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Abstract. The:dynamics of discrete-time neural networks with the
sigmoid function as I,léuron activation function can be extraordinarily
complex, as some authors have displayed in numerical simulations.
Here we consider a simple neural network of only two neurons, one
excitatory and the other inhibitory, with no external inputs and no
time delay as a parameterized family of two-dimensional maps, and
give an analytical proof for the existence of period-doublings to chaos
and strange attractors in the network.

1. Introduction

Chaotic dynamical behavior in the brain has recently been observed and
discussed [12, 18, 36]. Whether chaotic behavior of neural networks has any
application in biological modeling (e.g., learning and information processing)
is a very controversial issue [2, 4, 9, 18, 19, 20, 36, 40]. An important question
is the biological implications of chaos in neural networks. Nevertheless, a
lot of effort has gone into modeling and analyzing the chaotic behavior of
biological systems, especially for the Hodgkin-Huxley axon model [12].

In this paper, we are interested in analytically exploring the possible
existence and essential causes of chaos in neural networks with sigmoidal
functions as neuron activation functions. These kinds of networks, as con-
tinuous approximations of McCulloch-Pitts Boolean networks, have received
much attention in recent years and are widely studied in neural computation
(for example, see [16, 23, 31, 35]). When used as associative memories, the
discrete-time networks with symmetric connection weights have been shown
[28] to have periodic behavior of periods at most 2 (i.e., fixed points, or fixed
points and periodic orbits of period 2). But in general the dynamics of both
continuous-time (defined by differential equations) and discrete-time (defined
by difference equations) neural networks can be extraordinarily complex.

In the literature, many researchers [1, 8, 14, 24, 27, 33, 34] have performed
numerical simulations on both continuous-time and discrete-time neural net-
works, most of which are driven by external inputs and/or have time delays,
and observed various bifurcations and chaos. Although computer simulation
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and physical experiments are probably the most widely used techniques for
understanding complex dynamical behavior in nonlinear systems, they are
seldom adequate for a full understanding unless used in conjunction with
analytical techniques. Sompolinsky, Crisanti, and Somers [37] demonstrated
that continuous-time networks with random asymmetric connection will be
chaotic asymptotically as the number of neurons n — oo, provided that the
origin is not a stable fixed point. But it is not clear how “spontaneous” chaos
occurs in autonomous neural networks of finite neurons with no time delay
and no external inputs. Renals and Rohwer claimed in [33], according to
their limited computer simulations, “as would be expected, very small net-
works (n = 2, 3) do not display complex dynamical behavior in any region of
parameter space.” We shall show this claim is not true.

In this paper, we consider a discrete-time neural network that consists
of only two neurons with the sigmoidal neuron activation function and has
no external inputs and no time delay. It turns out that even such a simple
network with different synaptic weight connections can display almost every
kind of complex dynamical behavior encountered in the literature in one-
dimensional discrete-time dynamical systems [40]. Here we concentrate on
the existence of chaos. We treat the simple network as a one-parameter family
of two-dimensional maps with the neuron gain as the parameter, and prove
analytically the existence of period-doublings to chaos in the network with
an excitatory neuron and an inhibitory neuron. Specifically, we prove that,
for a certain class of connection weight matrices, the simple neural network
is dynamically equivalent to a one-parameter full family of S-unimodal maps
on the interval [0,1], which is well-known to become chaotic through the
period-doubling route as the parameter varies [10, 13, 17].

We note that the discrete-time neural networks are similar to cellular
automata [11, 26, 42] but with an infinite number of possible states. Very
simple two-cell-state cellular automata with high spatial dimensions display
complex behavior and complicated spatial-temporal patterns. Our result here
shows, on complementary, that very low spatial dimensional neural networks
with continuum state space exhibit chaotic dynamics, which makes them
most suitable as “building blocks” to study and produce high-dimensional
chaos in rather large neural networks [40].

The rest of the paper is organized as follows. In section 2, we define the
simple neural network and show that, when the connection weight matrix is
of rank one, the network behaves dynamically like a one-dimensional map.
In section 3, we describe the mechanism of period-doublings to chaos in a
full family of S-unimodal maps. We present our analytical and experimental
results on the existence of chaos in section 4. Finally we give some concluding
remarks in section 5.

