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Abstract. This paper concerns the study of some mathematical prop-
erties of Thermodynamic Automata. In the present paper, the govern-
ing linearized differential equations—for which a rigorous treatment
is possible—are studied. The driving terms are assumed periodic and
the controls are assumed piecewise constant. The explicit solution is
found in the most general case with an arbitrary number of compart-
ments composing the Thermodynamic Automaton and it is shown to
be periodic with the same period of the driving terms. This prop-
erty allows the derivation of interesting relationships among the time
averages of the temperatures. Moreover, knowledge of the solutions
enables proof that the trilinear system presented here and a bilinear
system of equations introduced in a preceding paper are equivalent.

1. Introduction

We introduced in a preceding paper [1] the theory and the numerical simu-
lation referring to the simplest Thermodynamic Automaton, called Z(4,3).
We denote with Z(n,r) a compartmental model system described by n state
variables (temperatures) and r bilinear controls acting on the heat flows
across the interfaces between couples of compartments.

The content of this paper is the following.

In section 2 we model a boundary control according to which a given
surface is either present or absent. As a consequence we have an interesting
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variable structure system with variable topology and corresponding variable
number of the set of differential equations.

In section 3 the bilinear model equations introduced in reference [1] are
linearized. If the system is linearized, an analytical study becomes possible.

In section 4 we study the mathematical properties of the linearized model
in the general case of n compartments. We write the solution in a general
form embodying the constant configurations that the control parameters can
assume on (unspecified) finite time intervals. We show that if the driving
terms are periodic, then the asymptotic behavior of a solution belonging
to any initial condition is periodic with the same period. Within the same
generality, we also show that the trilinear system can be reduced to a bilinear
system.

In section 5 we return to the actual four-compartment system. We show
that the continuous ensemble of controlled dynamical systems represented by
Z(4,3) contains as a particular case a finite number of uncontrolled dynami-
cal systems, in which the control parameters are constant on an infinite time
interval. We integrate numerically the differential equations and obtain the
average values in the eight constant control configurations; then we derive
formal relationships among the average temperatures.

In section 6 we show numerically the accuracy of the linearization of the
bilinear model and the equivalence between the bilinear and trilinear systems.

2. The variable structure system

We recall from reference [1] the problem of how to simulate the equilibration
of temperature 75 with the ambient thermal bath temperature T when the
surface Ssg is removed.

The bilinear approach is discussed in reference [1].

In the trilinear model approach, c3g is a control on the presence of the
boundary Szg between compartment 3 and the environment E: ¢3g = 0 im-
plies S3g absent, csg = 1 implies Ssg present. The governing system of
trilinear differential equations is then:

pr Ty (t) = [Brz + ra cra(t)] [Ta(t) — Tu(2)]
+ g [Te(t) — Ta(2)]
2 To(t) = [Bra + Brz cr2(t)] [T1(2) (t)]

+ [1 — csu(t)] [Bas + Pas sz(t)] [T5(t) — Ta(t)]

+ c3p(t) [Bas + Bas cas(t)] [Te(t) — Tu(t)]

[1 - ca(t)] { [Bas + Bas cas(t)] [Ta(t) — Ts(2)]

+ B [Ta(t) — To(t)] + Bow [Tu(t) — Tu(t)] }
Sae[¢™(t) — e a TE(t))

+ [1 — c3g(t)] Bsa [T5(t) — Ta(t)]

+ CBE(@ Ba4 [TE(t) - T4(t)] . (2-1)

[1— csp(t)] us Ts(2)

Ha T4(t)
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The trilinear terms are of the form csg ¢;i, Ty, or csg ¢k 1.

When csp = 1 the differential equation of T3 disappears and T3 is substi-
tuted by the driving term Tg. This gives a system with a variable topology
(compartment 3 merges with the external ambient E) and a state vector with
a variable number of components (n = 3 when c3g = 1, n = 4 when ¢3g = 0).
From the standpoint of mathematical physics, the bilinear model corresponds
to a Newton flux boundary condition and the trilinear model to a Dirichlet
boundary condition on S3g.

