Complex Systems 5 (1991) 575-601

The Cellular Device Machine Development System
for Modeling Biology on the Computer

Hans B. Sieburg*
Oliver K. Clay
Artificial Biological Systems Project,
HIV Neurobehavioral Research Center,
Department of Psychiatry, 0603-H,
University of California, San Diego, CA 92093-0603, USA

Abstract. This paper describes a development system for designing,
implementing, and executing biologically motivated cellular automa-
ton simulations. A new object-based programming language that is
fundamental to the system is discussed in detail. Use of the language
is illustrated in simple applications.

1. Introduction

The simulation and modeling approach described in this paper originally
came about for two reasons. First, extracting blood or cerebrospinal fluid
from a patient every five minutes over an extended period of time is difficult
at best. Second, laws of disease progression are easily obscured by the simple
mass of data collected in a long-term and diversified clinical cohort study.
Consequently, computer-supported prediction becomes essential to fill gaps
in, or extract features from, large databases by flexibly experimenting with
hypotheses. As we have shown in our previous applications to HIV-related
nervous and immune system disease [17-20], our cellular automaton (CA)
based simulation approach responds to this need.

Given the broad spectrum of applications, the goal of this paper is to make
our method more broadly available for further development.! Specifically, we
would like to share our modeling language SLANG, which offers a new and
expandable approach to programming lattice dynamical systems. After a
brief introduction of basic terms, the second section describes the essential
simulator kernel algorithms. The third section introduces our object-based

*To whom all correspondence should be addressed. Electronic mail address:
hsieburgQucsd.edu

1The software is available through anonymous FTP at polaris.cognet.ucla.edu in
the directory ~ftp/pub/alife.

576 Hans B. Sieburg and Oliver K. Clay

simulator language SLANG. In the fourth section, we present simple exam-
ples that illustrate the usage of SLANG. Finally, in section 5, we discuss
work in progress and the modifications to traditional CA algorithms that we
use in our present implementation.

2. Basic terms and algorithms

A Cellular Device Machine (CDM) is a soft architecture machine consisting
of a nearest-neighbor lattice dynamical system of discrete sites (the body) in
which (possibly mobile) finite-state automata (the cell devices) reside and
interact according to local rules (figure 1). In this paper we describe a CDM
Development System (CDM-DS) on which these soft architectures can be
created and run as virtual machines on general-purpose hardware platforms.

Each cell device contains a pointer to an algorithm called script, which
is composed of simple unnested “if...then.. .else...” statements. These pro-
duction rules are each equivalent to a 2-arc subgraph of a hypergraph, thus
allowing an entire device algorithm to be displayed graphically as well as
sententially (see section 3 for more detail). Cell devices sharing the same
script are identical if viewed as finite automata, and are thus said to belong
to the same species.

The CDM-DS provides utilities to create, program, and run Cellular De-
vice Machines. A CDM and its operating system are created by manipulating
five global parameters via a dialog window:

1. Body size: The body size B = A%C is determined by the area A?
of the lattice multiplied by the maximum occupancy capacity C per
site. The latter parameter refers to our subdividing of sites into “slots”
that can be filled dynamically from a selection of up to 256 species.
On 1 megabyte of RAM we can support A = 16, 32, and 64, and
C < 16. Larger sizes using A = 128 and 256 and C < 256 can be
supported using additional RAM. To allow both the option of fast
implementations requiring more RAM and slower implementations that
use memory more efficiently, we require that no site may contain more
than one member of the same species (Exclusion Principle).

2. Neighborhood topologies: In our present implementation, the local
structure of the lattice world is represented by an ordered sequence
of pointers to lattice sites. The definition of a cell device does not
make any assumptions regarding this sequence. Using sets of pointers
increases modeling flexibility as we are free to experiment with poten-
tially different subsequences for the input to and the output from a
center site C, for example of a 9-site Moore neighborhood {C, N, NE,
E, SE, S, SW, W, NW}. Here, N denotes North, NE Northeast, and
so forth. In some complex applications, such as our immune system
models for example, we use the input neighborhood {C, N, E, S, W}
and output neighborhood {C, NE, SE, SW, NW}. Another example

The Cellular Device Machine Development System

model of the body

\\
N i -
\\\\\ \\
N\ x .
\@\ neighborhood of sites
——
X oy e i
5 —_ per sie, 16 shots for devices
N \»\ ~— —~
\\ N R\ o S
N B] &
o|1|2]|3f4| 16|7|8| oltolitfiz|1z]14/i5
\ === = =
Lo O o = =
Y NS
\1 \\ \\ Sy) .
LR s s, per device, 64 bits
3y ~ ~
\
(Y |
%
oy 1 32bits
L 1 (PELT)
oA

e] s
\ |state|] 8 bits

| eigen- |]
Tife 16 bits

Figure 1: Overview of the CDM-DS data structures. The body is a
representation of random access memory (RAM) as a nearest-neighbor
lattice dynamical system with periodic boundary conditions. A cell
device occupies 64 bits in the body. 32 bits are allocated for a pattern
element (PELT), 8 bits each are dedicated to a species number and a
state (0. ..255), and 16 bits are used by an internal clock called eigen-
life (—32768...32767). The figure indicates 16 slots as the maximum
occupancy capacity per lattice site, which is standard for 1-megabyte
CDM implementations. More slots can be supported using additional

RAM.

577

is the Game of Life, where the Moore set is the input neighborhood,
but any Moore subset, the simplest being {C}, will function as an
output neighborhood (see section 4). We are presently investigating

the theoretical significance of these heuristical observations.

3. Percent scan: The “operating system” of each CDM that we construct
uses an “attentional searchlight” to scan the lattice world. This search-
light can be programmed by the user to execute an arbitrary number
of random prompts (with replacement) per update cycle. Each prompt
temporarily passes control to a (possibly empty) cell device. The num-

ber of prompts is determined by

prompts := [(B * %Scan/100)],

78

Hans B. Sieburg and Oliver K. Clay

i = ul
- i et S 2

Figure 2: To create the initial configuration of an experiment we use
a “boosting” dialog. This allows us to establish population charac-
teristics of a species such as distribution and diversity. As the sample
plots show, we can choose either to distribute a population randomly
across the lattice world (left) or use a “syringe” tool to place single
specimens or subpopulations at specific locations (right). If several
species are involved, the syringe allows us to construct defined micro-
environments. As a simulation progresses, we can therefore study
the evolution of these micro-environments and their impact on the
surrounding larger space. Naturally, the boosting procedure can be
executed at any time during an experiment. To keep track of changes
in the distribution and diversity of a population we implemented a
“dump” command, which allows us to save an entire lattice for later
analysis. Such dumps can also be used as initial start-up configura-
tions. Here the modeler gets hands-on interactive experience of the
effects that changes to a species script, for example, or to the input
or output neighborhoods, would induce on the overall population dy-
namics. This results in very controlled and rapid hypothesis testing.

where [z] defines the largest integer < z, and %Scan = 100 corresponds
to a full update. A number less than 100 for %Scan indicates that only
a fraction of the body is scanned by the random searchlight. The
prompts thus calculated determines one machine cycle of the CDM.

