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Abstract. Let F be a cellular automaton on the space of all sequences
from a finite alphabet. From the local description of F a finite labeled
digraph is constructed with a distinguished subdi graph. The surjectiv­
ity and openness of F are proved to correspond to properties of these
digraphs. Similarly, another finite labeled digraph is constructed with
a distin guished subset of its vert ex set . Th e injectivit y and local injec­
tivity of F are proved to correspond to properties of this digraph and
its subset . All the relevant prop erties can be checked in finitely many
steps. Analogous results are also obta ined for biinfinite sequences,

1. Introduction

Let S denote a finit e set with N elements. We shall call S the alphab et, and
each member of S a symbol. In the examples we will cho ose, typically S =
{O, 1, ... ,N - I} . Write ~+ for the set of infinite sequences x = XO XIX 2 . . .

where Xj E S for j = 0,1 ,2, . . .. We regard each x in ~+ as an infinite word
or configuration. If we give S the discrete topology, we may then give ~+

the product topology sinc e it may be regarded as the product of countably
many copies of the discret e topo logica l space S . In this topology a sequence
of words X i converges to the word x if and only if for each j 2 0 there is an
integer M such that , for i > M , t he symbols in the jth position of xi- t hat
is, x;-all agree with Xj. By the Ty chonoff t heorem ~+ is a compact space
and is in fact metrizab le.

The topology of ~+ plays an important role in some applications. For
example, ~+ ari ses in the consideration of the Julia set s of certain polyno­
mials in the complex plan e where, by means of symbolic dynamics , the Julia
set is shown to be homeomorphic with the configuration space ~+ (see [2]).
The topology of the Julia set is ent irely determined by the topology of the
complex plane, and it is important to consider this topology when questions
about the Julia set are reduced to questions about ~+.

Suppose that m is a nonnegative integer. A local map f of order m is a
function f : sm+! -; S. Any local map f det ermines a global map or cellular



498 Stephen J. Willson

automaton F : ~+ -+ ~+ of order m defined by (Fx)j = f (x j , Xj+1,"" xj+m)
for j ~ O. An important example of a cellular automaton is t he shift map
U : ~+ -+ ~+ defined by (ux)j = Xj+l. It is easy to see that any cellular
automaton is a cont inuous function that commutes with a . The converse is
also known , namely that any continuous map F : ~+ -+ ~+ that commutes
wit h the shift map U is in fact a cellular automaton with order m for some
m (see [5]).

A cellular automaton is determined by a tab le for the local map f. The
question arises, however , whether properties of th e global map F can be
inferr ed from properties of the table for the local map .

Most past work in t his area has concerned the slight ly different situation
where ~ denotes the set of doubly infini te sequences x = ...X-2X- IXaXIX2 . ..
and a local map f induces a global map G : ~ -+ ~ in the same manner as
above. In par ticular , Amoroso and Patt [1] presented decision procedures
for determining whether G : ~ -+ ~ was surjective or injective. Altern ative
proc edures have been provided by [3] and [4], among ot hers.

In this pap er we modify th e constructions of Amoroso and Patt to de­
termine whether F : ~+ -+ ~+ is surj ective or inject ive. The modified
constructions also permit us to answer other related questions that are not
resolved by t he Amor oso and Patt pro cedures. In par ticular , we are able
to characterize when F : ~+ -+ ~+ is an open map and when it is a locally
injective map . These topological properties are of use in dealin g with cellular
aut omata that arise on the symbolic dyn amics of a Julia set. Since t he Julia
set is more closely assoc iated with ~+ than with ~ , the extension to ~+ is
useful. The final sect ion of t his pap er sketches the analogous resul ts for the
corresponding maps G : ~ -+ ~.

Here is an overview of our const ruct ion. If we are given th e local map f
for a cellular automaton F : ~+ -+ ~+ , we construct two finit e lab eled di­
graphs (dir ected graphs) S (for surject ivity) and J (for injectivity) . Whether
F is surj ective can be decided by studying the digraph S; the problem redu ces
to whether there is a walk from one distinguished vertex to another distin­
guished vertex . The same digraph can also be used to decide whether F is
open; here the problem reduces to whether a certain subdigraph of S contains
a dir ected cycle. Similarly, whet her F is injective can be determined from J,
and we can use the same digraph to decide wheth er F is locally injective. In
some ways, our construc t ions resemble de Bruijn gra phs (see [6]).

