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St ruct ure and Uncomputability
III One-Dim ensional Maps

Eric J . Friedman'
Department of Physics, University of California,

Berkeley, CA 94720, USA

Abstract. We study uncomputable behavior for families of diffeomor­
phisms of the circle and unimodal maps of the interval. We find that
the set of parameters that correspond to simple behavior conta ins a
set th at is open and dense. The set that corresponds to uncomputable
behavior has positive measure.

1. Introduction

In this pap er we stud y the computational propert ies of fam ilies of one­
dimensional map s. We find that even simple maps can display an abun­
dan ce of bo th uncomputable behavior and computat ionally simple behavior.
Comp lex behavior , which is computable but not simple, appears to be rare.

We define computability in terms of the natur al symbolic dynam ics on the
map . A map displays simple computational behavior if its symbo lic dynamics
can be computed on a machine with finite memory. It is uncomputable if
there is no Turing machine that can compute its dynam ics.

In terms of formal language theory [11] simple refers to regular lan guages
that can be compute d on a finite automata, and uncomputable refers to lan­
guages that are not recursively enumerable. Comp lex specifies computable
lan guages that are not regular .

Specifically, for certain fami lies of homeomorphisms of the circle and un i­
modal maps of the int erval we find that the set of param eter values for which
the dynamics is simple (l::. s) contains a set that is open and dense. The set
of paramet ers t hat generate uncomputable dynamics (l::..,) has posit ive mea­
sure . The remaining set (l::.c) , which contains those par amet er values for
which the dynamics is computable but not simple, has zero measure. We
believe that these resul ts are generic to famil ies of one-d imensional map s.
Analogous st ructur es seem to exist in higher dimensional map s.

'Current ad dress: Depart ment of Indust rial Engineer ing and Op erat ions Research,
University of Ca liforn ia , Berkeley, CA 94720, USA
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2 . Outline of paper

In this pap er we analyze the computat ional complexity of paramet erized
map pings . It turns out that if we choose a mapping at random from these
fam ilies then typically one of two things will occur. First , the mapping could
be simple. That is, it s symbolic dynamics could be simu lated on a computer
with only a finite amount of memory. This does not imply that t he map its elf
is computab le. As is well known, most parameter values are uncomputab le,
yet many of these lead to simple symbolic dynamics. Nor does it imply that
the map is periodic. The logist ic map f (x) = rX(l - x) at r = 4 is fully
chaot ic, yet its symbolic dynamics is very simple in the computat ional sense.
Second, the mapping could be uncomputable. This implies that no comp uter
could exactly simulate it s symbolic dynami cs.

To pr ove that something is simple we explicit ly construct the computer
(finite automaton ) that computes it. However , proving that a mapping's
symbolic dynam ics is uncomputab le is it self uncomputab le in general, thus
no explicit proof of it s uncomput ability can exist . We prove uncomputability
by using a count ing argument. If we have an uncountab le set of dist inct
symbo lic dynami cs, then most of these must be un computab le since there
are only a countable number of compute r pro grams.

The pr oofs in this paper proceed in the following manner. First , we ex­
plicitly construct finite auto mata for a dense open subset of paramete r space.
Then we show that the remaining set of symbo lic dynamics is un count abl e,
and thus "most" of these are un computable. However , showing that "most"
actually correspo nd to positive measure is nontrivial. It is possible to con­
st ruct fami lies of maps that are arbit rarily close to those considered in this
paper, which have zero measure of uncomputability.

3. Definitions

We define the symbolic dynami cs of a map in the standard way [4J. Given a
spac e X and a map T : X ---> X we define a par tition P = { Po ,PI , .. . , Pn - d
where Pi C X , Pi nP, = 0, and UP. = x . We then st udy the sequence of
partition elements visited by an orbit of t he map .

In order to st udy the computat ional prop er t ies of a dynami cal system we
must first define words and languag es and the operat ions on these st ructures.
We can then apply the techniques of formal lan guage theory to analyze these
languages. (T hese definitions are bas ed on the work of Crutchfield and Young
[6, 7]) .

Definition. A word is a finite sequence of part ition elements: W = W I W2

... W n , ui, E P (1 ~ i ~ n) . The length of a word is denoted by Iwi = n .

D efinition. Given a word W = WIW2 W n , the shift operator is defined in
the following way: (J"m w = Wm+lW m+2 W n , m < n .
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D efinition. The language L generated by a map T (with partition) is th e
set of allowed words for that map. That is,

L(T ) = {w l::Ix such t hat \fO< i ::; Iwl, T ix E Wi}

We associate the computationa l properties of t his language with t he dy­
namical system (T , X , P) . In particular the dynamics of a map is un com­
putable if th e associated language is not recursively enumerable, and the
dynami cs is simple if the language is regular.

