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Abstract. Using the past-future mutual information as a measure
of complexity, the relation between the complexity and the Shannon
entropy is determined analytically for sequences generated by Markov
chains and regular languages. It is emphasized that, given an entropy
value, there are many possible complexity values, and vice versa; that
is, the relationship between complexity and entropy is not one-to-
one, but rather many-to-one or one-to-many. It is also emphasized
that there are structures in the complexity-versus-entropy plots, and
these structures depend on the details of a Markov chain or a regular
language grammar.

1. Introduction

It has been recognized recently that in order to describe complex dynamical
behavior such as the evolution of life on earth—in which the system becomes
more sophisticated instead of more random—one needs to define a quantity
called complexity [2, 7, 15, 19]. The meaning of this quantity should be very
close to certain measures of difficulty concerning the object or the system in
question: the difficulty of constructing an object, the difficulty of describing
a system, the difficulty of reaching a goal, the difficulty of performing a task,
and so on. The definition of complexity cannot be unique, simply because
there are many different ways to quantify these difficulties, and also because
there are many different tasks concerning which the difficulties are to be
quantified.

For example, suppose we are interested in the complexity of an infinitely
long one-dimensional symbolic sequence. We can find at least two tasks
that can be performed on the sequence—to reconstruct the sequence and
decode the sequence—and we can ask the question of how difficult it is to
reconstruct or decode the sequence. By “reconstruct the sequence” it is not
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clear whether one wants to reconstruct the sequence to be exactly correct
or approximately correct. Since the difficulty for performing these two tasks
can be quite different for the same sequence, one has to specify which task
is to be performed. Suppose we have finally decided to perform one task,
for example, to reconstruct the sequence exactly. We still have to choose
which quantity is appropriate for measuring the difficulty of performing this
particular task.

Different proposals of the measure of complexity are in fact different ways
to measure this difficulty, or the amount of effort put in, or the cost, of
generating the sequence. One can measure the length of the shortest pro-
gram that generates the sequence (algorithmic complexity [3, 11, 18]); or
the number of instructions to generate one symbol in the sequence from the
shortest program (one of the computational complexities); or the number of
instructions to generate one symbol in the sequence from a short, but not
necessarily the shortest, program (logical depth [2, 4]); and the list goes on.
If we choose the task of generating the sequence to be approximately cor-
rect, many probability-based or information-theoretic quantities can be used
to measure the difficulty for reconstructing the sequence—for example, the
average amount of information stored in order to reproduce the next symbol
on the sequence correctly “on average” [7, 20].

It has been pointed out repeatedly that algorithmic complexity does not
fit our intuitive notion of complexity [2, 7, 9]. One vague argument is that
algorithmic complexity measures the difficulty of the task—to reconstruct a
sequence exactly—that is not very “meaningful.” To say that this task is
not very meaningful is partly based on our daily experience that we can pick
up the main feature of a picture or the basic meaning of a text by quickly
scanning it without paying attention to every detail. A similar argument for
algorithmic complexity not being a “good” measure of complexity is that the
effort put in to generate a sequence to be exactly correct does not contribute
to the “important features” of that sequence. Rather, they contribute too
much to the “trivial” details.

This observation states that an intuitively satisfactory definition of com-
plexity should measure the amount of effort put in that generates correlations
in a sequence. Of course, one cannot be sure that all the effort is spent on
generating correlations. As a result, a measure of correlation typically pro-
vides a lower bound of a measure of complexity [7], and might be a reasonable
estimate of the complexity. But the two quantities may not be equal to each
other. This idea was indeed discussed, explicitly or implicitly, by Bennett
[2], Chaitin [5], and Grassberger [7], among others.

A question naturally arises: how is an intuitively satisfactory definition of
complexity related to a definition of complexity that describes the difficulty
of a task for specifying every detail exactly, such as algorithmic complexity?
Since it is well known that algorithmic complexity is equivalent to entropy
as a measure of randomness, our question becomes: what is the relationship
between the complexity and the entropy? Before answering this question, we
should ask two other questions. First, does such a relationship exist? Second,
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Figure 1: Proposed schematic relationship between complexity and
entropy (after reference [9].)

does such a relationship depend on the sequence studied, or the definition of
complexity used?

