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Abstract. We study the evolution of a coupled map lattice in two
dimensions with strong coupling. We show the tendency of such sys-
tem to assume (quasi) homogeneous space configurations evolving in
time. We describe the mechanism of this phenomenon.

Coupled Map Lattices (CMLs), which were introduced rather recently
[1, 2], now serve as one of the most useful and powerful instruments for
understanding the dynamics of spatially extended systems. The main activity
in this field is directed toward the study of the behavior of Coupled Map
Lattices for small or moderate values of the spatial interactions [2]. This is
natural because one of the main reasons for introducing this class of models is
to use the information about the motion of the finite-dimensional dynamical
systems that are used as local maps (i.e., those that act at each site of the
lattice) in order to understand some features of the dynamics of CMLs. A
new approach to this problem was developed in [3], where for some CML with
diffusive coupling a thermodynamic formalism was constructed that allows
representation of the corresponding infinite-dimensional dynamical system as
some lattice model of statistical mechanics. The presence of space variables
in CMLs implies that this model of statistical mechanics is at least two-
dimensional, in contrast to point (non-extended) dynamical systems where
the thermodynamic formalism always leads to one-dimensional models of
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statistical mechanics. It was proved in [3] that the corresponding model of
statistical mechanics in the region of high temperature (corresponding to
weak spatial interactions in CMLs) has no phase transitions. The conjecture
formulated in [3] is that, for strong spatial interactions, this model has some
phase transition and that the emerging new phases could be interpreted as
coherent structures in the corresponding CML. This conjecture was confirmed
in [4], where the first investigation was performed of this phenomenon in the
region of local chaotic dynamics, with strong spatial interactions for one-
dimensional CMLs generated by the logistic map with a diffusive coupling.

Here we study the region of the strong spatial interactions for a two-
dimensional CML of the same type. The dynamics of the system under
investigation is given by

25 = (1= f ) + 7 2 (£l + F=L3) (1)

kl»kz

where ky =i+ 1, k; = j £ 1, and f(z) is the logistic map, namely, f(z) =
az(l —z), 0 < a < 4. It is known [5] that this map exhibits stable periodic
as well as chaotic behavior, depending on the value of a. We are interested in
the case where the system is chaotic, that is, a. < a < 4, where some periodic
windows have to be excluded. here a, = 3.5699456 . .. is the accumulation
point for the period-doubling cascade [5].

For such values of a and small e the system exhibits space-time chaos [2] in
both one- and two-dimensional lattices. It was discovered in [4] that, for large
values of €, there is an interval (e..1(a),e.2(a)) of values of the parameter €
where the one-dimensional CML has a stationary solution that is a standing
wave in space with period 2. This solution is stable [4, 6] in some more
narrow range of parameters €, and it can be considered the simplest coherent
structure of the corresponding CML (spatially homogeneous solutions are
unstable for these values of the parameter [4, 6]).

In our computer experiments we have considered a square lattice with
100 x 100 sites. The parameter value a = 3.6 corresponds to the existence
of a single invariant measure for the one-dimensional transformation that is
absolutely continuous with respect to the Lebesgue measure on [0,1]. This
measure is concentrated in two disjoint subintervals

I, I, C [0,1] such that f(I,) = L, f(I2)=

We found that in the range (€. 1,€q2) the system (1) again has a station-

ary state that has the form of a chess board (figure 1). This means that, for
all p=10,1,2::44 f?)—al—-al( ) if (i 4 j) is even and 2" iy ) = ay = ay(e) if
(t+7)is odd (or vice versa), where a;(¢) € I; and ay(e) € I,. These values

satisfy the equations

(1—¢)f(a)+eflaz) =a

(1—¢)f(ag) +¢ flar) = a (2)
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Figure 1: Chess-board configuration. At each point the value of the
variable is represented by the direction of the corresponding vector.

Directions in the upper half-plane correspond to I; and directions in
the lower half-plane to Is.

The domain on the plane of parameters (a,e), where the correspond-
ing chess-board configurations exist, is in fact the same as for the above-
mentioned standing waves in the one-dimensional case [4, 6]. The analytical
expression for the wave has already been given. In the case a = 3.6 we have
€1 & 0.86, ei;0 = 0.95. These two chess-board-like coherent structures
are stable in some more narrow interval (. ,(a),e’ ,(a)). Clearly, because
of some symmetry in (1), this time-independent chess-board solution corre-
sponds to the cycle of period 2 with the same spatial structure, but alternat-
ing in time (from black to white and vice versa). The reason for this is that
we can read (2) as an equation for the same system, but where ¢ is replaced
by (1 —¢).

Coming back to the time-independent, chess-board-like solution of (1),
this is preserved as soon as the initial conditions are inside an interval I''o>r
(I'; D I3) that does not contain a, (a;). In other words, a perturbed value
in the “black” (“white”) state of the chess board cannot yield the state of

the chess board with opposite color. This condition defines the basin of
attraction of the chess-board state of the lattice.