2. A simple neural network

The simple neural network is, as shown in figure 1, a fully connected network
of two neurons. States of the two neurons are denoted as x and y, respectively,
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Figure 1: A simple neural network.

whose values range in the interval I = [0,1], and a state of the network
is denoted as a vector (z,y) in the state space 12 = [0,1] x [0,1]. The
connectivity weights of the network form a 2x 2 real-valued matrix W = [w;;].
The network updates its state in discrete time, ¢ = 0,1,2,..., and in a
parallel fashion! according to

( 2(t+1) ) _ ( o () + wizy(£)) ) _F, ( 2(t) ) (1)

y(t+1) Tu(wnz(t) + way(t)) y(t)

where

1

T

is a neuron activation function of sigmoid type with a parameter u > 0, and
F,=0, W (2)

is the network map with o,(z,y) = (0.(z), 0.(v))-

The parameter p, also called neuron gain, plays a very important role
in our study. First it controls the maximal slope of the function o,(z): the
larger the value of p is, the closer the function o,(z) approximates the step
function. Second, it serves a purpose (at least mathematically) that a change
of it causes a change of all connectivity weights w;; and therefore affects the
dynamic behavior of the network.

From the dynamical system point of view [13, 17], for any given matrix W,
the network in (1) defines a one-parameter family of two-dimensional maps
F,,. So the dynamics of the network can be studied from the perspective of
iterations of the map F), on I°.

The first thing we can claim about the network is the existence of fixed
points. Because the state space I? is a convex compact subset of R? and
the map F), is continuous for any given p and W, F,, always has some fixed
point in /2, according to the Brouwer fixed point theorem (see [30]). Another
property of F}, that can easily be seen from (2) is that F, is a diffeomorphism

1This differs from asynchronous state-updating mechanisms described in [3, 6, 21].
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(i.e., a differentiable map with a differentiable inverse) if and only if the
weight matrix W is non-singular.

In the rest of this paper, we shall be interested in the network whose
weight matrix takes the form

=[5 %) ®

for some non-zero a,b,k € R. The singularity of W may be considered as
relating to the fact that all neurons in the brain do not necessarily function
independently. Some (and maybe many) of them are only auxiliary; their
roles in neural computation may be viewed as being “cooperative” in one
perspective and “redundant” in another. We like to show the network map
F,, with such W behaves like a one-dimensional map. To this end, we need
some technical concepts and results.

Assume that ' : X — X and G : Y — Y are two maps with X' C X
and Y’ C Y being two respective invariant subsets; that is, FI(X') C X'
and G(Y') C G(Y'). We say that F' on X' is topologically conjugate to G
on Y’ if there exists a homeomorphism (i.e., a one-to-one and continuous
map with a continuous inverse) H : X' — Y’ such that G = H - F - H™.
The homeomorphism H is called a topological conjugacy of F and G. It is
known that if F' and G are topologically conjugate then they have the same
dynamical behavior, namely the same orbit structure and stability on the
respective invariant sets.

The following lemma shows an example of how a two-dimensional map is
topologically conjugate to a one-dimensional map.

Lemma 1. Consider a map F : X; x Xo — X; x Xo. defined by
F(zy,22) = (fu(z1), fa(z1))

and hence
F'(z1,22) = (f1(z1), fo(ff 7 (21))

where both component functions f; and f, of F' depend only on the variable
z;. If f5 is a homeomorphism from X to fo(X1), then F on X is topologically
conjugate to f; on X;, where X = F(X; X X3) = {(f1(z1), f2(z1)) |21 € X1}

Proof. Certainly, X is invariant under F'. Define a homeomorphism A :
X — X1 by

h(fi(@1), fa(z1)) = 21 and K7 (z1) = (fi(z1), fo(21)).
Then, for any z; € X3,

filz:) = h(fi(fi(z1)), f2(f1(21)))
h(F(fi(21), f2(z1)))
h(F(h™'(z1))),
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and the lemma follows. W

We note that, by induction, Lemma 1 can be generalized to high-dimen-
sional maps of the similar property, especially to those for feed-forward net-
works or cascades [20].

Lemma 2. Consider the network map F, : I? — I? in (1). If the weight
matrix W takes the form in (3), then F, on F,(I?) is topologically conjugate
to a one-dimensional map g, on an interval [s,t] that is defined by

9u(z) = ou(az) + ko, (bz),
where s = min{z + ky | z,y € I} and t = max{z + ky|z,y € I}.