Several authors speculate that the typical relationship between complex-
ity and entropy is a unimodal one: the complexity values are small for small
and large entropy values, but large for intermediate entropy values [7, 9].
Hogg and Huberman [9], in particular, drew a function schematically as de-
scribed above (see figure 1). More recently, Crutchfield and Young [6] and
Langton [12] each plotted complexity versus entropy from some real numer-
ical simulations. Although the two groups used different definitions of com-
plexity, different definitions of entropy, and different ensemble of sequences,
their plots are strikingly similar.

I will briefly discuss their results in the last section. But the main goal of
this paper is to show that it is possible to determine analytically a relationship
between complexity and entropy with a specific choice of the complexity and
a specific choice of the sequence ensemble. It will be shown that there is no
one-to-one relationship between complexity and entropy, but rather a one-
to-many or many-to-one relationship between complexity and entropy, which
strongly depends on the sequence ensemble being studied. The conclusion
from this study seems to be that there is no universal relationship between
complexity and entropy independent of the underlying sequences.

The paper is organized as follows: section 2 re-introduces the definition
of complexity used here and specifies which sequence ensemble I am going
to use; section 3 determines analytically the relationship between complexity
and entropy for one-step two-symbol Markov chains (and the result will be

presented graphically); section 4 presents the complexity-entropy relationship
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for two ensembles of sequences generated by regular languages; and section 4
discusses some complexity-entropy relationships studied by others.

2. Definitions

Since measures of the amount of correlation existing in the sequence provide
at least lower bounds of the complexity, I will use the “past-future mutual
information” as the measure of complexity (for a discussion of mutual infor-
mation, see [16, 14]). This quantity was used by Shaw in his study of the
symbolic sequences generated by dynamical systems [17], and later used by
Grassberger as a measure of complexity (he called it effective measure com-
plexity [7]). The definition is as follows. Partition an infinitely long sequence
in half. The two half-infinite sequences can be considered two patches on the
sequence whose lengths are M and N, respectively, in the limit as M and N
go to infinity. The block entropy of a patch S¥ with length N is

H(SY) = =3 P(S")logy P(S"), (1)
SN

where P(S¥) is the probability of a certain block configuration with length
N, and the base of the logarithm (K) is the total number of symbols (e.g.,
K = 2 for a binary sequence). The past-future mutual information C is

C=lim [H(8M) 4+ H(SN) = H(SMHN)], (2)

The Shannon entropy is the entropy per symbol in the infinite block-length
limit:

h= lim [H(SN*) — H(SY)]. (3)

Both the past-future mutual information C and the Shannon entropy h

have nice geometric interpretations in the block entropy H(S¥) plot: h is the

value of the slope of the limiting straight line that fits H(SV) as N — oo;

and C is the value of the y-intercept of this straight line [17] (see figure 2).
The proof is very simple. The limiting straight line that fits H(SV) is

Jim H(SY)=C+hN +¢(N), (4)
where €(INV) consists of all terms that increase less than linearly with N. Then
the trivial equations

(C+h(N+1))—(C+hN) h
(C+hM)+ (C+hN)—(C+h(N+M)) = C (5)

guarantee that the slope and the y-intercept are indeed the Shannon entropy
and the past-future mutual information. If one already knows the Shan-
non entropy h, the past-future mutual information C can be derived from
equation (4):

C = lim (H(SY) - hN), (6)
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Figure 2: Illustration of the block entropy H(SM) as a function of
the block length N. The slope of the limiting straight line is equal
to the Shannon entropy h; and the y-intercept of the line is equal
to the past-future mutual information, or the complexity C (plotted
according to a similar figure in reference [17].)

a formula that was once used as the definition of C' [7].

If the asymptotic behavior of H(S™) is not linear—for example, if H(S™)
increases as a power-law function with the scaling exponent smaller than 1
or as a logarithmic function—then our definition leads to zero h and infi-
nite C. This is the case when there are long-range correlations present in
the sequences. For example, this occurs in the symbolic dynamics at the
accumulation point of the period-doubling bifurcations [7]. When this hap-
pens, in principle one should use other definitions of complexity to further
distinguish different divergent Cs, a subject being actively studied [1].