Aging: Aging is an important, but not well understood, aspect of biol-
ogy. Naturally, different “life counters” have been used in simulations
of biological systems. For example, the “Ulam death rule” erases all
cells that are &k generations old [25]. More subtly, Hebbian synapses
that are left unused for a long time are discarded or assigned a lower
weight, and strengthened if they are used frequently [11]. We have
opted to use a mixture of both ideas to create the object-controlled
internal clock that we refer to as eigenlife [18, 20]. The eigenlife of
a cell device can be increased only by its own actions, that is, if it
is prompted and a production rule in its script allows it to raise its
eigenlife. Therefore, through its species script, each device is given a

The Cellular Device Machine Development System

read in initial configuration and seed of ‘random’

sequence;

for

(cycle=1;;cycle++) {

for (i=0;i<prompts per cycle;i++) {

for (j=0;j<swaps per cycle;j++) {

}

alhis

pick a ‘random’ device;
prompt it, giving it control until it finishes
its tasks;

pick a site;
pick a ‘random’ neighboring site;
swap their contents;

(automatic eigenlife decrementing requested)
decrement all devices’ eigenlives by 1;

remove all devices with eigenlife < 0;

update screen plots and displays, output to files etc.;
if

(user requested stop) {
pause;
process user’s run-time requests;

Listing 1: Tasks of a CDM’s operating system. In keeping with our
view of an experiment as a run of a virtual machine composed of
smaller machines called cell devices, we can speak of a machine cycle,
also loosely referred to as a tumestep. The operating system of each
CDM that we construct can be programmed by the user to execute an
arbitrary number of random prompts per cycle (where each prompt
temporarily gives control to a possibly empty device), followed by
any motion or eigenlife-decrementing tasks requested by the user dur-
ing the design, and finally by “garbage collection” (any devices with
cigenlife < 0 are removed) and output to screen, files, and so forth. At
this time the user has the choice of temporarily stopping the machine
(“interrupt”) to view populations, request plots, boost, dump, and so
forth.

’

79

repertoire of strategies that it can use to increase its life expectancy
beyond an initial value. Typically this is as a result of an interaction
with its micro-environment. In our implementation, eigenlife decreases
can be set to occur globally once per cycle as an operating system task if
a universal decrementer is turned “ON”. Alternatively, if the universal
decrementer is “OFF”, a cellular device may decrement its eigenlife
through its script when it is prompted. These options for regulating
eigenlife decreases correspond to different theories on aging through a

systemic or individual “internal clock” (e.g., [9, 10, 1]).

580 Hans B. Sieburg and Oliver K. Clay

on prompt, go to ‘beginning’ of species script;
while (there are production rules addressing the prompted
cell device) {
execute next production rule in the script;
if a ‘e’ was encountered
break;

Listing 2: Tasks of a cell device. When a cell device is prompted, the
species’ script file is searched for the first production rule that ad-
dresses its characteristics. A new line in the script file of a cell device
is recognized as the beginning of a production rule if and only if its
first printing character is an opening bracket (“(”). Any other lines
are assumed to be comments and will be skipped. Then the recog-
nition/action conditions in the rule are executed, typically resulting
in modifications of the prompted device and/or its neighbors. If the
production rule is not terminated with a “break” command (“e”),
the next rule addressing the (now possibly modified) cell device is
executed. Script files are “circular”, so interpreting continues until
a “e” is encountered or until no more production rules address the
device, after which another cell device is prompted.

5. Motion: At present the CDM-DS supports two kinds of motion. If the
number N of blind swaps is chosen > 1, a “blind swap” algorithm [24]
creates local jitters in the lattice world. For N = 0, all cell devices will
remain immobile unless their scripts contain instructions that allow
random or directed local motion once per prompt. In a new version
of the software we will implement a third kind of motion, a modified
blind-swap algorithm that respects immobility.

Once these parameters are set, the Development System creates an
“empty slate” CDM ready for experimentation. The first step in creating
an experiment is to select or design the species that one would like to add
to the project. The second step involves setting initial spatial configurations
and specimen distributions for the added species (figure 2).

An experiment starts when the machine is “launched” on a pair (initial
random seed, initial configuration). A CDM runs by prompting cellular de-
vices using a “searchlight” algorithm, which scans the body asynchronously.
The prompting process is guided by a hard-wired pseudo-random number
sequence. Although this is not implemented in our current version, using
a one-dimensional CA such as rule 30 [28] is conceptually compelling as it
allows us to view as quasi-stochastic the evolution of the configurations of
a CDM, yet at the same time the pair (next device prompted, current con-
figuration) evolves as a fully deterministic CA. The “searchlight” algorithm
determines the order in which cell devices are given a chance to interact with
their local environment. The operating system tasks are explained in the
pseudocode listing shown in listing 1. When prompted, a cell device will
perform the tasks outlined in listing 2.

The Cellular Device Machine Development System 581

3. SLANG
The object-based CDM-DS Simulator LANGuage “SLANG” uses conditional
“if. . .then. . .else...” production rules of the form

recognition condition
-> (action when condition evaluates to true)
(action when condition evaluates to false);

where

recognition condition
:= refObject.[recMin,recMax] recObject

or unconditional “if...then...” production rules of the form
refObject -> (action);

Recognition occurs if and only if there are > recMin and < recMax rec-
ognizable devices recObject in the input neighborhood of the prompted
reference device refObject (see Example 1 below for the precise meaning
of recognition). recMin and recMax are integers whose ranges depend on
the neighborhood type. For example, for the Moore neighborhood we have
1 < recMin < recMax < 9. The closed interval [recMin, recMax] will be
referred to as the recognition window. If recognition occurs, the true part
(“->7) of the transition is interpreted, otherwise the default part is inter-
preted (“:7).

action refers to a combination of changes to the reference device
refObject and optional changes to the contents of its neighborhood:

action := repObject; [put/delete commands];
[[movelbreak commands]

Here the notation repObject (for replacement device) indicates potential
changes to the reference device. The optional [put/delete commands];
[[movelbreak commands] are defined by

> putNumber putObject
< delNumber delObject
[X]e

put command
delete command
[move]break command

1l

I

@,

The notation “;” separates the three types of changes in an action, the
last two of which may be empty. The “>”, or “put”, instruction indicates
that putNumber of putObject are to be placed into the output neighbor-
hood if putNumber is less than or equal to the number #free of free sites.
Otherwise, only #free sites will be filled. This convention prevents exces-
sively long searches for available space. The “<”, or “delete”, instruction

indicates that delNumber of delObject are to be removed from the input

582 Hans B. Sieburg and Oliver K. Clay

neighborhood if delNumber is less than or equal to the number #free of
free sites. putNumber and delNumber are integers whose ranges depend on
the sizes of the input and output neighborhoods, respectively. The break
command “e” is a jump condition that returns control from a production
rule within a script to the operating system (see listing 2).

move instructions, which, for example, for the Moore neighborhood tem-
plate are given by

X := C := move one site to Center site (equivalent to
‘do not move’)
:= move one site to North site
:= move one site to NorthEast site

:= move one site to East site Wl N [NE
:= move one site to SouthEast site W E
:= move one site to South site

SE| S |SW

N
NE
E
SE
S
SW := move one site to SouthWest site
W := move one site to West site
NW := move one site to NorthWest site
® := move one site in a random direction
can only be used in conjunction with the break command.
The “reference device” refObject, the “recognition device” recObject,
the “replacement device” repObject, and putObject and delObject are
bundle data types declared through the following type definition:

typedef struct bundle{
long pelt; /* pattern element */
unsigned char device; /* species denominator */
unsigned char state; /* state denominator */
short life;} /* eigenlife value */
bundle;

The pattern element or pelt is a 32-bit string that can be given ezplicitly
in any of four different representations:

decimal (default; no denotational symbol)
$... hexadecimal (e.g., $3B214AFC)
{ T binary (&gq bOlllOlOlOllOlOllOOlllllOllllOOO)
B ASCII (e.g., 'asC2’)

All representations should define a 32-bit integer; thus, a decimal represen-
tation must lie between —2147483648 and 2147483647, a hexadecimal rep-
resentation may have at most 8 digits, a binary representation may have at
most 32 digits, and an ASCII representation must have exactly 4 characters.

