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Abstract. The-dynamics of discrete-time neural networks with the
sigmoid function as l}~uron activation function can be extraordinarily
complex, as some authors have displayed in numerical simulations.
Here we consider a simple neural network of only two neurons, one
excitatory and the other inhibitory, with no external inputs and no
time delay as a parameterized family of two-dimensional maps, and
give an analytical proof for the existence of period-doublings to chaos
and strange at tractors in the network.

1. Introduction

Ch aotic dynamical behavior in the br ain has recently been observed and
discussed [12, 18,36] . Whether chaot ic behavior of neural networks has any
application in biological modeling (e.g., learning and information pr ocessing)
is a very cont roversial issue [2,4, 9, 18, 19, 20, 36, 40]. An important question
is the biological implications of chaos in neural networks. Nevertheless, a
lot of effort has gone into modeling and analyzing the chaotic behavior of
biological syst ems, espec ia lly for the Hodgkin-Huxley axon model [12].

In this pap er , we are interest ed in analytically exploring the possible
existe nce and essent ial causes of chaos in neural networks with sigmoidal
fun ctions as neuron activation fun ctions. These kinds of networks , as con­
tinuous approximations of McCulloch-Pitts Boolean networks, have received
much attention in recent years and are widely studied in neural comput at ion
(for example, see [16, 23, 31, 35]) . When used as assoc iat ive memories, t he
discret e-time networks with symmetric connectio n weights have been shown
[28] to have periodic behavior of periods at mos t 2 (i.e., fixed points, or fixed
points and periodi c orbit s of period 2) . But in genera l the dyn amics of both
cont inuous-time (defined by differential equ ations) and discrete-time (defined
by difference equat ions) neural networks can be ext rao rdinarily complex.

In t he lit erature, many researchers [1, 8, 14, 24,27,33,34] have performed
numerical simulat ions on bo th cont inuous-t ime and discret e-time neural net­
works , most of which are driven by exte rnal inputs and/or have time delays ,
and observed various bifurcations and chaos. Although computer simulation
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and physical experiments are pr obab ly the most widely used techniques for
underst anding complex dynamical behavior in nonlinear sys tems , th ey are
seldom adequate for a full understanding unl ess used in conjunct ion with
analyt ical techniques. Somp olinsky, Cri san ti , and Somers [37] demonst rated
that conti nuous-time networks with rand om asy mmetric connection will be
chaot ic asy mptotically as the number of neurons n --+ CXJ, pr ovided that the
origin is not a stable fixed point . Bu t it is not clear how "spontaneous" chaos
occurs in aut onomous neural networks of finit e neurons wit h no time delay
and no extern al inputs. Renals and Rohwer claimed in [33], according to
their limited computer simulations, "as would be expected, very small net ­
works (n = 2,3) do not displ ay complex dynamica l behavior in any region of
par am eter space ." We shall show this claim is not t rue.

In this paper , we consider a discret e-time neur al network that consists
of only two neurons with the sigmoidal neuron activation funct ion and has
no exte rnal inp uts and no time delay. It t urns out that even such a simple
network with different synaptic weight connections can display almos t every
kind of complex dynami cal behavior encountered in the literatur e in one­
dimensional discret e-time dynam ical syste ms [40]. Here we concent ra te on
the existence of chaos. We treat the simple network as a one-paramete r family
of two-dimensional maps with the neuron gain as the par amet er, and prove
analyt ically the existence of period-doublings to chaos in the network with
an excitatory neuron an d an inhibitory neuron. Specifically, we pr ove that ,
for a certain class of connect ion weight matrices, the simple neural network
is dynami cally equivalent to a one-parameter full family of S-unimod al map s
on the int erval [0, 1], which is well-kn own to become chao t ic through the
period-doubling rou te as the par ameter vari es [10, 13, 17].

