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Abstract. A transform is introduced that maps cellular automata
and discrete neural networks to dynamical systems on the unit in-
terval. This transform is a topological conjugacy except at countably
many points. In many cases, it gives rise to continuous full conjugates,
in which case the transform preserves entropy. The transform also al-
lows transfer of many dynamical properties of continuous systems to
a large class of infinite discrete neural networks (including cellular au-
tomata). For instance, it is proved that the network dynamics of very
simple classes of neural networks, even with highly symmetric archi-
tectures, have chaotic regions of evolution (in the sense of existence of
scrambled sets and configurations of arbitrarily large periods). These
results raise the possibility of fully modeling parallel computability on
real-valued dynamical systems by discrete neural networks.

1. Introduction

Certain types of neural networks may be regarded as discrete models of
dynamical systems for phenomena hitherto deemed to be of a continuous
nature [17, 18, 21|, and in their own right. They are also well-established
models of learning and cognition (see, for example, [22]). They are usually
described by simple local rules (multiply-add-apply a squashing function)
that, when applied to a network of neuron-like cells, give rise to very complex
behavior. The study of the specific properties of their global behavior in
terms of their local rules has become one of the most interesting and difficult
problems in the field.

On the other hand, dynamical systems on continuous spaces, particularly
euclidean spaces, have long been objects of study as mathematical systems,
and their behavior is far better understood [8]. The purpose of this paper
is to present a technique for studying the long-term behavior of neural net-
works as dynamical systems via their continuous counterparts on the unit
interval. The main tool is a transform for neural networks regarded as dy-
namical systems on the Cantor set [9, 10, 12] to dynamical systems on the
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euclidean unit n-dimensional cubes. Roughly speaking, the main result is
a metatheorem for transferring certain properties of real-valued dynamical
systems to properties of neural networks.

Section 2 provides basic definitions of the two models. Section 3 presents
the main technical results of the paper. Section 4 contains their proofs.
Finally, section 5 points out some related issues and problems of interest for
further research.

2. Definitions

The most common type of neural network is usually defined over a space
of real weight lattices and sigmoid activation functions. Generally, however,
implementations of these networks take the form of discrete approximations.
For this and several other reasons pertaining to implementation, physical
realization, and measurement limitations [12], we consider a different kind
of discrete neural network. These networks have been considered before as
generalizations of cellular automata [11, Theorem 2]. They also include gen-
eralizations of cellular automata [23] where the underlying architecture is
homogeneous (can be coordinatized by a finitely generated group) and the
activation functions identical for every node, although not necessarily on a
euclidean grid.

We assume that the activation levels A are simply a finite set that pos-
sesses some algebraic structure that allows addition and multiplication. They
also have a special activation 0. For convenience in the following definition,
cellular space will refer to a pair (D, A) consisting of an activation set A and
a countable (finite or infinite), locally-finite, arc-weighted digraph D on a
vertex set V.

Definition 2.1. An activation function is just a selfmap f : A — A that
fixes 0, that is, f(0) = 0. A (discrete) neural network is a triple N' =
(D, A,{f:}) consisting of a cellular space (D, A) (whose activation set A has
an additive-multiplicative structure), and a family of activation functions f;,
one for each vertex i in D. The global dynamics of N is defined by equation
(1) below.

An assignment z : V — A of states to each cell ¢ of a neural network
is called a total state or configuration, and the set of all configurations is
denoted C. For example, O and 1 are configurations consisting of a 0 and a
1 at every cell, respectively. A pixel configuration e associated with node k
is given by e := 6;; (Kronecker’s §). The local dynamics of a neural network
induces a global dynamics 7' : C — C given by

T(I),‘ = fi (Z‘w,]ﬂi](t)) , (1)

for all cells i € V.
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Theorem 2.1. [10, Theorem 3.2] A self-map T : C — C is realizable as an
activation global dynamics of a neural network if and only if

1. T(0) = O;
2. T is continuous;
3. T(e¥) has finite support for each pixel configuration e*; and

4. T = F o L, where L is a linear self-map of C and F is strictly local.

Here, F : C — C is strictly local if F(z); = F(z;€'); for all x and 1.

