
Complex Systems 5 (1991) 381-399

On the Relationship b etween Complexity and
Entropy for M arkov Chains and Regular Languages

Went ian Li'
Santa Fe Insti tute, 1660 Old Pecos Trail, Suite A ,

Santa Fe, NM 87501, USA

Abstract. Using the past-future mutual information as a measure
of complexity, the relation between the complexity and the Shannon
entro py is determined analyt ically for sequences generated by Markov
chains and regular languages. It is emphasized that, given an entropy
value, there are many possible complexity values, and vice versa; that
is, the relationship between complexity and entropy is not one-to­
one, but rather many-to-one or one-to-many. It is also emphasized
that there are str uct ures in the complexity-versus-entropy plots, and
these structures depend on the details of a Markov chain or a regular
language gramm ar.

1. Introduction

It has been recognized recently that in order to describe complex dyn amical
behavior such as the evolution of life on earth- in which t he syste m becomes
more sophistica ted instead of more random- one needs to define a qu antity
called complexity [2,7,15, 19]. The meaning of this quantity should be very
close to certain measures of difficulty concern ing the obj ect or the sys te m in
question : the difficulty of constructing an object , the difficulty of describing
a system , the difficulty of reaching a goa l, t he difficulty of performing a task ,
and so on. T he definition of complexity cannot be unique, simply because
there ar e many different ways to qu antify these difficult ies , and also because
there are many different tasks concern ing which the difficult ies are to be
qu antified .

For example, suppose we ar e interested in the complexity of an infini t ely
long one-dimens ional symbolic sequence . We can find at least two tasks
that can be performed on the sequence-to reconstruct the sequ ence and
decode the sequence-and we can ask the question of how difficult it is to
reconstruct or decod e the sequence . By "reconst ru ct the sequence" it is not
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clear whether one wants to reconstruct the sequence to be exact ly correc t
or approximately correct . Since the difficulty for performing these two tasks
can be qui te different for the same sequence, one has to spec ify which task
is to be performed. Suppose we have finally decided to perform one task,
for example, to reconstruct t he sequence exactly. We st ill have to choose
which quantity is appropriate for measuring the difficulty of performing this
par ti cular task.

Different proposals of the measur e of complexity are in fact different ways
to measure this difficulty, or the amount of effort pu t in , or the cost, of
generating the sequence . One can measure the length of the shortest pro­
gram that generates the sequence (algorithmic complexity [3, 11, 18]); or
the number of instructions to generate one symbol in the sequence from the
shortest program (one of the computational complexities); or the number of
instructions to generat e one symbol in the sequence from a short , but not
necessarily the shortest , program (logical depth [2, 4]); and the list goes on .
lf we choose the task of generating the sequence to be approximate ly cor­
rect , many probability-based or information-theoretic quantities can be used
to measur e the difficulty for reconstructing the sequence-for example, the
average amount of information sto red in ord er to reproduce the next symbol
on the sequence correctly "on average" [7,20].

It has been pointed out repeatedly that algorithmic complexity does not
fit our intuitive notion of complexity [2, 7, 9]. One vague argument is that
algorit hmic complexity measur es the difficulty of the task-to reconstruct a
sequence exactly- tha t is not very "meaningful." To say that this task is
not very meaningful is partly based on our daily experience that we can pick
up the main feature of a picture or the basic meaning of a text by quickly
scann ing it without paying attent ion to every det ail. A similar argument for
algorit hmic complexity not being a "good" measure of complexity is that the
effort pu t in to generate a sequence to be exac tly correct does not cont ribute
to the "import ant features" of that sequence. Rather, they cont ribute too
much to the "t rivial" det ails.

This observat ion states that an intuitively satis facto ry definition of com­
plexity should measure the amount of effort put in that generates correlations
in a sequence. Of course , one cannot be sure that all the effort is spe nt on
generating corre lat ions . As a resul t , a measur e of correlation typically pro­
vides a lower bound of a measure of complexity [7], and might be a reasonabl e
est imate of the compl exity. But the two quantities may not be equa l to each
other. This idea was ind eed discussed , explicit ly or implicitly, by Bennett
[2], Chaitin [5], and Grassb erger [7], among others .

