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Abstract. A t ransform is introduced that maps cellular automata
and discrete neural networks to dynamical systems on the unit in­
terval. This transform is a topological conjugacy except at countably
many points. In many cases, it gives rise to continuous full conjugates ,
in which case the transform preserves entropy. The transform also al­
lows transfer of many dynamical properties of continuous systems to
a large class of infinite discrete neural networks (including cellular au­
tomat a) . For instance, it is proved th at the network dynamics of very
simple classes of neural networks, even with highly symmetric archi­
tectures, have chaotic regions of evolut ion (in the sense of existence of
scrambled sets and configurat ions of arbitrarily large periods). These
results raise the possibility of fully modeling parallel computability on
real-valued dynamical systems by discrete neural networks.

1. Introduction

Certain typ es of neur al networks may be regarded as discrete models of
dyn amical systems for ph enomena hitherto deemed to be of a cont inuous
nature [17, 18, 21], and in their own right . They are also well-established
models of learning and cognit ion (see, for example, [22]). They are usually
described by simple local rules (mult iply-add-app ly a squashing fun ction )
that , when ap plied to a network of neuron-like cells, give rise to very complex
behavior . The st udy of the sp ecific pr operti es of their global behavior in
te rms of their local rules has become one of the most int erest ing and difficul t
pr oblems in the field .

On the other hand, dynamical sys te ms on cont inuous spaces, particularly
euclidean spaces, have long been objects of st udy as mathematical systems,
and their behavior is far better understood [8]. T he purpos e of this paper
is to present a techni que for study ing the long-t erm behavior of neural net­
works as dynamical syste ms via their cont inuous counte rparts on the uni t
interval. T he main tool is a tran sform for neural networks regard ed as dy­
namical syst ems on the Cantor set [9, 10, 12] to dyn amical syst ems on the
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euclidean unit n-dimensional cubes. Roughly speaking, the main result is
a met atheorem for transferr ing certain propert ies of real-valued dynamical
systems to propert ies of neura l networks.

Section 2 provides basic definitions of t he two models. Sect ion 3 present s
the main technical result s of the pap er . Sect ion 4 contains their proofs.
Finally, sect ion 5 points out some relat ed issues and problems of int erest for
fur ther research.

2. Definitions

The most common type of neural network is usually defined over a space
of real weight lat tices and sigmoid activat ion functions. Generally, however ,
implement ations of t hese networks take the form of discrete approximations.
For this and several other reasons pertaining to implementation, physical
realization , and measurement limitations [12], we consider a different kind
of discrete neural network. These networks have been considered before as
generalizat ions of cellular automat a [11, Theorem 2]. They also include gen­
era lizations of cellular auto mata [23] where t he underlying architecture is
homogeneous (can be coordinat ized by a finitely generated group) and the
act ivat ion fun ct ions identical for every node, alt hough not- necessarily on a
euclidean grid .

We assume that the act ivat ion levels A are simply a finite set that pos­
sesses some algebraic st ructure that allows addit ion and mult iplication. They
also have a special activation O. For convenience in the following definit ion ,
cellular space will refer to a pair (D , A ) consist ing of an activat ion set A and
a countable (finite or infinit e) , locally-finite, arc-weight ed digraph D on a
vertex set V .

Definition 2.1. An act ivat ion function is just a self-map j : A -> A that
fixes 0, that is, j (O ) = O. A (discrete) neural network is a triple N =
( D, A , {ji} ) consisting of a cellular space (D, A ) (whose activation set A has
an addit ive-m ult iplicative struct ure), and a family of activation functions f;,
one for each vertex i in D . Th e global dynamics ofN is defined by equation
(1) below.

An assignment x : V -> A of states to each cell i of a neural network
is called a total state or configuration, and the set of all configurat ions is
denoted C . For example, 0 and 1 are configurat ions consist ing of a 0 and a
1 at every cell, respectively. A pixel configurat ion ek associated with node k
is given by ef := Oki (Kronecker 's 0). The local dynamics of a neural network
induces a global dynamics T : C -> C given by

(1)

for all cells i E V.
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Theorem 2.1. [10, Theorem 3.2] A self-map T : C -+ C is realiza ble as an
activation global dynami cs of a neural network if and only if

1. T(O) = 0 ;

2. T is continuous;

3. T (ek ) has finite support for each pixel con figuration e" ; and

4. T = F 0 L, where L is a linear self-map of C and F is strictly local.

Here, F : C -+ C is stri ctly local if F (X)i = F (Xiei)i for all x and i .