This result can be considered a generalization of earlier characterizations
by Hedlund [15] and Richardson [20] of the self-maps of euclidean config-
uration spaces realizable by cellular automata in one and arbitrary finite
dimensions, respectively.

The set of all configurations of a neural network with the product topology
is a perfect, totally disconnected, compact metric space. A Cantor set is
characterized as a topological space precisely by these conditions [16, p. 97].
Recall that the ternary Cantor set C is the set of points left in the unit interval
[0,1] of the real line after first deleting its middle third (3,2), and then
continuing to delete the middle thirds of all remaining intervals ad infinitum.
Under an encoding of this type, a neural network dynamics becomes a self-
map

T:C—C

of the middle-third Cantor set of the unit interval in the real line R satisfying
certain conditions equivalent to those in Theorem 2.1. Therefore, in the
remainder of this paper, suffice it to say that an infinite discrete neural
network is simply a continuous dynamical system over the ternary Cantor
set. Since the Cantor set topology is induced from the unit interval in the real
line by the embedding obtained from its construction, henceforth denoted I,
one might hope that dynamical properties of neural networks may be studied
via this embedding. This is the approach taken in this paper.

The map ¢ defined below makes this program possible. Every z € C can
be expressed by a ternary expansion not containing the digit 1; that is,

.’L‘=letj tj Z=§,
j21
where z; = 0 or 1. Let ¢ : C — I be the map given by
¢p:C — I (2)

1
$a) = mb  bi=g

j21
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Thus a Cantor set point with finite (periodic) expansion is mapped by ¢ into
a dyadic rational number (i.e., of form p/2?) with finite (periodic) binary
expansion. For example,

$(0) = 0

$(3) = 6(3)=13
$(3) = ¢(3) =13
¢(3) = ¢(3) =1

and so forth. In general, ¢ successively “closes up” the gaps of C in the
unit interval by piecewise affinely collapsing each of the middle-third inter-
vals excised in the construction to the midpoint of arising subintervals of I,
starting with collapsing [3, 3] to <. Hence ¢ is continuous everywhere. It is
also two-to-one on endpoints (pomts with eventually constant expansion of
0s and 2s) and bijective elsewhere in the ternary Cantor set.

There is a way to parameterize the uncountably many right inverses of ¢
as follows. Let {I,} be some enumeration of the intervals successively deleted
in the standard construction of the Cantor set. Enumerate accordingly the
dyadic rationals of the unit interval. Identify the endpoints of I,, with 0 and 1
(say 0 := left and 1 := right). Two endpoints of an I,, (equal or distinct) will
be called adjacent. (0 and 1 are considered adjacent as well.) Thus the family
of inverses of ¢ are in one-to-one correspondence with binary expansions z
of points in I. 9, will denote the inverse of ¢ obtained by making the choice
corresponding to the nth digit z, of x as the inverse of the corresponding
dyadic point. Every choice of inverse images for finite dyadic rational points
gives rise to a right-inverse 1 given by

Y:I — C
Y (Z ijj) = Y zit;. (3)
i>1 i>1

(Note 1 is well defined despite the fact that a real number 2 may have more
than one binary expansion x = 3,5, 7;b;.)

Definition 2.2. Given a right inverse 1 of ¢, the ¢ transform of a neural
network T' : C +— C into I is the self-map Ty, of I given by the composition

Tz T == I (4)
Ty(z) = ¢(T(P(2))). (5)

Conversely, given a mapping f : I — I and a r1ght inverse ¢ of ¢, one can
define an inverse 1 transform by the composition

fo:C = C
fo@) = (T (4(x))). (6)

Likewise, one can define the 1 transform of a neural network T into S*. It
is the quotient map of Ty, obtained by identifying the endpoints of I.
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Hence the diagram

T
c — C
¢l ¢ (7)
I — I
Ty

commutes except maybe at those configurations belonging to an adjacent
pair. Most of the results of this paper deal with the case where ¢ actually
gives rise to a full semiconjugation of the two systems 7" and T}, for some
choice of inverse 1. This is not always possible—see Proposition 3.2 below.