The digr aphs in question, while finite, may unfortunately be large. A
crude upp er bound for th e number of vertices of S is 2 to th e power Nm +1 .
A crude upper bound for the number of vertices of J is Nm +1 + (1/2)N2m+2.

2. Surj ectivity

We construct the labeled digraph S, called the surjectivity digraph, as follows.
The vertices of S will be all subset s B of sm+l such that all XaX l . . . Xm E
B have the same image under f . Equivalently, a subset B c s m+1 is a
vertex if and only if for any two elements XaXl .. . Xm and YaYl . . .Ym of B
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we have f( XOX 1 '" x m) = f (YOY1 ' " Ym ) ' Note that the empty set 0 is a
distinguished vertex of S. Other disti nguished vert ices, for any yE S , are
By = { XOXl ... Xm E s m+l : f (X OXl ... x m ) = y}. All subsets of By are also
vertices of S, and no element of By lies in any other vertex of S other than a
subset of By.

If B is a vertex of S and yES t hen there will be an arc in S from B to
C lab eled by Y where C = { XOX l ... Xm : f( XOXl . .. x m) = Y and there exists
X - l E S such that X -1XOXl .. . Xm- l E B }. All arcs of S arise in this manner.
Note that each vertex has exac t ly N outgo ing arcs , one for each lab el y. It
is possible that several of these arcs go to the vertex 0. Moreover , each of
the N arcs outgoing from 0 terminates at 0.

A walk in S is a sequence ( A o Yl A 1 Y2 A 2 . .. Y k A k ) where A o , . .. , A k

are vertices of S; Yl, ... , Yk are symbols in S; and for each j the arc outgoing
from A j-1 and lab eled by Y j goes to A j . Obser~e that , given an initi al vertex
Ao and any sequence of lab els Yl , . .. , Y k, a walk start ing at Ao is uniquely
determi ned. We shall also allow for infinite walks .

The following result relates walks in S to finit e st rings of symbols in the
image of F .

Lemma 2.1. Let A o be a vertex of S and let Yo = f ( xo . . . x m ) for all
Xo . .. Xm in A o. Let Yl, ' . . , Yk be a sequence of sym bols th at determine a
walk (Ao Yl A 1 Y 2 A 2 · . . Y k A k ) ' Th ere exist s XOXl . . . Xk+m such th at
Xj . . . Xj+m E A j for j = 0, . . . , k if and only if A k =I- 0. If A k =I- 0 then any
x E ~+ th at begins with such XOX1 ' " Xk +m sat isfies tha t F(x) begins with
YOYl Yk · If A k = 0 then th ere exists no x = XOXl . .. sa tisfying both tha t
Xo Xm E A o and th at F(x) begins with YOYl .. . Yk.

Proof. Suppose t ha t XOXl . .. X k+m exists ; th en clearly X k ... X k+m lies in A k,

so A k =I- 0. Conversely, if A k =I- 0, choose any X k ... Xk+m in A k. Since there
is an arc from A k- 1 to A k , it follows that there exists X k- l E S such that
Xk -1Xk . . . Xk- Hm E A k- 1; moreover , since the arc was lab eled Yk , it follows
that f( Xk . . . Xk +m ) = Yk . Since t here is an arc lab eled Yk-l from A k- 2 to
A k- 1, it follows that there exists Xk -2 E S such that X k-2Xk- l ... Xk -2+m E
A k- 2 and f (Xk-l Xk- H m ) = Y k-l ' Repeating this argument, we obtain
the desired XOXl Xk+ m' The ot her assert ions of the lemma follow easily. •

The most fund ament al result concern ing S is the following.

Theorem 2.2. Th e cellular automaton F is surjective if and only if there is
no walk in S from Bo to 0.

It follows that one can determine whether F is surjective by doing a
depth-first search in S starting at Bo to decide whether 0 can be reached.
Here the choice of Bo is somewhat ar bitrary; it could be replaced by By for
any yE S.