The trilinear system (2.1) is intrinsically discontinuous. This fact raises
analytical difficulties. However, in [1] we stated without proof that, in the
limit Gisg — oo, the bilinear system of equations is equivalent to the trilinear
system. Furthermore it is immediate to verify that when csg = 0 the bilinear
system is the same as system (2.1) without any passage to the limit. In
section 4 we show in the general n-compartment case that the bilinear system
contains the trilinear system as a particular case.

3. The Linearized System

We refer to the bilinear system of equations introduced in [1], section 3. The
nonlinearity T} (¢) in the fourth equation of [1], equation (3.3) (see also the
fourth equation of the trilinear system (2.1)) is harmless. First of all the
nonlinear term T does not couple different equations; moreover Ty(t) spans
a bounded range of values due to the fact that the driving terms Tx(t) and
g(t) are bounded. The linearization

Tit) ~ 4T Tyu(t) — 3Ty, (3.1)

where Ty is a properly chosen temperature in the above-mentioned bounded
range, gives the linear equations

wTit) =3 ey T +alt)  ((=1,....4), (3.2)

=1

where the driving terms are (see [1], equation (3.3) and appendix A)

g1(t) = Bie Te(t), g2(t) =0, gs(t) = [Bsg + csu(t) Bag] Ta(t), (3.3)

ga(t) = Sug [g(t) +oTa(t) + 3¢ O'T(ﬂ '
and the matrix elements a;; are

a1 = —Big — c12 @12 — BiE, a12 :~ﬂ12 + C12 Blz, (13 = G14 = 0;

gy = —f12 — C12 @12 — Pas — Ca3 Pa3, Qg3 = Ba3 + ca3 P23, G4 = O;

a33 = —23 — Ca3 P23 — Pas — Bag — C3p Bsg, ass = Baa; (3~4)

asa = —4Spec Ty — Paa;

a'ij = Qyjs-



566 Guido Cosenza, Anthony Massobrio, and Luigi Sertorio

4. Mathematical properties of the linearized system

We first discuss the properties of the matrix A whose elements are listed in
equation (3.4). A is symmetric and can be shown to be a stability matrix.
We recall that a symmetric matrix is a stability matrix iff the determinants
of the leading principal minors of have alternating signs; the first element a;;
must be negative.

We expect system (3.2) to be stable because we are dealing with a com-
partmental reduction of the heat diffusion equation, which has stable solu-
tions. After some calculations the reader may verify with the aid of equa-
tion (3.4) that the above-mentioned conditions are satisfied. Notice that A
is always symmetric due to the scheme of the reduction.

Let us now consider the general case of n compartments with an n x n
matrix A having negative eigenvalues ;. The dynamical equations are

i H+alt) (@G=1,...,n), (4.1)

where the g;(t) are the driving terms.
To the purpose of having a symmetric matrix A we will work with the
following set of equations:

i t)+g(wt) (E=1,...,n), (4.2)

or in matrix form:

T0 = AT%) + g(t), (4.3)
where g is the vector having components g;(p;t). It is easy to verify that

T(uit) =T(t) (i=1,...,n). (4.4)
If A is the modal matrix of A and A the resulting diagonal matrix,

A=ATAA, (4.5)
we define

eMt 0 sse wsm 0
mo=|° <7 0 o (49
0 0 -+ «-o 0 et

and the state transition matrix at time ¢,
®(t) = ATH(H)A. (4.7)

The solution of the associated scaled equation (4.3) is notoriously

TO() = ®(t — t) T(to) + / Bt — ') g(t') dt', (4.8)

to
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which can also be written as
h
TO(to + ) = ®(R) T(to) + / ®(h — s)g(s +to) ds . (4.9)
0

More generally we may write the solution in the case in which the controls
are constant in the time interval [to, h;), Vh; >0 (i = 1,...,n —1). Let ®®
be the transition matrix in [to, k;); then

