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Abstract. Let F be a cellular automaton on the space of all sequences
from a finite alphabet. From the local description of F' a finite labeled
digraph is constructed with a distinguished subdigraph. The surjectiv-
ity and openness of F' are proved to correspond to properties of these
digraphs. Similarly, another finite labeled digraph is constructed with
a distinguished subset of its vertex set. The injectivity and local injec-
tivity of F' are proved to correspond to properties of this digraph and
its subset. All the relevant properties can be checked in finitely many
steps. Analogous results are also obtained for biinfinite sequences.

1. Introduction

Let S denote a finite set with N elements. We shall call S the alphabet, and
each member of S a symbol. In the examples we will choose, typically S =
{0,1,...,N — 1}. Write X, for the set of infinite sequences z = oz T3 . ..
where z; € S for j =0,1,2,.... We regard each z in ¥ as an infinite word
or configuration. If we give S the discrete topology, we may then give X,
the product topology since it may be regarded as the product of countably
many copies of the discrete topological space S. In this topology a sequence
of words z* converges to the word z if and only if for each j > 0 there is an
integer M such that, for 4 > M, the symbols in the jth position of z*—that
is, :cj-—all agree with z;. By the Tychonoff theorem X is a compact space
and is in fact metrizable.

The topology of ¥, plays an important role in some applications. For
example, ¥, arises in the consideration of the Julia sets of certain polyno-
mials in the complex plane where, by means of symbolic dynamics, the Julia
set is shown to be homeomorphic with the configuration space X (see [2]).
The topology of the Julia set is entirely determined by the topology of the
complex plane, and it is important to consider this topology when questions
about the Julia set are reduced to questions about X.

Suppose that m is a nonnegative integer. A local map f of order m is a
function f : S™! — S. Any local map f determines a global map or cellular
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automaton F' : ¥, — ¥ of orderm defined by (F'z); = f(z;, Tjt1,- - -, Tj4m)
for 7 > 0. An important example of a cellular automaton is the shift map
o : Xy — ¥, defined by (0z); = zj41. It is easy to see that any cellular
automaton is a continuous function that commutes with . The converse is
also known, namely that any continuous map F' : ¥, — ¥, that commutes
with the shift map o is in fact a cellular automaton with order m for some
m (see [5]).

A cellular automaton is determined by a table for the local map f. The
question arises, however, whether properties of the global map F' can be
inferred from properties of the table for the local map.

Most past work in this area has concerned the slightly different situation
where ¥ denotes the set of doubly infinite sequences z = ...z_sz_1zoz1Z5 . ..
and a local map f induces a global map G : ¥ — ¥ in the same manner as
above. In particular, Amoroso and Patt [1] presented decision procedures
for determining whether G : ¥ — X was surjective or injective. Alternative
procedures have been provided by [3] and [4], among others.

In this paper we modify the constructions of Amoroso and Patt to de-
termine whether F' : ¥, — X, is surjective or injective. The modified
constructions also permit us to answer other related questions that are not
resolved by the Amoroso and Patt procedures. In particular, we are able
to characterize when F': ¥, — ¥ is an open map and when it is a locally
injective map. These topological properties are of use in dealing with cellular
automata that arise on the symbolic dynamics of a Julia set. Since the Julia
set is more closely associated with ¥, than with 3, the extension to X, is
useful. The final section of this paper sketches the analogous results for the
corresponding maps G : ¥ — L.

Here is an overview of our construction. If we are given the local map f
for a cellular automaton F' : ¥, — X, we construct two finite labeled di-
graphs (directed graphs) 8 (for surjectivity) and J (for injectivity). Whether
F is surjective can be decided by studying the digraph §; the problem reduces
to whether there is a walk from one distinguished vertex to another distin-
guished vertex. The same digraph can also be used to decide whether F' is
open; here the problem reduces to whether a certain subdigraph of 8 contains
a directed cycle. Similarly, whether F is injective can be determined from J,
and we can use the same digraph to decide whether F is locally injective. In
some ways, our constructions resemble de Bruijn graphs (see [6]).