Proof of Theorem 2.2 . The proof will be broken into a series of lemmas.
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Lemma 2.3. F is surjective if and only if for each k and each finite string
YOYI Yk of symbols from S there exists x E L;+ such that F(x) begins with
YOYI Yk·

Proof. The "only if" portion is immediate. For the "if" implication, assume
that Y = YOYIY2 . .. E L;+ is given, and we seek x E L;+ such that F(x) = y .
For each k :2: 0, by hypothesis we may choose x k E L;+ such that F(xk)

begins with YOYI .. . Yk. The sequence {xk} lies in the compact topological
space L;+ and hence has a subsequence {Xk(i)} converging to some point of
L;+ , which we shall call x . Since F is cont inuous, it follows that the sequence
{F(Xk(i))} converges to F(x). For any n and all sufficiently large i , F(Xk(i))
begins with YOYI ... Yn; hence F(x) begins with YOYI ... Yn by the topology of
L;+. The lemma follows. •

Corollary 2.4. F is surjective if and only if for each finite string YIY2 .. . Yk
there exists x E L;+ such that F(x) begins with 0YIY2 . .. Yk.

Proof. Since F commutes with the shift map 0" , if x is as given then F(O"(x))
begins with 0"(OYIY2 ... ) = YIY2 .. .Yk· •

Lemma 2.5. Suppose that there is a walk in S from Eo to 0. Then F is not
surjective.

Proof. Let the given walk be (A o YI Al Y2 A 2 . . . Yk A k) where Ao = Eo,
A k = 0, and each Yj E S. We shall see that there is no x E L;+ such that
F(x) begins with 0YIY2 . .. Yk.

To prove this, suppose that such an x = XOXI . .. existed . Then XOXI . . . Xm
E Eo by the definition of Eo since F(x) begins with o. Because the next
symbol in F( x) is YI it follows that f( XIX2 . . . Xm+l) = YI; but XIX2··· Xm+l
extends XOXIX2 . . . Xm E A o, so by the definition of the arcs of S we see
that XIX2 . .. Xm+l E AI. In a similar manner, since f(X2 .. . Xm+2) = Y2
and X2 . . . Xm+2 extends XIX2 . . . xm+l it follows that X2 . . . Xm+2 E A 2. If we
continue in this manner we see that XkXk+l ... Xk+m E A k = 0, which is not
possible. •

Lemma 2.6. Suppose that there is no walk in S from Eo to 0. Then F is
surjective.

Proof. Suppose the finit e string YIY2 Yk is given. Let A o = Eo and
consider the walk (A o YI Al Y2 A 2 Yk A k) . There is no walk from
Eo to 0, so A k ¥- 0. By Lemma 2.1 we obtain symbols xo, Xl, . .. , Xk+m
such that Xj .. . xj+m E A j for all j satisfying 0 ::; j ::; k; and, moreover ,
F(XOXI . .. Xk+m . .. ) begins with 0YIY2 ... Yk. By Corollary 2.4 it follows that
F is surjective. •

The lemmas together complete the proof of Theorem 2.2.•



Decision Pro cedures for Openness and Local Inj ecti vi ty 501

3. Openness

A cont inuous map F is open if and only if, whenever U is an open set , it
follows that F (U ) is also open. In this paper the topological space of inte rest
is E+, and it is easy to see that a basis for the topology is all sets of form
XOX l ... XkE+ where adjacency indicates concatenation and XOX l .. . Xk ra nges
over all finite st rings of symbols. In ot her words , a set U is open if and only if
it is a un ion of sets of form XOXl XkE+ for var ious, not necessarily finitely
many, choices of k and of XOXl Xk.

Let S be the surjectivity digraph described above. A vertex B of S is
called restricted if there exists a walk in S from B to 0. Note that 0 itself is a
restricted vertex. The restricted digraph 1( of S is the lab eled sub digra ph of
S genera ted by all restricted vertices; its vertices are precisely the restricted
vertices and it s arcs are all the arcs of S between two restricted vertices.

A cycle is a walk along directed arcs (with at least one arc) that starts
and ends at t he same vert ex.

Theorem 3.1. F is open ifand only if the digraph 1( contains no cycle with
a vertex other than 0.

Not e that any cycle in S containing 0 necessaril y is a walk for which all
vertices are 0. Since th ere are N arcs from 0 to itself, there could be many
arcs involved in such a cycle.

Proof of Theorem 3.1. The proof of t he theore m will involve severa l
lemmas . The idea is first to reduce to the case of open sets of the form
XOXl' " xm E+, and then to relate the vertex {XOXl .. . xm} to the digraph 1(.

Lemma 3.2. F is open if and only if, for each string XOX l . .. Xm with m + 1
symbols, the set F (XOXl . .. xm E+) is open.