This result can be considered a generalization of earlier cha racte rizations
by Hedlund [15] and Richardson [20] of the self-maps of euclidean config­
uration spaces realizabl e by cellular auto mata in one and arbit rary finite
dim ensions, resp ectively.

The set of all configurat ions of a neur al network with the prod uct topology
is a perfect , totally disconnected , compact metric space. A Canto r set is
characterized as a topological space precisely by these condit ions [16, p . 97].
Recall that the te rnary Cantor set C is the set of point s left in the unit interval
[0, 1] of the real line after first deleti ng its middl e third (~ , ~) , and t hen
cont inuing to delete the middle thirds of all remain ing intervals ad infini tum.
Under an encoding of this type, a neur al network dynamics becomes a self­
map

T:C -+C

of the middle-third Cantor set of the uni t int erval in the real line R sat isfying
cert ain condit ions equivalent to those in Theorem 2.1. Therefore, in the
remainder of t his pap er , suffice it to say that an infinite discrete neural
network is simply a cont inuous dynam ical system over the ternary Canto r
set . Since the Canto r set topology is induced from the uni t interval in the real
line by the embedding obtained from its construct ion , henceforth denoted I ,
one might hope that dynamical properti es of neur al networks may be st udied
via this embedding. This is the approach taken in this pap er .

The map ¢ defined below makes this program possible. Every x E C can
be expressed by a te rnary expansion not cont aining t he digit 1; that is,

where Xj = 0 or 1. Let ¢ : C -+ I be the map given by

¢ : C -+ I

¢ (x) l: x jbj
1

bj := ----:-
j~ l

21

(2)
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Thus a Cantor set point with finite (periodic) expansion is mapped by 1> into
a dyadic rational numb er (i.e., of form p/2 Q) with finite (periodic) bin ary
expansion. For example,

1>(0) 0
1> ( ~ ) 1>W= !
1>W 1>W = ~

1>W 1>W = ~,

and so forth . In genera l, 1> successively "closes up" the gaps of C in the
unit interval by piecewise affinely collapsing each of th e middle-third int er­
vals excised in the construction to the midpoint of ar ising subintervals of I ,
st ar t ing with collapsing [1 , ~] to !. Hence 1> is cont inuous everywhere. It is
also two-to -one on endpoints (points with event ually constant expansion of
Os and 2s) and bijective elsewhere in the ternary Cantor set .

There is a way to parameterize the un countab ly many right inverses of 1>
as follows. Let {In} be some enumerat ion of the intervals successively deleted
in the standard const ruction of t he Cantor set . Enumerate accordingly the
dyadic rationals of the unit interval. Identify the endpoints of In with 0 and 1
(say 0 := left and 1 := right ). Two endpoints of an In (equal or dist inct) will
be called adjacent. (0 and 1 ar e considered adjacent as well.) Thus the family
of inverses of 1> are in one-to-one correspondence wit h binary expansions x
of points in I. 1/;x will denote the inverse of 1> obtained by making the choice
corresponding to the nth digit X n of x as the inverse of the corres ponding
dyad ic point. Every choice of inverse images for finit e dyadic rational point s
gives rise to a right-inv erse 1/; given by

1/; : 1 f-+ C

1/; (~ Xj bj) (3)

(Not e 1/; is well defined despite the fact th at a real number x may have more
than one bin ary expansion x= I:j ~1 xjbd
D efinition 2.2. Given a right inverse 1/; of 1>, the 1/; transform of a neural
network T : C f-+ C into I is the self-m ap T..p of I given by the composition

T..p : I --> I

T,p(x) = 1>(T (1/;(x) )).
(4)

(5)

Conversely, given a mapping f : I --> I and a right inverse 1/; of 1>, one can
define an inverse 1/; transform by the composit ion

f ..p : C -->

f ..p (x )

C

1/;(T(1>(x))) . (6)

Likewise, one can define the 1/; transform of a neural network T into 5 1. It
is the quotient m ap of T..p obtained by identi fying the endpoints of I .
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Hen ce t he diagram

T
C -> C

4> 1 1 4>
I -> I

T",

405

(7)

commutes excep t maybe at t hose configurat ions belonging to an adjacent
pair. Most of the results of this paper deal wit h the cas e where 4> actually
gives rise to a full semiconjugation of the two systems T and Tv> for some
choice of invers e 7j; . T his is not always po ssible-see P roposi tion 3.2 below.

