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Abstract . We st udy t he evolution of a coupled map la t t ice in two
dimensions with st rong coupling. We show t he tenden cy of such sys­
tem to ass ume (quas i) homogeneous space configur a t ions evolving in
time. We describe the mechanism of t his phenomen on.

Coupled Map Lat ti ces (CM Ls), which were int roduced rather recently
[1, 2], now serve as one of the most useful and powerful instruments for
underst anding the dyn ami cs of spatially extended systems. The main act ivity
in this field is direct ed toward the study of the behavior of Coupled Map
Latti ces for small or moderate values of the spat ial interactions [2]. This is
natural becaus e one of the main reasons for introducing thi s class of mod els is
to use the information about the moti on of the finite-dimensional dynami cal
syst ems that are used as local map s (i.e., those that act at each site of the
lat t ice) in order to underst and some features of the dynamics of CMLs. A
new ap proach to this problem was developed in [3], where for some CML with
diffusive coupling a thermod ynami c formalism was cons tructed that allows
representati on of the corres ponding infinite-dimension al dynami cal sys tem as
some latti ce model of stat ist ical mechani cs. The pr esence of space vari abl es
in CMLs implies that this mod el of statist ical mechani cs is at least two­
dimensional , in cont rast to point (non-extended) dynami cal sys tems where
the thermo dynamic formalism always leads to one-dimensional mod els of

' This work was performed at the Institute for Scientific Interchange, Torino, Italy,
during the workshop "Evolution and Complexity" (April to July, 1990).
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statist ical mechani cs. It was proved in [3] that the corresponding model of
stat ist ical mechanics in the region of high temperature (corresponding to
weak spat ial interacti ons in CM Ls) has no phase t ransit ions. The conject ure
formulated in [3J is that , for strong spatial interacti ons, this model has some
phas e transit ion and that the emerging new ph ases could be interpreted as
coherent struct ur es in the corres ponding CM L. This conjec ture was confirmed
in [4] , where the first investigat ion was performed of this phenomenon in the
region of local chaot ic dynamics, with strong spatial int eracti ons for one­
dimensional CMLs generated by the logisti c map with a diffusive coupling.

Here we st udy the region of the st rong spatial interactions for a two­
dimensional CML of the same type. The dynami cs of the system under
investigation is given by

(1)

where k1 = i ± 1, kz = j ± 1, and f( x) is the logistic map , namely, f( x) =
ax(l - x ), 0:::; a :::; 4. It is known [5] that this map exhibits stable periodic
as well as chao t ic behavior , dep ending on the value of a. We are interest ed in
t he case where the system is chaot ic, that is, ac < a :::; 4, where some period ic
windows have to be excluded . here ac = 3.5699456 . . . is the accumulat ion
po int for the period-doubling cascade [5].

For such values of a and small C the system exhibits space-t ime chaos [2J in
both one- and two-dimensional lat tices. It was discovered in [4J that , for large
values of e, there is an interval (ccr1(a),CcrZ(a)) of values of the parameter C
where the one-dimensional CM L has a stat ionary solution that is a st and ing
wave in space wit h period 2. T his solution is stable [4, 6J in some more
narrow ran ge of par am eters e, and it can be considered the simplest coherent
st ruc tur e of t he corre sponding CML (spat ially homogeneous solutions are
unstable for these values of the parameter [4, 6]).

In our computer exp eriments we have considered a square lat tice wit h
100 x 100 sites. The paramet er value a = 3.6 corresponds to the existence
of a single invari an t measure for the one-dimensional transformation that is
absolutely cont inuous with respect to t he Lebesgue measure on [O, lJ. This
measure is concent ra ted in two disjoint subint ervals

We found that in the range (cerl ' ccrz ) the system (1) again has a st at ion­
ary state that has the form of a chess board (figure 1) . This mean s that , for

all n= 0,1 ,2, ... , x;Jl = al = al(C) if (i + j) is even and x;Jl = az = az(c) if
(i + j ) is odd (or vice versa), where al(C) E II and az(c) E I z. These valu es
satisfy the equat ions

(1 - c) f(a l) + e f (az) = al

(1 - c) f(az) + e f (al ) = az
(2)
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Figure 1: Chess-board configuration. At each point the value of the
variable is represented by the direction of the corresponding vector.
Directions in the upper half-plane correspond to h and directions in
the lower half-plane to 12 .