Proof. The "only if" impli cation is immediate. For the "if" impli cation
we must show that if U is open then F(U) is open. It suffices to prove
this when U is a memb er of the basis for the topology, so we assume that
U = XOXl ... XkE+ for some choice of k and symbols Xi. If k = m then
F (U ) is open by hyp othesis. If k < m then U equals the union of all
sets XOXl . .. XkXk+l ... xmE+ where Xk+l . .. Xm rang es over all possible se­
quences of symbols of length m - k . But t hen F(U) is th e union of all such
F( XO Xl . .. XkXk+l ... xmE+), each of which is open by hypothesis, so that
F(U) is also open.

Suppose now that k > m . Then F(Xk_m . .. XkE+) is open by hypothesis.
Let Yj = f (x j . . . xj+m ) for j = 0, , k-m- l. Since F has order m it is clear
tha t F (U ) = F (XO Xl . . . XkXk+l xm E+) = YOYl . .. Yk- m-lF(Xk-m . .. XkE+)
(where again adjacency indi cates concatenat ion). But if V is open then V is
a uni on of sets of the form. ZOZl ... zrE+; hence for any symbol Y it follows
that yV is a uni on of sets of the form YZOZl ... zrE+, and thus is also open.
We conclude that F (U ) is open, and the pro of is complete . •
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Notation. If A is a vertex of S, then A 2;+ will denot e all possible configura­
tions arising by concatenating an element of A on the left with an element of
2;+ on the right . Observe t ha t A 2;+ is automatically both open and closed ;
since 2;+ is compact it follows that A 2;+ is also compac t .

Lemma 3.3. Let Aa be a nonempty ver tex of S and let Yo = f( Xa XI ... xm)
for any Xa . . . Xm in Aa. If Aa is no t a vertex of j( th en F(Aa2;+) = Ya2;+ and
henceis open.

Proof. It suffices to show tha t for any finite string Yl ... Yk there exists
an element x in Aa2;+ such tha t F (x ) begins with YaYI'" Yk. (This is
by an argument like that for Lemma 2.3 using the fact that A a2;+ is com­
pact.) Consider the walk (A a YI Al Y2 A 2 . . . Yk A k). Since Aa
is not a vert ex of j( it follows that Ak =1= 0; hence, by Lemma 2.1, we
can find symbols ZaZI ... Zk+m such that Zj . . . Zj+m E A j for j = 0, .. . , k.
Since ZaZl ' " Zm E Aa it follows that any configura t ion Z beginning with
ZaZI .. . Zk+m lies in A a2;+, and by const ruct ion F( z) begins with YaYI . . . Yk.
The lemma follows. •

Corollary 3.4. Suppose th at (A a YI A l Y2 A 2 . .. Yk A k) is a walk in S.
Let f( Xa XI ... xm) = Yo for XaXI .. . Xm in Aa, Suppose finally th at A k is not
a vertex of j(. Th en F( A a2;+) contains the open set YaYI" ' Yk2;+.

Proof. By Lemma 3.3, given any element Y of Yk2;+ there exists x in A k2;+
such that F(x) = y. Suppose that x begins with XkXk+l '" Xk+m E A k. Using
the given walk we may choose Xj for j = k -1, .. . , 0 such that Xj ... x j+m lies
in A j. Let Z = XaX I '" Xk- IX, Then Z lies in Aa2;+ and F( z) = YaYI · · · Yk-IY,
proving the result .•

Lemma 3.5. Suppose tha t Aa is a non empty vertex of S, and for some
positive integer M every walk (A a YI A l Y2 A 2 ... YM A M) satisfies th at
either AM = 0 or AM is not in j(. Th en F (A a2;+ ) is open.

Proof. Let x = XaX I . . . XM+m '" lie in A a2;+ and let F(x) = Y = YaYI·· ..
We must show that Y lies in an open set contained ent irely inside F(Aa2;+) .
Consider the walk in S given by (Aa YI A l Y2 A 2· · · YM AM )' Then AM
is nonempty since it contains XM ... XM+m, whence it follows that AM is not
in j(. By th e corollary, F( A a2;+) contains the open set YaYI . .. YM2;+ , which
in turn contains the point y .•

We may now prove Theorem 3.1. First , suppose t ha t j( has no cycles
except those involving the vertex 0; we must show tha t F is open. Let
XaXI '" Xm be arbit rary and let Aa denote t he singleton set {Xa XI '" xm}.
By Lemma 3.2 it suffices to show that F(Aa2;+ ) is open. If Aa is not a vertex
of j(, the result follows by Lemma 3.3. If Aa is a vertex of j(, let M denote
the number of vertic es in j(. Then any walk start ing at Aa with M steps ends
either outside j( or at 0. (Otherwise two vertices of the walk would coincide
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and lie in~, yielding a cycle of ~ not involving 0.) By Lemma 3.5, F(Ao~+)
is open.