In this paper, I deliberately avoid the divergence of C' by studying se-
quences with short-range correlations. In these sequences, the correlation as
a function of the distance between two symbols decays exponentially, and
the amount of correlation at long distances is negligible. As a result, the
past-future mutual information is always finite. Because of the short-range
correlation, the H(S™) may converge to the limiting straight line at a fi-
nite N, and both C and h can be easily calculated. These seemingly trivial
calculations nevertheless give us a handle with which to study exactly the
complexity-entropy relationship.

The sequences with short-range correlations are modeled by Markov
chains (in the study of stochastic processes) and by regular languages (in
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formal language theory).! In both Markov chains and regular languages,
the probability of a given symbol is completely determined by the preceding
symbol (for one-step Markov chains) or by the preceding patch of symbols
(for regular languages). Once we know all the transition probabilities, we are
able to calculate the block entropy. I will start with one-step Markov chains
in the next section.

3. Complexity-entropy relationship for one-step Markov chains

Since a Markov chain specifies the transition probabilities of having new
symbols knowing the past history, it is straightforward to relate the block
entropy of block length N + 1 with that of block length N:

H(SN+1) _ H(SN)
= — Y P(SM*Ylogy P(SMFY) + 3" P(SY)logk P(S™)

SN+1 SN

= —> P(sn) | D, T(sn — sny1)logg T(sy — sny1)
SN

SN+1

= =) P(s) logKHT(sas')”H” (7)

where sy is the last symbol of the block S¥ and sy,; is the last symbol
of the block S¥*!. Since the earlier history does not count, the transition
probability T'(sy — sy41) is independent of N (the notation T'(s — ')
is used to indicate this fact). Similarly, the density of a symbol s should
not depend on its location in the block, that is, P(sy) = P(s). The reader
should be able to derive equation (7) easily, or consult any information theory
book [10].

Because T'(s — ') and P(s) are not functions of block length N,
H(SN+1)—H(S") does not depend on N. In other words, H(S") approaches
the limiting straight line as soon as N is larger than 1:

H(SV)=H(S") + (N = 1)h, (8)
where H(S') = — Y, P(s)logg P(s). This leads directly to the expression
for C:

P(s)
[Ty T(s — sT(s—e)

C=H(S")—h=-)_P(s)logg 9)
If the maximum value H(S') = 1 is always reached (e.g., 0 and 1 appear
with equal probability for binary sequences), the upper bound of C' is 1 — h,
which is a straight line in the C-versus-h plot.

!The original purpose of formal language theory was to characterize a sequence as
being grammatically correct [8], whereas here we are more interested in being statistically
correct.
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Figure 3: Graphic representation of the one-step two-symbol Markov
chain. Each site in the sequence of the Markov chain is a link in this
graph, and each sequence is a path. The transition probabilities are
also included.

To be more specific, I will work out the example of the one-step two-
symbol Markov chains. The transition probabilities are

T(0—0)= p

T1—0)= 1—g (10)
T(1—-1)= g
which can also be represented as a transition matrix T:
0 1
_0f p 1-p
L= 1 <1 —q q ) (11)

where T;; = T(i — j).

This Markov chain is graphically illustrated in the simple directed graph
shown in figure 3. The densities of each symbol compose the left eigenvectors
of the transition matrix T with respect to the largest eigenvalue 1:

1—gq 1-p
P(0)=—2, P(1)=—=%, 12
O="7% PO)="7 (12)
where T' = 2 — p — ¢ is the normalization factor. From these densities, we
have )

1 - =

— 7 loga(1 =)' (1 = p)"; (13)

and from these densities as well as the transition probabilities, we have

H(S") = logy(T)

1—gq W . s
h=———log, p?(1 — p)' P——=log, ¢*(1 — ¢)' 7. (14)
T T
By equation (9), the complexity is equal to

P q(1—p)
I 1
ng 1 _ q + T ng

p(1—q)
T

q
I-p

C =1logy(T) + (15)



388 Wentian Li

1.00 : : :
0.75 -
0.50 4

0.25 T-.

0.00
0.00 0.25 0.50 0.75 1.00

h

Figure 4: Plot of C versus h for sequences generated by the one-step
two-symbol Markov chain. The transition probabilities p and ¢ are
chosen randomly.