The digraphs in question, while finite, may unfortunately be large. A
crude upper bound for the number of vertices of § is 2 to the power N™*1,
A crude upper bound for the number of vertices of J is N™*1 4 (1/2) N?™+2,

2. Sﬁrjectivity

We construct the labeled digraph 8, called the surjectivity digraph, as follows.
The vertices of § will be all subsets B of S™*! such that all zoz; ...z, €
B have the same image under f. Equivalently, a subset B C S™*! is a
vertex if and only if for any two elements z¢z; ...z, and yoy; ...Ym of B
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we have f(%o%1...ZTm) = f(Yoy1...Ym). Note that the empty set @ is a
distinguished vertex of 8. Other distinguished vertices, for any y € S, are
B, = {zoz1...Tm € S™ ¢ f(zoz1...7m) = y}. All subsets of By are also
vertices of 8, and no element of B, lies in any other vertex of § other than a
subset of B,.

If B is a vertex of § and y € S then there will be an arc in 8§ from B to
C labeled by y where C = {zo%1 ... Zm : f(To%1...2Tm) =y and there exists
z_; € S such that z_1zo%; ... Tm—1 € B}. All arcs of § arise in this manner.
Note that each vertex has exactly N outgoing arcs, one for each label y. It
is possible that several of these arcs go to the vertex §. Moreover, each of
the N arcs outgoing from () terminates at 0.

A walk in 8 is a sequence (Ag y1 A1 Yo Az...yr Ag) where Aq,..., A
are vertices of 8; y1, ...,y are symbols in S; and for each j the arc outgoing
from A;_; and labeled by y; goes to A;. Observe that, given an initial vertex
Ap and any sequence of labels v, ..., Yk, a walk starting at Ay is uniquely
determined. We shall also allow for infinite walks.

The following result relates walks in 8 to finite strings of symbols in the
image of F.

Lemma 2.1. Let Ay be a vertex of 8§ and let yo = f(zo...%n) for all
Zo...Zym Iin Ag. Let yi,...,yr be a sequence of symbols that determine a
walk (Ao y1 A1 y2 Az...yr Ag). There exists o ...Tgym such that
Tj...Tjym € Aj for j =0,...,k if and only if Ay # 0. If Ay # 0 then any
x € X, that begins with such Tz ... Tk satisfies that F(x) begins with
Yoyi - - -Yg. If Ay = O then there exists no z = zox; ... satisfying both that
Tg...ZTm € Ao and that F(z) begins with yoy; . . . Y.

Proof. Suppose that zox; ... Zrm exists; then clearly zy . .. Tgim lies in Ay,
so Ay # 0. Conversely, if Ay, # 0, choose any zy, . . . Ty, in Ag. Since there
is an arc from Ap_; to Ay, it follows that there exists zx_; € S such that
Tk-1Tk - - - Th—1+m € Ag—1; moreover, since the arc was labeled yy, it follows
that f(zk...%Tk+m) = Yr. Since there is an arc labeled y;_; from Aj_, to
Ag_1, it follows that there exists zz_» € S such that zx_oTg—1 ... Tk—24m €
Ao and f(Zp—1...ZTk—14m) = Yk—1. Repeating this argument, we obtain
the desired zoZ; . .. Trym. The other assertions of the lemma follow easily. B

The most fundamental result concerning 8 is the following.

Theorem 2.2. The cellular automaton F is surjective if and only if there is
no walk in 8§ from By to 0.

It follows that one can determine whether F' is surjective by doing a
depth-first search in § starting at By to decide whether @ can be reached.
Here the choice of By is somewhat arbitrary; it could be replaced by B, for
any y € S.