Proof. Rewrite W as a product W = LU with

a0 |1k |1 -k
L—[b 0}, U—{O IJ, and U _[O 1].

Let X = {(z +ky,y) | z,y € I} and consider the map G, : X — X, which is
the topological conjugate of F), under the conjugacy U; that is,

(3)=vomo ()= (") = (50)

Then both component maps g, and g, of G, depend only on the variable
z. Projecting the domain X of G, to the first component, we see that g,
is a map from [s,t] to [s,t]. It follows from Lemma 1 that G, on G,(X)
is topologically conjugate to g, on [s,t], as g, is a diffeomorphism. Since
U: F,(I?) — G,(X) is onto, F), is topologically conjugate to G, and hence
topologically conjugate to g,.

The analysis thus far allows us to concentrate the further study on the
dynamics of g,. For the one-dimensional maps, we have rather rich results at
hand on their dynamics. The most well-studied families of one-dimensional
maps are one-parameter full families of S-unimodal maps on the interval
[0,1]. One prototypical example of such a family is the family of quadratic
maps [10, 13, 17] '

fulz) =pz(l—2z), 0<p<d4

3. Full families of S-unimodal maps

A map f of the interval [0,1] into itself is unimodal if (i) f(0) = f(1) =0
and (i) f has a unique critical point ¢ with 0 < ¢ < 1. Hence, a unimodal
map f is increasing on the interval [0,¢) and decreasing on (c,1], and f is
differentiable except possibly at ¢. A unimodal map f is called S-unimodal
if in addition (iii) f is C®, that is, the third derivative f” of f exists and is
continuous, and (iv) the Schwarzian derivative Sf = f”/f'=3/2(f"/f')* < 0
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for all z € [0,1]\{c}. An S-unimodal map is known [10, 17] to have at
most one stable periodic orbit and, if the critical point is not attracted to a
stable periodic orbit, the map has no stable periodic orbit. In the following
we will substitute (iv) by (iv’) the Schwarzian derivative Sf < 0 for all
z € [0,1]\{c, 1}; that is, we allow Sf =0 at z = 1. If f(1) = 0, and thus the
endpoint 1 cannot be in any periodic orbit or any attractor of the map f, this
tiny relaxation does not change any asymptotic behavior of an S-unimodal
map.

Let f, : [0,1] + [0,1] be a one-parameter family of S-unimodal maps
with 4 € (¢, ). The family f, is called a full family if (i) every map f, is
once differentiable with respect to p, (ii) lim,,,s f.(z) = 0 for all z € [0, 1],
and (i) iy fu(£,(c)) = .

It is well known that the dynamics of a full family of maps f, involves
a sequence of period-doubling bifurcations, by means of which the maps
become chaotic as the parameter p varies from p’ to y”. Specifically, there
are two sequences of parameter values pion, flon,n = 0,1,2,..., with p; <
Pg < oo < fgn < oor < fign < -+ < fig < fiy so that [41]

e f,,. has periodic points of period 2*. The values pon represent the
bifurcation points at which periodic orbits of periods 2™ bifurcate to
periodic orbits of periods 2"*! of f,.

e The values fign correspond to the bifurcation points at which periodic

orbits of periods 2™ - 3 bifurcate, and 5;2'1“((:) are unstable periodic
points of periods 2". At p = fi» the maps f, are chaotic and have
strange attractors, as they are topologically conjugate to chaotic piece-

. . —on+1
wise linear maps z +— s — 1 — s|z|, s = 272",

e Embedded between each pair fign and [ign—1, there are ranges for p
corresponding to periods of form 2™ - k in which fﬁ""‘ is a full family on
some subinterval of [0, 1]. The interval structures within these pairs are
exactly the same as that of the outer one (p, fi1). Overall, the order in
which periods of stable periodic orbits appear as the parameter varies
is given in the Sarkovskii ordering: 1,2,2%,...,2%.5,2%.3,...,22.5,
2%.8,...,2-8,2+§,...,7,5,3.

e The sequences pon and fign converge [5, 15], from below and above re-
spectively, to a parameter value p. (g, = 3.5699456 . .. for the quadratic
family [15, 32]), at the universal rate

Hn — Hnt1 li Hn — HPnt1
— = L o
N0 Upl — Hnt2 T Upgl — Hng2

=4.669- -

The 6 is also known as the Feigenbaum number, which has been studied
analytically by Sullivan [38] using quasiconformal homeomorphisms.