We now define the families of maps that we will study.

Definition. A param eterized map is set of functions T = {Tr } with a smooth
projection tt : T ---t 6. , where 6. denot es the param eter space.

We will consider the case when 6. is an interval on the rea l line, with the
standard Lebesque measure.

D efinition. The hump map is a family of C 1 unimodal maps from th e in­
terval [0, 1] to itself defined by T;« = 2k- 1r ((l /2)(1+k ) - Ix - ~1(1+k»), where

°< k and r E 6. = [2, 4J. The partition for the hump map is {[O, 1/2), 1/ 2,
(1/2, I ]}, which we will denote by {L , C, R} , respectively.

T he hump map reduces to the tent map when k = 0, and to the logistic
map T;» = rx( 1 - x ) when k = 1. Both of these are well-known examples of
unimodal maps.

Definition. The circle map is a set of diffeomorphisms from the circle
51 to itself defined by T;« = x + r + (k /27r) sin(27rx) (modI) [x E 0, 1),
where °< k < 1 and r E 6. = [0, 1]. The part it ion for the circle map is
{[O,T (O) ], (T (O), I )} , which we label {L ,R} , respectively.

Given the above definitions we now formally define our computational
classes.

D efinition. Given a parameterized map T with a partit ion , we define the
set 6. s to be the set of parameter values for which the dynamics is simp le,
and can be computed on a finite automaton.

Definition. Given a parameterized map T with a partit ion, we define the
set 6.c to be th e set of paramete r values for which th e dynamics is complex;
that is, th e language generated by the symbolic dynamics is computable on
a machine with infinite memory, but is not simple.

Definition. Given a parameterized map T with a part it ion, we define the set
6.u to be the set of parameter values for which th e dynamics is uncomputable;
t hat is, the language generated by the symbolic dynamics is not recursively
enumerable on a Turing machine .
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4. Results

In this sect ion we pr esent our main results. We find that for both the logisti c
map and the circle map both sets ~s an d ~" have positive measure , and
therefore bo th simple and uncomputable dyn amics occur for a wide ran ge of
parameter values . The simple dyn amics typically occur on a set containing
an open and dense subset . Formally we have the following theorems.

Theorem CI. For the circle map with 0 < k < 1:

(a) Both ~s and ~" have positive measure.

(b) The set ~s contains a set that is open and dense. Th e set ~c has zero
measure , and is relatively dense with respect to ~" .

(c) At k = 0, the set ~" has full measure, and this decreases monotonically
as k is increased, f or k sm all. At k = 1 the set ~" has full measure.

Theorem HI. Given the hump map, then

(a) For k > 0, ~s has positive measure. For k = 1, ~" has positive
m easure.

(b) A ssume that k = 1 and ~ is restricted to [4 - € , 4], € sufficien tly sm all.
Th en:

The set ~s contains a set that is open and dense;

The set ~c has zero measure. It is relativ ely dense with respect to ~" .

(c) A t k = 0 the set ~" has full measure.

Rem ark. It is an open question whether there exists a value of k for which
~s contains the full measure.
Rem ark. If we assume that the set of r which generate periodic kneading
invarian ts is dense (as conjectured in [14], page 547) we can remove the
restriction on ~ in Theorem Hlb.

Before proceeding we po int out that these ideas are far more general than
is shown in the above theorems. The techniques used to pr ove Theorem HI
for the logistic map apply to any generic paramet eri zed sets of C 1 unimod al
map s. This is because t he kneading calculus applies to any C 1 unimodal
map , and the proofs shou ld carry through in mos t cases . Even mul ti-modal
map s should obey these theorems since the kneading calculus can be gener­
alized to them without much difficulty. Simil arly, these ideas should apply to
most par amet eriz ed diffeom orphisms of the circle, as long as their paramet er­
ization allows a full range of winding numbers to be obtained . For example if
sin( 21rx) in the circle map is replaced by any g(x) that is nonlinear , periodic,
and smooth , then Theor em Cl should hold .

The surprising generali ty of these results lead s us to conject ure that
the st ructures we have described occur for generic smooth families of one­
dimensional map s.
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5. Proof for the circle map

In this section we prove Theorem Cl. First we need some basic definitions.