We note that the discrete-t ime neural networks are similar to cellular
automata [11, 26, 42] bu t with an infini te number of possible states. Very
simple two-ceIl-state cellular automata with high spatial dimensions disp lay
complex behavior and complicated spatial-temporal patterns. Our result here
shows, on complementary, that very low spat ial dimensional neural networks
with conti nuum st ate space exhibit chao t ic dynamics, which makes them
most suitable as "building blocks" to study and produce high-d imensional
chaos in rather large neural networks [40].

The rest of the pap er is organized as follows. In sect ion 2, we define the
simple neural network and show that , when the connection weight matrix is
of rank one , the network behaves dynamic ally like a one-dimensional map.
In sect ion 3, we describe the mechan ism of period-doub lings to chaos in a
full fam ily of S-un imodal maps. We pr esent our analytical and experimental
results on t he existence of chaos in sect ion 4. Finally we give some concluding
remarks in sect ion 5.

2. A simple neural network

The simp le neural network is, as shown in figure 1, a fully connec ted network
of two neurons. States of the two neurons are denoted as x and y , resp ectively,
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Figure 1: A simple neural network.

whose values range in the int erval ] = [0, 1], and a st at e of the network
is denoted as a vector (x ,y) in the state space T' = [0, 1] x [0, 1] . The
connect ivity weights ofthe network form a 2 x 2 real-valued matrix W = [Wij ] .

The network updates it s state in discrete time, t = 0,1 ,2 , . .. , and in a
parallel fashion! according to

(
x(t + 1) ) = ( CTI' (WU X(t ) + W12 y(t)) ) = F ( X(t ) ) (1)
y(t + 1) CTI'(W21 X(t) +W22y(t)) - I' y(t)

where

1
CT (z) - --­

I' - 1 + e- I'Z

is a neuron act ivat ion function of sigmoid typ e with a par ameter J1. > 0, and

(2)

is the network ma p with CTI'(x , y) = (CTI'(X) ,CTI'(Y))'
The par ameter J1. , also called neuron gain, plays a very important role

in our st udy. First it cont rols the maximal slope of the function CTI'(z ): the
larger t he value of J1. is, the closer th e function CTI'(z ) approxima tes the ste p
function. Second , it serves a purpose (at least mathematically) that a change
of J1. causes a change of all connect ivity weight s Wij and therefore affects the
dyn ami c behavior of th e network.

From th e dynamical syst em point of view [13, 17], for any given matrix W,
the network in (1) defines a one-parameter family of two-dimensional maps
FI" So the dyna mics of th e network can be st udied from the perspective of
iterat ions of the map FI' on ] 2.

The first thing we can claim about the network is the existence of fixed
points. Because the state space ] 2 is a convex compact subset of IR? and
the map FI' is conti nuous for any given J1. and W , FI' always has some fixed
point in ] 2, according to the Brouwer fixed point th eorem (see [30]). Anoth er
property of FI' that can easily be seen from (2) is that FI' is a diffeomorphism

lThis differs from asynchronous state-updating mechanisms described in [3, 6, 21] .
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(i.e., a differentiable map with a differentiable inverse) if and only if the
weight matrix W is non-singul ar.

In the rest of this pap er , we shall be interested in the network whose
weight matrix takes the form

w = [a ka ]
b kb

(3)

for some non-zero a, b, k E JR. The singula rity of W may be cons idered as
rela ting to the fact that all neurons in the brain do not necessarily funct ion
ind ependently. Som e (and mayb e man y) of them are only auxiliary ; their
roles in neural computation may be viewed as be ing "cooperat ive" in one
persp ective and "redundant" in another. We like to show the network map
Fp. with such W behaves like a one-dimensional map . To this end , we need
some technical concepts and results.

Assume that F : X -;' X and G : Y -> Yare two map s with X' ~ X
and Y' ~ Y being two resp ect ive invari ant subse ts; that is , F(X') ~ X'
and G(Y') ~ G(Y') . We say that F on X' is topologically conjugate to G
on Y ' if there exist s a homeo morphism (i.e. , a one-to -one and cont inuous
map with a cont inuous inverse) H : X ' -> Y' such that G = H· F . H - l

.