The species denominator device can be given ezplicitly by an ASCII
string. The state denominator state can be given ezplicitly by a decimal

The Cellular Device Machine Development System 583

integer between 0 and 255 (inclusive). The eigenlife value can be given ez-
plicitly by a decimal integer between —32768 and 32767.

The richest and most complicated aspect of SLANG is smplicit definition
through special instructions to enforce inheritance or device modifications.
The following is a list of these special instructions, where the term “corre-
sponding bits” refers to an arbitrary section of the canonical bit-model of a
cell device (figure 1):

wild card (“allow any”)

? inherit (from corresponding bits in refObject)

! complement (of the corresponding bits in refObject)

® mutate (assign random value)

%n block mutate (same as pelt of refObject, but with a
randomly chosen n-bit block replaced by
a random n-bit block (“randomly mutate
in n consecutive bits”))

© copy (from corresponding bits in the last recObject)

¢n block copy (same as pelt of refobject, but with a
randomly chosen n-bit block replaced by the
corresponding block in the last recObject
(“copy m consecutive bits”))

Using “?”, 17, “©”, “@”, “%”, and “¢”, pelts may be specified implicitly,
or in mized zmplzczt-explzczt form by substituting one or more digits of a
hexadecimal, binary, or ASCII representation with “2”, “1” and so forth.
A “?” will “inherit” the corresponding bits (4 bits for a hex digit, 1 bit
for a binary digit, 8 bits for an ASCII character) in the reference pelt. A
“1” instruction will access the complements of the corresponding bits in the
reference pelt.

Species and state denominators may be given implicitly by “?”. The
eigenlife value may be given implicitly by the inheritance instruction “?” or
by increment or decrement functions of the form “?+ integer”, “?- integer”.

The use of special instructions is restricted as follows:

refObject #
recObject # 1, ©,
repObject , ©,
putObject , ©
delObject #

)

\J \J \J

®@ 6

0 % ¢
; ®, %, ¢

b)

Therefore, the wild card “#” symbol is allowed in the bundle specifications
of refObject, recObject, and delObject, but does not make sense any-
where in the bundle specifications of repObject and putObject. Otherwise,
putObject is very similar to repObject since both can use “?”, €17, “©",
and “®”. In refObject and delObject, “?”, “1” “©”, and “®” do not
make sense and will therefore lead to syntax errors.

An example of a syntactically correct production rule is shown in listing 3.

584 Hans B. Sieburg and Oliver K. Clay

(#,MP,1,#).[3,#] (#,LPS, #,#)
-> ((?,2,2,?);>1('TNF’,TNF,1,9),<4(#,LPS, #,#) ;e)
((?2,2,2,2);;9);
Listing 3: This production rule means that, if the activated reference
device (#,M,1,#) recognizes, regardless of the pelt, at least three
recognition objects (#,LPS,#, #) in its input neighborhood, it will
change its state from 1 to 2, maintain its patterns element and eigenlife
value, and produce one product (*TNF’,TNF,1,9), while removing
four (#,LPS,#,#) devices. If no recognition occurs because there
are too few (#,LPS, #,#) devices in the input neighborhood, then
the activated device will not change. The production rule as shown
could be used, for example, to describe the secretion of tumor necrosis
factor (TNF) by a macrophage (MP) stimulated by lipopolysaccharide

(LPS).

To illustrate the typical usage of special instructions in the pelts, we give a

few examples. Here, refPelt, recPelt, repPelt, putPelt, and delPelt
denote the pelts of the refObject, recObject, repObject, putObject,
and delObject, respectively.
Example 1. Combinations of the instructions “?”, “1” and “#” can be used
to define a large number of recognition processes. For example, the recog-
nition condition (#,X,1,#).[1,#] (#,Y,#,#) checks only for the presence
of at least one Y in the neighborhood of X. As indicated by the wild cards,
the specific pelt structure, the state, and the eigenlife of Y do not matter
in this Boolean recognition process. The next two cases are different. In
(#,X,1,4#).[3,#] ("4#22',Y,#,#), recognition occurs only if the last two
ASCII characters of Y are the same as the corresponding ASCII characters
in the pelt of X. The first two characters are inconsequential to the recogni-
tion process. Even more complicated, in (‘ABCD’, X, 1,#).[3,#] ("1 124",
Y, #,#) recognition only occurs if the first two ASCII characters in the pelt
of Y are the complement of the corresponding characters in the pelt of X,
and the third characters are equal. The fourth character is inconsequential.
Using recognition processes such as the ones just described has the advantage
that recognition is a fully user-controlled event that is well defined during ex-
ecution. The values of the eigenlife function E(X; recognition condition) :=
refLife + repLife — 1 of a cell device X are then also well defined dur-
ing execution. refLife and repLife indicate the eigenlife parameters of
refObject and repObject, respectively.

Example 2. If refPelt = $FOFF0001, then repPelt = $AB??200F! will
give us an actual repPelt of $ABFFOOFE, since $E = b1110 is the bitwise
(4-bit) complement of the last hexadecimal digit $1 = b0001. Therefore, the
unconditional production rule

(SFOFF0001,X,1,#) -> ((SAB??00F!,?,?,?);;e);

The Cellular Device Machine Development System 585

states that, when prompted, a specimen of species X in state 1 and with pelt
$FOFF0001 will acquire the new phenotype $ABFFOOFE using $AB??200F!,
without changing its state or altering its internal clock. As indicated by the
({9

e’ control is immediately returned to the operating system following the
transformation.

Example 3. The following production rule illustrates sexual reproduction
where the offspring acquire properties from both parents using “©” and “?”:

(#, X, #,#) . [1,11 (%, X, #, #)
-> ((?,?,2,?);>1($?0??200?0,X,0,1) ;e)

({2, 2:2,2) 593

The rule states that if any two members of the X population meet, they will
produce offspring with mixed characteristics according to the genetic program
$207?00©70. For example, if refPelt = $FOFF00C1, and recPelt =
$ABCDEF03, then putPelt = $FBFFEFC3. The offspring will be born in
state 0 and with a life expectancy of 1.