Conversely, suppose that ~ has a cycle (Ao Yl A l Y2 A 2 .. .Yk A k) ·
where Ao = A k i- 0. Let Y = YkYIY2 . . . YkYIY2 · . . YkYIY2 .. . E ~+ . We show
th at Y E F(Ao~+) yet Y has no open neighborho od complete ly contained in
F(Ao~+) . To see that Y E F(Ao~+) observe that , since Ao = A k and the
walk to A k has label Yk, each member of Ao gets mapped by f to Yk. For
any r consider the walk (Co Zl C1 Z2 . .. z; Cr ) where Cj = A j (m od k) and
Zj = Yj(modk) . Since C; i- 0 by Lemma 2.1, we may choose xo, . .. ,Xr+m such
that f(xj . .. Xj+m) = Zj and Xj . .. Xj+m E Cj . Using compactness of Ao~+
yields x E Ao~+ such that F(x) = y.

If Y had a neighborhood completely contained in F(Ao~+) , there would
exist a basis element of the form UOUl . .. us~+ completely contained in
F(Ao~+). Clearly we may choose Uo . .. Us to have the form YkYIY2 . . . YkYl
... Yk by choosing a slightly smaller basis element if necessary . But we shall
show that th ere exists an element v of UOUI . .. us~+ not in F(Ao~+) , giving
a contradiction. To find v, we observe that by the definition of ~ there is a
walk from Ao to 0; call it (Ao PI C1 P2 C2 . .. Pt Ct) where Ct = 0. Let v
begin with UOUI . .. UsPIP2 . .. Pt. The sequence of lab els UlU2 . . . UsPIP2 . . .Pt
determines a walk start ing at Ao that by construction ends at 0. By Lemma
2.1 there exists no x E Ao~+ such that F(x) begins with UOU I ... UsPIP2 . . .Pt.
Hence v ~ F(Ao~+) . •

4. Relationships between openness and surjectivity

In this section we see that if F is open then it is surj ective; but the converse
is false since we will exhibit an example that is surjective but not open.

Proposition 4.1. If F is open, then F is surjective.

P roof. Suppose that F has order m . Let U = XO Xl . .. xm~+ for some
sequence Xo . . . Xm. Since U is open , it follows that F(U) is open and hence
contains a bas ic open set YOYI .. . Ys~+ . Suppose Z is in ~+ . Then YOYI .. . YsZ
lies in F(U) and hence has form F(XO XI . . . XmXm+I . . .). Since F commutes
with the shift map, it follows that F(Xs+IXs+2 . . .) = z, proving surjectivity
since Z was arbit rary.•

E xample. Suppose t he alphabet 5 = {O, I} and th e local rule f : 5 3 ---> 5
is given by

f(OOO) = 1 f(100) = 0
f(OOl) = 0 f(101) = 1
f(010) = 0 f(110) = 1
f(Ol1) = 0 f(l11) = 1

Then Bo = {DOl , 010, 011, 100} and B 1 = {OOO, 101, 110, Ill} . It is easy to
see that in S the two arcs from Bo go to Bo and B 1 ; and similarly the arcs
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from BI go to Bo and BI . Hence there is no walk from Bo to 0 and , by
Theorem 2.2, F is surj ect ive.

On the ot her hand there is a cycle ({00l } a {ala,all} a {ion} 1 {OOO}
a {001}) , and all these vert ices lie in :R since there is a walk ({00l} 1 0).
Hence, by Theorem 3.1, F is not open .