The hom eomorphism H is called a topological conjugacy of F and G. It is
known that if F and G are to po logica lly conjugate then they have the same
dyn amical behavior , namely the same orbit st ructur e an d stability on the
resp ective invari ant sets.

The following lemma shows an example of how a two-dimensional map is
top ologically conjugate to a one-dimensional map .

Lemma 1. Consider a m ap F : Xl x X 2 -> Xl X X 2 , defined by

and hence

where both component functions 11and 12 of F depend only on the variable
Xl' If12 is a hom eomorphism from Xl to 12(Xd , then F on X is topologically
conjugate to 11 on Xl , where X = F (X I x X 2 ) ={(fl (Xl ),12(xl)) IXl EXd·

Proof. Certainly, X is invari ant under F. Define a homeomorphism h
X -> Xl by

h(fl(Xl) ,12(xl )) = Xl and h-l(Xl ) = (fl(Xl ),12(xl ))'

Then , for any Xl E Xl ,

h(fl (fl (X l)) ' 12(fl (Xl)))
h(F(fl (Xl)' 12(Xl)))
h(F (h- l (Xl)))'
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and the lemma follows. •
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We note th at , by induction, Lemma 1 can be genera lized to high-di men­
sional maps of the similar property, especially to those for feed-forward net­
works or cascades [20] .

Lemma 2. Consider the network m ap Fj" : 12 ----> 12 in (1). If the weigh t
m atrix W takes the form in (3), then Fj" on Fj"(I2) is topologically conj ugate
to a one-dim ensional m ap 9j" on an in terval [s,t] tha t is defined by

9j"(X) = CJj"(ax ) + kCJj"(bx),

where s = min{x + ky Ix, Y E I} and t = max{ x + ky Ix ,Y E I}.

Proof. Rewrite W as a product W = LU with

L = [ : ~ ] , U = [~ ~ ] , and U-
I = [~ ~k ] .

Let X = { (x + ky ,y) Ix, Y E I} and consider the map Gj" : X ----> X , which is
the topological conjugate of Fj" und er the conjugacy U; tha t is,

Then both component maps 9j" and 9j" of Gj" depend only on the variab le
x. Projecting the dom ain X of Gj" to th e first component , we see that 9j"
is a map from [s, t] to [s, t]. It follows from Lemma 1 that Gj" on Gj"(X)
is topologically conjugate to 9j" on [s,t], as 9j" is a diffeomorphism . Since
U : Fj" (12) ----> Gj"(X ) is onto, Fj" is to pologically conjugate to Gj" and hence
to pologically conjugate to 9w •

T he analysis thus far allows us to concent ra te the further st udy on the
dynamics of 9w For the one-dimensional maps , we have rath er rich results at
hand on their dynamics. The most well-studied families of one-dimensional
maps are one-parame ter full families of S -unim odal m aps on the interval
[O ,IJ . One prototypical examp le of such a family is the family of quadratic
maps [10, 13, 17]

fj" (x ) = J.l,x(1 - x) , 0 < J.l, < 4.

3 . Full families of S-u n im od a l maps

A map f of the interval [0,1] into itself is unimodal if (i) f( O) = f (l ) = 0
and (ii) f has a unique crit ical point c with 0 < c < 1. Hence, a unimodal
map f is increasing on the interval [0, c) and decreasing on (c. J], and f is
differentiable except possibly at c. A unimodal map f is called S -unim odal
if in addit ion (iii) f is C3

, that is, the third derivat ive j''' of f exists and is
cont inuous, and (iv) the Schwar zian derivative S f = i" /l' - 3/ 2(1"/1')2 < 0
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for all x E [0, 1]\ {c}. An S-unimodal map is known [10, 17] to have at
most one stable periodic orbit and, if the crit ical point is not attracted to a
st abl e periodic orbit , the map has no st ab le periodic orbit. In the following
we will substitute (iv) by (iv') the Schwarzian derivative Sf < °for all
x E [0, 1]\{c, I} ; that is, we allow S f = °at x = 1. If f (l) = 0, and thus the
endpo int 1 cannot be in any periodic orbit or any attractor of the map l , t his
tiny relaxation does not change any asy mptotic behavior of an S-unimod al
map .

