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A bstract . This pap er concern s the study of some mathemati cal prop­
er t ies of Thermodyn amic Au tomata . In the pr esen t pap er , t he govern ­
ing lineari zed differenti al equat ions- for which a rigorous trea tment
is po ssibl e- are studied . The driving terms are assumed period ic and
t he controls are assumed piecewise const ant . T he explicit solut ion is
found in the most general case with an arbit rary num ber of compart­
ments composing t he Thermodynamic Automaton and it is show n to
be period ic wit h the same per iod of the dri ving terms. This prop­
erty allows the derivation of interesting rela tionship s among the time
averages of the temperatures. Mor eover , kn owledge of t he solut ions
enables proof that the trilinear system presented here an d a bilinear
system of equations in troduced in a pr ecedin g pap er are equivalent.

1. Introduction

We introduced in a pre ceding paper [1] the theory and the numerical simu­
lati on referring to the simplest T hermo dy namic Automaton , called Z(4 ,3) .
We denote with Z(n , r) a compar tmental mod el system described by n st ate
vari ab les (te mperat ures) and r bilinear controls act ing on the heat flows
across the interfaces between coup les of compartments.

The cont ent of this pap er is the following.
In sect ion 2 we model a boundary control according to which a given

sur face is eit her present or absent. As a consequence we have an interest ing
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var iable st ructure system with variable topo logy and corres po nding variable
number of the set of different ial equat ions.

In sect ion 3 the bilinear mod el equat ions introduced in reference [lJ are
lineari zed. If the system is linearized , an analyt ical study becomes possible.

In sect ion 4 we st udy the mat hematical properties of the lineari zed model
in the general case of n compartments . We writ e the solut ion in a general
form embo dying the constant configurations that the cont rol parameters can
assume on (unspecified) finite t ime int ervals. We show that if the dr iving
terms are periodic, then the asymptot ic behav ior of a solut ion belonging
to any init ial condit ion is periodic with the same period . Wi thin the same
generality, we also show t hat the trilinear syste m can be redu ced to a bilinear
system .

In sect ion 5 we return to the actual four-comp ar tment system . We show
that the cont inuous ensemble of cont rolled dynamical syste ms represented by
Z(4, 3) contains as a par t icular case a finite number of uncontrolled dynami­
cal systems , in which the cont rol par am eters are constant on an infin ite time
interval. We integrate numerically the differential equat ions and obt ain the
average values in the eight constant control configur at ions; then we derive
formal relat ionships among the average temperatur es.

In sect ion 6 we show numerically the accur acy of the linearizati on of the
bilinear mod el and the equivalence between the bilinear and t rilinear systems.

2. T he variab le structure system

We reca ll from reference [l J the problem of how to simulate the equilibration
of temperature T3 with the ambient thermal bat h tempe rature TE when the
sur face S3E is removed.

The bilinear approach is discussed in reference [1J.
In the trilinear mod el approach, C3E is a contr ol on the presence of the

boundary S3E between compartment 3 and the environment E: C3E = 0 im­
plies S3E absent , C3E = 1 implies S3E present . The governing syst em of
tr ilinear differential equations is then:

[,812+ ~1 2 C12(t )][T2(t ) - T1(t )]
+ ,81E [TE(t ) - T1 (t )]

[,812 + ~12 C12(t)J [T1(t) - T2 (t )J

+ [1 - C3E(t)J [,823 + ~23 C23(t)J [T3(t) - T2(t)J

+ C3d t ) [,823 + ~23 C23(t)J [TE (t ) - T2 (t )J

[1 - c3d t)J{ [,823+ ~23 C23 (t )J [T2 (t) - T3(t)J

+ ,834 [T4(t) - T3(t)J+ ,83E [Td t ) - T3(t)J}

S4E[¢>in(t ) - c: a Ti(t)J

+ [1 - c3dt )J ,834 [T3 (t ) - T4 (t )]
+ C3E (Q ,834 [TE(t ) - T4 (t )J. (2.1)
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The trilinear terms are of the form C3E Cjk Tk or C3E Cjk Tj.
W hen C3E = 1 the differential equat ion of T3 disappears and T3 is substi­

tuted by the dri ving term TE . T his gives a system with a variable topology
(compartment 3 merges wit h the extern al ambient E) and a st at e vector wit h
a variable number of components (n = 3 when C3E = 1, n = 4 when C3E = 0).
From the standpoint of mathemat ical physics, the bilinear model corresponds
to a Newton flux boundary condition and the t rilinear mo del to a Dirichlet
bo undary condition on S3E .