Example 4. For the binary pelt b110111110®011111®@®®®®1100011101
we have marked fixed areas where a point and a block mutation can occur
using the “®” instruction. This means that wild bits occupy the indicated
positions. An interesting application is in the study of retroviruses that
require exogenous activation of their host for reproduction. Due to this con-
dition, mutations are frequent, and the mutation rates are correlated with
the rates at which the host cell population is activated by different stimuli.
Cell internal processes triggered by the stimuli also seem to cause phenotype
mixing between viral and host genomes, although probably at a lesser fre-
quency. Therefore, in the theoretical study of quasi-species formation from
an initially pure virus strain, we may use the “?” instruction together with
the “®” instruction. For example,

(#,CELL, #,#) . [1,#] (#,STIM,0,1)
-> ((?2,2,2,2):<3(#,8TIM, #,#),

((2,2,2,2);:9);
indicates that an infected cell CELL of

refPelt =b110111110101111100[1001100011101
that is activated by a stimulus STIM of

recPelt =0111010101101011001111101111000

may produce a virus strain VIRUS of

586 Hans B. Sieburg and Oliver K. Clay

The boxes are not part of the SLANG syntax, but indicate the invariant viral
genes that are integrated into the host genome and that are also present in
the new strain. The unboxed “?” mark an area of phenotype mixing that
may result in strain adaptation. This is separated by a fixed pattern from
an area of random mutations. According to the sample production rule,
successful stimulation, which results in the uptake of a certain quantity of
the stimulant, does not change the host.

Example 5. © allows for a unidirectional copy. The following sample pro-
duction rule illustrates how a bidirectional crossover operation, as it is com-
monly used in genetic algorithms [12], can be constructed from ©:

(#,X,#,#) . [1,#] (#,Y,0,1)
-> (('?20©2?",2,?2,?);<1(%,Y,%#,#),>1('©?200",Y,0,1) ;)
((2:7:2:2)35;9)

Suppose the ASCII representation of refpelt, that is the pelt of the
prompted X specimen, is ‘ABCD’, and that recPelt = 'EFGH’. Accord-
ing to the script, reppelt = *?©??’ = ‘AFCD’. This is the result of the
unidirectional transfer of information from Y to X using ©. The transfer of
information from X to Y is coded in the pair of put and delete instructions
<1(#,Y,#,#) and >1('©?0©’,Y,0,1). We first remove one member of
the Y species, and then immediately create a new one of the same state and
eigenlife as the original recPelt, but with recPelt = ‘©?0©©’ = 'EBGH’.

Example 6. The following sample rule shows how the “3n” instruction is
used to create a repPelt and a putPelt that are the same as the refprelt
except that a randomly chosen block of n bits is replaced by a block of n
random bits:

(#,X, %, #).[1,#] (#,Y,0,1)
-> ((%10,?,?,2);<1(#,Y,#,#),>1(%5,Y,0,1);e)
((2,2,2,2);:9);

The effect is
refPelt =b1101111101011111001001100011101

repPelt =b11011{1010110101{1001001100011101
putPelt =b1101111101011111001j10001/0011101

where the boxed portions of the bit-strings indicate the replaced blocks.

Example 7. The following sample rule shows how the “¢n” instruction is
used to create a repPelt and a putPelt that are the same as the refpelt
except that a randomly chosen block of n bits is replaced by the corresponding
n-bit block of recrelt:

(#,X,#,#) . [1,#]1 (#,Y,0,1)
-> ((¢8,2,2,?);<1(#,Y,#,#),>1(¢16,Y,0,1) ;e)

((2,2.2,2)5;9);

The Cellular Device Machine Development System 587

The effect is

refPelt =b1101111101011111001001100011101
recPelt =b0001001011001010111111111101000
repPelt =b11011{01011001111001001100011101
putPelt = bllOlllllOlOlllllOllllllllllOlOOOl

where the boxed portions of the bit-strings indicate the replaced blocks.

The full language specification is summarized in Backus-Naur Form [27]
in listing 4. It is easy to see that any SLANG production rule corresponds
to a 2-arc subgraph of a hypergraph (figure 3). Therefore, it is possible to
design a visual programming language equivalent for SLANG [2]. The use of
graphics is particularly attractive for non-specialists interested in using the
CDM-DS.

Another corollary of the correspondence between SLANG scripts and
graphs is that we can write a SLANG debugger based on a circuit-checking
algorithm. This algorithm derives from the following result [3]:

Theorem. A directed graph G with transition matriz A contains a path of
length X iff A* # 0; it contains no circuits iff, for all X sufficiently large,
A* =0,

The need for circuit checking arises since any closed path (“circuit”) in a cell
device’s graph can lead to an endless loop in which the active reference device
becomes a “dictator” of the experiment, which forever controls the operating
system. The introduction of the break command “e” avoids “dictatorship”.
However, quite often situations arise in which the user wants to have a cell
device execute a chain reaction; that is, several production rules are processed
in succession, and therefore selectively omit the terminator from the true or
default actions. In this case, the circuit checker constitutes a last safeguard
that alerts the user to the potential dangers of his or her intentions.

All production rules in a cell device script file using a reference bun-
dle of the form (refPelt,refPop,refState,#), where refPelt is ei-
ther given explicitly or by “#”, are included in a check for circuits. The
checker first creates the matrix of all state transitions that are not termi-
nated with a “e”. If in this matrix of transitions that can contribute to
a circuit there are no non-zero diagonal elements (= no self-loops), it then
keeps calculating powers of this matrix until either the resulting matrix is
0—in which case there are no circuits—or until the Nth power is reached,
where N := min{number of edges + 1, number of vertices}. If this power
matrix is still # 0, the transition graph contains a circuit since, if there is
a path of length greater than the number of edges, an edge was traversed
twice, and if there is a path of length greater than or equal to the number
of vertices, we return to at least one vertex a second time. Furthermore, if
the refState entry is a wildcard (“#”), an alert is posted whenever a “e”
command is missing, as endless loops and other pitfalls happen very easily

588 Hans B. Sieburg and Oliver K. Clay

sentence = unconditional_sentence | conditional_sentence.

unconditional_sentence = refOClass —> (repObject;IO; [directione]);.

conditional sentence = refOClass.recWindow recOClass
—>(repObject;10; [directione])
:(repObject;10; [directione]);.

10 = io.
io= {ioop [,1}.
io_op = delete | put .

direction =C IN|INE|E|ISE|IS|SW|W|NW]|®

recWindow = [recMin,recMax] .
recMin = threshold.
recMax = threshold.

delete = < threshold object_class, .

put = > n object, .

refOClass = object_class. (additional restriction: NO ?, !, ®, ©, %, ¢ anywhere)
recOClass = object_class.

repObject = object.

object = object_class. (additional restriction: NO #’s anywhere)
object_class = (pelt_class, device_class, state_class, eigenlife_class).

peltclass=bB | $SH | ‘A7 | Nag | 2 | ! | # 1 ® | © | $N5 | ¢Ns
deviceclass =X | 2 | # .

stateclass =Ng | 2 | # .

eigenlife class = N3s | 2 | 2+Nis | ?-Nis | # .

threshold =n | # .

B = b[b] [b]...[b] (string of length > 1 and < 32)

H = h[h] [h] [h] [h] [h] [h] [h].

A = alal[all[al.