Definition 2.3. Let 4> : C --+ I be a continuous mapping on a Cantor set C.
A neural network T : C f-+ C is 4>-continuo us if the 7j; tran sform Tv> into 51 is
continuous for every 7j; .

Some resul t s on the qu est ion of what neural networks are 4>-cont inuous
can be obtained in terms of t he following not ions.

The well-know n cellular auto mata are particular cases of neural networks
[11, Theorem 2]. The configuration space of a binary neural network (in par­
t icular, a binary cellular auto maton) can be regarded as a vector space over
GF(2) with cellwise addit ion , the cells being t he vertices of the un derl ying
la t t ice. Linear cellula r automa ta are defined by convolut ions of type

L (X)i := L m j Xi_ j ,
jEN

where N is a finite sub set containing cell i = 0 and defining the neigh bors
of the origin , and m j are t he coefficients of L. Examples in one-d imensional
euclidean space are t he left shift , the self-map of C given by

(T(X)i = XiH

and t he right shift , given by

(T - 1(X)i = Xi- i '

For the sake of illu stration , the encoding of C into the middle-third Canto r
set C defined by the following homeom orphism will be used below. Given a
dou bly infinite binar y configuration c = (Ci) iEZ , let h i be the Cantor set
po int whose ternary expansion (Xi) i~ l is given by

Xi := hi(C)i '- 2Ci/ 2, z even

2 C (iH )/ 2 , else .

Thus hi conjugates every cont inuous self-map of C to a continuous self-map
of C and vice ver sa . For instance, t he one-dim ensional left-shift (right-shift )
of I is defined as t he 7j; t ransform (T il' , where (T is t he corresponding righ t
shift on C, and it will be denoted simply aI- see Proposition 3.2 below.
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It is interesting to note t hat for every ini tial po int with a finit e expansion,
iteration of 0"1 or 0"1

1 is eventually given by

1
O"l (X) = - x

4

These map s are well kn own in the dyn amical syste ms literature as B aker­
m aps.

The foregoing encoding of C to C can be readily modified to an encoding
of C to C x C, then to the uni t square I x I t hro ugh ¢> compo nentwise. (In fact ,
t his encoding was used in [14J to prove that discr-et e deterministic sys te ms
are capable of chaot ic behavior.) On e then obtains a two-dimensional ¢>
tran sform . T hese altern atives will not be pursued in this paper since a lot
more is known about dynamical systems on the line and circle than in higher
dimensional euclidean spaces.

A point x is n-periodic with resp ect to a dyn amics T if T n(x ) = x for
some n > 0, but T k(x) # x (0 < k < n) . T he po int is eventually periodic
if some image T m(x) is period ic with resp ect to T. Other dynamical system
terminology follows [8]. For instance, th e Sarkovskii or-der-is th e ordering of
the natural numbers by

3 I> 5 I> 7 I>
2.3 I> 2.5 I> 2.7 I>

22 .3 I> 22 5 I> 22. 7 I>

2n.3 I> 2n.5 I> 2n.7 I>

I> ... 23 I> 22 I> 2 .

T his ordering of the natural numbers is relevant to the existence of admissible
points of a given period in continuous self-maps of I or Sl [8, Theorem
1O.1J. The ordering is shown below to be relevan t to the existe nce of periodi c
configurat ions of neural network s as well.

3. R esult s

The following prop erties of ¢> follow eas ily from the definit ions in section 2.

P roposit ion 3. 1.

1. ¢ is con tinuous.

2. For any choice of x, 1/Jx is continuous ex cep t possibly in som e set of
dyadic points.

3. T ,px is Lebesgue integrable for any choice of x, and the value of the
in tegral is independent of 1/J .

4. A con tinuous 1/J transform on I is uniquely determined by the value of
i ts in tegral.
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The question of under what condit ions T induces a cont inuous map of 8 1

can be answered as follows.

Proposition 3 .2 . JET : C -+ C is continuous, then the following condit ions
are equivalent:

1. T is 1>-continuous.

2. T.,p induces a continuous m ap of 8 1 for some 'l/J .

3. T preserves adjacency (that is, if x , yare adjacent , so are T(x) ,T (y )).

4. T.,p is independent of 'l/J.

5. Diagram (7) comm utes (i.e., T.,p 0 1> = 1> 0 T ) for some (every) 'l/J .
6. T and T.,p are top ologically semiconj ugate for every 'l/J .