A question naturally arises: how is an intuitively satis factory definition of
complexity related to a definition of complexity that describ es the difficulty
of a task for spec ifying every det ail exac t ly, such as algorithmic complexity?
Since it is well known that algorithmic complexity is equivalent to ent ropy
as a measure of randomness, our questi on becomes: what is the relationship
between the complexity and the ent ropy? Before answering this question , we
should ask two other questions. Fi rst , does such a relationship exist? Second,
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Figure 1: Proposed schematic relati onsh ip between com plexity and
entropy (aft er reference [9] .)

does such a relationship depend On the sequence st udied, or the definition of
complexity used?

Several authors speculate that the typic al relat ionship between complex­
ity and ent ropy is a unimodal one: the complexity valu es are small for small
and large ent ropy valu es, but larg e for intermediate ent ropy valu es [7, 9].
Hogg and Huberman [9], in particular , dr ew a fun cti on schemat ically as de­
scribed above (see figur e 1). More recently, Crutchfield and Young [6] and
Lan gton [12] each plotted complexity versus ent ropy from some real numer­
ical simulations. Although the two groups used different definitions of com­
plexity, different definitions of ent ropy, and different ensemble of sequences,
their plots are st rikingly similar .

I will briefly discuss their results in the last sect ion. But the main goal of
this pap er is to show that it is possible to determine analyt ically a rela ti onship
between complexity and entropy with a specific choice of the com plexity and
a spec ific choice of the sequence ensemble. It will be shown that there is no
one-t o-one relati onship between complexity and ent ropy, but rather a one­
to-many or many-to-one relationship between complexity and ent ropy, which
strongly dep end s on the sequence ensemble being studied . The conclusion
from this study seems to be that there is no universal relationship between
complexity and ent ropy independent of the underlying sequences.

The pap er is organized as follows: sect ion 2 re-introduces the definition
of complexity used here and specifies which sequence ensemble I am going
to use; sect ion 3 det ermines analyt ically the relationship between complexity
and entropy for one-st ep two-symbol Markov chains (and the result will be
presented graphically) ; section 4 presents the complexity-entropyrelationship
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for two ensembles of sequences generated by regular languages; and sect ion 4
discusses some complexity-ent ropy relationships studied by ot hers.

2. Definitions

Since measures of the amount of correlat ion exist ing in the sequence provide
at least lower bounds of the complexity, I will use the "past-future mutual
information" as the measure of compl exity (for a discussion of mutual infor­
mation, see [16, 14]). This quantity was used by Shaw in his study of the
symbolic sequences genera ted by dynamical systems [17], and lat er used by
Grassberger as a measure of complexity (he called it effecti ve m easure com ­
plexity [7]) . The definition is as follows. Partition an infinitely long sequence
in half. The two half-infinite sequences can be considered two pat ches on the
sequence whose lengths are M and N , resp ectively, in the limit as M and N
go to infinity. The block ent ropy of a patch SN with length N is

H(SN) = - L p(SN) logK p(SN),
S N

(1)

where P(SN) is the probability of a certain block configuration with length
N , and the base of the logari thm (K) is the total numb er of symbols (e.g. ,
K = 2 for a binary sequence). The past-future mutual information C is

(2)

The Shannon ent ropy is the ent ropy per symbol in th e infinite block-length
limit:

h = lim [H(SN+l) - H(SN)].
N-oo

(3)

Both the past-future mutual information C and the Shannon ent ropy h
have nice geometric interpret ations in t he block entropy H (SN) plot: h is the
value of the slope of the limiting st raight line that fits H(SN) as N --t 00;
and C is the value of the y-intercept of this straight line [17] (see figure 2).
The proof is very simple. The limiting st raight line that fits H(SN) is

lim H(SN) = C + hN + E(N ),N_oo (4)

where E(N ) consists of all terms that increase less than linearly with N. Then
th e trivial equat ions