Proof of Theorem 2.2. The proof will be broken into a series of lemmas.
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Lemma 2.3. F is surjective if and only if for each k and each finite string
YolY1 - - - Y of symbols from S there exists ¢ € ¥ such that F(z) begins with

YoY1 - - - Y-

Proof. The “only if” portion is immediate. For the “if” implication, assume
that y = yoy192 ... € L is given, and we seek z € ¥ such that F(z) = y.
For each k > 0, by hypothesis we may choose z* € X, such that F(z*)
begins with yoy; ...ys. The sequence {z*} lies in the compact topological
space ¥, and hence has a subsequence {2*()} converging to some point of
3+, which we shall call z. Since F' is continuous, it follows that the sequence
{F(z*®)} converges to F(z). For any n and all sufficiently large i, F/(z*®)
begins with yoy; . . . Yn; hence F(z) begins with yoy; . . .y, by the topology of
Y. The lemma follows. B

Corollary 2.4. F' is surjective if and only if for each finite string y1ys . . . Yx
there exists x € &, such that F(z) begins with 0y1ys . . . Y.

Proof. Since F' commutes with the shift map o, if z is as given then F(o(z))
begins with o(0y1y2...) = y192 ... yx. B

Lemma 2.5. Suppose that there is a walk in 8§ from By to . Then F' is not
surjective.

Proof. Let the given walk be (4 y1 A; y2 Aa...yr Ax) where Ay = By,
Ak = 0, and each y; € S. We shall see that there is no z € X, such that
F(z) begins with 0y;ys . . . Yk

To prove this, suppose that such an z = zz; ... existed. Then zox; ... %,
€ By by the definition of By since F(z) begins with 0. Because the next
symbol in F(z) is y; it follows that f(z1Z2...Tme1) = y1; but 122 ... Trppn
extends zox1Z5...%, € Ao, so by the definition of the arcs of § we see
that z125...Zme1 € A;. In a similar manner, since f(zy...ZTmi2) = Y2
and Zy ... Tmyo extends 12 ... Ty it follows that z;. .. Tpes € Ay, If we
continue in this manner we see that z3Ts1; ... Trerm € Ax = 0, which is not
possible. B

Lemma 2.6. Suppose that there is no walk in 8§ from By to . Then F is
surjective.

Proof. Suppose the finite string y;y>...yx is given. Let Ay = By and
consider the walk (A9 y1 A; Y2 As...yr Ag). There is no walk from
By to @, so Ay # 0. By Lemma 2.1 we obtain symbols z¢,z1,..., Tiim
such that z;...z;., € A; for all j satisfying 0 < j < k; and, moreover,
F(zox1 ... Tpym .- .) begins with Oy,ys . .. yx. By Corollary 2.4 it follows that
F is surjective. B

The lemmas together complete the proof of Theorem 2.2. B
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3. Openness

A continuous map F' is open if and only if, whenever U is an open set, it
follows that F(U) is also open. In this paper the topological space of interest
is ¥4, and it is easy to see that a basis for the topology is all sets of form
ZoZ1 - . . T L4+ where adjacency indicates concatenation and zoz; . . . zx ranges
over all finite strings of symbols. In other words, a set U is open if and only if
it is a union of sets of form zoz; ...z;2, for various, not necessarily finitely
many, choices of k and of zoz; . .. x%.

Let 8 be the surjectivity digraph described above. A vertex B of § is
called restricted if there exists a walk in 8 from B to 0. Note that 0 itself is a
restricted vertex. The restricted digraph R of 8 is the labeled subdigraph of
8 generated by all restricted vertices; its vertices are precisely the restricted
vertices and its arcs are all the arcs of § between two restricted vertices.

A cycle is a walk along directed arcs (with at least one arc) that starts
and ends at the same vertex.

Theorem 3.1. F' is open if and only if the digraph R contains no cycle with
a vertex other than .

Note that any cycle in 8 containing () necessarily is a walk for which all
vertices are (). Since there are N arcs from 0 to itself, there could be many
arcs involved in such a cycle.

Proof of Theorem 3.1. The proof of the theorem will involve several
lemmas. The idea is first to reduce to the case of open sets of the form
ZoTy . .. Tm24, and then to relate the vertex {z¢z; ...z} to the digraph R.

Lemma 3.2. F is open if and only if, for each string zyz; . ..Z, withm+1
symbols, the set F(zoz; ...z,Y4) Is open.