T he trilinear system (2.1) is intrinsically discontinuous. This fact ra ises
analyt ical difficulties. However , in [1] we stated wit hout proof that , in the
limi t 0:3E --+ 00, the bilinear system of equations is equivalent to the t rilinear
system . Furthermore it is immediate to verify that when C3E = 0 the bilinear
system is the same as system (2.1) without any passage to the limit . In
sect ion 4 we show in the general n- compartment case that the bilinear system
contains the trilinear system as a part icular case.

3. T he Li nearized System

We refer to t he bilinear system of equations introduced in [1], sect ion 3. The
nonlinearity Tt(t) in the fourth equ ation of [1], equat ion (3.3) (see also the
fourth equation of the trilinear system (2.1)) is har mless. First of all the
nonlinear te rm Tt do es not coup le different equat ions; mor eover T4(t) spans
a bo unded range of values due to the fact that the driv ing terms TE(t) and
g(t) are bo unded. T he linearizati on

(3.1)

where To is a properly chosen temperature in the above-m entioned bounded
range, gives the linear equat ions

4

J.Li Ti(t) = ~ aij(t) Tj(t) + gi(t)
j=l

(i=1 , ... , 4) , (3.2)

where the dr iving terms are (see [1], equat ion (3.3) and appendix A)

an d the matrix elements aij are

{

a ll = -f312 - C12 ~12 - f31E, a12 = f312 + C12 ~12 ' a 13 = a 14 = 0;
a22 = - f312 - C12 ~12 - f323 - C23 ~23 ' an = f323 + C23 ~23 ' a24 = 0;
a33 = -f323 - C23 ~23 - f334 - f33E - C3E ~3E ' a34 = f334 ; (3.4)
a44 = - 4 S4E E a Tg - f334 ;
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4 . M athematical proper ties of the linearized system

We first discuss t he pr oper ti es of the matrix A whose elements are listed in
equat ion (3.4) . A is symmet ric and can be shown to be a stability matrix.
We recall that a symmet ric matrix is a stability matrix iff the determinan ts
of t he leading principal minors of have alte rnat ing signs ; the first element a ll
must be negative.

We expec t system (3.2) to be stable because we are dealing with a com­
par tment al reducti on of the heat diffusion equation , which has stable solu­
t ions . After some calculat ions the reader may verify with the aid of equa­
tion (3.4) that the above-mentioned condit ions are satisfied. Noti ce that A
is always symmet ric due to t he scheme of the reduct ion .

Let us now consider the general case of n compartment s with an n x n
matrix A having negati ve eigenvalues Ai. T he dynam ical equat ions are

n

J.Li t Ht) = L aij t, (t) + gi(t )
j=l

(i = l , . . . ,n) , (4.1)

where the gi(t ) are the driving term s.
To the purpose of having a symmet ric matrix A we will work with the

following set of equat ions :

n

· 0 '" 0Ti (t) = ~ aij Tj (t) + gi(J.Lit)
j=l

or in matrix form:

(i = l , . . . ,n ), (4.2)

(4.3)

where g is the vecto r having compo nents gi(J.Lit ). It is easy to verify that

(i= l , . . . ,n) . (4.4)

If A is the mod al mat rix of A and A t he resu lting diagonal mat rix ,

A= A-1AA ,

we define

e"
0 0

}..)H (t) = .: .
e>'2 t 0

0 0

and the st ate tr an sit ion matrix at time t ,

T he solut ion of the associat ed scaled equat ion (4.3) is notoriously

t

TO(t) = cI> (t - to)T O(to) +JcI> (t - t' )g (t' ) dt' ,
to

(4.5)

(4.6)

(4.7)

(4.8)
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which can also be written as

567

(4.9)

h

T O(to+ h) = cp (h ) T O(to) +Jcp (h - s) g (s + to) ds .
o

More generally we may write t he solut ion in the case in which the controls
are constant in the time int erval [to, hi), Vhi > 0 (i = 1, . .. , n - 1). Let cP (i )

be the transit ion mat rix in [to, hi); t hen

T °(to+ hI + ...+ hn) = cp(n)(hn) . . . CP {1 )(h1 ) T O(to)

+ ft n cp(n)(hn - s) g (s + to + hI + ...+ hn- 1 ) ds

+ cp(n)(hn) foh n
- 1 cp(n- l)(hn_1 - s) g (s + to+ hI + ...+ hn- 2) ds

+ cp(n)(hn) cp(n- l )(hn_
1

) (4.10)

X fohn
-

2 cp (n- 2)(hn- 2 - s) g(s + to + hI + ... + hn- 3 ) ds

+ ...+ cp(n)(hn) . . . cp(2)(h2) fOh l cp {1 )(h 1 - s) g (s + to) ds .