Ne=012112131 ... (decimal string representing any k-bit

integer 0...2%"!
X = devicenamel | devicename2 | ... (ASCII name-string for any of

the devices)

b=0111]=e.

h=011]1 | 91 al ... 1 Fle
a=A1] ... 1 21al l z 1l nl e
e=2111#1®] 0
n=011121S3]1

Listing 4: CDM-DS script language definition in Backus-Naur Form
(BNF). Using this language specification format, the syntactically cor-
rect production rules are those that can be obtained from “sentence”
by successively applying the equations or substitution rules in this list-
ing. means “..or...”; “[...]1”7 means “... is optional”; “{...}”
means “... may be repeated as many times as we wish, but is optional”.
Strings in the standard text font (e.g., pelt_class and repObject) and
bold capital letters in typewriter font (e.g., H and &) are used as non-
terminal symbols to represent parts of the sentence. Bold lowercase
letters in typewriter font (e.g., h and a) are non-terminal symbols
for single characters in the sentence. Plain characters in typewriter
font (e.g., (and 6) are terminal symbols, that is characters as they
actually appear in the script files. Bold non-alphanumeric characters
in typewriter font (e.g., | and {) are BNF metasymbols.

S

The Cellular Device Machine Development System 589

(#,X,n, %) . [#, #] (#,Y,#,#)
= -> ((?2.%X,Kk,?);i;e)
: ((?2,X,h,;?);;@);

Figure 3: The one-to-one correspondence between a SLANG produc-
tion rule and a small hypergraph is established using dialog windows
for -each edge and vertex. Specifically, a vertex dialog requests infor-
mation regarding bundle data structures of the species. Also covered
are motion instructions and breaks. The vertex dialog also takes into
account that, in larger graphs, particular vertices may pose as both a
replacement and a reference device. An edge dialog requests informa-
tion regarding the transition conditions. In the example shown, suc-
cessful recognition is encoded in the edge labelled “Y->” and requires
thresholds for the recognition window and the settings of the bundle
data structure of species Y. The edge labelled “Y:” is the default
edge. Defining the default involves only two user responses: entering
“y” as the edge name and setting the “default” radio button to “ON”,
which disables all other responses. Not shown in the figure is that, in
our present implementation of the interface, we use rectangular ver-
tices to represent any action that may result from a transition. The
connecting edge between a rectangular “action vertex” and a circular
“replacement vertex”, for example “k” or “h” above, is automatically
characterized as an “action edge” and therefore requires no further
user information.

in this case. For example,
(#,A,%#,%#) —> ((?,A,2,2+1);;);

leads to an endless loop as soon as a member of population A with state 2 is
prompted. Also,

(#,A,#,#) -> ((?,A7,2,2+1);;);

will always lead to an endless loop as soon as a member of population A is
prompted.

4. Explicit examples

We chose examples that are well established in the literature to encourage
comparisons and thereby facilitate the learning of the language. A more
elaborate application to HIV infection is discussed in [19, 20]. All examples
were run on an Apple Macintosh IIex™ personal computer with 8 megabytes
of memory.

590 Hans B. Sieburg and Oliver K. Clay

Figure 4: The plots show two intermediate clusterings in the lattice
world of “B”. Global motion and automatic eigenlife decrement are
turned “OFF” in this experiment. 100% of the body is scanned per
cycle. We used a random initial distribution for “A”, which occupies
25% of a 642 sites body. For “B” we used a single initial seed, which
was placed approximately at the center of the lattice world. Since
there is no automatic eigenlife decrementing, we set the initial eigen-
life for both species to 1. We used the full Moore neighborhood for
the input and output neighborhoods. Note that, due to the periodic
boundary conditions, wrap-around clustering occurs on the left and
upper sides of the plot on the right.

1. Cluster Formation on a Torus: One of the simplest examples leading
to complex behavior, namely fractal spatial structure, is dendritic growth
through diffusion-limited aggregation. In our present implementation, two
species are required to visualize this process. One, denoted by “A”, consists
of randomly mobile specimens described by the following script:

(#,A,1,#).[1,#] (#,B,1,#%)
=% (2,8, 21.,.2) 31 (2,8;1 ;7Y <17 A,1,7) ;&)
((?,A,1,?);;®e);

This means that any “A” specimen that recognizes at least one “B” speci-
men will transform itself into a member of species “B” according to the self-
elimination (?,A,1,?); ..., <1(?,A,1,?) and the reappearance state-
ment ...;>1(?,B,1,?2),... The new “B” specimen inherits the pelt and
the eigenlife value from the departing member of “A”. By default, if an “A”
does not see a “B” specimen, it will move one step in a random direction.
Note that the “®” instruction functions as the diffusion term in an environ-
ment where global motion is turned “OFF”. The second species, denoted by
“B”, is immobile and passive, and therefore has the trivial script

(#:Brdl#) == ((2,%:2,2)5:Ce);

The Cellular Device Machine Development System 591

The function of the “B” species is purely auxiliary since it carries the initial
gluing seed and the growing cluster.

As shown by this example, dendritic growth through diffusion-limited ag-
gregation does not seem to be dependent on the CA update paradigm; that
is, the asynchronously updated CDM CA shows the same overall dynamical
behavior as a synchronously updated CA [24, 16, 29]. This raises the in-
teresting question whether asynchronicity should be the “normal” mode of
CA implementation from which synchronicity can evolve as a model prop-
erty. Also, we noticed that varying the width of the recognition window—
using (#,A,1,#).[1,k](#,B,1,#) where 1 < k < 9, instead of just
(#,2,1,#%).[1,#](#,B,1,#)—will result in different cluster densities.
Whether this is reflected in variations of the fractal dimension is currently
under investigation.

2. Ising Models. We included this example to illustrate the power of
the SLANG language to encode lengthy verbal model descriptions in very
few production rules. In [21], the authors describe how “One can calculate
the spontaneous magnetisation on the computer [program ISING]. We set
a ‘spin’ IS (atomic magnetic dipole moment) at each lattice position of a
square lattice; IS = 1 or —1 according to whether the spin is up or down.
Neighboring spins want to be parallel in this ‘Ising’-ferromagnet of 1925. The
energy will thus be conserved in a reversal of spin, if as many of the spins
are up as are down, i.e. if the sum over the four neighboring IS is zero. In
this sense the program reverses a spin [[S(7) = —IS(¢)] if, and only if, the
sum over the neighboring spins vanishes.” The lattice in the demonstration
program ISING is an L x L lattice with helical boundary conditions and two
“passive” (unchanging) boundary rows added on top and bottom (therefore
an (L+2) x L lattice). The input neighborhood used is the peripheral part of
the von Neumann neighborhood, namely “N E S W”. Conservation of energy
must hold in the full von Neumann neighborhood “C N E S W”, so the sum
of the spins in “C N E S W” must be +1 or —1, and therefore the sum of
the spins in “N E S W” must be 0. Since every site is occupied by a spin
(+1 or —1) this can only happen if exactly two in “N E S W” have spin —1
and two have spin +1. In this case, the center spin will flip. Initially the
spins are randomly oriented: IS = 1 with probability p, otherwise IS = —1.
In other words, p * 100% of the spins are 1, the rest are —1. The program
is demonstrated using L = 40 and p = 0.2, and run for 100 time steps on a
fully updated CA.