2To avoid introducing the kneading sequence of a unimodal map we use this definition,
which appears to be stronger than the one in [13] but weaker than the one in [17].
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We refer the reader to references [5, 10, 13, 17, 29, 41] for details on the mech-
anism of such period-doublings to chaos and the existence of one-dimensional
strange attractors.

4. Analytical and experimental results

In this section we want to show that, when the gain parameter p varies, the
dynamical behavior of the two-neuron network with some weight matrix is
that of a full family of S-unimodal maps. So there exist a period-doubling
route to chaos and possible strange attractors within the simple network.

Theorem. Consider the network maps F), in (1) with weight matrix

a —a

b —=b |-

If(i)b<a<Owithd="b/a>2,or (ii) a > b> 0 with d =b/a < 1/2, then

the family of maps F}, on F,(I?) is topologically conjugate to a full family of
S-unimodal maps f, on [0,1] with x € (0, c0).

W =

Proof. First we notice that the maps F, in cases (i) and (ii) have the same
dynamics since they differ only by renaming the two neurons. So in the
following we only consider case (i).

By Lemma 2, F,, on F,,(I?) is topologically conjugate to a one-dimensional
map g, : [—1,1] — [-1,1], defined by g.(z) = ou(az) — 0,(bz). Since
gu(x) — 0 exponentially as z — oo, most “interesting” dynamical behavior
of g, will occur in the interval [—1,1] as x become large enough. However,
for convenience, we will consider the extension of g, defined on the extended
real line R® = R U {#o0} with g,(£o0) = 0.

The maps g, on IR have the following properties: for any p > 0,

(a) g, is an odd function: g,(—z) = o,(—az) — o, (—bz) = (1 — oyu(az)) —
(1 = 0u(bz)) = —gu(z).

(b) g.(0) =0, gu(z) > 0 for z > 0, g,(z) < 0 for z < 0, and g,(z) — 0 as
T — Foo0.

(¢) g, has only two critical points ¢ > 0 and —c in (—o0,00). Asb < a <0,
the functions o,(az) and o,(bx) are concave-up and o,(az) > 0,(bz)
for all z > 0. Since o,(az) = o,(bz) = 1/2 at © = 0 and both
ou(ax),0,(bz) — 1 as * — oo, g,(x) has only one critical point ¢ in
(0,00). Since g, is an odd function, it has another critical point —c in
(—00,0).

(d) g, is C?® and has negative Schwarzian derivative Sg,(z) for all z > 0.
First, g, restricted to [0,00) is a composition of two maps, g,(z) =
(¥ (z)), where ¥ : [0,00) — [1,00), ¢ ' [1,00) — [0, 00),

1 1

Y(z)=e* and ¢(z)= itz 17

d="b/a.
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According to a property of the Schwarzian derivative [13, 17],

S(g-9) = Se(¥)y™ + Sy, (4)
if S¢ < 0 and S¢ < 0, then Sg, < 0. It is easy to show Sy < 0:
(—payteres 3 ((—ua)?e*““)? _

Sw(a:) - —pa e~ Hor B 5 —pa e~ Hax

1 2
- <0.
5 (pa)

But it needs some effort to carry out S¢(z) for z > 1:

Spr) = L@ 3 (¢'}'(z))2 _ _ta)

P(z) 2\¢(z) 2 ()
where
, -1 dzd—?

vl = e T v e

#'(z) = 2 d(d — 1)z 3 2d%z%2
(1+z) (142972 (1 +z4)3

§(z) = —6 d(d —1)(d — 2)z¢3
(1+2)* (1+z9)?
- 6d2(d — 1)$2d—3 " 6d3 343

(1+29)3 (1+z4)*

bi(z) = 2d(d® — 3d+ 2)z**3 4 4d(d? — 1)z34+2
+ 2d(d2 +3d + 2);103‘“'1 + dz(dz _ 1)x2d+4
+ 4d(d® — 2d% — d + 2)z%+3
+ 4d(d® — 2d® — d + 2)z2*!
+ 2d(3d® — 8d* — 3d — 8)z?2 + d?(d — 1)z
+ 2d(d* + 3d + 2)z*3 + 4d(d® — 1)z*?
+ 2d(d* — 3d + 2)z*+!