(C + h(N + 1)) - (C + hN)

(C + hM) + (C + hN) - (C + h(N + M))

h

C (5)

guarantee that the slope and the y-int ercept are ind eed the Shannon ent ropy
and the past-future mutual information. If one alrea dy knows the Shan­
non entropy h, t he past-future mutual information C can be derived from
equation (4):

C = lim (H(SN) - hN) , (6)N_oo
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Figure 2: Illustration of the block ent ropy H (SN) as a fun cti on of
the block length N . The slope of the limiting st raight line is equa l
to the Sha nnon ent ropy h ; and the y-intercept of the line is equa l
to the past-future mu tual information , or the complexity C (plotted
according to a similar figure in reference [17].)

a formula that was once used as the definition of C [7J.

If the asymptotic behavior of H (SN) is not linear- for example, if H (SN)
increases as a power-law function with the scaling exponent smaller than 1
or as a logar ithmic function- th en our definition leads to zero h and infi­
nite C. This is the case when there are long-range correlations present in
the sequences. For example, this occurs in the symbolic dynami cs at th e
accumulation point of th e period-doubling bifur cations [7J. When this hap­
pens, in principle one should use other definit ions of complexity to further
distinguish different divergent Cs, a subject being act ively studied [1J .

In this pap er , I deliberately avoid the divergence of C by studying se­
quences with short-range correlations. In these sequences, th e correlat ion as
a function of the distance between two symbols decays exponent ially, and
th e amount of corre lat ion at long distances is negligible. As a result , the
past -future mutual information is always finit e. Because of th e short-range
correlat ion, the H (SN) may converge to the limiting st ra ight line at a fi­
nite N , and both C and h can be easily calculated. These seemingly trivial
calculat ions nevertheless give us a handle with which to st udy exac t ly th e
complexity-ent ropy relationship.

The sequences with short-ra nge correlations are modeled by Markov
chains (in the st udy of stochastic processes) and by regular languages (in
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formal language theory) .' In both Markov chains and regular languages,
the probability of a given symbol is completely determined by the preceding
symbol (for one-step Markov chains) or by the preceding patch of symbo ls
(for regular languages). Once we know all the t ransit ion probabilities, we are
able to calculate th e block entropy. I will start with one-step Markov chains
in the next sect ion.

3. Complexity-entropy relationship for one-step Markov chains

Since a Markov chain specifies the transit ion probabilit ies of having new
symbols knowing the past history, it is st ra ight forward to relate the block
entropy of block length N + 1 with that of block length N:

H (S N+1) H (S N)

- L p (S N+1 ) logK p (S N+l) + L p (S N) logK p (S N)
SN +l S N

-LP( SN) [LT (SN ---+ SN+l) logKT (SN ---+ SN+1)]
SN SN+l

= - L P (s) logK IT T (s ---+ S')T(s~s' ) (7)
s'

where SN is th e last symbol of th e block S N and SN+l is the last symbol
of the block S N+l. Since th e earlier history does not count, the transition
probability T(S N -+ SN+l) is independent of N (the notation T (s -+ s' )
is used to indicate this fact). Similarly, th e density of a symbo l S should
not depend on its location in the block, that is, P( SN) = P (s) . The reader
shou ld be able to derive equat ion (7) easily, or consult any inform ati on th eory
book [10] .

Because T(s ---+ s') and P (s) are not functions of block length N ,
H (S N+l)- H (S N) does not depend on N . In other words , H (S N) approaches
the limiting st raight line as soon as N is larger than 1:

(8)

where H (Sl) = - I:sP( s) logK P(s). This leads directly to the expression
for C :

1 P (s)
C = H(S ) - h = - ~ P( s) logK ITs' T( s ---+ s ' )T(S~S ')· (9)

If the maximum value H (Sl ) = 1 is always reached (e.g., 0 and 1 appear
with equal probability for binary sequences), the upper bound of Cis 1 - h,
which is a straight line in the C-versus-h plot.