This model is ported to the CDM-DS under the following conditions:
(1) toroidal boundary conditions instead of helical boundary conditions,
(2) lattice sizes 32 x 32 or 64 x 64 instead of 40 x 40, (3) Spin = —1 &
pelt = $00000000, spin = +1 < pelt = $FFFFFFFF, (4) flipping of spin
& inverting (complementing) of pelt. The latter demonstrates the usage of
the “1” complement instruction in the repPelt of the replacement object.
When translated into SLANG, program ISING is just one production rule

(1):

592 Hans B. Sieburg and Oliver K. Clay

s
it

il

=
-
.ll.l_I

SRRl
|

==

Figure 5: This figure shows 9 screen snapshots of live cells, namely cell
devices of the bundle class (#,L,1,#), taken at irregular intervals
during a simulation. Time evolution is shown from left to right. We
chose regular start-up patterns, among them a glider shape placed in
the lower half of the lattice world. Asshown in the first plot, this glider
explodes early on in the simulation, and the remnants of this explosion
eventually fill all available space. For this demonstration we chose a
body size of 322 lattice sites all of which are filled with members of
the population L. Those members of L representing live cells are
shown as black squares. The dead cells of bundle class (#,L, 0, #)
are invisible, represented by white squares. We chose the full Moore
set as our input neighborhood. Since any subset of the Moore set can
serve as the output neighborhood, we selected the center site “C”.
Neither pelts nor eigenlives are significant for this model. Global
motion is turned “OFF” and individual motion does not occur.

The Cellular Device Machine Development System 593

(#,IS,#,#).[2,2]1(0,IS,#,#)
= ((1418,2:7)77e)

(02,08, 2, 2) 7o)

In our experiment we used the input neighborhood “N E S W” and the output
neighborhood “C”. Automatic decrementing of eigenlives and global motion
were turned “OFF”. 100% of the body was scanned per cycle. Initially, 20%
of the body was randomly filled with pelt SFFFFFFFF and the rest with pelt
$00000000. The dynamical behavior is the same as in the examples shown
in [21].

3. Game of Life. We have ported this rule into SLANG because we
wanted to see which patterns are generated by the asynchronous updating.
The Game of Life [8] is based on the following verbal rule: “A dead cell
(spontaneously) comes to life, if 3 live cells are in its neighborhood; if there
are less than 2 live cells in the neighborhood of a live cell, the cell will die
of loneliness; if more than 3 live cells are in the neighborhood of a live cell,
this cell will die of overcrowding.” This description easily translates into the
following SLANG script, where a cell device “L” in state 0 represents a dead
cell, and a cell device in state 1 represents a live cell:

(#,L,0,#).[3,31(#,L,1,#)
=& (P51 162) g3l (1l 1:1) 5€)
(€2,5;0;2) ;:9) 7

(#,L,1,#).02,3](#,L,1,#)
= ({?.L, 1, R) ;5e)
((?,L,0,?2);<1(#,L,#,#);0);

As shown in figure 5, the long-term results of an asynchronous Game of
Life simulation are irregularly structured patterns reminiscent of an electronic
chip layout. As a simulation progresses, the microscopic connectivity of this
layout continues to shift and rearrange itself. We are presently investigating
the significance of these observations.

4. Turing-Gierer-Meinhardt (TGM) Chemistry. In this example taken
from [4] we investigate a model system of pattern-generating chemical re-
actions. Four species are involved, denoted S, X, Z, and C. Species Z is
capable of differentiation, which is induced by the activator X. The differen-
tiation process is irreversible and C' is the resulting differentiation product.
Production of X requires a substrate S (figure 6).

For our demonstration experiment we initially seeded the S and X layers
at 20%, and Z at 5% random uniform distribution of 322 sites (in other
experiments we also tried 15%, 10%, 1%, and a single-site seeding for 7).

594

The input and output neighborhoods were both the full Moore neighborhood.
Automatic eigenlife decrement and global motion were set to “OFF”. 100%
of sites were prompted per time step. The spatial dynamic of the model is

Hans B. Sieburg and Oliver K. Clay

(#,S,1,#) -> ((?2,2,?2,?);:0e); S
(#,X,1,4) . [1,#] (#,5,1,4)
-> ((2,2,2,2):>1(2,X,2,2),<1(#,5,1,4);e) +LAND
((2,?,2,?):;0);
D4 +
(#,2,1,4) . [1, 4] (4,X,1,4)
=> ((?,2,2,7?);31(2,Z,1,7?) <1 (#,X;1,3);e)
((?,2,?,?);:0e);

(#,2,2,4) -> ((2,2,2,2):>1(:C",C,1,1) s 0); Z<]+
(#,C,1,8) -> ((2,2,2,2);:00);

Figure 6: This figure shows the basic scheme of the sample TGM
model on the right. To the left we have the corresponding SLANG
production rules. This example demonstrates how easily graphical
models typically employed by natural scientists to communicate ideas
can be ported into SLANG and run on the CDM-DS. No particular
pattern elements are used in this example, hence all pelts involved
are wildcards “#”. Both S and C have trivial scripts except that they
are capable of random diffusion. The conditional rule for X states
that, if S occurs at any non-zero concentration ([1, #]) in the neigh-
borhood of an X specimen, S will be taken up and the X speci-
men will reproduce. If the concentration of S is 0, the specimen will
continue its random motion. The production rules for Z state that
any non-zero concentration of X will trigger differentiation of the Z
specimen into a terminal state (2,2, 2, ?), which inherits pelt and
eigenlife. Also, Z will produce a state 1 offspring, and in the whole
process will ingest 1 unit of the activator X. If no activation occurs,
the Z specimen will continue random motion. A terminally differen-
tiated Z specimen, as indicated by the self-inheritance (#,7,2,#)
-> ((?,?2,2,?);...) rulesegment, follows an unconditional rule,
which states that each time the specimen is prompted, it will produce
1 unit of the differentiation product C. As an aside, the example shows
some of the basic production rules and reaction schemes from which
large-scale immune or nervous system models are typically composed.

shown in figure 7.

As an afterthought, it is worth pointing out that this example also demon-
strates an explicit relationship between SLANG production rules and systems
of ordinary differential equations (modulo parameter functions) of the general
form

F’ = production — decay + diffusion

The Cellular Device Machine Development System

595

Figure 7: This figure shows 10 snapshots of the emerging patterns in
the Z species layer taken at irregular time steps. We used a start-up
density of 1% randomly placed initial seeds. Time evolution is shown
from left to right. Characteristic for the dynamics of this system is
the formation of long subtly branched fibers, which eventually form
tangled network structures. Depending on the initial seeding density
these structures become more, or less, pronounced. The predomi-
nantly “upward” growth direction is due to the algorithm that we use
for placing products in the clockwise order C N NE E SE S SW W
NW. Therefore, if C is occupied, the product will be placed at N; if
C and N are occupied the object will with first preference be placed
at NE; and so forth. We are presently extending this algorithm to
include flexible placement by combining the “put” instruction with
the “motion” instruction. This would make >1® (Y’ ,Y,3,12) a
syntactically correct statement where a member of species Y is placed
into a random neighborhood site if this site is not already occupied.
If, for example, >2NE (‘X' ,X,1,2) is used, then 2 units of species
X are placed into any free location starting at NE. The statement
>2C('X’",X,1,2) is equivalent to the old >2 (‘X" ,X,1,2). In our
present implementation, it is possible to program a directional put
using a combination of non-directional “>” and “<” instructions. The
idea is that “>2..., <1...”
<2...”7 at E, and so on. Unfortunately, placement using this ap-
proach will be precise if and only if all sites except the center are
unoccupied (occupied sites will randomize placement). To obtain pre-
cision, which for certain models may be desirable, it is necessary to
extend the language as suggested. It is clear that whichever type of
placement the user decides to apply, the spatial dynamics of the model
will always be a network-like pattern.