Proof. The “only if” implication is immediate. For the “if” implication
we must show that if U is open then F(U) is open. It suffices to prove
this when U is a member of the basis for the topology, so we assume that
U = zor;...z12, for some choice of k and symbols z;. If & = m then
F(U) is open by hypothesis. If £ < m then U equals the uunion of all
sets ToZy...TpTktl - - - Ty Where Zpi;...x,, ranges over all possible se-
quences of symbols of length m — k. But then F(U) is the union of all such
F(zozy ... TkTky1 - - - TmEy), each of which is open by hypothesis, so that
F(U) is also open.

Suppose now that £ > m. Then F(zf_p, ...2x54) is open by hypothesis.
Let y; = f(zj...%j4m) for j = 0,...,k—m—1. Since F' has order m it is clear
that F(U) = F(zoZ1 ... TkTk41 - - - TmBt) = YoU1 - - - Yhem1F (Them . . . Tk Dy)
(where again adjacency indicates concatenation). But if V' is open then V' is
a union of sets of the form zpz; ... 2.2, ; hence for any symbol y it follows
that yV is a union of sets of the form yzgz; ...2.24, and thus is also open.
We conclude that F'(U) is open, and the proof is complete. B
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Notation. If A is a vertex of §, then AY., will dewote all possible configura-
tions arising by concatenating an element of A on the left with an element of
Y. on the right. Observe that A3, is automatically both open and closed;
since ¥, is compact it follows that A¥, is also compact.

Lemma 3.3. Let Ay be a nonempty vertex of 8§ and let yo = f(zoz1 ... ZTm)
for any zg ... T, in Ag. If Ag is not a vertex of R then F(A¢X;) = yoX4 and
hence’is open.

Proof. It suffices to show that for any finite string y; ...y, there exists
an element z in AeX,; such that F(z) begins with yoy; ...y (This is
by an argument like that for Lemma 2.3 using the fact that AyX, is com-
pact.) Consider the walk (A4g y1 A1 y2 A2...yx Ag). Since A
is not a vertex of R it follows that Ay # 0; hence, by Lemma 2.1, we
can find symbols 22 ... 2Zk+m such that z;... 24, € A; for j = 0,...,k.
Since 2921 ...2m € Ap it follows that any configuration z beginning with
2021 - . . Zkam lies in ApX,, and by construction F(z) begins with yoys . . . Yk.
The lemma follows. B

Corollary 3.4. Suppose that (Ag y1 A1 y2 Aa...yx Ax) is a walk in 8.
Let f(zozy...%m) = yo for zoZy ... Ty in Ay. Suppose finally that Ay is not
a vertex of R. Then F(AyX) contains the open set Yoy . . . Y2t

Proof. By Lemma 3.3, given any element y of y;3, there exists z in Ax¥
such that F(z) = y. Suppose that z begins with €3 %41 . . . Thym € Ag. Using
the given walk we may choose z; for j = k—1,...,0 such that z; ...z lies
in A;. Let z = 2oz ... 2p—12. Then 2 lies in Ao¥ and F(2z) = yoy1 - Ys-1Y,
proving the result. B

Lemma 3.5. Suppose that Ay is a nonempty vertex of 8§, and for some
positive integer M every walk (Ay y1 A1 y2 Az...ym An) satisfies that
either Ay = 0 or Ay is not in R. Then F(A¢Xy) is open.

Proof. Let * = zo%1 ... Tprim .- lie in ApX, and let F(z) =y = yoy1 - - .
We must show that y lies in an open set contained entirely inside F/(AgX).
Consider the walk in § given by (Ag y1 A1 Y2 Az...ym Anr). Then Ay
is nonempty since it contains xjs . . . Tpr4m, whence it follows that A is not
in R. By the corollary, F(AXy) contains the open set yoyi . . . yu24+, which
in turn contains the point y. B

We may now prove Theorem 3.1. First, suppose that R has no cycles
except those involving the vertex @; we must show that F' is open. Let
ZoZy ... T, be arbitrary and let Ay denote the singleton set {zoz;...ZTm}.
By Lemma 3.2 it suffices to show that F/(ApX,) is open. If A is not a vertex
of R, the result follows by Lemma 3.3. If A is a vertex of R, let M denote
the number of vertices in R. Then any walk starting at Ao with M steps ends
either outside R or at @. (Otherwise two vertices of the walk would coincide
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and lie in R, yielding a cycle of R not involving #.) By Lemma 3.5, F(A4pZ)
is open.

