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Abstract. A method for red ucing t he number of uni ts in t he hidden
layers of a feed-for war d neur al network is pr esented . Starting wit h a
net that is oversize, t he redundan t unit s in t he hidden layer are elimi­
na ted by introducing an addit ional cost fun ct ion on a set of auxiliary
linear response uni ts . T he extra cost funct ion enables t he auxiliary
units to fuse together the redundant uni t s on the original network,
and t he aux iliary units serve only as an interm edi at e const ruct t hat
vanishes when t he met hod converges. Nume rical tests on t he P arity
and Symmetry problems illustrate t he usefu lness of t his method in
pr actice.

1. Introduction

One of the cent ral unr esolved quest ions in the st udy of neural networks con­
cerns the architecture and size of the network that is most appropriate to a
part icular problem . Learni ng procedures such as back-propagation [1] pro ­
vide a mean s of associating pairs of input and output pat tern s in a feed­
forward layered neur al network, provided that there are enough hidden uni ts.
T hese learni ng algorit hms are typically implemented on a chosen fixed archi­
tect ure where t he number of hidden units must be given and does not change
during the learn ing procedur e.

Deciding upon the number of hid den un it s in a network is somewhat of
an art an d matter of expe rience. It is clear that if the number of free param­
eters in a net is too large then the net will be able to fit the training data
arbit rarily closely and essent ially memorize the t rai ning patterns. However
such networks are typ ically not ab le to generalize to new inputs. The folklore
is that the number of weights in a network should be less than one-tent h the
number of tr aining pat terns. T he capacity of a network to generalize from the
learned data to new inputs has been shown [2- 4] to be most pro nounced for
a network containing a minimal number of unit s and connections. Moreover ,
the amount of computation both for forward computation and for learning
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grows with increasing size of the network, and it is therefore more efficient
to keep the size of the network as small as possible.

Several researchers have proposed schemes to achieve near-minimal net­
works based upon eit her redu cing oversize networks during t raining or explic­
itly building up networks until learning is achieved. T he method presented
here is such a network reducti on (or pruning) algorit hm bu t , in contrast to
weight reduction algorithms (where the number of non-zero weights in the
network is reduced), th is method is based upon the eliminat ion of redundant
hidden uni ts .

A numb er of weight redu ction solut ions have been proposed by add ing
terms to the st andard sum squared erro r cost function:

(1.1)

where the sum is over the n output uni ts and p inpu t / output t raining pat­
terns, whose target output and network output on the output uni t n are tpn

and 0pn , respectively. In the weight decay method [5, 6J an oversized net is
taken and a minimization of the cost function is carr ied out in the usual way,
but with an addit ional term that is equivalent to adding a quadratic cost
term for every weight in the network. The weights that do not cont ribute
to learn ing will then have an exponent ial t ime decay. In the weight elimina­
tion method [7] an additional term, which can be thought of as a complexity
term, likewise encourages the reduct ion and eventual elimination of many of
the connect ions. Another method [8J for eliminat ing superfluous weights is
to est imate t he sensit ivity of the global cost function to each of the weights.
This can be done by keeping t rack of the incremental changes to the weight s
during learn ing and by discarding connect ions with weights th at have a low
sensit ivity. This method has the advantage that no modificat ion of the cost
function is requir ed , and there is therefore no interference with the learning
process while the sensit ivit ies are being measured .

Alternative met hods have been proposed [9- 11] that focus on the int er­
nal represent ations (i.e., the states of the hidden units) rather than a cost
function in weight space. In these methods the numb er of hidden units is not
fixed in advance, but ra ther is determined by the algorithm itself. The se­
quential learn ing algorithm [9J uses the internal represent ation together wit h
the perceptron algorit hm to construct a network that is near- minimal and has
acceptable learning t imes. The tiling algorithm [lOJ and related algorit hms
[11J proceed by including layers and uni ts within layers until convergence is
achieved. A further line of appro ach to this problem is by the applicat ion of
genetic algorithm s [12-15], in which the structure of th e network is encoded
in bit-strings (chromosomes) that can evolve to pro du ce bet ter network ar­
chitectures.