will place a product at NE, “>3...,

596 Hans B. Sieburg and Oliver K. Clay

F: 1024
hunt: 1
(#,F,1,%) . [1,#] (#,R, #,#)
-> ((?,F,2,2+2) ;<1 (#,R,#,#);)
((?,F,2,2);;) ;
mate:
(#,F,2,4) . [1,4] (#,F, #,#) AR
-> ((?,F,1,?2+1);>2(?,F,1,8);e) F
((?:F1:2);00) 3
R
feed:
#, R, L.#) = ((2.R,2,2¢1);%)4
flight:
(#,R,2,#).[1,#] (#,F, %, #)
=> ({(?,R,3,?2+2);3)
((?,R,3,2);;:);
mate:
(#,R,3,#) . [1,#] (#,R, #,#)
= ({(?2,R;1,%+1);>4(2:R;1,20) ye)) .
(2, 200

(

Figure 8: On the left of this figure we have listed the SLANG
scripts for 2 quasi-single-sex species (F = “foxes” = predators,
R = “rabbits” = prey). We allocated 2 behavioral states for the
predator species, the first of which corresponds to “hunting” and the
second to “mating”. The prey species uses 3 states: the first corre-
sponds to “feeding”, the second to “flight”, and the third to “mating”.
Successful execution of a behavior results in eigenlife increases in both
species, where “attack” and “flight” are awarded with “7 4 2”, and
“feeding” and “mating” with “? +1”. We did not go so far as to rep-
resent successless behaviors by a private form of stress that leads to
an eigenlife decrease “? — 1”7. Instead, the eigenlife value remains un-
changed “?”. The global eigenlife decrementer is set to “ON”. In this
demonstration experiment pelts are never used, and states are only
used “internally” by the devices to order their own production rules,
not “externally” by other devices to recognize them. If a fox or rabbit
meets another member of its species, offspring are born. If there are
as many males as females, the number of offspring will correspond
roughly to 1/2 of the biological litter count, as we are pooling males
and females in this model. Here, the rabbits’ litter size is chosen to be
twice that of the foxes. In a more elaborate set-up, we might use pelts
to distinguish between female and male members of a species. This
is interesting because we can pick up more dynamical fine structure
than in the time plot shown on the right of the figure, since the sur-
vival of a species depends on the survival of sufficient numbers of both
sexes. At the beginning of the experiment shown, rabbits (R) were
introduced as a randomly distributed population with life expectancy
of 20 per specimen populating 20% of their lattice world. 30 foxes (F)
with life expectancy 8 were released from one location into this pop-
ulation. The time plot shows the dynamics of both populations for
160 time steps. The population densities are plotted on the vertical
axis versus time on the horizontal axis.

R:1:9)::®); 0 TIME

The Cellular Device Machine Development System 597

which are frequently used in mathematical biology and biochemistry. In the
system shown in figure 6, the equation for the species X, for example, would
derive production terms from the concentration of S and from its own con-
centration, which is related to its replication rate. Decay occurs through the
uptake by Z, and diffusion comes from the “®” instruction. Rate changes in
the dynamics are obtained by changing the width of the recognition window,
and/or the put and the delete rates in the production rule. It was previ-
ously indicated that cellular automata represent an alternative to, rather
than an approximation of, differential equations in modeling physics [23].
Whether the relationship between differentiable systems and asynchronous
CAs programmed with SLANG rules indicates a similar alternative for mod-
eling biological systems requires further exploration.

5. Predator/Prey Ecology. In this example we consider a modified
Volterra-Lotka model of a 1 preditor (“Foxes”), 1 prey (“Rabbits”) ecological
system. The general model definition is as follows. Reproduction is between
any two specimens of the same species that are in the mating state. We
model feeding through increases in the eigenlife value of a specimen. We
assume, as in the classic Volterra-Lotka model [14, 26], that the rabbits have
access to an unlimited food supply, and therefore their eigenlife is always
increased. A fox, in turn, must hunt, and therefore must have a rabbit in its
neighborhood if it is to prolong its eigenlife by feeding. The model assumes
that a fox can only eat one rabbit “per prompt”. Eigenlife also is increased
if a fox or a rabbit mates, or if a rabbit escapes a hunting fox. This last
case can be interpreted as an increase in fitness when a rabbit survives a
chase. In this very simple model, the site selection algorithm determines the
outcome of such a chase. If a fox is selected, one rabbit is caught; if a rabbit
is selected, the rabbit escapes and its eigenlife is increased. Therefore the
selection algorithm’s numerical parameter(s) must thus encode the ratio of
captures versus escapes. Each species is given more than one state (figure 8).

It should be noted that if the global eigenlife decrementer is turned “ON”,
preditor and prey specimen alike will survive only for the length of their initial
eigenlife value (given upon birth). To counteract this global aging process
we give each species in this CDM model a repertoire of strategies, which it
can use to increase its eigenlife. For example, the rabbits can prolong their
lives by feeding, by interacting with other rabbits (members of the opposite
sex), or by surviving a chase by the predator.

5. Discussion

The Cellular Device Machine Development System is an example of a new
breed of biologically motivated simulation software that has recently begun
to emerge at the interface of mathematics, computer science, genetics, and
cellular physiology. It was first conceived as a way of combining the advan-
tages of autonomous, self-modifying, and mobile, finite automata (“devices”)

598 Hans B. Sieburg and Oliver K. Clay

that can be programmed using a dedicated object-based language, with those
of a globally updated cellular automaton environment (“body”). In closing
this paper, we would like to remark on the modifications to traditional cellu-
lar automaton (CA) algorithms that we use in our implementation, and on
improvements to our system that are presently in progress.

The traditional CA implementation requires strict quasi-parallelism; that
is, any update algorithm has to be equivalent to a fully parallel algorithm. In
practice this translates to a procedure reminiscent of the “screen-swapping”
technique used in computer games. No content of a cell may be altered until
its value has been checked by all the other cells of which it is a neighbor.
If memory space is not a problem, this is done by maintaining two or more
copies of the lattice. The program reads the values of the selected cell’s
neighbors from the “old” copy and enters the new value for that cell into a
buffer, or “new”, copy. Only after each cell has been selected exactly once
does the “new” array become the “old” array, and processing starts over.
Since all updates thus become valid simultaneously at the end of a sequential
“searchlight sweep”, the order in which the cells are selected does not affect
the result, and if the host processor allows parallel computation they could
equally well be selected all at once (“floodlit”). While still using quasi-
parallel updating, the CDM simulator program departs from the CA tradition
by not selecting all of the cells in every time step but, more generally, by
selecting a subset. While the subset is implicitly defined by prompting lattice
sites according to a random sequence until a user-selected percentage of the
lattice space is covered, the updating itself is deterministic.