Let i; : [0,1] f--+ [0,1] be a one-paramete r family of S-unimodal map s
with p, E (p,' , p,"). The family I; is called a full family if (i) every map i; is
once differenti ab le with respect to p" (ii) limp._p.' fp.( x) = °for all x E [0,1],
and (iii) limp._ p.1I fp.(jp. (c)) = 02

.

It is well known that the dynami cs of a full family of map s I; involves
a sequence of period-doubling bifurcati ons, by means of which the map s
become chaotic as the parameter p, varies ~£r:om p,' to p", Specifically, there
are two sequences of param eter values P,2n ,il2n , n = 0,1 ,2, .. ., with P,l <
P,2 < ... < P,2n < . . . < il2n < .. . < il2 < ill so that [41]

• f P.2n has periodic points of period 2n . The values P,2n represent the
bifurcati on points at which periodic orbits of periods 2n bifurcate to
periodic orbits of pe riods 2n+l of L:

• The values {L2n correspo nd to the bifurcatio n points at which periodic
orbits of periods 2n . 3 bifurcate, and fk;:'2n+'( c) are unst abl e periodic
points of periods 2n . At p, = {L2n the map s t; are chaot ic and have
stran ge at t ractors , as they are topologically conjugate to chaot ic piece­
wise linear map s x f--+ s - 1 - slxl, s = 2-2n

+l .

• Embedd ed between each pair {L2n and {L2n- 1, there are ran ges for p,
corresponding to period s of form 2n . k in which fr·k is a full famil y on
some subinterva l of [0, 1]. The interval structures within these pairs are
exac tly the same as that of the oute r one (P,l , ill ) ' Overall , t he order in
which periods of st able periodic orbits appear as the par am eter vari es
is given in the Sarkovskii ordering: 1,2 ,22 , ... , 23 . 5, 23. 3, ... , 22 . 5,
22

. 3, ... , 2 . 5,2 . 3, .. . , 7, 5, 3.

• The sequences P,2n and {L2n converge [5, 15], from below and above re­
spectively, to a paramete r value P,. (P,. = 3.5699456 . .. for the qu adr ati c
family [15, 32]), at the universal rate

8 = lim P,n - p'n +l = lim iln - {Ln+l = 4.669 . . .
n -c-oc p'n+ l - p'n+2 n-c-oc {Ln+l - {Ln+2

T he 8 is also known as the Feigenbaum number, which has bee n st udied
analytically by Sullivan [38] using quasiconformal homeomorphisms.

2To avoid introdu cing th e kneading sequence of a unimodal map we use t his defini tion ,
which appears to be stronger t ha n th e one in [13) but weaker th an th e one in [17].



Period-Doublings to Cbaos in a Simple Neural Network 431

We refer the reader to references [5, 10, 13, 17, 29, 41] for det ails on the mech­
anism of such period-doub lings to chaos and the existence of one-dimensional
st range attractors.

4. Analytical and experimental results

In this section we want to show that , when the gain param eter fJ, varies, the
dynamical behav ior of the two-neur on network wit h some weight matrix is
that of a full family of S-unimo dal maps. So there exist a period-doubling
route to chaos an d poss ible st range at t ractors wit hin the simple network.

Theorem. Consider the network maps FJL in (1) wit h weight matrix

[a -a]
W = b -b .

If (i) b < a < 0 with d = b]« 2:: 2, or (ii) a> b > 0 with d = b[o. :::; 1/2 , then
the family of maps FJL on FJL(I2) .is topologically conjugate to a full fam ily of
S-unimodal maps i JL on [0,1] wit h fJ, E (0,00) .

Proof. First we noti ce that the maps FJL in cases (i) and (ii) have the same
dynam ics since t hey differ only by renaming the two neur ons. So in the
following we only consider case (i).