The meth od presented here focuses on the uni ts of the hidden layer (s)
and essent ially fuses together units that are redundant . Not only is this of
pr actical use in redu cing the size of a network, bu t by minimizing t he number
of hidden nodes we can hope to gain more insight int o the behavior of the
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network, not only in terms of its possible description by a simple set of ru les
but also by considering the function of each of th e hidden units. The general
method is discussed in th e next sect ion, together with several variat ions.
The third sect ion contains results of the meth od as applied to the Parity and
Symmetry problems with a single out pu t unit and one hidden layer.

2. The unit elimination method

Consider an oversize feed-forward network with a single layer of NH hidden
uni ts (H) . A layer (3 ) of Ns auxiliary units is introduced between the original
hidden layer and the output unit s (for simplicity it will be assumed here that
Ns = NH). There is a full set of connect ions now between th is hid den
auxiliary layer 3 and both th e output units 0 and the origina l hidden layer
H, whose weights are labeled by W Oi Sj and W Sj h k , respectively. There are no
longer any direct connect ions between the hidd en layer H and the outp ut
unit s O .

The weight s of the connect ions between the auxiliary layer 3 and the
original hidden layer H , which here are called auxiliary weights, are restricted
to be excitatory and such tha t the sum of weights on each auxiliary node is
uni ty:

NH

2:= W Sjhk = 1, for each Sj E 3
hk= l

(2.1)

The auxiliary units have a linear response-their activity is simply th e sum
of th eir inputs:

NH

a Sj = 2:= WSjhk a h k

hk = l

(2.2)

where ahk is the act ivity of the hidden uni t hk and there is no bias on the
auxiliary uni ts. The units in the hidden layer H an d the output units have
th e usual sigmoid-funct ion response.

We proceed now by carry ing out training of th e extended net using back­
propagation [1] in the usual way by successively presenting the patterns to
be learned. In th is stage of th e algorithm all the weight s are iterat ed by
carrying out a minimization of the standard err or function (equation (1.1)) .
The const ra int on the auxiliary weight s of equation (2.1) is imp osed at each
iteration of th e learning procedure by normalizing the iterated weights wSj hk

explicit ly:

(2.3)

When the network has found a first solut ion (i.e., the network output agrees
with the target output-within the learning tolera nce-for each training pat -
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(2.4)

tern ) th en the auxiliary weights W Sj hk between the auxiliary layer S and the
hidd en layer H experience a cost term of the following form:

1 Ns

D(w) = 2f3NsS~l (1 - d(w(sj) ))

where the vector w(Sj ) represents the weights { Ws jh.} (hk = 1, . . . , N H ) , the
coefficient f3 is a constant that can be adjusted , and the function d(w(Sj )) is
chosen as

(2.5)

back-prop
otherwise

This cost term has a two-fold effect . First , it causes each auxiliary unit to
choose exactly one uni t in the hidden layer H ; th at is, the weights W Sjhk for
unit Sj will have the value 1 for one hidden unit h.; and will vani sh for all other
hk . This comes about by the term Sj = S l in the sum (2.5) above, which acts
as a weight enhancement term that ensures th at th e weight s iterate toward
a solution in which each unit Sj chooses only one nod e h; in the hidden
layer H. Second , th is cost term will cause th e auxiliary units to att ract; the
auxiliary units will tend to choose th e sam e hidden uni ts if this is compatible
with learning. The cost funct ion chosen above is a unit-at tr acting potential
that has th e effect of maximizing those weight vecto rs w(Sj ) that have large
overlaps (i.e., point to the same uni ts in the hidden layer H ). T he coefficient
f3 can be adjusted to ensure optimal convergence of the procedure.

To ensure t hat t he weight s W Sj hk remain excitatory (W Sj hk ::::: 0) it is useful
to introduce the variab les P s j hk = (Wsjhk )1/2 T he learn ing procedure can be
carr ied out with the weights { P s j h k } in the usual way:

D. P s j hk ( t + 1) =
( ) ( ){

sS . ahk
exD. Ps j h k t + 2EPs jhk t a "'N~ ( _ ( .) . _ ( ) )

fJ L.. s, =l WS,hk W sJ W S l

(2.6)

with W Sjhk = P;jhk , and where E is the learning rat e and ex the momentum.
In the implementation of this met hod it is also possible to include the uni t­
att ract ing term throughout the learning process , and results where t his has
been done will also be discussed in the next sect ion.