5. Injectivity

In order to decide questi ons of injectivity we int roduce a different lab eled
digraph :1 . If t he local rule f for F has order m , the vert ices of :1 are
of two typ es: either singleton sets { XO XI ' " x m} consist ing of a single ele­
ment , or doubleton sets { XO XI ... Xm, YOYI . .. Ym} with two distinct elements
such that f( XOXI . . . x m) = f(YOYI '" Ym)' T here are no other vert ices of
:1. Given a singlet on set {XOXI ' " x m} for any Xm+I E S there will be an
arc from { XO XI . .. xm} to { Xl " . x mx m+d lab eled by f( XI" . x mx m+d . If
there are two distinct symbols Xm+I an d Ym+I such that f( XI ... XmXm+I) =
f( XI ... XmYm+I), t hen there will also be an arc from { XO XI' " x m} to { Xl '"

XmXm+l , X l . .. xmYm+I} lab eled by f ( Xl ' .. XmXm+I)' There are no other arcs
outgoing from a singleton vertex.

Suppose { XO XI ' " Xm, YOYI . . . Ym} is a doubleton vertex. If there exist
Xm+l and Ym+l in S such that f( XI ' " XmXm+I) = f(YI' " YmYm+l) , then
there is an arc from { XO XI . .. Xm, YOYI . .. Ym} to { Xl ' .. XmXm+I, YI . . . YmYm+d
lab eled by f( XI .. . XmXm+I ), whether the latter set is a singlet on or a dou­
bleton vertex. There are no other arcs in :1.

Not e that there may be several arcs with the same lab el outgoing from
a given vertex, or there may be no arcs with a given lab el outgoing from a
vertex. It is possible that some doubleton vertices have no outgoing arcs at
all, but every singleton has at least N outgoing arcs .

We next define a subset 'J of t he set of vertices of :1 , called the terminating
vertices. 'J is the smallest set of vertices A of :1 sa t isfying the following
properti es:

1. If a vertex A has no outgoing arcs in :1 , then A E 'J.

2. If each outgo ing arc from a vertex A goes to a vertex in 'J, then A E 'J
also.

Given :1 t here is clearl y a finit e recursive pr ocedure to determine 'J. Not e
that 'J consists of all ver tices A at which no walks of arbitrarily long length
st art. More pr ecisely, we have the following.

Lemma 5.1. Let A be a vertex oi'), Th en A (j. 'J if and only if there exists
an infinite walk in :1 starting at A.

Proof. If t here is an infinite walk starting at A , t hen clearly no vertex on
the walk fails to have outgo ing arcs , so no ver tex can lie in 'J. Conversely, if
A (j. 'J then there is an arc from A to some Al (j. 'J; then there is an arc from
Al to some A2 (j. 'J. Cont inuing in this manner we can const ruc t an infinite
walk starting at A . •
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Lemma 5.2. Suppose that A is a vertex of :J that is not in 'J. Let Yo =
f( XOXI . .. x m ) for all elements XOX I .. . X m of A, and let YI, Y2 , . . . be the suc-
cessive labels of an in finite walk in :J starting at A . Th en for each XOXI X m

in A there exist symbols X m + I, X m +2 , ... such that F(XO XI . .. X m X m +1 ) =
YOYIY2 · · . .

Proof. Let the infinite walk be (A YI Al Y2 A2 .. . ) . For each X OX I ... X m E
A there exists X m +1 such that X l ' . . XmXm+ 1 E AI , whence f( XI ... X mXm +1 ) =
YI . But Al rt 'J since there is an infinite walk starting at A I, so there exists
X m+2 such that X 2X3 . . . Xm+2 E A 2 and f ( X 2X 3 . . . X m +2) = Y 2 . If we iterate
this argument we find the desired symbols. •

Theorem 5.3. F is injective if and only if'J contains every doubleton vertex
on.

Proof. Suppose that A is a doublet on vert ex that is not in 'J. Then by Lemma
5.2 both the elements of A extend to yield preimages of some YOYI . . . E ~+ ,

where YI, Y 2 , · . . are the labels of some infinite walk starting at A and Y o =
f ( X OXI .. . x m ) for all X OXI .. . X m E A . Thus F cannot be injective.

Conversely, assume that 'J contains every doublet on vertex of :J. We show
that F is inject ive. Suppose that F ( x ) = F ( z ) = Y where X = X OXI ... ,

Y = Y OYI ... , and Z = ZOZI . . .. If X i= Z then , without loss of generality, by
using the shift map we may assume Xo i= Zo0 Then { XOX I . .. X m , ZOZI . .. z m }

is a doubleton vertex of J and there exists an infinite walk in :J start ing at A.
By Lemma 5.1 Art 'J, cont radict ing that 'J contains every doubleton vertex
of:J .•

Corollar y 5.4. F is injective if and only if no infinite walk in :J contains a
doubleton vertex.