Both C and h are functions of the parameters p and ¢. Fixing p and g,
one gets a single point on the complexity-versus-entropy plot. For example,
p = ¢ = 0 gives a point at h = 0 and C = 1 (it is the periodic sequence
...010101...). Different p, ¢ may give the same h value but different C
values (or vice versa), and we have the case of a many-to-one (or one-to-
many) relationship between complexity and entropy. Figure 4 shows the
C-versus-h plot when p and g are chosen randomly, and figure 5 shows the
same plot when ¢ is fixed and p is randomly chosen.

One main feature of this plot is that there are two branching areas with
dense dots: one toward the origin (h = 0 and C = 0, corresponding to
the all-zero or all-one sequences), and another toward the upper-left corner
(h = 0 and C = 1, corresponding to the period-two sequences). Zero C is
the case when the block entropy H(S!) is equal to the increment of block
entropy h = H(SN*') — H(SN) (for all N > 1), so the limiting straight line
passes through the origin. When this happens, the slope of the straight line
can still be any value between 0 and 1, so h can be arbitrary even though C
is kept at zero.

Similarly, zero h does not prevent C from being of any value. Whenever
the sequence is periodic, H(S") reaches a plateau. The slope of the limiting
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Figure 5: Plot of C versus h for one-step two-symbol Markov chains
while ¢ is fixed at 0, 0.1, 0.2, ..., 0.9, and p is chosen randomly.

straight line is always zero, but the height of the plateau, which is equal to
C, can be arbitrarily large if the periodicity of the sequence is arbitrarily
long.

By examining the above two extreme cases, it is easily understood why
the complexity-entropy relationship can be quite arbitrary. In fact, the slope
and the y-intercept are two independent parameters of a straight line. The
only reason that the two should be related after all is because the underlying
sequences can have certain structures such that the rise of H(SV) as N is
increased is restricted in certain ways. In the next section, I will examine the
complexity-entropy relationship when the underlying sequences are beyond
the one-step Markov chains.

4. Complexity-entropy relationship for some regular languages

Regular languages are very similar to higher-order Markov chains except
that different symbols in the corresponding Markov chain become the same
symbol in the regular language [13]. Figure 6 shows an example of a regular
language. Any path on the graph represents a grammatically correct word,
and the collection of all paths that are followed according to the indicated
transition probabilities represents an ensemble of sequences. Notice that
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Figure 6: The first example of the regular language grammar discussed
in section 4.

there are two 1s and three Os on the graph. Both 1s inject into the same
node so they represent the same history. Similarly, two out of the three Os
inject into the same node and they should also be the same. Nevertheless,
one of the 0Os (it is marked by 0') represents a different past history, though it
is “invisible” in the sequence (i.e., it will not be marked as 0’ in the sequence
generated by this regular language grammar).

The procedures to calculate C and h for sequences generated by this reg-
ular language grammar is the following: (1) calculate the Hj(SY) (subscript
M indicates the Markov chain) when the sequence is considered to consist of
three symbols (0, 0', and 1); (2) determine how the introduction of the ex-
tra symbol (0') overestimates the block entropy, where the overestimation is
§(N) = Hy(SN)—H(S™); (3) determine 6, which is either § = limy_,o, §(N),
or § = §(N) (when N > Np) if the limit is reached at some finite N; (4) fi-
nally, we have h = hy; and C = Cj; — 8, where hy; and C); are the Shannon
entropy and past-future mutual information for the corresponding Markov
chain, and h and C are those for the regular language.

To see how this works, consider the regular language grammar in figure 6.
The transition matrix for the corresponding Markov chain is

o 0o 1

0(/p O 1—p
T=0]|1 0 0 . (16)

1\0 1—g¢ q

By calculating the left eigenvector corresponding to the eigenvalue 1, we have
the densities of the three symbols:

Poy=129, poy=17RZD pyy 1o an)

where T' = 3 —2p— 2¢g+ gp is the normalization factor. The Shannon entropy
and the past-future mutual information are

l=p
T

Yo _ _
hat = ———2 log, pP(1 — p)*P — logy ¢%(1 — q)* ¢ (18)

T
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and
1-— 1—
Cu = logy(T) + —~ logyp? + — log, g*

