
Complex Systems 5 (1991) 575-601

T h e C e ll u lar D evice Machine D e ve lop m e nt System
for Modeling B iology on the Computer

Hans B. Sieburg*
Olive r K. Clay

Artificial Biological Systems Project ,
HIV Neurobehavioral R esearch Cent er,

Department of Psychiatry, 0603-H,
University of California, San Diego, CA 92093-0603 , USA

Abstract. This pap er describes a development system for designing,
implementing, and executing biologically motivated cellular automa
ton simulations. A new object-based programming language that is
fundament al to the system is discussed in detai l. Use of th e language
is illust rated in simple applicat ions.

1. Introduction

T he simulation and modeling approach describ ed in t his paper originally
came about for two reasons. First , extract ing blood or cerebros pinal fluid
from a patient every five minutes over an exte nded period of t ime is difficult
at best. Second, laws of disease progression are easily ob scured by t he simple
mass of data collect ed in a long-term and diversified clin ical cohort study.
Consequently, computer-supported prediction becomes essential to fill gap s
in , or ext ract features from, large databases by flexib ly experime nt ing with
hypotheses. As we have shown in our previous applications to HIV -related
nervous and immune sys te m disease [17-20], our cellular automaton (CA)
based simulation approach responds to t his need.

Given the broad sp ectrum of applications, t he goal of this paper is to make
our method more broadly available for further development .! Specifically, we
would like to share our modeling langu age SLANG , whi ch offers a new and
expandable approach to programming lat ti ce dynamical sys te ms . After a
brief introduction of basic terms, the second section describes t he essential
simulator kernel algorithms. T he t hird section int ro duces our object -based

*To whom all corr espondence should be addressed . Electronic mai l address:
hsieburg~ucsd. edu

IThe software is availab le through anonymous F T P at polaris . cog net .ucla. edu in
t he dir ectory ~ftp/pub/alife.

576 Hans B. Sieburg and Oliver K. Clay

simulato r language SLANG. In the four th sect ion, we present simple exam
ples th at illustr ate the usage of SLA G. Finally, in sect ion 5, we discuss
work in progress and the mod ificat ions to trad it ional CA algorithms that we
use in our pr esent implementat ion .

2. Basic t er m s and algorit hms

A Cellular Device Ma chin e (CDM) is a soft architect ure machine consist ing
of a nearest-neighbor latti ce dynami cal system of discret e sites (the body) in
which (possibly mobile) finite-state automata (t he cell devices) reside and
interact acco rding to local ru les (figure 1) . In this paper we describe a CDM
Developm ent Syst em (CDM-DS) on which these soft architect ures can be
created and run as virtual machines on general-purpose hardware plat forms.

Each cell device contains a pointer to an algorithm called script, which
is composed of simple unnested "if. . .t hen . . .else.. ." statements. These pro
duction ru les are each equivalent to a 2-ar c subgraph of a hyp ergraph, thus
allowing an ent ire device algorithm to be displayed graphically as well as
sententially (see sect ion 3 for more detail). Cell devices sharing the same
script are identi cal if viewed as finite automata , and are thus said to belong
to the same species.

T he CDM-DS provides utilit ies to create , program, and run Cellular De
vice Machines. A CDM and its operating system are created by manipulating
five global paramet ers via a dialog window:

1. Body size: T he body size B = A 2C is determined by the area A 2

of the lat tice multiplied by the maximum occupancy capacity C per
site. The lat ter parameter refers to our subdividing of sites into "slots"
that can be filled dynam ically from a select ion of up to 256 species.
On 1 megabyte of RAM we can support A = 16, 32, and 64, and
C :::; 16. Larger sizes using A = 128 and 256 and C :::; 256 can be
supported using addit ional RAM. To allow both the option of fast
implementations requ iring more RAM and slower implementat ions that
use memor y more efficient ly, we requ ire that no site may contain more
than one memb er of the same spec ies (Exclusion P rinciple).

2. Neighb orhoo d topologies: In our pr esent implementation , the local
structure of the lat ti ce world is repr esent ed by an ordered sequence
of pointers to lat ti ce sites . T he definit ion of a cell dev ice does not
make any ass umpt ions regarding this sequence. Using sets of point ers
increases mo deling flexibility as we are free to experiment wit h poten
ti ally different subsequences for the input to and the output from a
center site C , for example of a 9-site Moore neighb orhood {C , N, NE,
E , SE, S, SW , W , NW }. Here, N denot es North , NE Northeast , and
so for th. In some complex applications , such as our immune system
models for example, we use the inp ut neighborhood {C, N, E , S, W}
and output neighborhood {C, NE , SE , SW , NW}. Another example