Let us now examine the solut ion of equat ion (4.1) . We will first prove that
if the driving terms are periodic, then the Ti(t ) are also (asymptotically)
periodic, wit h the same period of the driving te rms.

The solutions of equat ion (4.1) ar e given by equations (4.4) and (4.9),
from which we obtain in compo nent form (i = 1, ... ,n ):

h n n

Ti(Jl,it ) = JL CPij (h - s) 9j [Jl,j (S + to)]ds + L CPij (h ) Tj( Jl,j to) .
o J=1 J= 1

(4.11)

Since A is a stability mat rix , t he last term in equat ion (4.11) is an expo­
nentially decaying t ransient ; therefore t he asy mptot ic solution, taking into
account equat ion (4.7), is

h n

Ti(Jl,it ) = J L AimAmj eAm
(h - s) 9j [Jl,j (to - s)Jds ,

o m,j=1
(4.12)

where Aim are t he mat rix elements of A-I. From now on we will consider
periodic driving terms 9j (t ) with period T.

Exp anding 9j (Jl,j t ) (j = 1, . . . , n) in Fourier series (i denotes the imaginary
unit and WI == 27rf /T) :

00

9j (Jl,jt ) = L c~j) e iw, t

1=-00

and subst it ut ing into equat ion (4.12), we obtain afte r integrat ion

_ c~j) e iw,(to+h)

T;(Jl,it ) = L A im Amj A + . ,
m,j,l - m 1Wl

(4.13)

(4.14)
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having further neglect ed damped expo nent ials. We can also writ e

Ti(ILit ) = L A im Am j r~) (to + h),
m,j

where

(4.15)

(4.16)

T hus, the r~)(t) are periodic funct ions with the same period (pulsation)
of the driving terms 9j (t) . We are finally able to prove the equivalence
between the trilinear and bilinear systems . To this purpose let us write the
set of govern ing differenti al equat ions in the case the general n compartment
reducti on :

{

i, = all T1(t) + + alnTn(t) + 9l(t)

i: = anlTl(t) + + [ann - ,8]Tn(t) + ,8TE(t) + fln(t)

(4.17)

We point out the param eter ,8, which is the analog of ~3E in the four­
compartment reduction; ,8 appears in the heat flux between 'E; and TE . If ,8
is very large we exp ect that the difference between the bilinear and t rilinear
sys tems disappears or in other words that

(4.18)

If we neglect as in the foregoing calculat ions all decaying exponent ials, we
obtain the following explicit exp ression of Tn(t) :

Tn(ILnt) = L
m,j ,e

A
- A (,8 (j) + ,(j») e iwt(to+h)

nm m j ce ce - ,--.- ,
- A m + l W e

(4.19)

wher e c~j) and c~j) are resp ecti vely the Fourier coefficients of Tdt) and fln(t ).
To verify equat ion (4.18) , we need to find the ,8-dependence of Am j , of

A m j , and of the eigenvalues. The problem is solved in the appendix. The
result is

lim Anm = lim Amn = lim Anm = lim Amn = omn ,
~~oo ~~oo ~~OO ~~oo

(4.20)

wher e omn is t he Kron ecker delta. Moreover , - An diverges linearl y in ,8.
Taking into account equations (4.19) and (4.20) we finally arr ive at

J~~T«(ILnt) = J~~ L c~n) e iwtCto+h) = TdILn(to+ h)],
e

from which we deduce equat ion (4.18) .

(4.21)
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F igure 1: The t ime evolution over a period T of the core tem peratur e
of the eight un contr olled dyn amical syst ems.

5. The bilinear system Z(4,3) with constant controls

A particular case of the system Z(4,3) is obtained by considering each coef­
ficient Cij simply as a constant parameter , equal to either °or 1.

