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Abstract. A method for reducing the number of units in the hidden
layers of a feed-forward neural network is presented. Starting with a
net that is oversize, the redundant units in the hidden layer are elimi-
nated by introducing an additional cost function on a set of auxiliary
linear response units. The extra cost function enables the auxiliary
units to fuse together the redundant units on the original network,
and the auxiliary units serve only as an intermediate construct that
vanishes when the method converges. Numerical tests on the Parity
and Symmetry problems illustrate the usefulness of this method in
practice.

1. Introduction

One of the central unresolved questions in the study of neural networks con-
cerns the architecture and size of the network that is most appropriate to a
particular problem. Learning procedures such as back-propagation [1] pro-
vide a means of associating pairs of input and output patterns in a feed-
forward layered neural network, provided that there are enough hidden units.
These learning algorithms are typically implemented on a chosen fized archi-
tecture where the number of hidden units must be given and does not change
during the learning procedure.

Deciding upon the number of hidden units in a network is somewhat of
an art and matter of experience. It is clear that if the number of free param-
eters in a net is too large then the net will be able to fit the training data
arbitrarily closely and essentially memorize the training patterns. However
such networks are typically not able to generalize to new inputs. The folklore
is that the number of weights in a network should be less than one-tenth the
number of training patterns. The capacity of a network to generalize from the
learned data to new inputs has been shown [2-4] to be most pronounced for
a network containing a minimal number of units and connections. Moreover,
the amount of computation both for forward computation and for learning
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grows with increasing size of the network, and it is therefore more efficient
to keep the size of the network as small as possible.

Several researchers have proposed schemes to achieve near-minimal net-
works based upon either reducing oversize networks during training or explic-
itly building up networks until learning is achieved. The method presented
here is such a network reduction (or pruning) algorithm but, in contrast to
weight reduction algorithms (where the number of non-zero weights in the
network is reduced), this method is based upon the elimination of redundant
hidden units.

A number of weight reduction solutions have been proposed by adding
terms to the standard sum squared error cost function:

E= Z Ep, = %Z(tpn — 0pn)? (1.1)

n,p

where the sum is over the n output units and p input/output training pat-
terns, whose target output and network output on the output unit n are t,,
and opn, respectively. In the weight decay method [5, 6] an oversized net is
taken and a minimization of the cost function is carried out in the usual way,
but with an additional term that is equivalent to adding a quadratic cost
term for every weight in the network. The weights that do not contribute
to learning will then have an exponential time decay. In the weight elimina-
tton method [7] an additional term, which can be thought of as a complexity
term, likewise encourages the reduction and eventual elimination of many of
the connections. Another method [8] for eliminating superfluous weights is
to estimate the sensitivity of the global cost function to each of the weights.
This can be done by keeping track of the incremental changes to the weights
during learning and by discarding connections with weights that have a low
sensitivity. This method has the advantage that no modification of the cost
function is required, and there is therefore no interference with the learning
process while the sensitivities are being measured.

Alternative methods have been proposed [9-11] that focus on the inter-
nal representations (i.e., the states of the hidden units) rather than a cost
function in weight space. In these methods the number of hidden units is not
fixed in advance, but rather is determined by the algorithm itself. The se-
quential learning algorithm [9] uses the internal representation together with
the perceptron algorithm to construct a network that is near-minimal and has
acceptable learning times. The tiling algorithm [10] and related algorithms
[11] proceed by including layers and units within layers until convergence is
achieved. A further line of approach to this problem is by the application of
genetic algorithms [12-15], in which the structure of the network is encoded
in bit-strings (chromosomes) that can evolve to produce better network ar-
chitectures.

The method presented here focuses on the units of the hidden layer(s)
and essentially fuses together units that are redundant. Not only is this of
practical use in reducing the size of a network, but by minimizing the number
of hidden nodes we can hope to gain more insight into the behavior of the
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network, not only in terms of its possible description by a simple set of rules
but also by considering the function of each of the hidden units. The general
method is discussed in the next section, together with several variations.
The third section contains results of the method as applied to the Parity and
Symmetry problems with a single output unit and one hidden layer.

2. The unit elimination method

Consider an oversize feed-forward network with a single layer of Ny hidden
units (H). A layer (S) of Ng auxiliary units is introduced between the original
hidden layer and the output units (for simplicity it will be assumed here that
Ns = Npg). There is a full set of connections now between this hidden
auxiliary layer S and both the output units O and the original hidden layer
H, whose weights are labeled by w,,s; and wy;p,, respectively. There are no
longer any direct connections between the hidden layer H and the output
units O.