Definition 2.3. Let ¢ : C — I be a continuous mapping on a Cantor set C.
A neural network T : C + C is ¢-continuous if the v transform Ty into S* is
continuous for every 1.

Some results on the question of what neural networks are ¢-continuous
can be obtained in terms of the following notions.

The well-known cellular automata are particular cases of neural networks
[11, Theorem 2]. The configuration space of a binary neural network (in par-
ticular, a binary cellular automaton) can be regarded as a vector space over
GF(2) with cellwise addition, the cells being the vertices of the underlying
lattice. Linear cellular automata are defined by convolutions of type

L(z); Z T 5

JEN

where N is a finite subset containing cell © = 0 and defining the neighbors
of the origin, and m; are the coefficients of L. Examples in one-dimensional
euclidean space are the left shift, the self-map of C given by

o(z); = Tipa
and the right shift, given by
o Hx); =z .

For the sake of illustration, the encoding of C into the middle-third Cantor
set C defined by the following homeomorphism will be used below. Given a
doubly infinite binary configuration ¢ = (¢;)iez, let h; be the Cantor set
point whose ternary expansion (z;);>1 is given by

x; == hy(c); = 2cin, ieven
= 2¢_(i41)/2, else.
Thus h; conjugates every continuous self-map of C to a continuous self-map
of C and vice versa. For instance, the one-dimensional left-shift (right-shift)

of I is defined as the 9 transform oy, where o is the corresponding right
shift on C, and it will be denoted simply o;—see Proposition 3.2 below.
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It is interesting to note that for every initial point with a finite expansion,
iteration of oy or 07! is eventually given by
1
o1(z) = i
These maps are well known in the dynamical systems literature as Baker
maps.

The foregoing encoding of C to C can be readily modified to an encoding
of C to CxC, then to the unit square I x I through ¢ componentwise. (In fact,
this encoding was used in [14] to prove that discrete deterministic systems
are capable of chaotic behavior.) One then obtains a two-dimensional ¢
transform. These alternatives will not be pursued in this paper since a lot
more is known about dynamical systems on the line and circle than in higher
dimensional euclidean spaces.

A point z is n-periodic with respect to a dynamics T if T™(z) = z for
some n > 0, but T*(z) # z (0 < k < n). The point is eventually periodic
if some image T™(z) is periodic with respect to T'. Other dynamical system
terminology follows [8]. For instance, the Sarkovskii order is the ordering of
the natural numbers by

3 > 5 b 7 >
23 D 25 > 27 p
> 227

223 > 25
"3 > 25 p 2"7 b

B .2 22 b 2.

This ordering of the natural numbers is relevant to the existence of admissible
points of a given period in continuous self-maps of I or S [8, Theorem
10.1]. The ordering is shown below to be relevant to the existence of periodic
configurations of neural networks as well.

3. Results

The following properties of ¢ follow easily from the definitions in section 2.
Proposition 3.1.

1. ¢ is continuous.

2. For any choice of z, v, Is continuous except possibly in some set of
dyadic points.

3. Ty, is Lebesgue integrable for any choice of x, and the value of the
integral is independent of 1.

4. A continuous v transform on I is uniquely determined by the value of
its integral.
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The question of under what conditions T induces a continuous map of S?!
can be answered as follows.

Proposition 3.2. If T : C — C is continuous, then the following conditions
are equivalent:

. T is ¢-continuous.

. Ty induces a continuous map of S* for some .

. T preserves adjacency (that is, if z,y are adjacent, so are T'(z),T(y)).
. Ty is independent of ).

. Diagram (7) commutes (i.e., T, 0 ¢ = ¢ o T') for some (every) 1.