We refer for the nomenclature to [1], section 5. T he constant cont rols
are obtained formally by assigning an arbitrary initi al value to the control
vector c , say c (to) = C ; in fact , imposing an infini tely wide float ing interval 'rJ
(see [1], sect ion 5.2) , the given initial triplet C shall be pr eserved thro ughout
(NSW = 0). The recipe is therefore

{
floating interval 'rJ ---> 00 ,

Cij(tO) = Gi j (i j = 12,23,3E).
(5.1)

We recall from [1], sect ion 5.1, that by vary ing continuously the set point
value Tb we generate an infinite family of controlled syst ems Z (4, 3) whose
moti on is T (t ).

Let the constant-parame ter motion be indicat ed by T e (t ) ; in correspon­
dence to the 23 possible constant controls C == (0, 0, 0) , (0, 0, 1) , . . ., (1, 1, 1)
there are 8 uncontrolled dynami cal systems whose motion is respectively
T (O,O,O)(t ), T (O,O,l)(t ), . . ., T (l,l ,l )(t ). F igure 1 shows the evolution of T1o ,O,O)(t) ,
T 1o,O,1)(t) , . . ., T 11,1,1)(t).
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Figure 2: The dependence of th e daily oscillat ion 6. T1 corresponding
to the eight uncontrolled dynamical systems (not ice that some levels
are degenerate) , compared with the 6. T1 of Z(4 ,3) , which depends
on the set point Tb .

cont rols 6..T1 (K) s (T1 ) (K) 19 (K)
(0, 0, 0) 23.66 0.78 298 .08 0.06
(0, 0, 1) 23.67 0.78 298 .03 0.02
(0, 1,0) 38.68 1.28 304.27 6.25
(0, 1, 1) 31.03 1.03 298.8 1 0.80
(1,0,0) 3.36 0.11 298.05 0.04
(1,0, 1) 3.36 0.11 298 .05 0.04
(1, 1,0) 77.34 2.56 327.4 1 29.40
(1, 1, 1) 37.54 1.24 301.82 3.81

Table 1:

Figure 2 shows the daily oscillat ion of t he core t empera ture 6.. T1 of the
un controlled systems compared wit h the 6.. T1 of the controlled systems (con­
t inuous dist ributi on over Tb ) .

Tab le 1 gives, in corre spondence to each triplet C ,

1. t he daily average core temperature (T1 ) ;

2. the heating index [2] 19 == (T1) - (TE ) (K) ;

3. the daily oscillation 6..T1 ;

4. the stability index [2] s == 6.. TIl 6.. TE .

Notice the excellent stability index corresponding to C = (1, 0, C3E ) with
C3E = °or 1 (constant). In fact , t he triplet s (1,0, c3E) correspond to strong
cond uction between the core 1 and the st ruct ure 2 (C12 = 1) and st rong
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insula tion between the structure and 3 (C23 = 0) , wh ich in turn may or may
not be st rongly coupled to the exte rnal temperature ( C3E = 0,1 ).

The well-b ehaving T? ,O,l)(t ) would seem to be comparable to the con­
trolled T1(t ). However , t he constant -control policy works out on ly with one
specific value of Tb , that is, the mean daily value (T? ,O,l)) . T his value is not
pr eassigned , but ra t her obtained a posteriori. With a small varia tio n of Tb

from this value, t he const ant triplet (1, 0,1 ) fails to cont rol. We can obtain
analytic relati ons among the daily average values (Ti ) when the controls are
constant and therefore when (Cij Ti) = Cij (Ti) .

It was shown in section 4 that if t he dr iving te rms are p eriod ic with
period T , then each Ti(t ) is periodic wit h the same period and therefore
(Ti) = T;(t) - Ti(t - T) = O. Hence, integrat ing over a daily period T t he
trilinear equat ions (2.1) with constant cont rols we find

((312 + C12iJ12) (T2)+ (31E(TE)

(312 + C12 iJ12 + (31E

((312 + C12 iJ12) (T1) + ((323 + C23 iJ23) [(1 - C3E ) (T3)+ C3E (TE) ]

(312 + C12 iJ12+ (323 + C23iJ23

(1 - C3E) ((323 + C23 iJ23) (T2)+ (334 (T4) + (33E(TE)
(323 + C23(323 + (334 + (33E

S 4E
(1 - C3E) (T3)+ C3E (TE) + -(3 (6.¢) . (5.2)

34

The term (TE) is assumed to be known or eas ily measurab le. The term (6.¢)
instead is no t a given input bu t depends on the system dyn amics, since it
repr esents the balance ofthe rad iati on flux (in W m- 2 ) over T , wh ich is (¢ in)_
(¢out), ¢in being a dri ving term while the term ¢out contains the nonlinearity
Tt (see equation (2.1)). Similar relations may be foun d by integrating the
bilinear equations wit h constant cont rols.