T(to+ hy + -+ -+ hy) = @™ (hy,) ... @M (hy) TO(to)

+ fom @™ (h, — s)g(s+to+hi+ -+ h,1)ds

+®™(hy,) fi @V (h,_; — s)g(s+to+ by + - + hn_p) ds

+80) (1) D (h,_,) (#.10)

8 SD(h, o —s)g(s+to+hi+ -+ hy_3)ds

4o+ @™(R,) . B (hy) [ @DV (hy — 5) g(s + o) ds.
Let us now examine the solution of equation (4.1). We will first prove that
if the driving terms are periodic, then the T;(t) are also (asymptotically)

periodic, with the same period of the driving terms.
The solutions of equation (4.1) are given by equations (4.4) and (4.9),

from which we obtain in component form (i = 1,...,n):
h n
Tut) = [ 32 ®ilh—5) gylugls + o) ds + 3 Bu(W) Ty (1to).
0o J=1 7=1

(4.11)

Since A is a stability matrix, the last term in equation (4.11) is an expo-
nentially decaying transient; therefore the asymptotic solution, taking into
account equation (4.7), is

h
T(uit) / S R A € 9 gl (b0 — 5)] ds, (4.12)
0

m,j=1

where A;,, are the matrix elements of A~!. From now on we will consider
periodic driving terms g;(t) with period 7.

Expanding g;(p;t) (j = 1,...,n) in Fourier series (i denotes the imaginary
unit and wy, = 27¢/7):

oo =
= Y, cgj)e”‘"t (4.13)
€=—o0
and substituting into equation (4.12), we obtain after integration

B ng) eiwe (to+h)
Tty = Z N N "=k then

m,j,¢

(4.14)
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having further neglected damped exponentials. We can also write

m,j
where

E,j) e iwe (to+h)

g+ R L8 "
m (fo + 1) ze: Do + 10

(4.16)
Thus, the T'¢)(t) are periodic functions with the same period (pulsation)
of the driving terms g;(¢). We are finally able to prove the equivalence
between the trilinear and bilinear systems. To this purpose let us write the
set of governing differential equations in the case the general n compartment
reduction:

Ti=anTi(t) + - + a1 Tu(t) + g1(t)
(4.17)

Tn =am T1(t) + ... + [@nn — B] Tu(t) + B Tr(t) + ga(t)

We point out the parameter [, which is the analog of Bsg in the four-
compartment reduction; # appears in the heat flux between T,, and Tg. If
is very large we expect that the difference between the bilinear and trilinear
systems disappears or in other words that

lim T, (t) = Tg(?) . (4.18)
B—o0
If we neglect as in the foregoing calculations all decaying exponentials, we
obtain the following explicit expression of T, (t):

eliwe (toth)

To(pnt) = R A (B9 + &) ——— 4.19
mi=% j (e + ) S, (4.19)
where cg and c(] ) are respectively the Fourier coefficients of Tg(t) and gy, (¢).

To verify equation (4.18), we need to find the -dependence of A,;, of
A..j, and of the eigenvalues. The problem is solved in the appendix. The
result is

lim Apm = hrn Ao = hm A = ﬂhm MAon = b s (4.20)

B—o0

where 6,,, is the Kronecker delta. Moreover, —\, diverges linearly in .
Taking into account equations (4.19) and (4.20) we finally arrive at

Jim T (uat) = Jim 37 g e Wt = Tyfun(to + B) (4.21)
!

from which we deduce equation (4.18).
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Figure 1: The time evolution over a period 7 of the core temperature
of the eight uncontrolled dynamical systems.

5. The bilinear system Z(4,3) with constant controls

A particular case of the system Z(4,3) is obtained by considering each coef-
ficient ¢;; simply as a constant parameter, equal to either 0 or 1.