6. Local injectivity

Let X and Y be to pological spaces. A function F : X ---+ Y is locally injective
if each x E X lies in a neighb orh ood U such that the rest riction Fl U is
injective.

Proposition 6.1. Suppose that F : ~+ ---+ ~+ is a cellular automaton of
order m . Th en F is locally injective if and only if for each string X OX I . . . X m

the restriction F I X OX I ... xm~+ is injective.

Proof. By the definition of local injectivity the "if" portion is immediate
since any point of ~+ lies in an open set of the form X OXI . . . xm~+' Con­
versely, suppose that F is locally injective and x = XOX I . .. X m .. .. We show
that F I XOX I . . . xm~+ is injective.

Since F is locally injective, for each x E ~+ there exists a basic open
set U = X OX I . . . Xk~+ containing x (with k depending on x ) on which F is
injective. The set of such sets U forms an open cover of ~+ , so by compactness
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t here exists a finit e subcover. Choosing the largest of the k' s that appear in
the finite subcover , we obtain k such that for each Xo . . . Xk it is t rue that
F I XOX i . .. Xk E + is inject ive. If k = m we are done. If k < m then U contains
the smaller open set X OXi .. . xmE+ on which F will also be inject ive. Thus
we redu ce to the case where k > m.

Suppose that F I XOX i' " x m E + were not inject ive and k > m. T hen
there would exist dist inct Y and z in E+ such that F ( X OXi ' " xmY) =
F ( XOX i " ' X m Z ) . Choose any symbols X-i ,X-2 , ,X-k+m in S and let
Y = X - k+m . . . X - iXO . . . XmY while Z = X -k+m X-iXO . . . Xm Z . T hen
F (Y ) = F (Z ) since these agree by hyp othesis afte r the first k - m sites ,
and they agree on the first k - m sites since Y and Z agree on the first k + 1
sit es and F has order m . This cont radicts that F I X -k+m· . . X - iXO ... xm E +

must be injective. •

Theorem 6.2. Let F have order m. Then F I X o . . . xmE + is injective if
and only if there is no walk in J from the singleton vert ex { x o .. . x m } to any
non terminating doubleton vertex .

Corollary 6.3. F is locally injective if and only if, whenever there exists
a walk in J from a singleton vertex to a doubleton vertex A , then A is
terminating.

Corollary 6. 4 . F is locally inj ective if and only if no infini te walk in J
starting from a singleton vert ex contains a doubleton vertex .

It follows that one can decide whether F is locally inject ive by performing
a depth-first search from each singleton vertex to see whether any nonterm i­
nat ing doubleton vertex can be reached .

Proof of Theorem 6.2 . For the "only if" implication , assume that F I
X o · · · x m E + is injective. Let A o = {xo . . . x m }, let f ( x o . . . x m) = Yo, and
assume that ( A o Yi A i Y2 . .. Yk A k) is a walk, where A k is a nonterminat ing
doubleton vertex. Let the two distinct elements of A k be Wk Wk+m and
Vk Vk+m ' By the definiti on of the arcs of J there exist W o W k - i and
Vo Vk - i such that Wj . . . Wj+m and Vj ... Vj+m lie in A j for j = 0, . .. , k .
(To see this, one proceeds inductively. Since there is an ar c from A k - i to A k ,

one can select Vk - i and Wk- i such that Vk - i . .. Vk+m- i and Wk - i ... W k+m-i

lie in A k- i. Repeating this argument we obtain the remaining Wj and Vj. )

Since A k is a nonterminat ing vertex , by Lemma 5.1 there exists an infi­
nite walk start ing at A k ; hence by Lemma 5.2 there exist Wk+m+1Wk+m+2 . . .

and V k+m+1 V k+m+2 ' " such that F(WkWk+i " ' ) = F(Vk Vk+1 " . ) . Bu t then
F(WOWi . . .) = F (V OVi " ') by the cons truct ion of the W j and the "i - Since
W o ... W m and Vo . . . Vm lie in A o, t hey both must equal X o . .. X m . Hence we
have exh ibited two distinct elements of Xo . . . xm E+ t hat map to the same
element under F. This cont radicts the hypothesis.