Definition. Given the partition {L, R} = {[O,T(O)), [T(O) , I )} , we define
the winding number to be

. I
p(T) = lim -N(x ,n)

n -.CX) n

where N(x ,n) is the card inality of the set {i IT i(x ) E L , O :S:: i:S:: n }. This
limit exists and is independ ent of x (see [10]).
Rem ark. Note that we consider an int rinsic definition of the winding number
that does not use a lift of S1.

The winding number complete ly determines the language for the circle
map. Any two diffeomorphisms with the same irr ational winding number
are topologically conjugate [2], and as the language genera ted by a map is a
topological invari ant they must have the same lan guage. In [8] we explicit ly
compute the language generated for any irrational wind ing number. In ap­
pendix A we compute it for rational winding numbers. Thus we can easily
check that the map between winding numbers and languages is one-to-one.

Lemma Cl. If two diffeomorphism of the circle have different winding
numbers (bm od 1/ 2) then the languages they generate are different. (If two
languages have win ding num bers that differen t by exactly 1/ 2 then they are
isomorphic by exchanging R and L .)

Proof. See appendix B and [8] for the explicit const ruct ion of these lan­
guages . •

The structure of the par amet er space has been well studied in other con­
texts. The following resul ts are crucial to our theorem.

Proposition Cl. Th e fo llowing has been proved by Arnold [2}:

(a) For 0 < k , k small, there exists a dense set of positive measure in 6.,
such that the winding number is rational and the complement of this
set is a Cantor set that cont ain s all irrational win ding numb ers.

(b) Th e m ap from irrational win ding numbers to param eter values is one
to one.

(c) Th e measure of the set of r that lead to rational winding numbers is
zero for k = 0 and increases monotonically for k small.

Proof. See [2].•

Proposition C2. The following was discovered in numerical experiments by
Jensen et al. in [13] and later proved by Swiatek un der very general condit ions
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in [15]: For k = 1 the measure of the set of r that lead to rational win ding
numbers contains the fu ll m easure.

Proof. See [15].•

T he following proposit ion describes the set !:::J. s .

Proposition C3. In the circle map rational win ding numbers genera te reg­
ular languages.

Proof. The lan guage is const ructe d in appendix A.•

T he proof of T heorem Cl follows quite easily from t he above results.

Proof of Theorem Cl.

(a) T he set !:::J.u has posit ive measure because the union of !:::J.u and !:::J.c has
pos it ive measure by Proposition Cl ; but !:::J.c has zero measur e, as will
be shown in par t (b) .

(b) By Proposition Cl, part (a), we know that the set of rational wind ing
numbers contains a set that is open and dense. By proposition C3 the
same must be t rue of !:::J. s .

T here are only a countable number of languages an d thus a countable
num ber of irr ational winding numb ers tha t are computable. Since the
map between irr at ional wind ing numbers and parameters is one-to-one
t his set must have zero measur e. F inally, we not e that the computable
irr ationals are dense in the set of irr ationals, and maps with computable
windi ng numbers are obviously computable.

(c) At k = 0 the map from !:::J. to lan guages is one-to-one. As the set of
computable languages is countable, so is its inverse image. As k is
increased the measure of the rational winding numbers increases. At
k = 1 the set of rational winding numbers has full fneasure. Applying
Proposition C3 we get the desired resul t . •

6. Proof for the hump map

In this sect ion we prove Theorem HI. The proof is similar in st ructure to
that for the circle map. It depends on prop ert ies of the kneading invariant
K . The kneading invari ant is the symbolic t rajectory of the crit ical point of
the map , and complete ly dete rmines the symbolic dyn amics of the map . Our
explanat ion of the kneading invariant will be br ief as it is well described in
several references. (See [14] and [5].) We will follow the notation of Collet
and Eckmann [5].

Definition. The kneading invariant is the semi-infinite symbol sequence
generated by the criti cal po int (x = 1/ 2) of the hump map. (We always
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conside r infinit e kneading sequences, namely the extended itinerar y in Collet
and Eckmann's t erminology.)

Definition. We define an orderin g on t he set of sequences in the usual
manner. Consider two sequences s and t . Let i be the smallest int eger for
which s, i= ti , if it exists . If i does exist , define L < C < R . Now conside r
t he prefix p = S1 S 2 . . . Si - l = t 1t2 .. . t i - 1 . If p has an even number of R s and
s, < ti, or p has an odd number of R s and s, > t. , then we say that s < t ;
otherwi se s > t . Now if i as defined above do es not exis t , then the shorter
string is defined to be the smaller one. If it does not exist and both strings
are the same length or infinite t hen they are equal.