Originally cellular automata were introduced as synchronously updated
nearest-neighbor lattice dynamical systems (see [7, 5, 22] for overviews).
Consequently, in most cellular automaton models studied elsewhere, some
form of synchronous updating is applied. It was demonstrated previously
that changing the update scheme can change the pattern-forming capacity of
a cellular automaton [13]. As illustrated by our asynchronous Game of Life,
apparent self-organization such as that found in gliders is critically dependent
on synchronous updating. Another example is the “land developers’ rule”,
which erodes soil only in the synchronous version [24, 6]. As we showed in
section 4, other CA systems display similar patterns under either mode of
updating (see Examples 1, 2, and 5). From a theoretical point of view, neither
update scheme is “wrong”, nor will it produce “wrong” dynamics; rather, if
each is taken by itself, it may conceal structure-forming behaviors from the
other. Based on this consideration and the observation that, in CA models
of large biological systems, it is more realistic to think of synchronicity as
a locally emerging non-stationary property of rule populations not initially
locked in simultaneous conversation, we use strict asynchronous prompting
of cell devices in the CDM simulator program. This choice is also consistent
with our aim of retaining an object- and event-driven dynamic with as few
arbitrary interventions from a global controller as possible. A variety of
strategies for running efficient parallel simulations of asynchronous CAs are
outlined in [15].

The Cellular Device Machine Development System 599

Going back to the future, we are now working on several improvements
of the development system. First, a revision of the main data structures
will enable us to keep all scripts in RAM. Second, we are developing some
language extensions that reflect our past working experiences with SLANG,
such as the use of rule nesting, of logical operators for connecting reference
objects, of constants, and of macros. Third, we are working on a version of
the CDM-DS that runs on electronic networks so that the sharing of SLANG
script libraries and therefore of unambiguous and reproducible experiments
becomes possible between remote users. The non-ASCII instruction sym-
bols ®, ©, “¢”, and “e” will be replaced by ASCII-compatible symbols.
Fourth, development of more intrinsic data-analysis capabilities will enable
the simulator to evaluate much of its own data. Finally, Using the flexible
neighborhood representation by pointer sets we will be able to run a larger
spectrum of user-defined local topologies on our system than just the input
and output subsets of the Moore neighborhood.

Acknowledgments

This work is partially supported by NIMH grant R29 MH45688 to HBS. The
authors are grateful for suggestions and criticism by Christa Miller-Sieburg,
Ruth Williams, Hubert Halkin, Scott Kelley, and Cristoval Baray.

References

[1] A. O. Anderson, “Structure and Organization of the Lymphatic System,” in
Immuno-physiology, edited by J. J. Oppenheim and E. M. Shevach (Oxford,
Oxford University Press, 1990).

2

C. Baray and H. B. Sieburg, “An Intelligent Interface for a Cellular Automa-
ton Simulator,” research report funded under the Howard Hughes Medical
Institute Academic Enrichment Program for Women and Minorities (1991);
paper in preparation.

[3] C. Berge, Graphs, second edition (Amsterdam , North-Holland, 1985).

[4] J.-P. Boon and A. Noullez, “Development, Growth, and Form in Living Sys-
tems,” in On Growth and Form, edited by H. E. Stanley and N. Ostrowsky
(Dordrecht, Martinus Nijhoff Publishers, 1986).

[5] A. W. Burks, editor, Essays on Cellular Automata (Urbana, University of
Illinois Press, 1970).

[6] O. K. Clay and H. B. Sieburg, “Generalized Asynchronous Cellular Au-
tomata”; paper in preparation.

[7] E. F. Codd, Cellular Automata (New York , Academic Press, 1968).

[8] M. Garduner, “The Fantastic Combinations of John Conway’s New Solitaire
Game ‘Life’,” Scientific American, 223 (1970) 120-123.

600 Hans B. Sieburg and Oliver K. Clay

[9] L. Hayflick, “The Limited In Vitro Lifetime of Human Diploid Cell Strains,”
Ezperimental Cell Research, 37 (1965) 614-636.

[10] L. Hayflick and P. S. Moorhead, “The Serial Cultivation of Human Diploid
Cell Strains,” Ezperimental Cell Research, 25 (1961) 585-621.

[11] D. O. Hebb, The Organization of Behavior (New York, Wiley, 1949).
[12

J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor, The
University of Michigan Press, 1975).

[13] T. E. Ingerson and R. L. Buvel, “Structure in Asynchronous Cellular Au-
tomata,” Physica D, 10 (1984) 59-68.

[14] A.J. Lotka, Elements of Physical Biology (Baltimore, Williams and Wilkins,
1925). (Reissued as Elements of Mathematical Biology by Dover, 1956.)

(15] B. D. Lubachevsky, “Efficient Parallel Simulations of Asynchronous Cellular
Arrays,” Complex Systems, 1 (1987) 1099-1123.

[16] P. Meakin, “Computer Simulation of Growth and Aggregation Processes,” in
On Growth and Form, edited by H. E. Stanley and N. Ostrowsky (Dordrecht,
Martinus Nijhoff Publishers, 1986).

[17] H. B. Sieburg, “A Logical Dynamic Systems Approach to the Regulation of
Antigen-driven Lymphocyte Stimulation,” in Theoretical Immunology, edited
by A. S. Perelson, Santa Fe Institute Studies in the Sciences of Complexity,
Proceedings volumes 2-3 (Reading, MA, Addison-Wesley, 1988).

[18] H. B. Sieburg, “The Cellular Device Machine: Point of Departure for Large-
Scale Simulations of Complex Biological Systems,” Computers and Mathe-
matics with Applications, 20 (1990) 247-267.

[19] H. B. Sieburg, J. A. McCutchan, O. K. Clay, L. Caballero, and J. J. Ostlund,
“Simulation of HIV Infection in Artificial Immune Systems,” Physica D, 45
(1990) 208-227.

[20] H. B. Sieburg, “Physiological Studies in Silico,” in 1990 Lectures in Complex
Systems, edited by L. Nadel and D. Stein, Santa Fe Institute Studies in the
Sciences of Complexity, Lectures volume III (Reading, MA, Addison-Wesley,
1991).

[21] D. Stauffer and H. E. Stanley, From Newton to Mandelbrot: A Primer in
Theoretical Physics (New York, Springer-Verlag, 1990).

[22] T. Toffoli, “Cellular Automata Mechanics” (Doctoral dissertation, The Uni-
versity of Michigan, 1977).

(23] T. Toffoli, “Cellular Automata as an Alterrative to (Rather Than an Ap-
proximation of) Differential Equations in Modeling Physics,” Physica D, 10
(1984) 195-204.

[24] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environ-
ment for Modelling (Cambridge, MA, MIT Press, 1987).

The Cellular Device Machine Development System 601

[25] S. M. Ulam, “On Some Mathematical Problems Connected with Patterns of
Growth of Figures,” Proceedings of Symposia in Applied Mathematics (AMS),
14 (1962) 215-224.

[26] V. Volterra, “Variazioni e Fluttuazioni del Numero d’Individui in Specie An-
imali Convivienti,” Mem. Academia Lincei, 2 (1926) 31-113.

[27] E. W. Dijkstra, A Discipline of Programming (Englewood Cliffs, NJ, Prentice-
Hall, 1976).

[28] S. Wolfram, “Random Sequence Generation by Cellular Automata,” Advances
in Applied Mathematics, 7 (1986) 123-169.

[29] T. A. Witten and L. M. Sander, “Diffusion-limited Aggregation: A Kinetic
Critical Phenomenon,” Physical Review Letters, 47 (1981) 1400-1403.