IT he original purpose of formal language t heory was to charact erize a sequence as
being gra mmatically correct [8], whereas here we are more interested in being statistically
correct .
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Figure 3: Graphic representa tion of the one-step two-symbol Markov
chain . Each site in t he sequence of the Markov chain is a link in this
graph, and each sequence is a path. The t ra nsit ion probabilit ies are
also included.
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To be more specific, I will work out the example of the one-ste p two­
symbol Markov chains. The tra nsition probabilit ies are

T (O-> 0) = P
T (O-> 1) = 1 - P
T (1 -> 0) = 1 - q
T (1 -> 1) = q,

which can also be represented as a t ra nsition matrix T :

(10)

(11)

o 1

T= O( p I - P)
1 1 - q q

where Ti j == T (i -> j).
This Mar kov chain is graphica lly illustrated in the simple directed graph

shown in figure 3. The densities of each symb ol compose the left eigenvectors
of the t ransition matrix T with respect to the largest eigenvalue 1:

P (O ) = 1; q , P (I ) = 1; P , (12)

where T = 2 - P - q is the normalization factor . From these densit ies, we
have

and from these densities as well as the trans it ion probabilities, we have

l - q I- p
h =-~ log2PP(I- p) l-P_~ log2qq(1 _ q)l -q .

By equation (9), the complexity is equal to

C -1 (T) + p(1 - q) 1 _P_ + q( 1 - p) 1 _ q_
- og2 T og2 1 _ q T og2 1 _ p .

(13)

(14)

(15)
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Figure 4: P lot of C versus h for sequences generated by the one-step
two-symb ol Markov cha in. T he t ransiti on probabili ti es p and q are
chosen randomly.

Both C and h ar e functions of th e par ameters p and q. Fixing p and q,
one gets a single point on t he complexity-versus-ent ropy plot . For example,
p = q = 0 gives a point at h = 0 and C = 1 (it is the periodic sequence
. . . 010101 .. .). Different p , q may give the same h value but different C
values (or vice versa), and we have t he case of a many-to-one (or one-to­
many) relat ionship between complexity and ent ropy. Figur e 4 shows the
C-versus-h plot when p and q are chosen randomly, and figure 5 shows the
same plot when q is fixed and p is randomly chosen.

One main feature of this plot is t hat t here are two bra nching areas with
dense dots: one toward the origin (h = 0 and C = 0, corresponding to
the all-zero or all-one sequences), and another toward the upp er-left corne r
(h = 0 and C = 1, corr esponding to the period-two sequences). Zero C is
the case when the block ent ropy H (Sl ) is equal to the increment of block
ent ropy h = H (SN+l) - H (SN) (for all N ~ 1), so the limit ing stra ight line
passes th rough the origin . When th is happ ens, the slope of the st ra ight line
can st ill be any value between 0 and 1, so h can be arbit ra ry even though C
is kept at zero.

Similarly, zero h does not prevent C from being of any value. Whenever
the sequence is periodic, H (SN) reaches a plat eau. The slope of the limiting
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F igure 5: Plot of C versus h for one-step two-symbol Markov chains
whil e q is fixed at 0, 0.1, 0.2, . . . , 0.9, and p is chos en randomly.

st ra ight line is always zero, bu t the height of the plat eau , which is equal to
C , can be arbit ra rily large if the periodicity of the sequence is arbitrarily
long.

By examining the above two extreme cases, it is easily understood why
the complexity-ent ropy relationship can be quite arbitrary. In fact , the slope
and the y-intercept are two independ ent parameters of a straight line. The
only reason t ha t the two should be related afte r all is because the underlying
sequences can have certain structures such t hat th e rise of H (SN) as N is
increased is rest ricted in certain ways. In the next sect ion, I will examine the
complexity-entropy relat ionship when the underlying sequences are beyond
the one-step Markov chains.