Now we show that the kn eading invar iant defines the langu age generated
by the hump map.

Proposition HI. Consider the hump m ap:

(a) Th e kn eading invariant complete ly determ in es the languag e generated
by the map .

(b) Th ere is a on e-to- one map from kneading invariant s to languages.

Proof.

(a) Collet and Eckman [5] show that the set of allowed sequences in a C1

unimodal map with kn eading sequence K is just the set of all sequences
s that satisfy the condit ion a":» < K , Vm > O. The language is just
the set of all words that occur in t hese sequences , since the hump map
is C 1

.

(b) Assume we have two map s with different kn eading sequences K 1 < K 2 .

Assume that K 1 and K 2 disagree on t heir (n - l )t h symbo l. Now let w
be the first n let ters of K 2 . W is a word in t he language generate d by
K 2 since it is part of K 2 . However , it is not in t he language generated by
K 1 since any extension of it to an infinite sequ ence creates a sequence
that is lar ger than the knead ing invariant . •

We show that f}.s is re late d to peri odic kneading sequences .

Proposition H2. P eriodic kn eading inv ariants give rise to regular lan­
guages.

Proof. We construct t he finit e auto maton that recognizes the language in
appe ndix B.•

That the ape riodic kneading sequences have positive measure was first
shown by J acobso n [12] . We require a slight ly stronge r resul t .

Proposition H3. The followin g has been proved by Benedicks and Carlson
[3]. For k = 1 and f}. restric ted to [4 - E, 4], E sufficiently sm all, the set of
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periodic kneading invariants contains a set that is open and dense, and the
set of aperiodic kne ading invariants has positive m easure.

The proof for Theorem HI readily follows from the above results.

Proof of Theorem HI.

(a) For k > 0, periodic kneading sequences corr espond to maps wit h stable
periodic orbits . It is easy to show that superstable periodic orbits
exist for hump maps with k > 0. Now for small changes in r the
periodic orbit 'mus t persist ; therefore the periodicity of the kneading
sequences of these maps also persists and , by Proposition C3, .6.5 mus t
have positive measure. By Proposition H3 and part (b) of this theorem
.6.u must have positive measure.

(b) The first part follows trivially from Proposition H2 and Proposition
H3.

In [14] it is shown that the map from .6. to kneading invari ants
is monot onic. Since A, is op en and dens e, this implie s that .6./.6.5

is comp lete ly disconnected. Thus the map from .6./.6. 5 to kneading
invari ants must be one-t o-one. The set of computable languages is
countable, so the set .6.c must be countable. Therefore it has measure
zero .

(c) At k = 0 the map from .6. to kneading invariants (and hence to lan­
guages) is one-t o-one. Therefore both .6.5 and .6.c are countable and
must have zero measure. •

7. Some thoughts on higher dimensional dynamics

In thi s section we discuss the extension of these ideas to two-dimensional
map s. The ext rapo lat ion of our results for one-dimension al syst ems to higher
dimensions is meant to be suggestive, as perhaps higher dimensional systems
have a generic computational structure.

In R4 consider an int egrabl e hamiltonian H. In this case the phase space
is foliated by tori (with occasional degeneracies). If we take a Poincare
sect ion of the space, at const ant energy, we get a map from R2 to itself,
which is essent ially a collection of independent diffeomorphisms of the circle.
Most of these maps will corres pond to uncomputabl e winding numbers with
un computable dynamics . Thus for typical integrabl e systems the full measure
of the space will contain uncomputable dynamics, with the simple dynamics
occurring on a dense set of zero measure.

Now consider a small hamiltonian perturbatio n that renders the system
non-integrable. By the KAM theorem [1] we know that each circle with
a rational winding number will br eak up , usually into st able and unstabl e
periodic orbits. The stable orbits should be dense in the space, and each one
should have an op en neighborhood of stability. These will correspond to an
op en dense subset of comput able behavior.
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However , a finit e measure of the irr ational tori will st ill remain . Most of
these will be uncomputable.' The computable ones should have zero measure.
Thus we have the analog of our results for param eter space in an actual
sys tem .

8 . Conclusions

We have shown that for two well-known and well-studied maps the set of
par ameter valu es on which the dynamics is simple is dense and has nonzero
measure. Also, uncomputable dynamics also occur s wit h positive meas ure.
The set of simple dynamics grows as the nonlineari ty of the map increases.
Thus, nonlinearity actually simplifies the descript ion of the dynamics.