The Cellular Device Machine Development System

\ \ -,
\ \ -,
\ ' , ,,"'''',per oevlce, 64 bits\'\ I

\ \ 32 bits
\ \ (PELT)

\ \
\ ' Ipop #1 6bits

\ I stat. 1 8 bits
\

eiqen-
)if. 16 bits

Figure 1: Overview of th e CDM-DS data st ruct ures. The body is a
representation of random access memory (RAM) as a nearest-neighbor
lat tice dynamical syst em with periodic boundary conditions. A cell
device occupies 64 bits in the body. 32 bits are allocated for a pattern
elem ent (PELT) , 8 bit s each are dedicat ed to a species number and a
sta te (0 . . . 255), and 16 bits are used by an internal clock called eigen
life (-32768 . . . 32767). The figure indicates 16 slots as the max imum
occupancy capacity per lattice site, which is standard for I-megabyte
CDM implementations. More slots can be supported using addit ional
RAM .

577

is the Game of Life, wh ere t he Moore set is t he input neighborhood,
but any Moore subset, the simplest being {C} , will function as an
output neig hborhood (see section 4) . We are presently investigating
the theor etical significance of these heur ist ical observations.

3. Percent sca n : The "operat ing system" of each CDM that we const ruct
uses an "at tent ional searchlight" to scan t he lat ti ce world. T his search
light can be programmed by the user to execute an arbitrary number
of random prompts (with rep lac em ent) per up date cycle. Each prompt
temporarily passes control to a (possibly empty) cell device. The num
ber of prompts is det ermined by

prompts := [(B * %Scan/lOO)],

580 Hans B. Sieburg and Oliver K. Clay

on prompt, go to ' b e g i n n i ng ' of species script ;
while (there are product ion rules add ressing the p r omp t e d
c ell device) {

execute next production r ul e in t he s cript ;
i f a '.' wa s encountered

b r e a k;

List ing 2: Tasks of a cell device. Wh en a cell device is prompted , the
species' script file is searched for the first product ion rule th at ad
dresses its characteristics. A new line in the script file of a cell device
is recognized as th e beginning of a prod uct ion rule if and only if its
first pr int ing character is an opening bracket (" ("). Any ot her lines
are assumed to be comments and will be skipp ed. Then the recog
nit ion/ act ion condit ions in the rule are executed, typically result ing
in mod ificat ions of the prompted device and/or its neighbors. If t he
production rule is not terminat ed with a "break" command ("e") ,
the next rule addressing the (now possibly modified) cell device is
executed. Script files are "circular", so interpret ing continues until
a "e" is encountered or until no more production rules address the
device, after which anot her cell device is prompted .

5. Motion: At presen t t he CDM-DS support s two kinds of mot ion . If t he
number N of blind swaps is chosen 2': 1, a "blind swap" algorit hm [24J
creates local j it t ers in t he lattice world. For N = 0, all cell devices will
rem ain immobil e unless t heir scripts contain inst ructions t hat allow
random or directed local motion once per prompt. In a new version
of the software we will implem ent a t hird kind of motion , a mod ified
blind-swap algorit hm t hat resp ect s immobility .

Once t hese par ameters are set , the Develop ment System crea tes an
"em pty sla t e" CDM ready for expe rimentat ion . T he first st ep in creat ing
an experiment is to select or design the species t ha t one would like to add
to t he pro ject . T he second ste p involves set t ing initi al spat ia l configur a t ions
and specime n dist ributions for the added species (figure 2).

An expe rime nt star ts when the machine is "launched" on a pair (init ial
random seed , in iti al configurat ion) . A CDM runs by prompting cellula r de
vices using a "searchlight" algorithm, wh ich scans t he bo dy asynchronous ly.
T he prompting process is guided by a hard-wired pseudo-random number
sequence . Alt hough t his is not implement ed in our current ver sion , using
a one-dimensional CA such as rule 30 [28] is conceptually com pelling as it
allows us to view as qu asi-stochast ic the evolut ion of t he configur ations of
a CDM , yet a t t he same t ime t he pair (next device prompte d, cur rent con
figur ation) evolves as a fully determinist ic CA. T he "searchlight" algorit hm
determines the order in which cell devices are given a chance to int eract wit h
t heir local environme nt . T he operating syste m tasks are explained in t he
pseudocod e listing shown in listi ng 1. When prompted , a cell device will
perfor m the tasks outlined in list ing 2.