T he domain on the plane of param et ers (a,c), where t he corres pond­
ing chess-board configurat ions exist, is in fact the same as for the above­
mentioned stand ing waves in the one-dimensiona l case [4, 6] . T he analytical
express ion for the wave has already been given. In the case a = 3.6 we have
Cerl ~ 0.86, Cer2 ~ 0.95. These two chess-board-like coherent st ructures
are stable in some mor e narrow interval « ;1(a),c~r 2 (a)). Clearly, because
of some symmetry in (1), this time-independent chess-board solution corre­
sponds to the cycle of period 2 with the same spatial st ructure , but altern at ­
ing in t ime (from black to white and vice versa). T he reason for this is that
we can read (2) as an equat ion for the same system, bu t where e is replaced
by (1 - c).

Coming back to the t ime-independent, chess-board-like solution of (1) ,
this is preserved as soon as the initi al condit ions are inside an interval f 1 ::> I I
(f 2 ::> 12) that does not contain a2 (al)' In ot her words, a pertur bed value
in the "black" ("white ") state of the chess board cannot yield the state of
the chess board wit h opposite color. T his cond it ion defines the basin of
attraction of the chess-board state of the lat t ice.

T he generic init ial state (i.e. , the one where, at each site , the value is
randomly taken in [0, 1]) does no t evolve to this coherent st ructure. T herefore
we perform ed ot her types of computer experiments to st udy the regime of
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spatial coexistence of the chess-board stru ct ure with the state corresponding
to randomly chosen initial condit ions in [0,1 ]. In those experiments the sites
of a square of side L were init iated randomly in the interval [0,1], whereas
the remaining site s of the lat t ice were in the chess-board configuration (see
figure 2). We found that there is a crit ical value L; such that , if L < Lc ' t he
chess-board state survives; ot herwise it dies.

It is natural to compare this resul t with those that were obtained for the
model (1) in the region of small and modera te space interacti ons [7]. In the
la t ter case the motion of the CML is chaotic. It was found [7J that there
are three different cases for the behavior of the system (1) (in the square
with side L , and with period ic boundar y conditions). T hese cases are the
following: (i) 1 :::; L :::; 8; (ii) 9 :::; L :::; 14; and (iii) L :2: 15. In the first
and third regions the largest Lyapunov exponent of the system is st rict ly
positive and has some valu es well separated from zero. On the boundaries
of the intermediate region the Lyapunov exponent suddenly falls to zero .
Our results show that , to survive, the length of the chaot ic state has to be
at least of the order of the low boundary of the int ermediate region . The
reason is that , to dest roy the chess-board (regular) st ruc ture, one needs a
sufficiently large set of sites moving chao t ically in t ime. In ot her words, in
the region of the par am eter for which the chess-board configuration has a
basin of at trac t ion corresponding to its stability domain , the spat ial size of
the chaot ic pert ur bation needed to get out of this basin needs to be larger
than the first thresho ld found in [7].

The last issue th at we want to address refers to the region of the st rongest
spatial interaction (E close to 1) where the chess-board coherent structure
loses its stability. We considered the ran ge of par ameters 0.94 :::; E :::; 1. T he
corre sponding resu lts are represented in figur e 3. Let us be remind ed that
we are in the situat ion where, for the map I , t here are two interva ls that
at t ract almost all points of [0, 1J and tran sform one into the ot her. Therefore
it is natural also to expect to have in the CML (1) some of these features,
namely period two in time and the presence of subsets in the phase space
that correspond to the jumps from one interval to th e other.

To test these ideas we used in our experiments init ial condit ions of the
following three typ es: (i) random uniform distribution in the whole segment
[O ,IJ for the ini tial valu e at each site; (ii) at sites of the up per (lower) half
lat t ice the ini ti al values were taken with uniform dist ribut ion in two inter­
sect ing segments I'i :J I I (f 2 :J 12 ) ; (iii) at sites of the upper (lower) half of
the lat tice, the init ial values were taken with uniform distribution in II (12).