We refer for the nomenclature to [1], section 5. The constant controls
are obtained formally by assigning an arbitrary initial value to the control
vector ¢, say c(tg) = C; in fact, imposing an infinitely wide floating interval n
(see [1], section 5.2), the given initial triplet C shall be preserved throughout
(N =0). The recipe is therefore

{ floating interval 7 — oo, (5.1)

cij(to) = Cy (5 = 12,23, 3E).

We recall from [1], section 5.1, that by varying continuously the set point
value T;, we generate an infinite family of controlled systems Z(4,3) whose
motion is T(t).

Let the constant-parameter motion be indicated by TC(t); in correspon-
dence to the 2* possible constant controls C = (0,0,0), (0,0,1),..., (1,1,1)
there are 8 uncontrolled dynamical systems whose motion is respectively
TO00)(4) TOOD (1), . TEL(¢). Figure 1 shows the evolution of T (),
TP ) TEH
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Figure 2: The dependence of the daily oscillation AT} corresponding
to the eight uncontrolled dynamical systems (notice that some levels
are degenerate), compared with the ATy of Z(4,3), which depends
on the set point Tj,.

controls | ATy (K) | 6 | (T1) (K) | 9 (K)

(0,0,0) | 23.66 |0.78| 298.08 | 0.06
(0,0,1) | 23.67 |0.78 | 298.03 | 0.02
(0,1,0) | 38.68 |1.28| 30427 | 6.25
(0,1,1) | 31.03 |1.03| 29881 | 0.80
(1,0,0) | 3.36 | 0.11| 298.05 | 0.04
(1,0,1) | 336 |0.11| 298.05 | 0.04
(1,1,0) | 77.34 |2.56 | 327.41 | 29.40
(1,1,1) | 3754 |1.24| 301.82 | 3.81

Table 1:

Figure 2 shows the daily oscillation of the core temperature ATy of the
uncontrolled systems compared with the AT of the controlled systems (con-

tinu

ous distribution over T3,).

Table 1 gives, in correspondence to each triplet C,

1

2
3
1

. the daily average core temperature (7});

. the heating index [2] ¢ = (T1) — (T&) (K);
. the daily oscillation AT;

. the stability index [2] 6 = AT, /A Tg.

Notice the excellent stability index corresponding to C = (1,0, ¢c3g) with
csg = 0 or 1 (constant). In fact, the triplets (1,0, csg) correspond to strong
conduction between the core 1 and the structure 2 (c;; = 1) and strong
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insulation between the structure and 3 (co3 = 0), which in turn may or may
not be strongly coupled to the external temperature (czg = 0,1).

The well-behaving Tl(l‘o’l)(t) would seem to be comparable to the con-
trolled T3 (¢). However, the constant-control policy works out only with one
specific value of Ty, that is, the mean daily value (Tl(l’o'l) ). This value is not
preassigned, but rather obtained a posteriori. With a small variation of Tj,
from this value, the constant triplet (1,0,1) fails to control. We can obtain
analytic relations among the daily average values (T;) when the controls are
constant and therefore when (c;; T;) = ¢;;(T3).

It was shown in section 4 that if the driving terms are periodic with
period 7, then each T;(t) is periodic with the same period and therefore
(T;) = Ti(t) — Ti(t — 7) = 0. Hence, integrating over a daily period 7 the
trilinear equations (2.1) with constant controls we find

(Bia + c12 Bia) <~Tz> + Bie(TE)
Bz + 12 iz + Bie
(B2 + c12 ,312) (T1) + (B2s + o3 323) [(1 — c3g) (T3) + 3 (TE)]

() =

ﬂ12~+ C12 ,512 + Bz + c23 523
(B23 + ca3 PB23) (To) + B34(T4) + P35 (TE)

Bas + Ca3 Boz + a4 + Bk
(1 — cam) (T5) + cse {Te) + % (Ag). (5.2)

(1 —csp) (T3) = (1 —c3m)

(Ty)

The term (Tg) is assumed to be known or easily measurable. The term (Ag)
instead is not a given input but depends on the system dynamics, since it
represents the balance of the radiation flux (in W m~2) over 7, which is (¢™)—
("), ¢™ being a driving term while the term ¢°** contains the nonlinearity
T4 (see equation (2.1)). Similar relations may be found by integrating the
bilinear equations with constant controls.