Th e Cellular Device Machine Development System

3. SLANG

581

T he objec t-based CDM-DS Simulator LANGuage "SLA NG" uses condit ional
"if. . .t hen . . .else.. ." production rul es of t he form

recognition condition
- > (action when condition evaluates to true)

(action when condit ion evaluates to false) ;

where

recognit ion condition
:= refObject. [recMin ,recMax] recObject

or un condition al "if. . .then . . ." pro duct ion rules of the form

refObject - > (action) ;

R ecognit ion occurs if and only if t her e are 2: recMin and :::; recMax rec
ogni zable devices recObj ect in t he input neighborhood of the prompted
reference device refObj ect (see Example 1 below for the precise meaning
of recognition). recMin and recMax are integers whose ranges dep end on
the neighborhood type. For example, for t he Moore neighb orhood we have
1 :::; recMin :::; recMax :::; 9. The closed interval [recMin , recMax] will be
referr ed to as t he recognition win dow. If recogniti on occurs, t he tru e part
("- >") of the t ransit ion is interpret ed , ot herw ise the default part is inter
pret ed (" : ").

action refers to a combination of changes to the reference device
re fObj ect an d opt ional changes to the contents of its neighborhood :

action : = repObject; [pu t / de l e t e commands];
[[move]break commands]

Here t he notation repObj ect (for replacement device) indicates potential
changes to the reference dev ice. The optional [put / delete commands];
[[move] break commands] are defined by

put command
delete command
[move] b r eak command

. - > putNumber putObject

. - < delNumber delObject

. - [X] .

T he notation " ;" separates the t hr ee types of changes in an act ion, the
last two of which may be em pty. The ">", or "put", instruction indicates
that putNumber of putObj ect are to be placed into the output neighbor
hood if putNumber is less than or equal to the number #free of free sites .
Otherwi se, only #free sites will be filled. This convention prevent s exces
sively lon g sea rches for ava ilable space. T he "<", or "delete", instructi on
indicates that delNumber of delObj ect ar e to be removed from the input

582 Hans B. 5ieburg and Oliver K. Clay

neighborhoo d if de lN umber is less than or equal to the number #free of
free sites. putNumbe r and de l Number are integers whose ranges depend on
the sizes of the input and out put neighborhoods, respect ively. The br eak
command "e" is a jump condit ion that returns cont rol from a prod uction
rul e within a script to the ope rat ing syste m (see listi ng 2).

move instructi ons, which , for example, for the Moore neighb orh ood te m
pla te are given by

Center site (equivalent to

NW N NE

W C E

SE S SW

x . - C · - move one site to
' do not move')

N · - mov e one site to
NE · - move one s ite to
E · - move one site t o
SE · - move one site to
S · - move one si t e to
SW · - move one si t e to
W · - move one s ite to
NW · - move one s i t e to
® · - move one site in

North site
NorthEa s t site
Ea s t si t e
SouthEa st si t e
Sou th s ite
Sou t hWe st site
West si t e
Nor thWest site
a r andom direction

can only b e used in conjunct ion wit h the b r ea k comman d.
The "reference device" r efObj ec t , t he "recognit ion device" r ecObj ect ,

t he "replacement device" repObj ect , and putOb j ect and delObj ect are
bundle data ty pe s declar ed thro ugh the following type defini ti on:

typedef s t ruc t bund le{
long pelt; / * patte rn element * /

unsigned char device ; / * spec i e s denominator * /

unsigned char s t a t e; / * state denominator * /

short l i fe ;} / * eigenlife value * /

bundle ;

The pattern element or pelt is a 32-bit string that can be given explici tly
in any of four different representati ons:

$.
b .

decim al
hexad ecimal
bin ary
ASC II

(default ; no denotat ional symbol)
(e.g. , $3B214AFC)
(e.g. , b O11 1 01 010 11 01 011 001111 1 01111 0 0 0)
(e.g., ' ASC2 ')

All representations should define a 32-bit integer ; thus, a decimal represen
tat ion mu st lie between - 2147483648 and 2147483647 , a hexad ecim al rep
resentat ion may have at most 8 digit s, a binary representation may have at
most 32 digit s, and an ASCII representation must have exactly 4 characters.

The spec ies denominator device can be given explici tly by an ASCII
string. The state denom inator s tate can be given explicitly by a decim al

Th e Cellular Device Machine Development System 583

integer between 0 an d 255 (incl usive). T he eigenlife value can be given ex
plicitly by a decimal integer between -32768 and 32767.