4. Complexity- entropy r e lationship for some regu la r languages

Regular languages are very similar to higher-order Markov chains except
that different symb ols in the corres ponding Mar kov chain become the same
symbol in the regular language [13J. Figure 6 shows an example of a regular
language. Any pat h on the gra ph represent s a gra mmatically correct word,
and the collect ion of all paths that are followed according to th e indicated
transit ion probabilit ies represents an ensemble of sequences. Not ice th at
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F igure 6: The first example of t he regul ar language grammar discussed
in section 4.

there are two Is and three Os on t he graph. Both Is inject into the same
node so they represent the same hist ory. Similarly, two out of the t hree Os
inject into the same node and they should also be the same. Nevertheless,
one of the Os (it is marked by 0') repr esent s a different past history, though it
is "invisible" in the sequ ence (i.e. , it will not be marked as 0' in the sequence
generated by this regular language grammar).

The procedures to calculate C and h for sequences generated by this reg­
ular language grammar is the following: (1) calculate the HM(SN) (subscript
M indi cat es the Markov chain) when the sequence is considered to consist of
three symbols (0, 0' , and 1); (2) det ermine how the introduction of the ex­
t ra symbol (0') overestimates the block ent ropy, where the overest imat ion is
8(N) = HM(SN)- H (SN); (3) determine 8, which is eit her 8 = limN->oo 8(N) ,
or 8 = 8(N) (when N 2 No) if the limit is reached at some finite N; (4) fi­
nally, we have h = hM and C = CM - 8, where hM an d CM are the Shannon
ent ropy and past-future mutual information for the corres ponding Markov
chai n , an d h and C are those for the regular language.

To see how this works, consider the regular language grammar in figure 6.
The t ransition matrix for the corresponding Markov chain is

o

o (PT = 0' 1
1 0

0'

o
o

l - q

1

1-P)o .
q

(16)

By calculating the left eigenvector corres ponding to the eigenvalue 1, we have
the densiti es of the three symbols:

P(O) = 1; q, P(O') = (1 - P~1 - q) , I -p
P( I) =-r' (17)

where T == 3 - 2p - 2q +qp is the norm alization factor. The Shannon ent ropy
and the past -future mutual information are

(18)



On the Relationship between Complexity and Entropy 391

and
1- q 1- p

CM log, (T) + ----;y- log2p1' + ----;y- log, qq

1-y log2(1 - p)l-P( l - q)l-q (19)

In order to det ermine 8(N) , a brute-force count ing of the degenerat e
blocks is carr ied out . For N = 2, there is only one block in the regular
language, 00, that has more than one corresponding block in the Markov
chain , 00 and 0'0 . We have

PM(00) P (O )p = (1 - q)p
T

PM(O'O) P(O') = (1 - q)(l - p)
T

P(OO) PM(OO) + PM(O'O) , (20)

again , with the sub script M indicating the corresponding Markov chain. It
is easy to show tha t

(22)

P(OOO)

P (OOl)

8(2) = -PM(OO ) log.,PM(OO ) - PM(O'O ) log, PM(O'O )

+P(OO ) log2 P (OO)

1-q
- ----;y-(log2p1' (1 - p)l - P) (21)

For N = 3, th ere are four blocks in the Markov chain (000, 0'00 , 001,
0'01) th at are act ually two blocks (000, 001) in the regular language. The
densit ies of these blocks are

PM(OOO ) p (0)p2 = (1 - q)p2
T

P (O' )p = (1 - q)(l - p)p
T

P (O )p(l _ p) = 1 - q)p(l - p)
T

P (O' )(l _ p) = (1 - q)(l - p)2
T

PM(OOO) + PM(0'00)

PM(OOl ) + PM(O'Ol).