Conversely, for the "if" implication , suppose that F I Xo . . . xmE+ were
not injective, so that there exist dist inct U = UOUi . . . and v = VOVi .. . in
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Xo . . .xm~+ such that F (u) = F (v) . Then t hese lead to an infinite walk in:J
start ing at Ao = {XO X1 . .. xm} . To see this, let A j = {Uj . . . uj+m,Vj vj+m}.
Possibly Aj is a singleto n. Since F (u) = F (v ), it is clear that f (u j Uj+m) =
f( vj Vj+m), and we shall call this common value Yj· Then (Ao Yl A 1
Y 2 A 2 ) is an infinite walk in :J starting at Ao. By Lemma 5.1, Ao cannot
be terminating. This completes the proof. •

7. The biinfinite cases

Suppose t ha t f : sm+1 --> S is a local map of order m. The results in the
preceding sect ions have all concerned the global map F : ~+ --> ~+ given
by (Fx) j = f(xj , ... , Xj+m) for j 2: o. However, if ~ denotes the set of all
doubl y infinite sequences . . . X- 1XOXl . . . of symbols from S, then the same
formula yields a map G : ~ --> ~ given by (Gx )j = f(xj , . .. , xj+m) for all
j , and the question arises whether global properties of these maps G can be
inferr ed from properties of the local maps f . In t his sect ion we state the
results. Proofs are similar to those of the corres ponding theorems earlier in
this pap er and are omitted .

Let ~_ denote t he set of all left-infinite sequences . . . X- 2X- 1XOof symbols
from S. A basis for the topology for ~ consists of all sets ~-YkYk+l . . . Yk+T~+
where the not ation indicates all doubly infinite sequences whose kt h value is
Yk, whose (k + l)st value is Yk+l , '. " whose (k+ r )th value is Yk+n bu t whose
other values are unrest rict ed in S; and where k and r range over int eger
values with r nonnegative.

Let 8 denote the surj ectivity digra ph of sect ion 2.

Theorem 7.1. Th e m ap G : ~ --> ~ is surjective if and only if there exists
no walk in 8 from Bo to 0.

From Theorem 2.2 we see th at G : ~ --> ~ is surjective if and only if
F : ~+ --> ~+ is surjective .

Given t he local rule t, we define another digraph 8' called t he left sur­
j ectivity digraph as follows. The vertices of 8' are t he same as the vert ices
of 8. If B is a vertex of 3' and y ES, then there will be an arc in 8' from
B to C lab eled by Y where C = {XOXl . .. Xm : f( XOXl ... xm) = Y and there
exists Xm+l E S such that X1X2 . .. Xm+1 E B} . Thus the definit ion of 3' is
completely analogous to that of 3 bu t refers to exte nsions of words in the
opposite dir ection. Define a vertex B of 3' to be left- restrict ed if there exists
a walk in 8' from B to 0, and let j(' denote the labeled subdigraph of 3'
generated by all left-rest ricted vert ices.

Theorem 7.2. Th e m ap G : ~ --> ~ is open if and only if neith er j( nor j('

contains a cycle with a vertex other th an 0.

Let :J denot e the injectivi ty digraph of f . Analogous t o 'I we define a
subs et 'I' of the set of vert ices of J , called the left- terminating vertices. 'J 'is
the smallest set of vertices A of :J sat isfying the following properties:
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1. If a vertex A has no incoming arcs in J, then A E 'I' .

2. If each incomi ng arc from a vertex A comes from a vertex of 'I' , then
A E 'I' also.

Theorem 7.3. Th e map G : I: --+ I: is injective if and only if each doubleton
vertex of J lies in either 'I or 'I' or both .

A doubly infinit e walk in a digraph is a walk whose vertices are indexed
by all integers, not just the nonnegative int egers.

Corollary 7.4. G is injective if and only if no doubleton vertex on lies on
any doubly infini te walk.

Theorem 7.5. Th e map G : I: --+ I: is locally injective if and only if, for
each string XQX l •.• Xm, the restriction G I I:_ XQXl . .. xmI:+ is injective.

Theorem 7.6 . The map G I I:_ XQ X1 . . . xmI:+ is injective if and only if
both (1) there is no walk in J from th e singleton vertex { XQX1 '" xm } to any
doubleton vertex not in 'I, and (2) there is no walk in J to { XQX1 ' " x~} from
any doubleton vertex not in 'I' .

Corollary 7.7. G is locally injective if and only if no doubly infinite walk
in J that contains a singleton vertex also contains a doubleton vertex .
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