The richest and most complicate d aspect of SLANG is imp licit defini tion
t hrough specia l instructi ons to enforce inherit ance or dev ice modifi cations.
T he following is a list of t hese spec ia l inst ru cti ons, where t he te rm "corr e
spo nd ing bits" refers to an arbitrary section of t he canon ica l bit -m od el of a
cell dev ice (figur e 1) :

#
7

®
%n

©
¢n

wild ca rd
inheri t
compleme nt
mutate
block mutate

copy
block copy

("allow any")
(from corr esponding bits in refObj ect)
(of the corr espo nding bits in refObject)
(ass ign rand om value)
(same as pe lt of r e f Ob j ect , but wit h a
randomly chosen n-bit blo ck rep laced by
a random n- bi t block ("rand oml y mutate
in n consec utive bit s"))
(from corr esponding bi ts in t he last recObj ect)
(same as pelt of refObject, but with a
rand omly chos en n-bit block repl aced by the
corr esponding block in the last r e c Ob j ect
("copy n consecutive bits"))

Using "7" , " t " , "©" , "®" , "%" , and "c" , pelts may be specified implicitly,
or in mixed imp licit-explicit form by substit uting one or more' dig its of a
hexadecim al , binary, or ASCII represent ati on with "7" , " t ", and so forth.
A "7" will "inherit" the correspo nding bits (4 bi t s for a hex digit , 1 bit
for a binary digit , 8 bits for an ASCII character) in t he reference p elt. A
" t " instruction will access the comp lements of the correspo nding bi ts in the
reference pelt .

Sp ecies and state denominators may be given implici tly by "7" . T he
eigenlife value may be given implicitly by t he inheri t ance instruction "7" or
by increment or decrement fun ctions of t he form "7 + int eger" , " 7 - int eger" .

The use of special instructions is restrict ed as follows:

refObject #

recObject #, ? r , ©, ®· ,
repObjec t ? ! , ©, ®, %, ¢· ,
putObjec t ? ! , ©, ®, %, ¢· ,
de lObject #

T herefore, the wild ca rd "# " symbol is allowed in the bundle spec ificat ions
of re fObj ect , recObj ect , and de lObj ect , but does not make sense any
where in the bundle specificat ions of r e p Ob j ect and putObj ect . Otherwi se,
putObj ect is very similar to repObj ect since both can use "7", " t " , "©",
and "®" . In refOb ject and de lObject , " 7" , " r", "©" , and "®" do not
make sense and will t herefore lead to syntax errors .

An example of a syntactically corre ct production rul e is shown in listing 3.

584 Hans B. Sieb urg and Oliver K. Clay

(#, MP , 1, #) . [3 , #] (# , LPS , # , #)
- "> ((? ,? , 2 , ?) ; >1 (' TNF' , TNF, 1 ,9) , <4 (# , LPS, # , #) ; -)

((? ,? ,? ,?) ; ; -) ;

List ing 3: This product ion rule means that , if the act ivated reference
device (# , M,1 , #) recognizes, regardless of the pelt , at least three
recognition objects (# , LPS r # t #) in its inpu t neighborhood, it will
change its state from 1 to 2, maintain its patterns element and eigenlife
value, and produce one produ ct (' TNF' , TNF , 1 , 9) , while removing
four (# , LPS , # t #) devices. If no recognition occurs because there
are too few (# , LPS , # t #) devices in the input neighborhood , then
the activated device will not change. The production rule as shown
could be used, for example, to describe the secret ion of tumor necrosis
factor (TNF) by a macrophage (MP) st imulated by lipopolysaccharide
(LPS).

To illustrat e t he typical usage of spec ial instructions in t he pelt s , we give a
few examples . Here, ref Pelt, r e c Pe 1t , r ep Pe 1t, pu t Pe1t , and de 1Pe1 t
denot e the pelt s of the r efOb j ect , r e cOb j e c t , r epObj e ct, putObj ect,
and de10bj ec t , respecti vely.

Example 1. Combinations of t he instructi ons "?" , " t", and "#" can be used
to define a large number of recogni tion processes. For example, the recog
ni tion condit ion (# , X, 1 , #) . [1 , #] (# , Y, # t #) checks only for t he presence
of at least one Y in t he neighborhood of X . As indicated by the wild cards,
t he specific pelt st ructure, t he state, and the eigenlife of Y do not matter
in t his Boolean recogni tion process. T he next two cases are different . In
(# , X, 1 , #) . [3 , # I (t ##?? t r Y, # r #) , recognition occur s only if t he last two
ASCII charac ters of Y ar e the same as t he corr espo nding ASCII characters
in the pel t of X . The first two characters are inconsequential to the recogn i
ti onpro cess. Even more complicated , in ('ABe D' , X, l , #). [3, #] (' 11? # ',
Y , # r #) recogni ti on only occurs if t he first two ASCII characters in t he pelt
of Y are the complement of t he correspo nding characte rs in t he pelt of X ,
and the t hird characte rs are equal. T he fourth characte r is incon sequen ti al.
Using recogn it ion processes such as the ones just described has the advantage
t hat recognition is a fully user- controlled event that is well defined dur ing ex
ecut ion. The values of t he eigenlife fun ct ion E (X ; recogn it ion condition) :=
r efLife + repLife - 1 of a cell device X ar e t hen also well defined dur
ing exec ution . refLife and repLife indicate t he eigenlife paramet ers of
refObj e c t and repObj ect, resp ectively.