Complex but computable dynamics occurs very rarely in these map s (zero
measure). We call these maps crit ical and believe that they are very impor­
tant in organizing the structure of par amet er space (see [8]).

These ideas seem to extend to higher dimensional systems . It appears that
open dense sets of computab le behavior could intermi x wit h uncomputab le
behavior in generic chaot ic systems , and both typ es of behavior have positive
measure. This could have st rong implicat ions for the study of dynami cs.

Finally we emphasize that these resul ts appear to be generic to fam ilies of
one-dimensional maps . The st ruct ure of the computable and uncomputable
sets does not seem to dep end on the detailed st ru cture of the map s.

Appendix A. Construction of finite automa t a
for r a t ional wind in g numbers

In this appendix we const ruct the regular language that is generated by the
circle map with a rational winding number. Our construct ion applies to all
diffeomorphisms of the circle with a finite nu mber of periodic orb its . The
circle map has a single stable periodic orbit and a single unst able one .

The result would be trivial if the point x = awas part of a periodic orbit .
T hen the symbo lic dynami cs would just be a repeating sequence of Rs and
Ls. However , this is unusual and typically the language is mor e complicated.

Fi rst we will need some elementary resul ts from the theory of dynam ical
languages [9].

Definition. Given a word W = Wl W Z .. . W n , a word v is a substring of W if
v = W iWi+l . .. W j for a < i < j ::; n .

Definition. Given a language L , t he substring closure of L is the language
S C (L ) = {v I 3w E L such that v is a subst ring of w }.

Proposi tion AI. Assume that the language L is regular. Then SC(L) is

regular.

1Note that the uncomputable tori do not corres pond to the most irrational tori dis­
cussed so much in reviews of KAM theory. For example, the golden mean torus is easily
comput able on a Tur ing machine.
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Proof. See [9J. •
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We now define a set of useful intervals that will allow us to deduce the
language.

Definition. Consider a diffeomorphism of the circle with a finite number of
periodic orbits with rational winding number p = vl« where P, q E Z+ and
pi q in lowest terms. Define its fundam ental sta ble (respectively unstab le)
orbit to be the set O, = { Xl, X2, " " xq} (resp. 0 11. = {Yl ' Y2, . . . ,Yq }) where
O, (resp . 0 11.) is the stable (resp. unstable) periodic orbit such there are no
points from Os and 011. between X l (resp . Yl) and O.

Definition. The fundam enta l intervals 11 ,12 , . . . , Iq , are defined in the fol­
lowing way. If X l < 0 then II = (Xl , X2)' otherwise I I = (Xq, Xl)' Now define
I H I = T(Ii) for 0 < i < q.
Remark. Note that T(Iq) = II , and that the union of t he fundament al
intervals and the fund amental orb it is 51.

Now we st udy the dynami cs on the int erval to get the symbolic dynami cs.

Proof of Proposition C3. First not ice t hat , for the intervals 13 " , . , Iq ,

each interval is contained in a single element of the par ti tion. Thus define A
to be this sequence of parti tion elements:

A = Pi, Pi2 .. . Piq- 2 such that I , C Pi; '

We consider this as a sequence of R s and Ls.
In the remainder of th e proof we will assume that Xl > 0 for notational

convenience. The case X l < 0 can be treated similarly; the case X l = 0 is
trivial. Divide the inte rvals int o three sect ions :

I la = (xq,Yd , l Ib = (Yl ' 0], l Ie = (0, Xl)

12a = (Xj, Y2] , 12b = (Y2' T (O )], 12e = (T(O) , X l )

where Xj the nearest element of the fundamental stable orbit to the left of
Y2. These divisions have been chosen such tha t each one corresponds to a
single element of the partit ion :

t. ; E R , l Ib E R , i; E L
12a E L , 12b E L , 12e E R

Now we can writ e down t he symbolic sequences that are possible.
Starting from II we get the following regular expressions for the sequences,

starting from different par ts of I I:

i.: (RLA)* , l Ib : (RLA)*(LRA)* , t. : (LRA)* ,

and the regular expressions for the fundamental orbits are:

O, = (RLA)* , 011. = (LRA)*.
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L R
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Figure 1: The minimal DFA that accepts the language generat ed by
the circle map for p = 1/ 3.

Clearly the unio n of these regular expressions is L 1 = (RLA) *(LRA)* . The
full language is just the set of all substrings in this un ion , SC(L1 ) . T his
lan guage is regular by Proposition AI. •

In figure 1 we show the minimal deterministi c finite automaton that ac­
cepts the lan guage for p = 1/ 3.