By Lemma 2, FJL on FJL(I2 ) is topo logically conjugate to a one-dimensional
map gJL : [-1 , 1] ----t [-1, 1]' defined by gJL (x ) = CTJL (ax ) - CTJL (bx ). Since
gJL (x ) ----t 0 exponent ially as x ----t ±oo, most "interest ing" dynamical behavior
of gJL will occur in the interval [- 1,1] as fJ, become large enough. However ,
for convenience, we will consider the extension of gJL defined on the extended
real line lRoo = lR u {±oo} wit h gJL (±oo) = o.

T he maps gJL on lR have the following pro perties: for any fJ, > 0,

(a) gJL is an odd function : gJL( - x ) = CTJL (-ax ) - CTJL (- bx ) = (1 - CTJL( ax )) ­
(1 - CTJL (bx )) = - gJL (x ).

(b) gJL( O) = 0, gJL(x) > 0 for x > 0, gJL (x ) < 0 for x < 0, and gJL( x) ----t 0 as
x ----t ±oo.

(c) gJL has only two crit ical points c > 0 and - c in (-00, 00). As b < a < 0,
the fun ctions CTJL(ax) and CTJL(bx) are concave-up and CTJL( ax) > CTJL(bx)
for all x > O. Since CTJL( ax ) = CTJL (bx) = 1/ 2 at x = 0 and both
CTJL (ax ),CTJL (bx ) ----t 1 as x ----t 00, gJL( x) has only one crit ical po int c in
(0,00). Since gJL is an odd fun ct ion , it has another critical point - c in
(-00, 0).

(d) gJL is C3 and has negative Schwar zian derivative SgJL (x ) for all x 2:: O.
First , gJL rest ricted to [0, 00) is a composition of two maps, gJL( x )
¢('If; (x)), where 'If; : [0, 00) ----t [1, 00), ¢ :-[1, 00) ----t [0, 00),

1 1
'If;(x) = e-

JLa x
and ¢(x) = 1 +x - 1 +xd ' d = bf a.
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According to a property of the Schwarzian derivative [13, 17],

(4)

if S 7jJ < 0 and S ¢ < 0, then S9 1" < o. It is easy to show S 7jJ < 0:

(_/.w) 3e-I"ax 3 ((_/La)2 e-I"ax)2 1 2
S 7jJ(x) = - - = - -(J.la) < O.

- J.lae - I"ax 2 -J.la e-I"ax 2

But it needs some effort to carry out S ¢( x) for x 2: 1:

S ¢( x)
¢/I/ (x ) 3 ( ¢II(X))2
---- --
¢' (x ) 2 ¢'(x)

where

¢'(x )

¢l(X)

¢"(X)

¢/I/ (x )

-1 dXd- 1

(l+ x)2 + (1+ xd)2

2 d(d - 1)xd-2 2d2x 2d- 2
-,----------,-,- + - -,------...,,--,-
(1 + X)3 (1 + Xd)2 (1 + Xd)3

-6 d(d - l) (d - 2)Xd- 3

(1+ x) 4+ (l+ xd)2

6d2(d - 1)x2d- 3 6d3x3d-3
- +-,--------,,----

(1+ x d )3 (1 + X d )4

2d(d2 - 3d + 2)x3d+3 + 4d(d 2 _ 1)x 3d+2

+ 2d(d2+ 3d + 2)x3d
+1 + d2(d2 _ 1)x 2dH

+ 4d(d3 - 2d2 - d + 2)X2d+3

+ 4d(d3 - 2d2 - d + 2)X2d
+1

+ 2d(3d3 - 8d2 - 3d - 8)x 2d+2 + d2(d - 1)x 2d

+ 2d(d2+ 3d + 2)x d+3 + 4d(d2 - 1)xd+2

+ 2d(d2 - 3d + 2)x d
+1

[2d2x2d+6 + 8d(d - 1)x2d+5 + 2X4dH _ 4dx 3d+5 ]
+ [8d(d - 1)x3dH - 4dx3d+3]

+ [4(3d2 - 4d + 3)x 2dH - 4dxd+5]
+ [8d(d - 1)x 2d+3 - 8(d - l) xdH]

+ [2d2x2d+2 _ dXd+3] + 2x4

By the given condition d 2: 2, it is st raightforward to check that ¢l (X) >
oand ¢2(X) > 0 (each term within [] of ¢2(X) is positive). So S ¢( x) < 0
for all x 2: 1.