po(z) = [2d°2%6 + 8d(d — 1)z?4F® 4 2244+ — 44349

[8 ( ) 3d+4 __ 4dx3d+3]

+ [4(3d% — 4d + 3)2*** — 4dz?Fo)
[8 ( ) 2d+3 __ 8(d _ 1):17d+4]
[2d2 2d4-2 d.’L’d+3] 3 2$4

By the given condition d > 2, it is straightforward to check that ¢;(z) >
0 and ¢5(z) > 0 (each term within [] of ¢2(z) is positive). So Sé(z) < 0
for all z > 1.

From properties (a) and (b), g, : R* — RR* can be decomposed into two
mMaps gpl[—co,0] a0d gp|[o,0c, Which are topologically conjugate to each other
under a conjugacy h(z) = —=z. Therefore, for the dynamics, we can just
consider g, defined on the interval [0, co].
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We define a topological conjugate f, of g,,

_fhegy-hHz) 0<z<1
ae = { My 05
where h : [0,00] — [0,1] is given by h(z) = z/(1 + z), with its inverse
h~(z) = z/(1 — z). We claim that the maps f, have the property of being

a full family of S-unimodal maps on the interval [0, 1] with u € (0,00). Let’s
check the conditions one by one.

(1) f.(0) = f.(1) = 0 for all . Trivial.
(ii) Each f, has a critical point ¢, = h™'(c,) = ¢,/(1 + ¢,) where ¢, is the

critical point of g, in (0,00). Since

£l (@) = W(gu(h™(2))) g/ (W () A~V (2)
) i oo 1
it h 1
Ao @r s " O aap
fu(z) = 0 if and only if g, (h™(z)) = 0. Hence the existence and
uniqueness of ¢, implies the existence and uniqueness of ¢, in (0,1).
(iii) All f, are C3([0,1]). Trivial.
(iv) All f, have the negative Schwarzian derivatives. It is easy to check that
Sh = Sh™! = 0. Hence by the property of the Schwarzian derivative
on composite maps given by (4),
Sfu = Sh(gy- h—l)(gu ; h_l)IZ P Sgu(h_l)h_llz + 8kt
Sguh A,

Sg, < 0 (except at ¢ and oco) implies Sf, < 0 (except at ¢’ and 1).
(v) All f, are once differentiable with respect to p. Trivial.
(vi) lim,_o fu(z) = 0 for all z € [0,1]. Trivial.

(vii) Since all f, have the same function values c* at their critical points ¢,
that is, ¢* = f.(c,) for all u >0,

lim, fu(fu(c,) = Jim, fu(e) = 0.

=00
The proof of the theorem is now completed. B

Remark. The conditions on a and b in the theorem are only sufficient to
carry out the technical part of the proof, Sg, < 0. Simulations suggest that
there are a lot of other cases for a and b in which the conclusion of the
theorem is still true. In fact, computation of the Liapunov exponent [13, 17]
of the map f, shows that the theorem also holds [40] for the cases where
a<b<Owithl<d=b/a<2anda>b>0with1/2<d=b/a<1.



434

Figure 2: The full family of S-unimodal maps f, that are topologi-
cally conjugate to F,, with weight matrix wy; = —5,wip = 5,wq =
—25, Woo = 25.

To illustrate the chaotic behavior of the simple neural network, we per-
form some computer simulation on the network with weight matrix

-5 5

7= % g
The full family of S-unimodal maps f, for the maps F), is shown in figure 2 for
some parameter values. To clarify the period-doubling route to chaos of the
maps F},, we draw bifurcation diagrams in figures 3 and 4 for the respective
neuron states x and y as the parameter p varies from 0 to 6. For each u we
draw a stable periodic orbit of f,. We fix i to be one of 600 equally spaced
values in the interval [0, 6]. For such fixed u, we take 1000 iterations of the
map F,, with an initial state (2(0), y(0)) = (.35, .55). On the vertical axis one
point is plotted for each of the states (2(900),y(900)) to ((1000),y(1000)),
where (2(t),y(t)) = Fj(z(0),y(0)) for t > 0.