The weights of the connections between the auxiliary layer S and the
original hidden layer H, which here are called auxiliary weights, are restricted
to be excitatory and such that the sum of weights on each auxiliary node is
unity:

Nu
Z ws;n, =1, foreachs; €S (2.1)
he=1

The auxiliary units have a linear response—their activity is simply the sum
of their inputs:

Nu
Gy = Z Ws;hy Qhy, (22)
hr=1

where ayp, is the activity of the hidden unit h; and there is no bias on the
auxiliary units. The units in the hidden layer H and the output units have
the usual sigmoid-function response.

We proceed now by carrying out training of the extended net using back-
propagation [1] in the usual way by successively presenting the patterns to
be learned. In this stage of the algorithm all the weights are iterated by
carrying out a minimization of the standard error function (equation (1.1)).
The constraint on the auxiliary weights of equation (2.1) is imposed at each
iteration of the learning procedure by normalizing the iterated weights wg;p,
explicitly:

Ny
Ws;hy = ‘:)thk/ Z (I)s].hk (23)
hgp=1

When the network has found a first solution (i.e., the network output agrees
with the target output—within the learning tolerance—for each training pat-
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tern) then the auxiliary weights w,,, between the auxiliary layer S and the
hidden layer H experience a cost term of the following form:

D(w) = —ﬂNs Z (1 —d(a(s;))) (2.4)

s;=1

where the vector &(s;) represents the weights {ws;n,} (hx = 1,..., Ng), the
coefficient f3 is a constant that can be adjusted, and the function d(&(s;)) is
chosen as

1 Ns [Nu 2
d(&(s5)) Z[w(s'7 -d(s)]* = 5 Z Z Wby Wayhy, (2.5)

sl~l 51=1 [ hp=1

This cost term has a two-fold effect. First, it causes each auxiliary unit to
choose exactly one unit in the hidden layer H; that is, the weights w5, for
unit s; will have the value 1 for one hidden unit h, and will vanish for all other
hx. This comes about by the term s; = s; in the sum (2.5) above, which acts
as a weight enhancement term that ensures that the weights iterate toward
a solution in which each unit s; chooses only one node h, in the hidden
layer H. Second, this cost term will cause the auxiliary units to attract; the
auxiliary units will tend to choose the same hidden units if this is compatible
with learning. The cost function chosen above is a unit-attracting potential
that has the effect of maximizing those weight vectors &(s;) that have large
overlaps (i.e., point to the same units in the hidden layer H). The coefficient
[ can be adjusted to ensure optimal convergence of the procedure.

To ensure that the weights w5, remain excitatory (ws;s, > 0) it is useful
to introduce the variables p;p, = (ws].hk)l/ 2. The learning procedure can be
carried out with the weights {p;;s,} in the usual way:

Apsjhk (t 2= 1) =

Os;an, back-prop
alAps;h, (t) + 2€Ps;hy, (t) { A Zﬁ\,’il Weun, ((s;) - @(s1)) otherwise
(2.6)

with wg ., = pgj iy and where € is the learning rate and « the momentum.
In the implementation of this method it is also possible to include the unit-
attracting term throughout the learning process, and results where this has
been done will also be discussed in the next section.

A typical training of a network proceeds as follows. First the complete
network is trained using standard back-propagation until the network finds
a solution. The auxiliary units are then iterated further with the unit-
attracting term and the p-parameterization of equation (2.6) until they either
all choose a unit in the hidden layer or back-propagation is resumed in order
to relearn some of the training patterns. The auxiliary weights are considered
to have chosen a unit A, in the hidden layer when the value of the associated
weight w5, exceeds a value wiy (typically chosen between 0.7 and 0.95), at
which point its value is fixed at unity (and all other components are fixed at
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zero). Training continues until the network both learns all the patterns and
has each auxiliary unit choose one unit on the hidden layer H. In the course
of training a typical network the auxiliary weights switch a couple of times
between the back-propagation and the unit-attracting terms of equation (2.6)
before a reduced network solution is reached.

When the weights wy;s, have all converged to values of 0 or 1, then it is
straightforward to see that those units that are chosen by the auxiliary units
constitute the new reduced layer of hidden units. Those units in the hidden
layer with no non-zero weight connecting them to auxiliary units in S can
be eliminated. The auxiliary units that choose the same unit in the hidden
layer H, by virtue of their linear response, can simply be added together to
give the new weights between the reduced hidden layer and the output units.
This can be seen by considering the net input to the output nodes o,:

Ns Ns Ny Ng
neto,L = Z anSjaSj == Z wons]- (Z ws]-hkahk) = Z (Z wonsT> Ay,

s;=1 s;=1 hp=1 ri=1 S

(2.7)

where the sum over {r;} is the sum over the reduced hidden layer—those
nodes on the hidden layer that have a non-zero weight to the auxiliary layer—
and the sum {s,} is over those units on the auxiliary layer that choose the
hidden unit r. The resulting weight between a reduced unit and the output
is therefore simply the sum of the weights over connected auxiliary units to
the output, as seen in the bracket on the extreme right of equation (2.7).
There are a number of ways to see how and why this algorithm works.
One way is to view the hidden units as hyperplanes that divide the patterns
into two sectors (a picture that is, of course, strictly true only for threshold
nets). The auxiliary units then act to eliminate hyperplanes that divide
the input patterns in the same, or very nearly the same, manner. Suppose,
for example, that two hidden units h; and hs have developed very nearly the
same weights under back-propagation, so the weight vector components wy,,
and ws,;, will be almost identical. Assuming that either hy or hs is required
for learning, the cost term d(&(s;)) in (2.5) on the auxiliary unit s; will then
cause only one of the two units to be choosen. The other unit will effectively
be “turned off” as its weights are forced to zero by imposing the normalization
condition (2.1) at each learning step. Another equivalent way of viewing
the “turning off” of hidden units is as a variant of competitive learning,
where the auxiliary units behave as regularity detectors. The condition (2.1)
ensures that the reinforcement of a connection between an auxiliary unit
and a particular hidden unit will effectively inhibit the connection to other
hidden units. As learning further proceeds, such redundant hidden units are
gradually decoupled from the output unit. In the implementation here, such
units are explicitly turned off by setting their weights to zero when one unit

has accumulated a weight of wg,, as discussed above.
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3. Implementation on Parity and Symmetry problems

To test this method it was implemented on the Parity and Symmetry prob-
lems, in which there is a single output unit and where only one hidden layer is
necessary to obtain solutions. The minimal number of hidden units necessary
to give solutions for both these problems are known. The Parity function as
implemented here gives an output +1 when the number of input units Ny
with +1 is odd and an output 0 otherwise. The minimal number of hidden
units Ny required for the Parity problem is Ny = N [1]. In the symme-
try problem the output is +1 if the pattern on the input units is symmetric
about the center, otherwise the output is 0. The symmetry problem requires
a minimum of two hidden nodes for its solution [1]. ‘

The training patterns were cycled through in order, and the weights were
adjusted after each pattern. The back-propagation [1] algorithm was used
with learning rate (¢) and momentum (a) parameters as defined in equa-
tion (2.6). The patterns were considered learned when the output was within
a learning tolerance of 0.1 of the correct answer. To ensure that the network
did not overlearn, back-propagation was not carried out on inputs whose out-
put was within the learning tolerance [16]. The initial weights were chosen
randomly on a scale r = 2.5 except for the auxiliary weights, which were all
set to the value wy;s, = 1/Npg.

A cutoff time was also introduced for the learning procedure, whereby if
the training had not been completed within this number of iterations then the
network was considered stuck in a local minimum. To give an indication of
the performance of the method, both the success rate and the average training
time are given. The success rate is simply the percentage of training runs
that converged to a result before the cutoff time, and the average training
time 7 is given by [17]

e (%Z&) (3.1)

where the sum is over the training runs, and R; is the inverse training time
for successful runs and zero otherwise. Training times and success rates for
the first solution with back-propagation (i.e., before the unit-attracting term
was turned on) are given, as well as the training times and success rates for
the complete node elimination algorithm (i.e., to find a reduced network).

Parity

The Ny = 2 Parity problem (XOR) was investigated starting with various
numbers of nodes in the hidden layer: Ny = 5,8,12. The results are summa-
rized in table 1, where N is the number of hidden nodes in the reduced net
and the results represent an average over 1000 random starting network con-
figurations. The percentages for the success rates of back-propagation and
the node elimination algorithm are taken with respect to the total number
of initial network configurations. The percentages for the various values of
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back-propagation nodes Nrg (as %)

Ny | B | 7 | success (%) | Tnodes | success (%) | 2 | 3 | 4
5 0.01 | 35 100 50 97 34163 3
0.001 | 27 100 48 100 1117118
0.002 | 7 ” 47 " 99 13| 71116

8 |0.005| ” ? 46 98 14 | 73 | 13
0.01 7 ” 46 96 1717211

0.05 | ” 4 48 90 24168 | 8

0.1 ”? 2 50 85 28165 | 7

12 | 0.01 | 25 99 52 88 13| 75| 12

Table 1: Results for the Ny = 2 Parity problem (XOR) with € = 1.0,
a = 0.94, and wg, = 0.7. The network starts with Ny units in the
hidden layer, and the method reduces the net to Np hidden units.