~ 7 loga(1 — p)'P(1 - g)'" (19)

In order to determine §(N), a brute-force counting of the degenerate
blocks is carried out. For N = 2, there is only one block in the regular
language, 00, that has more than one corresponding block in the Markov
chain, 00 and 0'0. We have

= _(1—qp
PM(OO) = P(O)p = _T_
Pu(00) = P)=1721=P)
P(00) = Py (00) + Py(0'0), -

again, with the subscript M indicating the corresponding Markov chain. It
is easy to show that
6(2) = —Pu(00)log, Py (00) — Pys(0'0) log, Pys(00)
+P(00) log, P(00)
— l—g 1-p
= —— (log;pP(1~p)"7) (21)
For N = 3, there are four blocks in the Markov chain (000, 0’00, 001,

0'01) that are actually two blocks (000, 001) in the regular language. The
densities of these blocks are

N2
Pu(000) = P(o)p? = 1= 9F Tq)p
PM(OIOO) _ P(Ol)p — (1 — q);l '_p)p
L= 1-—
Pu(001) = P(O)p(1—p)= 221D
_ .
Pu(001) = PO)(1-p) = L=20=P
P(000) = P (000) + Py (0'00)
P(001) = Py (001) + Py (001). (22)
And the overestimation of the block entropy at N = 3 is ‘
8(3) = —P3(000)log, Pys(000) — Py (0'00) log, Pas(0/00)

— PM(OO].) lng PM(001) = PM(OIO].) 10g2 PM(OIOI)
+ P(000) log, P(000) + P(001) log, P(001)

= —1;qlog2p”(1 -p)'?=4(2) (23)
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Figure 7: Plot of C versus h for sequences generated by the regular
language grammar in figure 6 with randomly chosen p and gq.

Similarly, by counting the degenerate situation for larger blocks, it can
be shown that §(N) = 6(2), that is, the limit value of § = limy_,o 6(N)
is reached at N = 2. With the value of §, the complexity of this regular
language is

C = Cy—96
2(1 — . = "
= o) + 22D iog, 7 + =P 1og, g — L1og,(1 - )
1 =
— 7 logo(1—¢)'™* (24)

Figure 7 shows the complexity-entropy relation with p and ¢ randomly
chosen. One of the branches of dense dots at the upper-left corner represents
the period-three sequence (...100100100...). It is curious that there are
blank regions in the plot with no dots: one is below the period-three branch,
and another is near the maximum entropy and minimum complexity point.
Figures 8 and 9 show the “skeletons” of the relation presented in figure 7,
with either g or p being fixed. By comparing figure 7 with figure 4, one can
easily conclude that the complexity-entropy relationship strongly depends on
the sequence ensemble being studied. Different grammars generally lead to
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Figure 8: Similar to figure 7, but ¢ is fixed at 0, 0.1, 0.2,..., 0.9, and
p is randomly chosen.

different complexity-entropy relationships.

To end this section, I will calculate the complexity-entropy relationship
for another regular language, in which the limiting value of § = limy_,, 6(V)
is reached only when N is infinity. This regular-language grammar is shown
in figure 10. By tuning the parameter p from 1 to 0, one can transform the
generated sequence from the homogeneous all-zero sequence to the periodic
sequence ...101010.. ..

We first determine the Cjs and hys for the corresponding Markov chain
(with three symbols: 0, 0/, and 1). The Markov transition matrix is

00 1
0 /0 1 0
T=0]|p 0 1—-p]. (25)
1\0 1 0
The densities of the three symbols are
p / 1 1~ p
PO)=2z, P(0)=—-, P(1)=——. 2
=% PO)=3, PO)=— (26)
We have

1
hoyp = —510g2p”(1 -p)'? and Cy=1 (27)
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Figure 9: Similar to figure 7, but p is fixed at 0, 0.1, 0.2,..., 0.9, and
q is randomly chosen.