Conversely, suppose that R has a cycle (A4p y1 A1 ya As...yr Ai)
where A9 = A; # 0. Let y = yry1y2 .- - Yk¥1Y2 - - - Yk¥Y1Y2 - . . € L. We show
that y € F(AoX,) yet v has no open neighborhood completely contained in
F(AoZ;). To see that y € F(ApX,) observe that, since Ay = Ay and the
walk to Ay has label yi, each member of Ay gets mapped by f to yi. For
any r consider the walk (Cy 21 Cy z...z C,) where C; = A;(moar) and
Zj = Yj (modk)- Since C, # @ by Lemma 2.1, we may choose o, ..., Zr4m such
that f(z;...%j4m) = 2; and z; ... &j4m € C;j. Using compactness of A3,
yields z € AgXy such that F(z) =y.

If y had a neighborhood completely contained in F(Ao%, ), there would
exist a basis element of the form wou;...u,X, completely contained in
F(A¢XZ,). Clearly we may choose ug...u, to have the form yry1ys ... yeys
... Yk by choosing a slightly smaller basis element if necessary. But we shall
show that there exists an element v of uou; ... usE4 not in F(ApX,), giving
a contradiction. To find v, we observe that by the definition of R there is a
walk from Ao to 0; call it (A9 p1 Ci p2 Cs...py C;) where C; = 0. Let v
begin with uou; ... usp1ps ... p:. The sequence of labels ujus ... upips...ps
determines a walk starting at A that by construction ends at . By Lemma
2.1 there exists no z € AgX, such that F'(z) begins with ugu; .. . usp1ps - - . p;-
Hence v ¢ F'(A¢Z,). B

4. Relationships between openness and surjectivity

In this section we see that if F' is open then it is surjective; but the converse
is false since we will exhibit an example that is surjective but not open.

Proposition 4.1. If F' is open, then F' is surjective.

Proof. Suppose that F' has order m. Let U = zoz;...z,%5, for some
sequence Ty . .. T, Since U is open, it follows that F'(U) is open and hence
contains a basic open set Yoy . .. YsL4. Suppose z is in X. Then yoy; ... ysz
lies in F(U) and hence has form F(2oZ; ... ZmZm+1 - -.). Since F' commutes
with the shift map, it follows that F(zs41Zs42...) = 2, proving surjectivity
since z was arbitrary. B

Example. Suppose the alphabet S = {0,1} and the local rule f : S* — S
is given by

F(000)=1  £(100) =0

f0o1)=0  f(101) =1

F010)=0  f(110) =1

foi1)=0  fQ111)=1
Then B, = {001,010,011,100} and B; = {000,101,110,111}. It is easy to
see that in S the two arcs from By go to By and Bj; and similarly the arcs
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from B; go to By and B;. Hence there is no walk from By to @ and, by
Theorem 2.2, F' is surjective.

On the other hand there is a cycle ({001} 0 {010,011} 0 {100} 1 {000}
0 {001}), and all these vertices lie in R since there is a walk ({001} 1 0).
Hence, by Theorem 3.1, F' is not open.