In this case , T.,p will simply be called the 1> t ra nsform of T , and will be
denoted T",.

One may wonder at this point about t he existence of neural networks sat­
isfying the conditions of Propositi on 3.2. The following construct ion provides
an infinite number of one-dimensional ¢>-cont inuous neur al netwo rks (in fact ,
cellular automata) for which the results below apply. We illust rate with a
typical example.

Given two subintervals J , K of I , let r J,K map J affinely onto K after
reflect ing J about its midpoint (i.e., it maps the left end of J to the right
end of K an d vice versa) . Let rJ := rJ,J. Let r1 ,2 : C -+ C be the self-map
of C defined as follows. On J 1 := [a,!], r acts as (the restrict ion of) rJ, (to
C). Likewise on J 3 := [ ~ , n But on the remaining set, r acts as r[H]. [ ~ , lJ

( x < ~) or its inverse (otherwise) . A picture shows immediately that r 1,2

preserves adjacent point s, and hence its 1> t ransform is cont inuous . For a
ternary expansion of x E C, r flips every digit except the first two, where 01
and 11 are mapped to 11 and 01, respectively, but 00 an d 10 are un changed.
(Thus r is not defined by a local ru le on the tern ary Cantor set.) Now it is
necessary to prove that r1 ,2 is in fact a cellular automaton.

Let T be the one-dimensional cellular automaton defined on 8 symbols
{a == 000, 1 == 001, 2 == 010, . . . . 7 == 111} as follows. Decode each Cantor set
point via h11 and t hen replace each bit b wit h b11 if it comes from the first or
second digit of t he expansion in the Canto r set , b10 ot herwise (11 in the last
two bits indicates a flip applied to the first bit ; the ot her three- OO, 01, and
l a- indicate which action to take for the two except ional cells). Let A be
the set of symbols of form *10 or *11. The map T is defined by a local rule 8
transforming each symbol in A exact ly the same way r1 ,2 does (modulo the
encoding). and mapping every ot her state to a ot herwise. Since T is defined
by a local rule map ping 0 to 0 , T is a cellular automato n on 8 symbols. By
constructio n. T can be conjugated to r 1,2 on C and therefore r 1,2 is indeed
a cellular automaton. With lit tle addit ional effort , it can be converted to a
bin ary one-dimensional cellular automaton with a neighborh ood of rad ius 6.
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The cont inuity of T", in Sl allows one to transfer properties of real-valued
dynami cal systems to neural networks. For inst ance, a very int eresting prop­
erty of one-dimensional systems over the reals is Sarkovskii's Theorem [8,
Theorem 10.1]. It simp ly says that if a cont inuous dynamics T : R f-7 R
has a point of per iod Po then it has a point of every ot her per iod p ~ Po in
Sarkovskii's order.

It is known that even linear cellular automata may have an infinit e num­
ber of forbidden periods . For instance , the linear map sum of 2 pixels
L = (10+(lm has no periodic points of period a power of 2 [7, remark 2.6]. This
means that a Sarkovs kii type st atement does not hold for cellular automata
in general. However , Sarkovskii's t heorem can be extended to 1>-cont inuous
neural networks as follows.

Theorem 3.1. If a neural network is 1>-continuous and it has a configuration
of period Po ~ 3 in Sarkovskii 's order, then it has points of every period
p ~ 2po, except possibly 2 or 4.

In particular, t he linear cellular automaton given by the pointwise sum
(10 + (1 m ment ioned above is not 1>-cont inuous.

The dynamical comp lexity of t he iteration of a dynamical system f can
be measured by its topological entropy [1]. Roughly speaking , ent ropy counts
the number of asymptot ically distinct orbits. The precise version used below
follows a more dynamical-system approach due to Bowen [6].

D efinition 3 .1. Let (X, d) be a compact m etric space and f : X --+ X be
a continuous self-map of X . Let n be a nonnegative integer and E > O. A
subset E <;;;; X is called (n, E) -spanning if for every x E X there exists a E E
such that d(ji(X), f i(a)) < E , for every i = 0, 1, .. . , n - 1.