Appendix B. Construction of finit e automa t a
for periodic kneading sequences

In this appendix we construct the automata that accepts t he lan guage for
any periodic kneading invarian t.

Definition. Given a kneading invari an t K t he languag e L generated by K is
the set of words w such that , if Iwl = n , t hen (J m w < K , 'Vm ::::: n,

Definition. A finite au to maton A = (Q,qo, F , I: , 5) is a set Q of states wit h
an initi al state qo E Q and final st ates F c Q, I: is an alphabet , and 5 is the
t ransit ion function from Q x Q ----> 2E . A word w is in the language generated
by A if there exists a sequence of states qi,qi2 • •• qin such that ui; E 5(% ,%+1)
for i ::::: n, qio = qo , and qin E F.

We now construct an automaton that accepts the language.

Lemma Bl. Given a periodic kneading invariant with period p, there is a
deterministic finite automaton (DFA) that accepts the languag e La, which is
the set of all words that satisfy (J i Pw < K , j E Z , Iwl = n , 0 ::::: jp < n .

Proof. We cons tr uct the DFA exp licit ly. T he DFA has 3p - 1 st ates, which
we divid e into 3 classes: kneading, crit ical, and small. T he basic idea is
that the kneading states t rack whet her or not the word is larger t han the
kneading invari an t . If a let t er is seen t hat makes t he word less than K , we
then switch over to the small states , which allow any let ter. If we see a C
we move to the critical states, which check whether the following sequence
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is exact ly the kneading sequence . (T he sequence following a C must be the
kneading sequence .) Finally (except in the case a C is seen) the DFA is
st rict ly periodic of period p , and thus repeats every p symbols. Thus after
every p symbols we start the pro cess again, which is equivalent to checking
all p-shifts of the word.

The set of states is

where kl is the initial state and all st ates are final. The tran sit ions are defined
so that the kneading and critical states accept the kneading sequence :

8(ki , ki+l) = {Ki}, i < p ,

8(c;,c;+!) = {Ki}, i -:;" p .

Now we have two possibilities depending on whether K p = C . If K p = C
then

{
{L} , L < C }

8(kp , kl) = {R}, R < C

where L < C if the number of Rs in the first p - 1 symbols of the kneading
sequence is even; otherwise R < C . If x, =1= C t hen

Now we define the t ransit ions for the small states,

1 < i < p ,

and from the small states to the other states,

1 < i < p .

Finally we define the t rans it ions from the kneading states to the other states,

8(k ) {{L }, L < «, }
i, S i+1 = {R} ,R <Ki

8(ki , CI) = {C } if C < tc;

This is the complete set of states and transit ions, which have been con­
st ru cted to accept L 1 . •

Lemma H2. Given a per-iodic kn eading in var-iant with per-iod p, th er-e is a
DFA tha t accepts th e language Lm . L m is th e set of all wor-ds that satisf y
(J" j p+ m w < K , j E Z , jp +m < Iwl .

Proof. For m > 1 this DFA is a slight modification of the one in the pr evious
lemma . All we do is add m new states at the beginning of the DFA, which
discard the first m let ters. Formally, we add the following delay st ates to
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(a)
(c)

(b)

Figure 2: For the logistic map at r = 3.83 ... , which corresponds to
the hump map when K = (RLC)*: (a) The DFA for the lan guage
La cons t ructed in Lemma Bl. (b) T he DFA constructe d for t he full
language L . (c) The minimal DFA for the full language, which accepts
the same language as (b).
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the pr evious DFA , d1 , ... ,dm , with t he modification that d1 is now the new
initial state. The new tran sitions are

Proposition Bl. Th e in tersecti on of a finit e number of regular languages
is regular.

Proof. This is proved in [11].•

Rema rk. There is a simple algorithm for constructing a DFA that accepts
the int ersection of a finit e number of languages generated by known DFAs
[11].

Applying the above proposition to the languages defined in Lemmas Al
and A2 we get the desired resul t.

Proof of Proposition H2. The lan guage is just the intersecti on of the
pr eviously defined languages,

p- 1

L=nL;.
i=O

Becau se finit e int ersections of regul ar lan guages are regular , the full lan guage
must be regul ar and hence has a description in te rms of a DFA . •

In figure 2 we show the DFAs for L 1 and L for logistic map at r = 3.83 ,
which corres p onds to the supercrit ical period-three orbit, K = RLCRLC .
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