From properties (a ) and (b) , 91" : lRoo ---+ lRoo can be decomposed into two
map s 91"1 [- 00 ,01 and 91"1I0,ooJ' which are top ologically conjugate to each other
under a conjugacy h(x) = - x . Therefore, for the dynami cs, we can just
consider 91" defined on the interval [0, oo].
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We define a topological conjugate 11' of gl"
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f (x ) = { h· gl'. h-1(x) 0:::; X < 1
I' 0 X = 1

where h : [0 ,00] I---t [0 ,1] is given by h(x) = x/( l + x), with its inverse
h-1(x) = x/ (l - x). We claim that the maps 11' have the prop erty of being
a full family of 5 -unimoda l maps on the interval [0, 1] with f.l E (0,00). Let 's
check the condit ions one by one.

(i) 11'(0) = 11' (1) = O.far all u, Trivial.

(ii) Each 11' has a crit ical point <= h-1 (cl') = cl'/( l + cl') where cl' is the
critical point of gl' in (0,00). Since

11" (x ) .= .h'(gl'(h-1(x))) gl"(h-1(x)) h-1'(x)

. (1+ gl' (~-1(X) ) ) 2 gl"( h-1(x)) (1~ x)2'

1~ (x ) = 0 if and only if g~ (h-l (X) ) = O. Hence the existence and
uniqueness of cl' implies t he existence and uniqueness of <in (0,1).

(iii) All 11' are C3( [0, 1]) . Trivial.

(iv) All 11' have the negative Schwarzian derivatives. It is easy to check that
Sh = Sh- 1 = O. Hence by the property of the Schwarzian derivative
on composite maps given by (4) ,

SII' Sh(gl'· h- 1)(gl'. h- 1),2+ Sgl' (h- 1)h- 1I2+ Sh- 1

Sgl'(h-1)h- 1I2,

591' < 0 (except at c and 00) implies SI I' < 0 (except at c' and 1).

(v) All 11' are once differentiable with respect to u. Trivial.

(vi) limJL-->oI JL (x ) = 0 for all x E [0,1]. Trivial.

(vii) Since all 11' have the same function values c* at their crit ical points <,
that is, c* = II' ( c~) for all f.l > 0,

The pro of of the th eorem is now completed. •

R emark. The condit ions on a and b in the theorem are only sufficient to
carry out th e technical par t of the pro of, SgJL < o. Simulations suggest that
there are a lot of other cases for a and b in which th e conclusion of the
theorem is st ill true. In fact , computat ion of the Liapunov exponent [13, 17]
of the map 11' shows th at the theorem also holds [40] for the cases where
a < b < 0 with 1 < d = bla < 2 and a > b > 0 with 1/2 < d = b]« < 1.
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Figure 2: The full family of S-unimodal maps II-' that are topologi­
cally conjugate to FI-' with weight matrix Wl1 = - 5, W 12 = 5, W21 =

- 25, W22 = 25.

To illustrate the chaotic behavior of the simple neural network, we per­
form some computer simu lat ion on the network with weight matrix

[-5 5]
W = - 25 25 . (5)

The full fam ily of S-unimodal maps II-' for the maps FI-' is shown in figure 2 for
some par am eter values . To clarify the period-doubling route to chaos of the
maps FI-" we dr aw bifurcation diagrams in figures 3 and 4 for the respect ive
neuron states x and y as the parameter J-L var ies from 0 to 6. For each J-L we
draw a stable periodic orbit of I w We fix J-L to be one of 600 equ ally spaced
values in the interval [0, 6J. For such fixed J-L , we take 1000 it erations of the
map FI-' with an init ial st ate (x(O) ,y(O)) = (.35 , .55) . On the vertical axis one
point is plotted for each of the states (x(900),y(900)) to (x(1000) ,y(1000)),
where (x(t) ,y(t)) = F~(x(O) ,y(O)) for t 2': o.