S Ul R W N e

T and T, are topologically semiconjugate for every .

In this case, T, will simply be called the ¢ transform of T', and will be
denoted T.

One may wonder at this point about the existence of neural networks sat-
isfying the conditions of Proposition 3.2. The following construction provides
an infinite number of one-dimensional ¢-continuous neural networks (in fact,
cellular automata) for which the results below apply. We illustrate with a
typical example.

Given two subintervals J, K of I, let r;x map J affinely onto K after
reflecting J about its midpoint (i.e., it maps the left end of J to the right
end of K and vice versa). Let ry :=r;; . Let 715 : C — C be the self-map
of C defined as follows. On J; := [0, §], r acts as (the restriction of) r;, (to
C). Likewise on J; := [%, g] But on the remaining set, r acts as Ti2 118 )

9130lg?
(z < 3) or its inverse (otherwise). A picture shows immediately that 7,
preserves adjacent points, and hence its ¢ transform is continuous. For a
ternary expansion of x € C, r flips every digit except the first two, where 01
and 11 are mapped to 11 and 01, respectively, but 00 and 10 are unchanged.
(Thus r is not defined by a local rule on the ternary Cantor set.) Now it is
necessary to prove that r; s is in fact a cellular automaton.

Let T be the one-dimensional cellular automaton defined on 8 symbols
{0=000,1=001,2 =010,....7 = 111} as follows. Decode each Cantor set
point via k7! and then replace each bit b with b11 if it comes from the first or
second digit of the expansion in the Cantor set, b10 otherwise (11 in the last
two bits indicates a flip applied to the first bit; the other three—00, 01, and
10—indicate which action to take for the two exceptional cells). Let A be
the set of symbols of form %10 or %x11. The map T is defined by a local rule §
transforming each symbol in A exactly the same way 7, » does (modulo the
encoding). and mapping every other state to 0 otherwise. Since T is defined
by a local rule mapping O to O. T is a cellular automaton on 8 symbols. By
construction. T' can be conjugated to r15 on C and therefore r;, is indeed
a cellular automaton. With little additional effort. it can be converted to a

binary one-dimensional cellular automaton with a neighborhood of radius 6.
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The continuity of T}, in S* allows one to transfer properties of real-valued
dynamical systems to neural networks. For instance, a very interesting prop-
erty of one-dimensional systems over the reals is Sarkovskii’s Theorem [8,
Theorem 10.1]. It simply says that if a continuous dynamics 7 : R — R
has a point of period po then it has a point of every other period p B> po in
Sarkovskii’s order.

It is known that even linear cellular automata may have an infinite num-
ber of forbidden periods. For instance, the linear map sum of 2 pixels
L = ¢°+0™ has no periodic points of period a power of 2 [7, remark 2.6]. This
means that a Sarkovskii type statement does not hold for cellular automata
in general. However, Sarkovskii’s theorem can be extended to ¢-continuous
neural networks as follows.

Theorem 3.1. Ifa neural network is ¢-continuous and it has a configuration
of period py ™ 3 in Sarkovskii’s order, then it has points of every period
p B 2pyg, except possibly 2 or 4.

In particular, the linear cellular automaton given by the pointwise sum
0% + o™ mentioned above is not ¢-continuous.

The dynamical complexity of the iteration of a dynamical system f can
be measured by its topological entropy [1]. Roughly speaking, entropy counts
the number of asymptotically distinct orbits. The precise version used below
follows a more dynamical-system approach due to Bowen [6].

Definition 3.1. Let (X,d) be a compact metric space and f : X — X be
a continuous self-map of X. Let n be a nonnegative integer and ¢ > 0. A
subset E C X is called (n,€)-spanning if for every = € X there exists a € E
such that d(fi(z), fi(a)) <€, for every i =0,1,...,n — 1.

The smallest cardinality of an (n, €¢)-spanning set is here denoted f(n.),
or just n. if f is understood. Since X is compact, n. is finite. It usually
grows exponentially fast with n. The growth rate of n. is measured by
lim sup 2 log n..