A typical training of a network pro ceeds as follows. First the complete
network is trained using standard back-propagation until the network finds
a solut ion. The auxiliary units are th en iterated further with the unit­
att rac t ing term and the p-par ameterization of equat ion (2.6) unti l th ey either
all choose a unit in th e hidden layer or back-propagation is resumed in order
to relearn some of the t raining pat terns. The auxiliary weights are considered
to have chosen a unit h; in the hidd en layer when th e value of the associated
weight WSj h r exceeds a value Wfix (typically chosen between 0.7 and 0.95), at
which point its value is fixed at unity (and all other components are fixed at
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zero). Training cont inues until the network both learns all t he patterns and
has each auxiliary unit choose one unit on the hidden layer H. In the course
of training a typi cal network the auxiliary weights switch a couple of t imes
between, the back-propagation and the uni t- attracti ng terms of equatio n (2.6)
before a reduced network solut ion is reac hed .

When t he weight s WSjhk have all converged to valu es of 0 or 1, then it is
straightforward to see that those units that are chosen by the auxiliary units
consti t ute the new reduced layer of hidden uni ts. T hose un it s in the hidden
layer with no non- zero weight connecting them to auxiliary units in Scan
be eliminat ed . T he auxiliary units that choose the same unit in t he hidden
layer H , by virtue of their lin ear response, can simp ly be added together to
give the new weights between the reduced hidd en layer and the output uni ts.
This can be seen by considering the net input to the out put no des On :

Ns N s

net o n == 2:: WOnSj aSj == 2:: W On Sj

5j =1 8j =1
(
~ WS jhkahk ) = ~ (2:: won sT ) aT;

hk=l Ti= l Sr

(2.7)

where the sum over {ri} is t he sum over the reduced hidden layer-those
nodes on the hidden layer that have a non-zero weight to the auxiliary layer­
and the sum {ST} is over those units on the auxiliary layer that choose the
hidden uni t r . The resul ting weight between a redu ced unit and the output
is therefore simply the sum of the weights over connected auxiliary units to
the output, as seen in the br acket on the extreme right of equat ion (2.7) .

There are a number of ways to see how and why this algorithm works.
One way is to view the hidden uni ts as hyperplan es that divide the pat terns
int o two sectors (a picture that is, of course , strict ly t ru e only for t hreshold
net s). The auxiliary uni ts then act to eliminate hyperplan es that divid e
the input patterns in the sa me, or very nearly t he same , manner. Suppose,
for example, that two hidden units h1 and h2 have developed very nearly the
same weights under back-propagation , so the weight vecto r components W S,h ,

and W S, h2 will be almost identical. Assuming that eit her h1 or h2 is required
for learning, the cost term d(W(SI)) in (2.5) on the auxiliary uni t si will then
cause only one of t he two uni ts to be choose n . T he other uni t will effect ively
be "turn ed off" as it s weights are forced to zero by imposing the normalization
conditio n (2.1) at each learning step . Ano ther equivalent way of viewing
the "t urn ing off" of hidden units is as a vari an t of compet it ive learning,
where the auxiliary units behave as regulari ty det ectors. The condit ion (2.1)
ensures that t he reinforcem ent of a connection between an aux iliary uni t
and a par ticular hidden uni t will effect ively in hibit the connect ion to other
hidden unit s. As learning further procee ds, such redund an t hidden units are
gradually decoupled from the output unit. In the implementation here, such
units are explicit ly turned off by setting their weights to zero when one uni t

has accumulated a weight of Wfix, as discussed above.
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3 . Imp lementat ion on Parity and Symmetry p roblem s

To test this method it was imp lemented on the Parity and Symmetry prob­
lems, in which there is a single output unit and where only one hidden layer is
necessar y to obtain solutions. The minimal number of hidden units necessary
to give solutions for both these probl ems are known. The Par ity function as
implemented here gives an out put +1 when the number of input uni ts N1

with +1 is odd an d an output 0 ot herwise. The minimal number of hidden
uni ts NH requ ired for the Parity pr oblem is NH = N1 [1] . In the symme­
tr y pr oblem the output is +1 if the pattern on the input uni ts is symmet ric
abo ut the cente r , otherwise the output is o. The symmetry problem requires
a minimum of two hidden nod es for its solut ion [1].