5. Injectivity

In order to decide questions of injectivity we introduce a different labeled
digraph J. If the local rule f for F' has order m, the vertices of J are
of two types: either singleton sets {zoz; ...z, } consisting of a single ele-
ment, or doubleton sets {ZoZy ... Tm,YoU1 - - - Ym} With two distinct elements
such that f(zoxy...2Zm) = f(Yoy1-..Ym). There are no other vertices of
J. Given a singleton set {zoz; ...z} for any z,,11 € S there will be an
arc from {zoz;...Tn} to {Z1...TmZTm41} labeled by f(z1...ZmZmy1). If
there are two distinct symbols ;.1 and y,,41 such that f(z;...TnTmy1) =
f(z1 ... TmYm+1), then there will also be an arc from {z¢z1 ... Zn} to {z1 ...
TmTma1, L1 - - - TmYm+1} labeled by f(zy ... 2m2my1). There are no other arcs
outgoing from a singleton vertex.

Suppose {zo%1 ... Tm,YoY1-.-Ym} is a doubleton vertex. If there exist
Tmy1 and Ym,qy in S such that f(z;...ZmTme1) = f(Y1.. - YmYm+1), then
there is an arc from {zo%1 .. . Ty, Yoy1 - - - Ym } tO{T1 - . . TiTrmt1, Y1 - - - YmYmt1}
labeled by f(z1...ZmZTm+1), whether the latter set is a singleton or a dou-
bleton vertex. There are no other arcs in J.

Note that there may be several arcs with the same label outgoing from
a given vertex, or there may be no arcs with a given label outgoing from a
vertex. It is possible that some doubleton vertices have no outgoing arcs at
all, but every singleton has at least N outgoing arcs.

We next define a subset T of the set of vertices of J, called the terminating
vertices. T is the smallest set of vertices A of J satisfying the following
properties:

1. If a vertex A has no outgoing arcs in J, then A € T.

2. If each outgoing arc from a vertex A goes to a vertex in 7T, then A € T
also.

Given J there is clearly a finite recursive procedure to determine J. Note
that T consists of all vertices A at which no walks of arbitrarily long length
start. More precisely, we have the following.

Lemma 5.1. Let A be a vertex of J. Then A ¢ T if and only if there exists
an infinite walk in J starting at A.

Proof. If there is an infinite walk starting at A, then clearly no vertex on
the walk fails to have outgoing arcs, so no vertex can lie in J. Conversely, if
A ¢ T then there is an arc from A to some A; ¢ T; then there is an arc from
A; to some A, ¢ T. Continuing in this manner we can construct an infinite
walk starting at A. B
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Lemma 5.2. Suppose that A is a vertex of J that is not in T. Let yo =

f(zozy ... xy) for all elements oz ...z, of A, and let y1,ys, ... be the suc-
cessive labels of an infinite walk in J starting at A. Then for each xox; ... %,
in A there exist symbols Ty 11, Tmia, - . . such that F(zoz; ... TmTmi1-..) =
YoY1Y2 - - -

Proof. Let the infinite walk be (A y; A; y2 Az...). Foreach oz ... 2, €
A there exists Z,, 41 such that z; . .. £, Tmy1 € Ay, whence f(z; ... ZpTme1) =
y1. But A; ¢ T since there is an infinite walk starting at A;, so there exists
Ty such that zoz3...Tpmy0 € Ay and f(ZoT3. .. Timya) = Y. If we iterate
this argument we find the desired symbols. B

Theorem 5.3. F is injective if and only if T contains every doubleton vertex

of J.

Proof. Suppose that A is a doubleton vertex that is not in 7. Then by Lemma
5.2 both the elements of A extend to yield preimages of some yoy; ... € T4,
where y1, s, ... are the labels of some infinite walk starting at A and yo =
f(zozy ... 2p) for all Zoz; ...z, € A. Thus F cannot be injective.

Conversely, assume that T contains every doubleton vertex of J. We show
that F' is injective. Suppose that F(z) = F(z) = y where z = zoz; ...,
Y = YoYi-.., and z = zp2;.... If z # z then, without loss of generality, by
using the shift map we may assume zo # 2. Then {Z¢Z; ...ZTm, 2021 .. Zm}
is a doubleton vertex of J and there exists an infinite walk in J starting at A.
By Lemma 5.1 A ¢ T, contradicting that J contains every doubleton vertex
of J. B

Corollary 5.4. F' is injective if and only if no infinite walk in J contains a
doubleton vertex. ,

6. Local injectivity

Let X and Y be topological spaces. A function F' : X — Y is locally injective
if each £ € X lies in a neighborhood U such that the restriction F' | U is
injective.