The smallest cardinality of an (n,E)-spanning set is here denoted f(nf ) ,

or just n f if f is understood. Since X is compact , n f is finite. It usually
grows exponent ially fast with n. The growth rate of n f is measured by
lim sup ~ log n f •

D efinition 3.2. The topological entropy of f is given by

1
h(j) := lim lim sup - log n f •

E:~O n

The 'lj; transform also preserves a number of dynamically significant prop­
ert ies. For inst ance,

T heorem 3.2. The 1> transform preserves topological entropy.

The results above can be generalized as follows. Let a be a dynamical
property, that is, invariant under conjugacy. Say that a is localizable if,
whenever a map has a , there exist s an invariant , countable, and dense subset
E of X such that the rest riction of the map to the subspace X - E does not
have a . Ot herwise a is said to be nonlocalizable.
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Theorem 3.3. Every nonlocalizable property a is invariant under an arbi­
trary transform ¢ from C onto a space X that is continuous, finite-to-one 0 11,

and a homeomorphism outside, a countable dense subset; that is, if a neural
network T is ¢-cont inuous, then T has a if and only if Tq, does.

T he following properties are nonlocalizab le: sensitive dependence on ini­
ti al condit ions [8], chaoticity (in th e sense of Li and Yorke 's [19]), chain
recurrence, top ological mixing , and so forth .

4 . Proofs

Proof of Proposition 3 .1. The map ¢ is the rest ricti on of the Cant or­
Lebesgue function to the Ca ntor set; hence is it cont inuous since the top ology
in C is the topology induced from the unit interval. By delet ing all pairs of
adjacent po ints of the un it interval , the restrict ion of ¢ is st ill cont inuous,
and thus 'ljJx is also cont inuous except possibly at dyadi c poi nt s. This proves
(2). The third statement is an immediate consequence of (2). Now (4) follows
by pulling back T,p by any 'IjJ and recalling that , as a continuous map of C ,
T is det erm ined by its values in a dense subset .•

Proof of Proposition 3.2. (1) =* (2). Obv iously.
(2) =* (3). Two endpo ints a < b are adjacent iff ¢(a) = ¢(b). Assum e

T( ¢(a)) ¥ T( ¢(b). In order to prove that T,p is discontinuous for every
inverse 'IjJ , assume 'IjJ¢(a) = a (if it is b the argument is analogous) . Since
T,p = ¢T'IjJ , for any 'IjJ , T,p¢ (a) = ¢T(a). Let (xn ) be a decreas ing sequence
in I converging to ¢(a) so that 'IjJ (xn ) converges to b. Since ¢ and T are
continuous, ¢T'IjJ (xn ) converges to ¢T (b). Therefore T,p is discontinuous at
¢(a).

(3) =* (1). It suffices to show that T,p is cont inuous a t dyadi c points for
every 'IjJ. Let y be a dyad ic po int with ¢(a) = ¢(b) = y and a < b. Now

lim T,p (x ) = ¢T(a) ,
x-+y-

and likewise

lim T,p (x ) = ¢T (b).
x-+ y+

Since T preserves adjacent po ints, T,p is cont inuous at y , for every y .
(2) =* (4) . It is enough to verify equality at dyadic points y. Let 'ljJI, 'ljJ2 be

two right inverses of ¢. Since 'ljJ l (y ) and 'ljJ2(y ) are adjacent and T pr eserves
adjacent point s,

namely, T", is independ ent of 'ljJ .



410 On Dynamical Properties of Neural Networks

(4) =? (5). Diagram (7) always commutes at non-endpoints. If a is an
endpoint and 'I/; (¢ (a)) = a, applying ¢T proves the desired equa lity. Other­
wise, choose '1/; ' with 'I/;'(¢(a )) := a. Since T-,p is ind ependent of '1/; , it follows
that

T-,p ¢ (a) = T-,p,¢ (a))

= ¢T'I/;'¢>(a) = ¢>T(a).

Therefore diagram (7) commutes .
(5) =? (3). If ¢(a) = ¢( b), then since t he diagram commutes,

¢>T (a) T-,p ¢(a)

T-,p¢ (b) = ¢>T (b) ,

nam ely, T preserves adjacency.
Finally, (5) and (6) are clearly equivalent . •

Proof of Theorem 3.1. T his follows from the next two lemmas. •

Lemma 4.1. Let T be a ¢-continuous neural network.