The tr aining pat terns were cycled through in order , and the weights were
adjusted after each pattern. The back-propagation [1] algorithm was used
with learning rate (E) and momentum (a) parameters as defined in equa­
tion (2.6). The patterns were considered learn ed when the output was within
a learning to lerance of 0.1 of the correct answe r. To ensure that the network
did not overlearn , bac k-propagat ion was not carr ied out on inp uts whose out ­
put was within the learni ng to leran ce [16] . T he initial weights were chosen
randomly on a scale r = 2.5 except for the auxiliary weights , which were all
set to the value WSj h k = 1/NH .

A cutoff time was also introduced for the learn ing procedure, whereby if
t he t raining had not been completed within thi s number of it erat ions then the
network was considered stuck in a local minimum. To give an indi cation of
the performan ce of the method , both the success rate and the average training
time are given . The success rate is simply the percentage of training runs
that converge d to a resul t before the cutoff time, and the average tr aining
t ime T is given by [17]

(

n )-1
T = ~ Lit;

n ;=1
(3.1)

where the sum is over the training runs, and it; is the inverse tr aining time
for successful runs and zero ot herwise. Training t imes and success rates for
the first solution wit h back-propagat ion (i.e ., before the uni t-attracting term
was turn ed on) are given , as well as the training times and success rates for
the complete node elimination algorithm (i.e., to find a redu ced network) .

Parity

The N1 = 2 Par ity problem (XOR) was invest igated starting with var ious
numbers of nodes in the hidden layer: NH = 5,8, 12. The result s are summa­
rized in tab le 1, where NR is the number of hidden nodes in the redu ced net
and the results represent an average over 1000 random starting network con­
figurations. The percentages for the success rates of back-propagation and
the nod e eliminat ion algorit hm are taken with respect to the total number
of initial network configurat ions. The percent ages for the various values of
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back-propagation nodes NR (as %)
NH (3 Tbp success (%) Tnodes success (%) 2 3 4

5 0.01 35 100 50 97 34 63 3

0.001 27 100 48 100 11 71 18
0.002 OJ . " 47 99 13 71 16

8 0.005 " " 46 98 14 73 13
0.01 " " 46 96 17 72 11
0.05 " " 48 90 24 68 8
0.1 " " 50 85 28 65 7

12 0.01 25 99 52 88 13 75 12

Table 1: Resu lt s for the NI = 2 Parity problem (XO R ) wit h E = 1.0,
a = 0.94, and Wfix = 0.7. T he network starts with N H uni t s in t he
hidden layer , and the method reduces the net to N R hidden uni ts.

N R are taken wit h respect to the numb er of init ial network configurations
upon which the algorithm was successful. T he learning rat e was chosen to be
E = 1.0, the momentum cy = 0.94, and the aux ilia ry weights were considered
to have chosen a uni t in the hidden layer when t he corresponding weight
exceeded Wfix = 0.7. A cutoff of 1000 present ations of the learning pat terns
was used throughout . The results show a dr am atic reducti on in t he size of
the network-the number of hidd en nodes is reduced in almost all cases to
between 2 and 4. It is inte resting to note that the "grandmot her cell" solu­
tion (NR = 4) is only chosen in a small number of cases, alt hough the initial
oversi ze networks could eas ily allow it. T he effect of varying the st rength of
the unit-attracting te rm (3 can also be seen . Increasing (3 t ends to reduce the
network size somewhat , but the success rate is also decreased.