Ng are taken with respect to the number of initial network configurations
upon which the algorithm was successful. The learning rate was chosen to be
€ = 1.0, the momentum o = 0.94, and the auxiliary weights were considered
to have chosen a unit in the hidden layer when the corresponding weight
exceeded wg, = 0.7. A cutoff of 1000 presentations of the learning patterns
was used throughout. The results show a dramatic reduction in the size of
the network—the number of hidden nodes is reduced in almost all cases to
between 2 and 4. It is interesting to note that the “grandmother cell” solu-
tion (Ng = 4) is only chosen in a small number of cases, although the initial
oversize networks could easily allow it. The effect of varying the strength of
the unit-attracting term g can also be seen. Increasing § tends to reduce the
network size somewhat, but the success rate is also decreased.

Runs with higher values of wgy (e.g., 0.95) give longer training times
but also tend toward smaller resultant networks, whereas reducing wg, de-
creases the training time but tends to give slightly larger resultant networks.
Several trials were also made in which the auxiliary weights experience the
unit-attracting term throughout the learning process. This generally gives
substantially smaller resultant networks on average, but requires longer over-
all training times and has lower success rates.

In the case of the N; = 4 Parity problem, 1000 initial network configu-
rations were averaged over and a cutoff of 1000 presentations for the learn-
ing patterns was used. The network parameters took the values € = 0.25,
a = 0.96, and wg, = 0.7. The results, shown in table 2, show a large reduc-
tion in the size of the network with the same qualitative behavior as that
observed for the XOR network. The network tends to find the minimal so-
lution (Ng = 4) more often for larger values of § and wsgy, but the overall
success rate decreases when these values increase. The observation that the
network does not necessarily seek solutions with a minimal number of hid-
den units probably indicates that solutions with more hidden units are more
numerous than the minimal solution(s), as discussed in section 10 of [2].
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back-propagation nodes Ng (as %)
Ny Ié; Typ | success (%) | Tnodes | Success (%) | 4 | 5|6 | 7 |8
0.001 | 142 98 200 94 9 63|26 2 |~
8 0.01 ? 7 192 94 12165122 1 |-
0.1 b 7 192 91 14167119 | - | -
12 | 0.01 | 95 100 136 99 2 |45 41|11 |1

Table 2: Results for the Ny = 4 Parity problem with ¢ = 0.25, @ =
0.96, and wgy = 0.7.

back-propagation nodes Nr (as %)
Nu | B | mp | success (%) | Tnodes | success (%) | 2 | 3| 4|5 |6
5 0.01 | 50 93 60 90 1955125 1 | —
0.001 | 37 99 49 98 3 3149|161
0.005 | ” 7 49 98 4 132|148 |15 |1
8 0.01 ” & 49 98 4 134148113 |1
0.02 7 ? 48 98 4 (3448131
0.1 ? 7 49 98 4 (34148131
12 | 0.01 | 45 85 64 84 1 115143329

Table 3: Results for the Ny = 4 Symmetry problem with € = 0.5,
a =0.9, and wgx = 0.7.

-

Symmetry

The Symmetry problem requires a minimum of Nz = 2 hidden units for its
solution [1]. The results of the unit elimination algorithm for this problem
with N; = 4 input units are shown in table 3. The averages for the Ny = 8
networks are taken over 10000 randomly chosen initial network configura-
tions, and for the N; = 5,12 networks the averages are over 1000 network
configurations. The cutoff time for training was 1000 presentations of each
of the sixteen training patterns, the learning rate was ¢ = 0.5, momentum
a = 0.9, and wg, = 0.7. The results show a distribution of reduced network
sizes, ranging from the absolute minimum of 2 up to 6 hidden units, and that
is relatively constant over a large range of values of 5.

4. Discussion and conclusions

The algorithm presented here enables us to reduce the size of a network by
the elimination of hidden units. Tests of the algorithm on some Boolean
functions have shown that it produces a substantial reduction in the size of
the network.

A number of possible variations of the algorithm are possible. In the
examples given here the number of auxiliary units introduced is equal to
that of the hidden units, and each auxiliary unit has a full set of connections
to all units in the hidden layer. Both the number of auxiliary units and their
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connectivity can be varied, which is a feature that may be of considerable use
in problems involving many hidden units. In such a case it would be possible
to limit the number of auxiliary units to which each hidden unit is attached,
or to associate groups of auxiliary units with groups of hidden units. This
would reduce considerably the computational requirements for large problems
but still enable substantial reductions in network size. It is also possible to
use other types of unit-attracting terms, or even to implement the method by
successively eliminating the smallest components of each vector &(s;) until
only one component remains on each auxiliary node.
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