Proposition 6.1. Suppose that F' : ¥, — 3, is a cellular automaton of
order m. Then F is locally injective if and only if for each string zoz; ... Tmn
the restriction F' | zozy ... Tm24 is injective.

Proof. By the definition of local injectivity the “if” portion is immediate
since any point of ¥, lies in an open set of the form zoz;...z,X,. Con-
versely, suppose that F' is locally injective and = = zoz; ... 2Z,, .... We show
that F' | zoz; ...Zz,24 is injective.

Since F is locally injective, for each z € X, there exists a basic open
set U = 2o ...z 2, containing z (with k depending on z) on which F is
injective. The set of such sets U forms an open cover of ¥, so by compactness
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there exists a finite subcover. Choosing the largest of the k’s that appear in
the finite subcover, we obtain k such that for each zg...zy it is true that
F | zoz; ...z 24 is injective. If kK = m we are done. If k < m then U contains
the smaller open set zoz; ...Z,,2 on which F will also be injective. Thus
we reduce to the case where k > m.

Suppose that F' | zoz;...Z,X+ were not injective and k > m. Then
there would exist distinct y and z in X, such that F(zoz;...Zny) =
F(zoxy...Tmz). Choose any symbols z_;,Z_2,...,Z_g+m in S and let
Y = T p4m...T1T0... Ty Wwhile Z = T 440 ...21%0...Zpz. Then
F(Y) = F(Z) since these agree by hypothesis after the first k — m sites,
and they agree on the first k — m sites since Y and Z agree on the first k+ 1
sites and F' has order m. This contradicts that F | T_j4m ... Z_1Z0... TmXiy
must be injective. B

Theorem 6.2. Let F' have order m. Then F | zg...z,2, is injective if
and only if there is no walk in J from the singleton vertex {zg...zn,} to any
nonterminating doubleton vertex.

Corollary 6.3. F' is locally injective if and only if, whenever there exists
a walk in J from a singleton vertex to a doubleton vertex A, then A is
terminating.

Corollary 6.4. F is locally injective if and only if no infinite walk in J
starting from a singleton vertex contains a doubleton vertex.

It follows that one can decide whether F’ is locally injective by performing
a depth-first search from each singleton vertex to see whether any nontermi-
nating doubleton vertex can be reached.

Proof of Theorem 6.2. For the “only if” implication, assume that F |
Tg...T,mLy is injective. Let Ag = {zo...Zm}, let f(zo...2Zm) = Yo, and
assume that (Ag y; A; ya...yr Ax)is a walk, where Ay is a nonterminating
doubleton vertex. Let the two distinct elements of Ay be wy...wgy,m and
Uk ...Ugim. By the definition of the arcs of J there exist wp...wk—; and
Vp...Vk—1 such that w;...wj4n and vj... vy, liein A; for 7 = 0,...,k.
(To see this, one proceeds inductively. Since there is an arc from Ag_; to Ag,
one can select vyp_; and wy_; such that vg_;...Vg1m—1 and Wg_1 ... Wrym—1
lie in Ax_;. Repeating this argument we obtain the remaining w; and v;.)

Since Ay is a nonterminating vertex, by Lemma 5.1 there exists an infi-
nite walk starting at Ax; hence by Lemma 5.2 there exist W ym+1Wktmt2 - - -
and Vgymi1Vkimtz - - - such that F(wgwgyr...) = F(vgUkr...). But then
F(wow; ...) = F(vgvy ...) by the construction of the w; and the v;. Since
Wo ... Wy and vy ...V, lie in Ay, they both must equal 2. ..z,,. Hence we
have exhibited two distinct elements of zg...z,% that map to the same
element under F'. This contradicts the hypothesis.