And the overestimat ion of the block ent ropy at N = 3 is

8(3) = -PM(OOO ) log, PM(OOO ) - PM(O'OO ) log, PM(O'OO )
- PM(001) log2PM(001) - PM(O'Ol ) log; PM(0'01)

+ P (OOO ) log2P (OOO ) + P (OOl) log2P (OOl )

1 -q- T log2pp(1 - p)l-p = 8(2) (23)
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Figure 7: Plot of C versus h for sequences generated by the regular
lan guage gra mmar in figure 6 wit h randomly chosen p and q.

Similar ly, by count ing the degenerate situation for larger blocks, it can
be shown that 5(N) = 5(2), that is, the limit value of 5 = limN_ co 5(N)
is reached at N = 2. Wi th the value of 5, the complexity of this regular
language is

C CM -5
2(1 - q) 1 - P q

logz(T ) + T logzp1' + ---;y- logz qq - T logz(l - p)l - P

- ~ logz(1 - q)l - q (24)

Figure 7 shows the complexity-ent ropy relat ion with p and q randomly
chosen. One of the branches of dense dots at the upper-left corner represents
the period-three sequence (. .. 100100100 .. .). It is curious th at th ere are
blank regions in the plot with no dots: one is below th e period-three branch,
and another is near the maximum entropy and minimum complexity point.
Figur es 8 and 9 show the "skeletons" of the relation present ed in figur e 7,
with either q or p being fixed. By comparing figur e 7 with figure 4, one can
easily conclude that th e complexity-entropy relationship stro ngly depend s on
the sequence ensemble being st udied . Different grammars genera lly lead to



On the R elationship between Complexity and Entropy

C

1.60

1.20

0.80

0.40

/
/

0.60 0.80

393

(27)

h

Figure 8: Similar to figure 7, but q is fixed at 0, 0.1, 0.2, .. . , 0.9, and
p is ra ndomly chosen.

different complexity-ent ropy relationships.
To end t his sect ion, I will calculate the complexity-ent ropy relationship

for another regular language, in which the limiting value of 6 = limN---> oo 6(N )
is reached only when N is infinity. This regular-language gra mmar is shown
in figure 10 . By tuning the parameter p from 1 to 0, one can t ra nsform t he
generated sequence from the homogeneous all-zero sequence to the periodic
sequence . . . 101010 .. ..

We first determine the CM and hM for the corr esponding Markov chai n
(with t hree symbols: 0,0' , and 1). The Markov t ra nsit ion matrix is

o 0' 1

T = ~,(~ ~ 1 ~ p) . (25 )
1 0 1 0

The densities of the three symbols are

P(O) = ~, P(O') =~ , P(l ) = 1; p . (26)

We have
1 1

hM = -,21og2P'(1- p) -P and CM = 1.
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Figure 9: Simil ar to figure 7, but p is fixed at 0, 0.1, 0.2 , .. . , 0.9 , and
q is ran domly chose n.

p l-p

0 ' 0 '

Figure 10: The second example of the regular language grammar dis­
cussed in sect ion 4. It can pr od uce eit her a homogeneous all-zero
seque nce (when p=l ) or a periodi c sequence . .. 1010 . .. (wh en p=O).
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The overestimation of the block ent ropy at N = 2 is

8(2) = - PM(OO') log, PM(OO') - PM(O'O) log2 PM (0'0)

+P (OO) log, P(OO)

P(OO') + P(O'O) = P(O) + P(O')p = ~ + ~ = p; (28)

at N = 3 it is

(29)

and for all N , it is

(30)

8(2n)

8(2n + 1)

pn

pn (1+ p)l+P
- log2 .
2 pP

If 0 ~ p < 1, the complexity value defined in the infini t e N limi t is simply 1
because

C = lim (CM - 6(N)) = CM = l.
N~oo

(31)

Nevertheless, if we first take the limi t of p ---+ 1, we have

lim lim (CM - 8(N)) = O.
N---toop_l

(32)

T his resu lt is cons istent with our intuit ion because p ---+ 1 leads to the all-zero
sequence.