1. If T has a periodic point of period t , then T4> has a periodic point of
period t or t /2 .

2. I f T4> has a periodic point of period t , then T has a periodic point of
period t or 2t.

Proof. If T t(x) = x, then TJ¢( x) = ¢T t'l/;¢(x ) = ¢(x ). Hence the period k
of ¢(x) divides t , say t = qk. Since T k(x) and x are adjacent, so are T 2k(X)
and T k(x ). Hence T 2k(X) = x or T 2k(X) = T k(x ). In the first case, k = tor
k = t / 2. In the second ,

x = T (q-2)kT2k(X) = T (Q-1 )k(X) ,

which is impossible since x has period t an d (q - l )k < t . The proof of (2)
is similar and will be omit ted.•

Lem m a 4 .2 . [3J Let f : 51 ----> 5 1 be a cont inuous self-map of the unit circle.

1. If Ideg(J)I > 1, then f has periodic points of all periods, except only
period 2 in the case deg(J ) = -2.

2. I f f has a fixed point and a periodic point of period no, then it has
periodic points of all periods n l> no.

P r oof of Theor em 3.2. Fi rst prove that h(T ) 2: h(T-,p ). Every (n , E)­
spanning set E(n,f) for T of mini mal cardina lity yields a spanning (n, E') set
¢( E(n,f») for T-,p , where

Ix- y[ < E =? I¢(x ) - ¢(y )1< E'.
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In fact , given x E I t here exists a E E(n.<) such that
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j = 0,1 , ... , n - 1 .

Therefore, for each j = 0, 1, . . . , n - I ,

I¢TJ7f; (x) - ¢T~ (a ) 1 = ITJ¢(x ) - T j ¢(a) 1< e'

T hus any minimal (n , £' )-spanning set F (n.<') for T,p sat isfies T(n <,) :::; (n <). It
follows that h(T,p) :::; h(T ).

The converse follows from an applicatio n of th e following result .

Theorem 4 .1. [6, Theorem 17J Let (X, d), (Y, d' ) be compact m etric spaces
and T : X -> X , s : Y -> Y , and onto tt : X -> Y be continuous maps. If
1r 0 T = s 0 tt , then

hd(T) :::; hd,(s) + sup hd(T, 1r - 1(y)) .
. yE Y

If m oreover X and Y are compact , then hd(T ) = h(T ) and hdl (s) = h(s).

Taking X := C, Y := I and 1r := ¢ , ¢- l has at most two points, so
hd(T ,¢-l (y)) =°for all y E I and therefore h(T ) :::; h(Tw).•

Proof of Theorem 3.3. Let E be an invari ant , countable, and dense
subset of X , so ¢-I (E) is also an invar iant , countable, and dense subse t D
of C. Since C is countable-dense homogeneous [2] (i.e., the homeomorp hism
group acts tr ansitively on countable dense subsets) , assume without loss of
generali ty that D is the set of endpoints. Since a is nonlocalizab le, T lc-D
satisfies a . Therefore, T4> lx -E also sa tisfies a by the dynam ical invarian ce of
a. •

5 . Conclusions and open problems

A new tool, the 7f; transform, has been introduced to transform neural net­
works into dynami cal sys tems on the uni t interval. T his tr ansform makes the
two systems conjuga te when the result ing system on I is continuous. This
happens pr ecisely when the tra nsform is independ ent of the inverse 7f; of ¢.
In this case the two dynam ical sys tems share all dyn amical properti es- for
instance, the same entropy and Sarkovskii pr op erty, and in general the same
nonlocal properties. T hese results hold more generally for au tomata net­
works since they too can be regar ded as, and can in many cases be simulated
by, cont inuous self-maps of the Can tor set [10, T heorem 3.3J

A 7f; tranform is an exactly computable self-map of the uni t interval in a
very pr ecise sense, since real valu es can be enco ded as configurat ions in some
configuration space and computed by a local rule (eas ily implementable on
a neural network) in on e step . A question of interest is to find an inherent
charact erizati on (in the Cantor set or the un it int erval) of dynamical systems
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that are computable in one ste p by a par allel computer (i.e., anse as 'l/;
t ransforms of some neural network).

More generally, one may allow iterat ion of the neural network (or cellu­
lar au tomaton rule) tran sform a variab le nu mber of t imes depend ing on the
input . (A fixed number of t imes reduces to the pr evious case since cellular au­
tomat a are closed under composit ion .) A second problem is to find necessar y
and sufficient condit ions for an f : I -+ I to be par allel computable.

A third quest ion is how t his notion compares to the notion of sequen­
tia l computab ility for dy nam ical sys tems based on uni t-cost real polynomial
arithm eti c intr od uced by [4].
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