To see that some map s FI-' have strange at t rac tors, we plot in figure 5
the last 1000 po ints in 10,000 ite rates of FI-' with the init ial point (.35 , .55)
for som e different param et er values. As we know from Lemma 2, st ate y is
a function of state x when the network has a weight matrix of the form in
(3). Hence the attractors in (a) , (c), and (d) of figure 5 look like unions
of several pieces of curves, which are essentially one-d imens ional st range
attractors [17].

Another interesting phenomenon we found in simulations is that the rou te
of period-doublings to chaos in the simp le neural network persists un der some
small perturbation of the weight matrices. This suggests that the network
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Figure 3: A bifur cation diagram in x for the network with weight
mat rix Wll = - 5, W12 = 5, W 21 = - 25, W2 2 = 25.
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F igure 4: A bifurcation diagram in y for th e network with weight
matrix W ll = - 5, w 12 = 5, W2 1 = -25, W22 = 25.
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Figure 6: A bifurcation diagram in x for the network wit h weight
matr ix W l1 = - 5, W 12 = 5.1, W2 1 = - 24.9, W22 = 25.
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and also the full family of the S-un imodal maps i lL have some kind of "st ru c­
tural stability" or "robustness" [13, 17, 40]. In figures 6 and 7, we plot
bifurcation diagrams for the netwo rk wit h weight mat rix

[ -5 5.1]w = - 24.9 25 .

As we can see, a similar route of period-doublings to chao s occurs as that for
t he network with the matrix in (5) .

5. Final remarks

(1) A biological implicat ion of our results is that , given an inh ibitory
neuron x and an excit atory neuron y as shown, the simple network in (1)
can st ill have interesti ng, even chaotic dyn amics. T herefore, with properly
chosen weight matrices, such a simple network can be used as a generato r
for oscillations of any period and even chaos , and as a "building block" for
chaotic neural networks of more neurons [40]. For example, by adding one
more neuro n, we are able to perturb the one-dimensional map s in the theorem
to two-dimensional map s that behave like the Henon map [13, 17, 22].

(2) From our analytica l result and nu merical simulations, we see that the
chaot ic dy namics we have st udied in this pap er is not a rar e ph eno menon
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that can happ en in the network. In other words , if we randomly generate a
weight matrix, we will have a posit ive probability of havin g one that yields
chaotic dynamics in the network.

(3) From our analysis, we can see that lowerin g neuron gain can pr event
the network from being chaot ic and even from being oscillatory. But the
network with very small gain may not have enough periodic orb it s (including
fixed po ints) and hence may not be very useful in practice, for example, when
used as a model of asso ciat ive memories [28J and oscillation generators [7J.

(4) It can be shown [40J that another oft en used sigmo idal functi on
tanhp.(x) = tan h( p.x) on the interval [- l ,lJ is not topologically conjuga te
to the sigmoid function O"/.(x) used in this paper . Bu t from our works [7, 40J
on these networks, we see that the networks using tanh., have the same
pe riod-doubling route to chaos as those using 0"p. '

(5) In an autonomous neural network, its weight matri x determines the
dynami cs of the whole network , as the neuron gain of a neuron can be dis­
tributed to all it s incoming weights. So study of how the vari ous existi ng
learning ru les (like Hebbian and backpropagation rul es) change the weight s
and what kinds of possible routes of bifurcations to chaos can result is defi­
nitely a very interesting subject in dynami cs analysis of the neural networks.
Maas, Verschure, and Molenaar [39J and Kolen and Pollack [25] have done
some experiments along this direction . One of our future st ud ies is to con­
sider the simp le neural network as a famil y of maps with multiple parameters
(weights W ij) , to keep track of mul tiple parameter bifur cations caused by var­
ious learning rules, and to perform a thorough analysis on the dynamics of
the network.
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