The generic initial state (i.e., the one where, at each site, the value is
randomly taken in [0, 1]) does not evolve to this coherent structure. Therefore
we performed other types of computer experiments to study the regime of
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spatial coexistence of the chess-board structure with the state corresponding
to randomly chosen initial conditions in [0, 1]. In those experiments the sites
of a square of side L were initiated randomly in the interval [0, 1], whereas
the remaining sites of the lattice were in the chess-board configuration (see
figure 2). We found that there is a critical value L. such that, if L < L., the
chess-board state survives; otherwise it dies.

It is natural to compare this result with those that were obtained for the
model (1) in the region of small and moderate space interactions [7]. In the
latter case the motion of the CML is chaotic. It was found [7] that there
are three different cases for the behavior of the system (1) (in the square
with side L, and with periodic boundary conditions). These cases are the
following: (i) 1 < L < 8; (i1)) 9 < L < 14; and (iii) L > 15. In the first
and third regions the largest Lyapunov exponent of the system is strictly
positive and has some values well separated from zero. On the boundaries
of the intermediate region the Lyapunov exponent suddenly falls to zero.
Our results show that, to survive, the length of the chaotic state has to be
at least of the order of the low boundary of the intermediate region. The
reason is that, to destroy the chess-board (regular) structure, one needs a
sufficiently large set of sites moving chaotically in time. In other words, in
the region of the parameter for which the chess-board configuration has a
basin of attraction corresponding to its stability domain, the spatial size of
the chaotic perturbation needed to get out of this basin needs to be larger
than the first threshold found in [7].

The last issue that we want to address refers to the region of the strongest
spatial interaction (e close to 1) where the chess-board coherent structure
loses its stability. We considered the range of parameters 0.94 < e < 1. The
corresponding results are represented in figure 3. Let us be reminded that
we are in the situation where, for the map f, there are two intervals that
attract almost all points of [0, 1] and transform one into the other. Therefore
it is natural also to expect to have in the CML (1) some of these features,
namely period two in time and the presence of subsets in the phase space
that correspond to the jumps from one interval to the other.

To test these ideas we used in our experiments initial conditions of the
following three types: (i) random uniform distribution in the whole segment
[0,1] for the initial value at each site; (ii) at sites of the upper (lower) half
lattice the initial values were taken with uniform distribution in two inter-
secting segments 'y D I; (2 D I); (iii) at sites of the upper (lower) half of
the lattice, the initial values were taken with uniform distribution in I; (I2).

The main property that we discover was that in all three cases there ap- -
pear large domains where at each time step the state of the lattice is (quasi)
homogeneous (figure 3). In case (i) this domain fills the whole lattice (fig-
ure 3(a)); in the opposite case (iii) as expected there are two regions in the
lattice—the upper and lower halves—and, at each step, each region appears
in a (quasi) homogeneous configuration but with different phases (figure
3(b)). Finally, in the intermediate case (ii) the lattice is divided into do-
mains of (quasi) homogeneity with more complicated shapes but with rather
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smooth boundaries. These results show that the CML (1) has, for strong
spatial interactions, the evident tendency to end up in space-homogeneous
states. This is rather natural because of the diffusive coupling that makes
the state of the system more homogeneous. On the other hand, since f rep-
resents a (local) force in (1)—which tends to make the motion at each site
chaotic—the final issue should be the result of this balance. The analysis of
such a mechanism is discussed in the remainder of this paper. Let us give the
condition of the success of the first of these tendencies. Then we can show
that these conditions are satisfied in our case.

Let us begin, for simplicity, with a one-dimensional lattice and let us take,
instead of f, the so-called tent map, which is uniformly expanding:

flz)=2z if 0<z< (3)

N | =

and
o
fle)=2-2z if §<:r.§1.

Let € = 1. Then we get

ay ) = ( D+s f( e (4)
Therefore
iUEZ;I) €z n+1 _f( z+3) ;f(fii)l) (5)

It is easy to check that if

n n 1
0<x()1 and r§+)3§§
or
I m (n)
1< and o<1 | (6)
then in the relation
+1 +1
oY — 2] < Jalth — =) (™)

the equality holds. In all the other cases the right side of (7) is strictly larger
than the left side. Hence the values at different sites of the odd sublattice
tend to be equal, as do those of the even sublattice. Let us mention that for
the logistic map this process fails in the vicinity of points where the derivative
is in modulus less than 1, but is even more intense for the remaining points.

Now we shall show how the whole lattice tends toward the equilibrium
state. Let

2 =g = .. = g
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and

emaft) = ol = e =l

Then the corresponding map

agn) agn-d-l)
—
agn) CLgn+l)

preserves the Lebesgue measure in the unit square. Therefore, according
to the Poincaré recurrence theorem, at some moment n + m we may have
al™™  a§"t™ But then, if € is not strictly equal to 1 because of diffusive
coupling, the system evolves to a (quasi) homogeneous equilibrium state.
The (maximal) derivatives of f2 are equal to 2.8 and 2.4 at the ends of
our interval. Therefore this mechanism can work perfectly since inside this
interval the modulus of the derivative tends toward zero.

It is also easy to see that for two-dimensional lattices it works even better
(it was mentioned before [8] that in two or higher dimensions the CML has
stronger homogeneous properties than in one dimension).

Notice, finally, the presence of time period 4 in all the cases shown here.
This corresponds [4] to the bifurcation that occurs in the map (2) after the
chess-board state (or standing wave in the one-dimensional CML) loses its
stability.
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