To see that some maps F), have strange attractors, we plot in figure 5
the last 1000 points in 10,000 iterates of F,, with the initial point (.35,.55)
for some different parameter values. As we know from Lemma 2, state y is
a function of state x when the network has a weight matrix of the form in
(3). Hence the attractors in (a), (c), and (d) of figure 5 look like unions
of several pieces of curves, which are essentially one-dimensional strange
attractors [17].

Another interesting phenomenon we found in simulations is that the route
of period-doublings to chaos in the simple neural network persists under some
small perturbation of the weight matrices. This suggests that the network
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Figure 3: A bifurcation diagram in z for the network with weight
matrix wy; = —5,wiy = 5, W = —25, wey = 25.

wll=-5, wi2=5, w21=-25, w22=25
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Figure 4: A bifurcation diagram in y for the network with weight
matrix wi; = =5, wip = 5,11)21 = —25,w22 = 25.
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Figure 5: The attractors in network F), with weight matrix w1
—5,wig = 5,we; = —25,wae = 25. (a) p = 3.25; (b) p = 3.5; (¢)
w=3.75; and (d) p = 4.

wll=-5, wi12=5.1, w21=-24.9, w22=25

T

0.95F
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0.8+

< 0.75F

0 1 2 3 4 5 6
mu

Figure 6: A bifurcation diagram in z for the network with weight
matrix wy; = —5, w1z = 5.1, w9 = —24.9, wey = 25.
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wll=-5, wi2=5.1, w21=-24.9, w22=25
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Figure 7: A bifurcation diagram in y for the network with weight
matrix wi; = —5, w2 = 5.1, w9 = —24.9, wey = 25.

and also the full family of the S-unimodal maps f,, have some kind of “struc-
tural stability” or “robustness” [13, 17, 40]. In figures 6 and 7, we plot
bifurcation diagrams for the network with weight matrix

-5 5.1
W= [ —249 25 ] '
As we can see, a similar route of period-doublings to chaos occurs as that for

‘the network with the matrix in (5).

5. Final remarks

(1) A biological implication of our results is that, given an inhibitory
neuron z and an excitatory neuron y as shown, the simple network in (1)
can still have interesting, even chaotic dynamics. Therefore, with properly
chosen weight matrices, such a simple network can be used as a generator
for oscillations of any period and even chaos, and as a “building block” for
chaotic neural networks of more neurons [40]. For example, by adding one
more neuron, we are able to perturb the one-dimensional maps in the theorem
to two-dimensional maps that behave like the Hénon map [13, 17, 22].

(2) From our analytical result and numerical simulations, we see that the
chaotic dynamics we have studied in this paper is not a rare phenomenon
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that can happen in the network. In other words, if we randomly generate a
weight matrix, we will have a positive probability of having one that yields
chaotic dynamics in the network.

(3) From our analysis, we can see that lowering neuron gain can prevent
the network from being chaotic and even from being oscillatory. But the
network with very small gain may not have enough periodic orbits (including
fixed points) and hence may not be very useful in practice, for example, when
used as a model of associative memories [28] and oscillation generators [7].

(4) It can be shown [40] that another often used sigmoidal function
tanh,(z) = tanh(uz) on the interval [—1,1] is not topologically conjugate
to the sigmoid function o,(z) used in this paper. But from our works [7, 40]
on these networks, we see that the networks using tanh, have the same
period-doubling route to chaos as those using o,.

(5) In an autonomous neural network, its weight matrix determines the
dynamics of the whole network, as the neuron gain of a neuron can be dis-
tributed to all its incoming weights. So study of how the various existing
learning rules (like Hebbian and backpropagation rules) change the weights
and what kinds of possible routes of bifurcations to chaos can result is defi-
nitely a very interesting subject in dynamics analysis of the neural networks.
Maas, Verschure, and Molenaar [39] and Kolen and Pollack [25] have done
some experiments along this direction. One of our future studies is to con-
sider the simple neural network as a family of maps with multiple parameters
(weights w;;), to keep track of multiple parameter bifurcations caused by var-
ious learning rules, and to perform a thorough analysis on the dynamics of
the network.
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