As a final remark on the uncontrolled systems, notice in figure 3 that
rather unexpectedly the entropy average production (X) (see [1], section 6)
of some uncontrolled configurations is smaller than the controlled (X)(T3).

6. Conclusion

In section 4 the bilinear model was proved to contain the trilinear model.
The numerical equivalence between the two systems in the limit B;,E — 00
may be shown in the following way.

A characteristic parameter of Z(4,3) is the maximum deviation Asg of
T3(t) from Ty(t) over 7; figure 4 shows Azp as a function of Bsp when ¢ =
(1,0,1). We see that Azg approaches zero as Bsg — oo, and therefore the
bilinear system approaches the trilinear system.
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Figure 3: The dependence on the set point 73, of the average entropy
production (X) of Z(4, 3), compared with the levels corresponding to
the eight uncontrolled dynamical systems. Notice the degeneracy of
the uncontrolled levels.
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Figure 4: The dependence of the maximum deviation Agg of T5(t)
from Tg(t) over a period, as a function of the parameter B3g. Thus
we see that the bilinear system of equations describes the same model
as the trilinear system when fsg is large enough.

o
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Appendix

The following matrix A was introduced in section 4:

ay s a1 n—1 ayn
A= : K : : . (Al)
an—l,l e a'n—l,n—l an—l,n
Qny S an,'n—l dnn - ﬁ

In particular we are concerned with the eigenvalues A; and with the modal
matrix A of A.

A.1 The eigenvalues )\;

The eigenvalues of A are subject to the following constraints:
1. A < 0. limg_,o A; cannot be positive or 0.
2. Tr A is linear in 3.
3. det A is linear in .

Therefore only one of the A; can diverge in the limit 8 — oo and the di-
vergence is linear in B. For symmetry reasons the diverging eigenvalue is
An:

An ~ —f when (3 is large. (A.2)

A.2 The matrix A

The evaluation of the matrix elements A;; and ]\,-]- reduces to the determi-
nation of the eigenvectors of A. In fact the components of the eigenvectors
appear on the rows of A and on the columns of A=1. The standard evaluation
of eigenvectors yields:

Ain
Ay = (-1)~* 5 Ants (A.3)
Ain o n—
Aifz a I:ﬂ_{')‘z_ann_Dl((_l) 1*’47110'711"_"'
nl
+ (1) Ay @npmr + (1) A gy Qe
it el An,n—l a'n,n—l)] ) (A4)

where D();) is the determinant of the principal minor of order n — 1, and
Ane(A;) is the determinant of the algebraic complement of a,,. Both expres-
sions are polynomials in A; of degree n — 1 and n — 2, respectively.

Remarks:

1. Ay, cannot diverge since we chose normalized eigenvectors.
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2. X; (i # n) does not diverge in f3.

As a consequence, when 7 # n the §-divergence on the second side of equa-
tion (A.4) must be cancelled. We have:

A;

Ain"’ia
B;+C; 3

Jim Ay =0 (i#n). (A.5)

In the case 7 = n, the expression within brackets in equation (A.4) does not
diverge and as a consequence limg_,o, Aj;, must be finite and different from
0. From equation (A.3) we deduce that

1

and
Blim A= 0. (A7)

Taking into account the normalization condition we have

Jim A, =1, (A.8)

Remarks:

1. We did not use equation (A.4) to deduce equation (A.6) because our
present knowledge does not allow us to verify that the asymptotic be-
havior of )\, cancels also the term a,,,.

2. The normalization conditions are also compatible with the value —1 in
equation (A.8) but the normalized eigenvalues are always defined up to
an overall constant of modulus one.
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