As a final remark on the un controlled systems , noti ce in figure 3 that
rather un exp ectedly the entropy average pr oduct ion (I;) (see [1], section 6)
of some uncontrolled configur ations is smaller than the cont rolled (I;) (Tb ) .

6. Conclusion

In section 4 the bilinear mo del was proved to contain the trilinear model.
The numerical equivalence between the two sys te ms in the limi t iJ3E ---+ 00

may be shown in the following way.

A characte ristic par am et er of Z( 4,3) is the maximum deviat ion 6.3E of
T3(t ) from TE(t ) over T; figure 4 shows 6.3E as a funct ion of iJ3E when c =
(1,0 ,1). We see that 6.3E approaches zero as iJ3E ---+ 00 , and therefore the
bilinear syste m approaches the trilinear sys te m .
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F igure 3: The dependence on the set point Tb of the average entropy
production ( ~ ) of Z (4,3) , compared with the levels corres ponding to
the eight un controlled dyn ami cal sys te ms . Notice the degeneracy of
the uncon trolled levels.
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F igure 4: T he dep end ence of the maximum devia tion c,,3E of T3 (t )
from TE(t ) over a per iod , as a funct ion of the param eter iJ3E. T hus
we see that the bi linear system of equations descr ibes the same model
as th e trilinear system when iJ3E is large enough.
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Appendix

The following matrix A was introduced in sect ion 4:

573

a n-l ,n -l

an ,n - 1

(A.l )

In particular we are concerned wit h the eigenvalues Ai and wit h the mod al
mat rix A of A.

A. I The eigenva lues x,
The eigenvalues of A are subject to the following constraints:

1. Ai < O. lim,B~oo Ai cannot be positive or O.

2. Tr A is linear in (3 .

3. det A is linear in (3 .

T herefore only one of the Ai can diverge in the limi t (3 -> 00 and the di­
vergence is linear in (3 . For symmet ry reasons the diverging eigenvalue is
An:

An ~ - (3 when (3 is large .

A .2 The matrix A

(A.2)

The evaluat ion of the mat rix elements Ai j and Aij redu ces to the determi­
nation of the eigenvectors of A. In fact the components of the eigenvectors
appear on the rows of A and on the columns of A-I . T he standard evaluat ion
of eigenvectors yields :

A
(_ I )n- i~ AD ni,

Ain [ 1 ( ( ) 1- (3 + Ai - ann - D - - 1 n- AnI anI + ...
ani
+ (_ 1)n- i+1 An,i-l an,i- l + (-It- i- 1 An,i+1 an,i+1

+ ... - An,n-l an,n-d] ,

(A.3)

(A.4)

where D (Ai) is th e det erminan t of the principal minor of order n - 1, and
Ani( Ai) is the det erminant of the algebraic complement of ani. Both expres­
sions are polyn omials in Ai of degree n - 1 and n - 2, respect ively.

Remarks:

1. Ain cannot diverge since we chose normalized eigenvectors.



574 Guido Cosenza, Anthony Massobrio, and Luigi Sertorio

2. Ai (i # n) does not diverge in (3 .

As a consequenc e, when i # n t he (3-divergence on the second side of equa­
t ion (A.4) must be cancelled. We have:

A rv Ai
,n B, + Ci (3 ' lim Ain = 0 (i # n) .

{3-oo
(A.5)

In the case i = n , the expression wit hin br acket s in equat ion (A.4) does not
diverge and as a consequence lim{3_ oo Ain must be finite and different from
O. From equat ion (A.3) we dedu ce that

1
Ani rv -

(3

and

Taking into account the normalization condit ion we have

R emarks :

(A.6)

(A.7)

(A.8)

1. We did not use equation (A.4) to deduce equation (A.6) becau se our
present knowledge does not allow us to verify that the asymptotic be­
havior of An cancels also the term ann'

2. The normalization conditions are also compat ible with the value -1 in
equat ion (A.8) but the nor malized eigenvalues are always defined up to
an overall const ant of modulus one.
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