Conversely, for the “if” implication, suppose that F | zg...z,2; were
not injective, so that there exist distinct u = uou;... and v = vgvy ... in
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Zo...TmYy such that F(u) = F(v). Then these lead to an infinite walk in J
starting at Ao = {@o®1 ... xm}. Tosee this, let A; = {u;... Ujtm, V.. . Vjtm}
Possibly A; is a singleton. Since F'(u) = F(v), it is clear that f(u; ... Ujym) =
f(v;...Vjtm), and we shall call this common value y;. Then (A4y y; Ay
y2 Aa...) is an infinite walk in J starting at Ag. By Lemma 5.1, Ay cannot
be terminating. This completes the proof. B

7. The biinfinite cases

Suppose that f : S™*! — S is a local map of order m. The results in the
preceding sections have all concerned the global map F' : ¥, — X, given
by (Fz); = f(zj,...,%j4m) for j > 0. However, if ¥ denotes the set of all
doubly infinite sequences ...z_1zoz; ... of symbols from S, then the same
formula yields a map G : ¥ — X given by (Gz); = f(z;,...,Tj4m) for all
7, and the question arises whether global properties of these maps G can be
inferred from properties of the local maps f. In this section we state the
results. Proofs are similar to those of the corresponding theorems earlier in
this paper and are omitted.

Let X _ denote the set of all left-infinite sequences . .. z_sz_;xq of symbols
from S. A basis for the topology for ¥ consists of all sets X_yryYr+1 - - - Yrtr 2t
where the notation indicates all doubly infinite sequences whose kth value is
Yk, whose (k+1)st value is yx41, - . . , whose (k+r)th value is yg4,, but whose
other values are unrestricted in S; and where k and r range over integer
values with r nonnegative.

Let 8 denote the surjectivity digraph of section 2.

Theorem 7.1. The map G : ¥ — X is surjective if and only if there exists
no walk in 8 from By to 0.

From Theorem 2.2 we see that G : ¥ — X is surjective if and only if
F: ¥, — ¥, is surjective.

Given the local rule f, we define another digraph 8’ called the left sur-
jectivity digraph as follows. The vertices of §' are the same as the vertices
of 8. If B is a vertex of §' and y € S, then there will be an arc in §' from
B to C labeled by y where C = {z¢z; ...Zm : f(zoz1...2Zm) =y and there
exists T,,41 € S such that 125 ... Zme1 € B}. Thus the definition of S is
completely analogous to that of § but refers to extensions of words in the
opposite direction. Define a vertex B of 8’ to be left-restricted if there exists
a walk in 8 from B to 0, and let R’ denote the labeled subdigraph of §
generated by all left-restricted vertices.

Theorem 7.2. The map G : & — X is open if and only if neither R nor X'
contains a cycle with a vertex other than 0.

Let J denote the injectivity digraph of f. Analogous to T we define a
subset T of the set of vertices of J, called the left-terminating vertices. T is
the smallest set of vertices A of J satisfying the following properties:
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1. If a vertex A has no incoming arcs in J, then A € T,

2. If each incoming arc from a vertex A comes from a vertex of ', then
A e T also.

Theorem 7.3. The map G : ¥ — ¥ is injective if and only if each doubleton
vertex of J lies in either T or T’ or both.

A doubly infinite walk in a digraph is a walk whose vertices are indexed
by all integers, not just the nonnegative integers.

Corollary 7.4. G is injective if and only if no doubleton vertex of J lies on
any doubly infinite walk.

Theorem 7.5. The map G : ¥ — X is locally injective if and only if, for
each string ToTy ... T, the restriction G | ¥_zoz; ... .14 is injective.

Theorem 7.6. The map G | X_zo; ...z, X4 is injective if and only if
both (1) there is no walk in J from the singleton vertex {zoz; ...z} to any
doubleton vertex not in T, and (2) there is no walk in J to {zoz; ... z;,} from
any doubleton vertex not in T”.

Corollary 7.7. G is locally injective if and only if no doubly infinite walk
in J that contains a singleton vertex also contains a doubleton vertex.
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