Definition 3.2. The topological entropy of f is given by
1
h(f) == lirré lim sup — log n .
€— n

The 7 transform also preserves a number of dynamically significant prop-
erties. For instance,

Theorem 3.2. The ¢ transform preserves topological entropy.

The results above can be generalized as follows. Let o be a dynamical
property, that is, invariant under conjugacy. Say that o« is localizable if,
whenever a map has «, there exists an invariant, countable, and dense subset
E of X such that the restriction of the map to the subspace X — E does not
have . Otherwise « is said to be nonlocalizable.
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Theorem 3.3. Every nonlocalizable property « is invariant under an arbi-
trary transform ¢ from C onto a space X that is continuous, finite-to-one on,
and a homeomorphism outside, a countable dense subset; that is, if a neural
network T is ¢-continuous, then T has « if and only if T does.

The following properties are nonlocalizable: sensitive dependence on ini-
tial conditions [8], chaoticity (in the sense of Li and Yorke’s [19]), chain
recurrence, topological mixing, and so forth.

4. Proofs

Proof of Proposition 3.1. The map ¢ is the restriction of the Cantor-
Lebesgue function to the Cantor set; hence is it continuous since the topology
in C is the topology induced from the unit interval. By deleting all pairs of
adjacent points of the unit interval, the restriction of ¢ is still continuous,
and thus 1, is also continuous except possibly at dyadic points. This proves
(2). The third statement is an immediate consequence of (2). Now (4) follows
by pulling back T, by any % and recalling that, as a continuous map of C,
T is determined by its values in a dense subset. B

Proof of Proposition 3.2. (1) = (2). Obviously.

(2) = (3). Two endpoints a < b are adjacent iff ¢(a) = ¢(b). Assume
T(¢(a)) # T(¢(b). In order to prove that T, is discontinuous for every
inverse v, assume ¥¢(a) = a (if it is b the argument is analogous). Since
Ty = ¢T, for any 9, Typ(a) = ¢T(a). Let (z,) be a decreasing sequence
in I converging to ¢(a) so that 1(z,) converges to b. Since ¢ and T are
continuous, ¢T)(z,) converges to ¢T'(b). Therefore Ty is discontinuous at
H(a).

(3) = (1). It suffices to show that T} is continuous at dyadic points for
every 1. Let y be a dyadic point with ¢(a) = ¢(b) =y and a < b. Now

lim Ty(z) = ¢7(a),
E—’y_
and likewise

lim T,(z) = ¢T(b).

z—yt

Since T preserves adjacent points, Ty is continuous at y, for every y.

(2) = (4). It is enough to verify equality at dyadic points y. Let 1,5 be
two right inverses of ¢. Since 9;(y) and 1,(y) are adjacent and T preserves
adjacent points,

Ty, (y) = ¢Te1(y) = ¢T9a(y) = Ty, (),

namely, T}, is independent of 9.
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(4) = (5). Diagram (7) always commutes at non-endpoints. If a is an
endpoint and 9 (¢(a)) = a, applying ¢T proves the desired equality. Other-
wise, choose 1’ with 9'(¢(a)) := a. Since Ty, is independent of v, it follows
that

Il

Ty¢(a) Ty ¢(a))

¢TY'¢(a) = ¢T(a).

Therefore diagram (7) commutes.
(5) = (3). If ¢(a) = ¢(b), then since the diagram commutes,

¢T(a) = Tyd(a)
= Tyo(b) = ¢T(b),

namely, T preserves adjacency.
Finally, (5) and (6) are clearly equivalent. B

Proof of Theorem 3.1. This follows from the next two lemmas. B

Lemma 4.1. Let T be a ¢-continuous neural network.
1. If T has a periodic point of period t, then T, has a periodic point of
period t or t/2.

