corresponds to the supercritical period-three orbit, K = RLCRLC .. ..
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