0 0

Figure 10: The second example of the regular language grammar dis-
cussed in section 4. It can produce either a homogeneous all-zero
sequence (when p=1) or a periodic sequence ...1010... (when p=0).
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The overestimation of the block entropy at N = 2 is

5(2) = —PM(OOI) logz PM(OOI) — PM(OIO) logz PM(OIO)
+P(00) log, P(00)
= P(00') + P(0'0) = P(0) + P(0')p = g + g =p; (28)
at N =3itis
_ Py @+p
6(3) = 5 log, Y (29)
and for all N, it is
5(2n) = p"
_ Pt (A+p)ttr

If 0 < p < 1, the complexity value defined in the infinite N limit is simply 1
because

C= A}im (Cy—6(N))=Cy =1. (31)
Nevertheless, if we first take the limit of p — 1, we have

1}520})1—13(0]” —§(N)) =0. (32)
This result is consistent with our intuition because p — 1 leads to the all-zero
sequence.

It is interesting to note that it is possible to have a complexity value
that is neither 1 nor 0 if the p — 1 limit and the N — co limit are taken
conspiratorially such that N ~ 1/log(p). This provides a perfect example for
illustrating that the complexity as defined in the infinite block-length limit
may not fit the intuition derived from finite sizes. And in many cases, a
single quantity as a measure of complexity is not enough. We might need
one measure at one length scale, and overall have a “spectrum of complexity
measures.”

5. Discussions

From the few examples presented in this paper, it can be seen that the
complexity-entropy relationship is typically one-to-many or many-to-one in-
stead of one-to-one. On the other hand, the dots in the complexity-versus-
entropy plot usually do not fill the plane uniformly. This means that there
are certain structures in the complexity-entropy relationship that depend on
the sequence ensemble from which the complexity-entropy relationship is de-
rived. The goal of studying the complexity-entropy relationship is to see how
this structure changes as a function of the sequence ensemble.
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Figure 11: The nearest-neighbor mutual information versus single-site
entropy H(S!) for configurations generated by two-dimensional eight-
symbol cellular automata (reproduced with permission from reference
[12, dissertation].)

In his study of cellular automata, Langton [12] plotted the nearest-
neighbor mutual information (setting M = N = 1 instead of the infinity
in equation (2)) as a function of the single-site entropy (H(S')). His plot
is reproduced in figure 11. For periodic sequences, the joint-block entropy
H(S'™1) is the same as the single-site entropy H(S*), so the mutual infor-
mation is equal to the single-site entropy. Thus it is not surprising that the
left boundary of the region with dots is a straight line with slope 1.2 If A is
used as the z axis in place of H(S'), the left boundary will approach the y
axis.

Crutchfield and Young [6] plotted something very similar, though in a
completely different context. They studied the symbolic dynamics of the
logistic map zsy1 = Az(1 — ) and generated binary symbolic sequences at
hundreds of different A values between 3 and 4. For each symbolic sequence,
they constructed a regular-language grammar that can reproduce the se-

2The slope in figure 11 is 3 because Langton studies the eight-symbol cellular automata,
and he normalizes the single-site entropy by the maximum value, which is 3, but does not
normalize the mutual information. The slope becomes 1 if both entropy and mutual
information are normalized.
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quence statistically. The logarithm (or the “plogp”-type logarithm) of the
size of this regular-language grammar is the complexity measure they use.
Since the symbolic sequences at certain A values can have extremely long-
range correlations that may not be characterizable by a regular language, a
cutoff of the maximum size of the regular-language grammar is applied. This
cutoff introduces a ceiling to the complexity value.

In Crutchfield and Young’s complexity-versus-entropy plot there is again
a left boundary of the region with dots, which is a straight line with slope
16. This value of slope is purely due to the choice of the x variable, which
is H(S'¥)/16. This is because the logarithm of the grammar size is closely
related to the past-future mutual information, which for periodic sequences
is equal to the plateau value of the block entropy H(SV). If we use z =
H(SM)/N and y = C = H(SY), it is clear that y = Nz.

In conclusion, when the past-future mutual information is used as a mea-
sure of complexity, its relation to the Shannon entropy for sequences of short-
range correlations can be determined analytically. It is observed that the
complexity-entropy relation depends on the specific structure of the short-
range correlations (which is captured by the “grammar”). Though only three
examples of the sequences with short-range correlations are studied in this pa-
per, the method is obviously applicable to other cases. It will be interesting
to see whether other regular-language grammars can produce complexity-
entropy relations that are dramatically different from what is derived in this

paper.
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