2. If Ty has a periodic point of period t, then T has a periodic point of
period t or 2t.

Proof. If T*(z) = x, then Tj¢(z) = ¢T*p¢(x) = $(x). Hence the period k
of ¢(z) divides t, say t = qk. Since T*(z) and x are adjacent, so are T%(z)
and T*(z). Hence T?(x) = z or T?(z) = T*(z). In the first case, k =t or
k =t/2. In the second,

z = T DrT2k(g) — T(q_l)k(x) ,

which is impossible since = has period ¢ and (¢ — 1)k < t. The proof of (2)
is similar and will be omitted. B

Lemma 4.2. [3] Let f : S* — S* be a continuous self-map of the unit circle.
1. If |deg(f)| > 1, then f has periodic points of all periods, except only
period 2 in the case deg(f) = —2.

2. If f has a fixed point and a periodic point of period ng, then it has
periodic points of all periods n > ng.

Proof of Theorem 3.2. First prove that h(T) > h(Ty). Every (n,e€)-
spanning set E, ) for T' of minimal cardinality yields a spanning (n, €') set
#(En.e) for Ty, where

[z —y| < e=|g(z) — (y)| < €.
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In fact, given x € I there exists a € E(, ) such that
|Ti%(z) —T(a)| <e j=0,1,...,n—1.
Therefore, for each j =0,1,...,n—1,
T3 (@) — 6Tj(a)] = [Tjb(z) — T'¢(a)| < ¢

Thus any minimal (n, €')-spanning set F{, ¢ for Ty satisfies T'(ne) < (ne). It
follows that h(Ty) < h(T).
The converse follows from an application of the following result.

Theorem 4.1. [6, Theorem 17] Let (X, d), (Y,d') be compact metric spaces
andT : X —- X,s:Y =Y, and onto 7 : X — Y be continuous maps. If
moT = som, then

ha(T) < ha(s) + sup ha(T, 77 (y)) .
yeY

If moreover X and Y are compact, then hy(T) = h(T) and hg(s) = h(s).

Taking X := C,Y := I and 7 := ¢, ¢! has at most two points, so
ha(T, ¢~ (y)) = 0 for all y € I and therefore h(T) < h(Ty). B

Proof of Theorem 3.3. Let F be an invariant, countable, and dense
subset of X, so ¢7!(E) is also an invariant, countable, and dense subset D
of C. Since C is countable-dense homogeneous [2] (i.e., the homeomorphism
group acts transitively on countable dense subsets), assume without loss of
generality that D is the set of endpoints. Since « is nonlocalizable, T|c_p
satisfies . Therefore, Ty|x_g also satisfies o by the dynamical invariance of

o |

5. Conclusions and open problems

A new tool, the v transform, has been introduced to transform neural net-
works into dynamical systems on the unit interval. This transform makes the
two systems conjugate when the resulting system on I is continuous. This
happens precisely when the transform is independent of the inverse ¢ of ¢.
In this case the two dynamical systems share all dynamical properties—for
instance, the same entropy and Sarkovskii property, and in general the same
nonlocal properties. These results hold more generally for automata net-
works since they too can be regarded as, and can in many cases be simulated
by, continuous self-maps of the Cantor set [10, Theorem 3.3]

A 1 tranform is an ezactly computable self-map of the unit interval in a
very precise sense, since real values can be encoded as configurations in some
configuration space and computed by a local rule (easily implementable on
a neural network) in one step. A question of interest is to find an inherent
characterization (in the Cantor set or the unit interval) of dynamical systems
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that are computable in one step by a parallel computer (i.e., arise as
transforms of some neural network).

More generally, one may allow iteration of the neural network (or cellu-
lar automaton rule) transform a variable number of times depending on the
input. (A fixed number of times reduces to the previous case since cellular au-
tomata are closed under composition.) A second problem is to find necessary
and sufficient conditions for an f : I — I to be parallel computable.

A third question is how this notion compares to the notion of sequen-
tial computability for dynamical systems based on unit-cost real polynomial
arithmetic introduced by [4].
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