Runs with higher values of Wfix (e.g., 0.95) give longer t raining times
but also tend toward smaller resul t ant networks, whereas redu cing Wfix de­
creases the training t ime but te nds to give slight ly larger resul tant networks.
Several trials were also mad e in which the aux iliary weights experience the
unit-attracting term throughout the learning process. T his generally gives
substant ially smaller resultan t networks on average, but requires longer over­
all training times and has lower success rates.

In the case of the N1 = 4 Parity problem , 1000 ini ti al network configu­
rations were averaged over and a cutoff of 1000 presentat ions for the learn­
ing patterns was used . The network paramet ers took the values E = 0.25 ,
cy = 0.96 , and Wfix = 0.7. The results, shown in table 2, show a large redu c­
tion in the size of the network with the same qualitat ive behavior as that
observed for the XOR network. The network tends to find the minimal so­
lution (NR = 4) mor e often for larger values of (3 and Wfix , but the overall
success rate decreases when these values increase. The observation that the
network does not necessarily seek solut ions wit h a minimal number of hid ­
den units probably indicat es that solut ions with more hid den uni ts are more
numerous than the minimal solut ion (s), as discussed in sect ion 10 of [2].
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back-propagation nodes NR (as %)
N H (3 Tbp success (%) Tnodes success (%) 4 5 6 7 8

0.001 142 98 200 94 9 63 26 2 -

8 0.01 " " 192 94 12 65 22 1 -

0.1 " " 192 91 14 67 19 - -

12 0.01 95 100 136 99 2 45 41 11 1

Table 2: Results for t he NI = 4 P ari ty problem wit h E = 0.25, a =

0.96 , and Wfix = 0.7.

back-propagation nodes NR (as %)
N H (3 T bp success (%) Tnodes success (%) 2 3 4 5 6

5 0.01 50 93 60 90 19 55 25 1 -

0.001 37 99 49 98 3 31 49 16 1
0.005 " " 49 98 4 32 48 15 1

8 0.01 " " 49 98 4 34 48 13 1
0.02 " " 48 98 4 34 48 13 1
0.1 " " 49 98 4 34 48 13 1

12 0.01 45 85 64 84 1 15 43 32 9

Table 3: Results for t he NI = 4 Symmetry problem wit h E = 0.5,
a = 0.9, and Wfix = 0.7.

Sym metry

T he Symmetry problem requ ires a minimum of NR = 2 hidden units for its
solut ion [1]. T he results of the unit elimination algorit hm for this problem
wit h N1 = 4 input uni ts are shown in table 3. T he averages for the NH = 8
networks are taken over 10000 randomly chosen initi al network configura­
tio ns, and for t he N1 = 5, 12 networks the averages are over 1000 network
configurations . T he cutoff t ime for training was 1000 present ations of each
of the sixteen training patterns, the learni ng rate was E = 0.5, momentum
Ct = 0.9 , and Wfix = 0.7. T he resul ts show a distribution of red uced network
sizes, ranging from the abso lute minimum of 2 up to 6 hidden uni ts, and that
is relat ively constant over a large range of values of (3.

4 . Discussion and conclusions

T he algorithm pr esented here enables us to reduce the size of a network by
the elimination of hidden units. Tests of t he algor it hm on some Boolean
fun ct ions have shown that it produces a substantial reduction in the size of
t he network.

A numb er of poss ible var iations of the algorithm are poss ible. In the
examples given here the number of auxiliary units int roduced is equal to
that of the hidden unit s, and each auxi liary uni t has a full set of connections
to all un its in t he hidden layer. Both t he number of au xiliary units and their
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con nectivity can be varied , which is a feature that may be of considerable use
in problems involving many hidden units. In such a case it would be possible
to limit the number of aux iliary uni ts to which each hidden uni t is attached,
or to assoc iate groups of auxiliary units wit h groups of hidden uni t s. This
would reduce considerably t he com putational requirements for lar ge problems
but still enable substantia l reductions in network size. It is also possible to
use ot her types of unit- at tracting terms , or even to implement the method by
successively eliminating t he smallest compo nents of each vector W(Si) un til
only one component remains on each aux ilia ry node.
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