T he main property that we discover was that in all thr ee cases there ap­
pear large domains where at each time st ep the state of the lat t ice is (quasi)
homogeneous (figure 3) . In case (i) this domain fills the whole lat tice (fig­
ure 3(a)); in the opposite case (iii) as expected there are two regions in the
lattice- the upp er and lower halves- and , at each ste p , each region app ears
in a (quas i) homogeneous configuration but with different phases (figure
3(b)). Finally, in the intermediate case (ii) the lat t ice is divid ed into do­
mains of (quasi) homogeneity with mor e complicated shapes but wit h rather
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(a)

(b)
Figure 2: For c = 0.940. (a) Transient regime of a chess-board con­
figur at ion after a random perturbation in a square of size 5 x 5. Aft er
this tr ansient regime the system retu rns to the chess-board configu-



420 L. Battiston, L . Bunimovich, and R. Lima

(a)

(b)
Figure 3: (a) Quasihom ogeneous configurat ion in the entire lat ti ce.
(b) Coexist enc e of two regions of the la t t ice wit h a quasihomogeneous
configur at ion in two different ph ases.
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smooth boundaries. These results show that the CML (1) has , for st rong
spati al interactions, the evident tendency to end up in space-homogeneous
states. This is rather natural becaus e of th e diffusive coupling that makes
the state of the system more homogeneous. On the ot her hand, since f rep­
resents a (local) force in (I )-which tends to make the motion at each site
chaot ic- the final issue should be the resu lt of this balan ce. T he analysis of
such a mechani sm is discussed in the remainder of this paper . Let us give the
condit ion of the success of the first of these tendencies. Then we can show
that these conditions are satisfied in our case.

Let us begin , for simplicity, wit h a one-dimensional lat tice and let us take,
instead of f , the so-called tent map, which is uniformly expanding:

and

f( x) = 2x
1

if 0 < x < ­- -2 (3)

f( ) if 1x = 2 - 2x 2" < x :S 1.

Let E: = 1. Then we get

(n+1) _ ~f ( (n) ) + ~f ( .(n ) )
Xi - 2 X i _ 1 2 1, i +l ·

Therefore

(n+l ) _ .(n+1 ) = ~ f( .(n ) ) _ ~ f ( In) )
X,+2 x, 2. X,+3 2 . X'_1 .

It is easy to check tha t if

(4)

(5)

or

0 < x(n)
, -1

1 (n)
2" < X i_ I

and

and

(n ) 1
x - <­,+3 - 2

(6)

then in the relat ion

I (n +1 ) _ (n+l) I < I (n) _ (n) I
X i+l Xi _ X i+ 3 Xi - I (7)

t he equality holds. In all the ot her cases the right side of (7) is st rict ly larger
than the left side. Hence the values at different sites of the odd sublattice
tend to be equal, as do those of the even sublat tice. Let us mention that for
the logist ic map this process fails in the vicinity of po ints where the derivative
is in modulus less than 1, but is even more intense for the remaining points.

Now we shall show how the whole lat tice tends toward the equilibrium
state. Let

. . . - x(n) - x(n) - . . . - a (n)
- i - i+ 2 - - 1
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_ (n) _ .(n ) _ _ (n)
. .. - X i+1 - X i+3 - . . . - a2 .

Then the corresponding map

pr eserves the Lebesgue measure in th e unit squa re. T herefore , acco rding
to the Poincar e recurr ence theorem , at some moment n + m we may have
a~n+m) ~ a~n+m). Bu t then , if E: is not st rict ly equal to 1 because of diffusive
coupling , t he sys tem evolves to a (quas i) homogeneous equilibrium state.
T he (max imal) der ivat ives of F are equal to 2.8 and 2.4 at the ends of
our interval. T herefore th is mechanism can work perfect ly since inside this
interval t he modulus of the derivative tends toward zero.

It is also easy to sec that for two-dimensional lat tices it works even better
(it was ment ioned before [8] tha t in two or higher dimensions the CML has
st ronger homogeneous properties than in one dime nsion) .

Not ice, finally, the presence of t ime period 4 in all t he cases shown here.
This corr esp onds [4] to th e bifur cati on th at occurs in the map (2) after t he
chess-board state (or standing wave in th e one-dimensional CML) loses its
stability.
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