It is interesti ng to note that it is possible to have a complexity value
that is neither 1 nor 0 if the p ---+ 1 limit and the N ---+ 00 limi t are taken
conspiratorially such that N rv 1/ log(p). This provides a pe rfect example for
illust rati ng that the complexity as defined in the infinite block-length lim it
may not fit t he intuiti on derived from finit e sizes. And in many cases, a
single quantity as a measure of complexity is not enough . We might need
one measure at one length scale, and overall have a "spe ct rum of com plexity
measures ."

5 . Discussions

From the few examples present ed in this paper, it can be seen t hat the
complexity-entropy relationship is typically one-to-many or man y-to-one in­
stead of one-to-one. On the ot her hand , the dots in the complexity-versus­
entropy plot usually do not fill the plane uniformly. T his means that there
are certain structures in the complexity-entropy relationship that depend on
the sequence ensemble from which the complexity-entropy relationship is de­
rived . The goal of studying the complexity-entropy relationship is to see how
this struct ure changes as a function of the sequence ensemble.
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Figur e 11: T he nearest-ne ighbor mut ual information vers us single-site
en t ropy H (51 ) for configurations generated by t wo-dimensional eight­
symbol cellular au tomata (reproduced with permission from referen ce
[12, dis ser tation].)

In his study of cellular automata, Langton [12] plot ted t he near est­
neighbor mutual informat ion (setting M = N = 1 instead of the infinity
in equat ion (2)) as a function of t he single-site entropy (H (51)) . His plot
is reproduced in figure 11. For periodic sequences, the joint-block entropy
H(51+! ) is the same as the single-site entropy H (5 1) , so the mutual infor­
mation is equal to t he single-site entropy. Thus it is not surprising t hat the
left boundary of the region with dot s is a st ra ight line with slope 1.2 If his
used as the x axis in place of H (51 ), the left bounda ry will approach the y
a XIS.

Cru tchfield and Young [6J plot ted somet hing very similar, though in a
completely different context. They st udied the symbolic dyn amics of the
logistic map Xt +! = ). X t (1 - Xt) and generated binary symbolic sequences at
hundreds of different). values between 3 and 4. For each symbolic sequence,
they const ructed a regular- language gra mmar that can reproduce the se-

2The slope in figure 11 is 3 because Langton studies the eight-symbol cellular automata,
and he normalizes th e single-site ent ropy by the maximum value, which is 3, but does not
normalize t he mutual informati on. Th e slope becomes 1 if both ent ropy and mut ual
information are normalized.
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quenc e statistically. T he logarithm (or the "p log p"-type logarit hm) of the
size of this regular- language grammar is the complexity measure they use.
Since the symbolic sequences at certain A values can have extremely long­
range correlations that may not be characterizable by a regular language, a
cutoff of the maximum size of the regular-l anguage grammar is applied. T his
cutoff int roduces a ceiling to the comp lexity valu e.

In Cr utchfield and Young's complexity-versus-entropy plot there is again
a left boundary of t he region wit h dots, which is a straight line wit h slope
16. This value of slope is pure ly due to the choice of the x variable, which
is H (S 16)/16. This is because the logarithm of the grammar size is closely
related to the past-future mutual information , which for periodic sequences
is equal to the plateau value of the block ent ropy H (S N). If we use x =
H (SN)/N and y = C = H (S N), it is clear that y = Nx .

In conclusion , when the past-future mutual information is used as a mea­
sur e of complexity, it s relation to the Shannon ent ropy for sequences of short­
range correlations can be determined analytically. It is observed that the
comp lexity-entropy relation depends on the specific structure of the short­
range correlations (which is captured by t he "grammar"). Though only three
examples ofthe sequences wit h short-range corre lat ions are st udied in this pa­
per, the method is obviously applicable to ot her cases . It will be interesting
to see whether other regular-l anguage grammars can produce complexity­
entropy relat ions that are dr amati cally different from what is derived in this
paper.
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