Example 2. If r efPelt = $FOFF0001, t hen rep Pelt = $AB ? ?OOF ! will
give us an actual repPelt of $ABFFOOFE, since $E = bll10 is the bitwise
(4-bit) complement of the las t hexadecimal digit $1 = bOOOI. Therefore, t he
un condi tion al production rule

($FOFF0001 ,X ,1 ,#) -> (($AB??OOF l ,? ,? ,?) ; ; -) ;

The Cellular Device Machine Development System 585

states that, when prompted , a spec imen of species X in state 1 and wit h pelt
$FOFFOOOI will acquire the new phenotyp e $ABFFOOFE using $AB??OO F ! ,

without changing its st ate or alte ring its intern al clock. As indicated by the
". ", cont rol is immediately returned to the ope rat ing system following the
t ransformatio n .

Examp le 3 . T he following pro duction rule illust rat es sexual repr oducti on
where the offspring acquire properties from bot h parents using "©" and ">" :

(# ,X ,# ,#) . [1 ,1] (# ,X ,#,#)

- > ((? ,? , ? , ?) ; >1 ($? ©? ? ©©? © r X, 0 r 1) ;.)

((? ,? , ? , ?) ; ; .) ;

The ru le states that if any two members of the X populati on meet , they will
produce offspring with mixed characterist ics according to the genet ic program
$?©??©©?©. For example, if r efPelt = $F OFF OOC1 , and recPelt =

$ABCDEF 03, then pu t Pelt = $ FBFFE FC3. T he offspring will be born in
state 0 and with a life expectancy of 1.

E x ample 4 . For the binar y pelt bllO ll1110®Oll ll l ®®®®® llOOOll 1 0 1

we have marked fixed areas where a point and a block mutat ion can occur
using the "®" inst ru ction . This means that wild bits occupy the indicated
posit ions. An interest ing application is in the st udy of retroviru ses that
require exoge nous act ivation of their host for reproduct ion. Due to this con
dit ion , mutations are frequent , and the mutatio n rates are correlated with
the rates at which the host cell population is activated by different st imuli.
Cell intern al processes t riggered by the st imuli also seem to cause phenotype
mixing between viral and host genomes, alt hough probably at a lesser fre
quency. Therefore, in the theoretical study of quas i-spec ies format ion from
an init ially pure virus st rain , we may use the "?" inst ru ction together with
the "®" instruction. For example,

(# ,CELL ,# ,#) . [1, #] (# ,STI M,O,l)

- > ((? ,? ,? ,?) ; <3 (# , STIM, # , #) t

>1 (b? ??? ? ?OOllOlll®®®®???? ? ?? ? ??? ?? , VIRUS , 0 , 1) ;.)
((? ,? ,? , ?) ; ; .) ;

indi cat es that an infect ed cell CEL L of

r e f Pel t =b11011 1 1 1010 11111 0 ~10 01 1000 1 110 1 1

t hat is act ivate d by a st imulus ST IM of

recPel t =b01110 1010110101 100111110 1 111000

may produce a virus st rain VIRUS of

put.Pe Lt. = b???? ??OO llOll®®®®l l???????? ? ????1

586 Hans B. Sieburg and Oliver K. Clay

T he boxes are not par t of the SLANG syntax, but indicate the invariant viral
genes that are integrated into the host genome and that are also pr esent in
the new st rain. The unboxed "7" mark an area of phenotyp e mixing that
may result in st rain adaptation . This is separated by a fixed pattern from
an area of random mut ations. According to the sample pro ducti on rule,
successful st imulat ion , which resu lt s in the upt ake of a certain quant ity of
t he stimulant , does not change the host .

Example 5. © allows for a uni dir ectional copy. T he following samp le pro
du ction ru le illustrat es how a bidirectional crossover operat ion, as it is com
monly used in genet ic algorithms [12], can be const ructed from ©:

(# ,X,#,#) . [1 ,#] (# ,Y ,O ,l)
- > ((' 7© 7 7' , 7 , 7 , 7) ; <1 (# , Y, # , #) , >1 (, © 7©© ' , Y, °,1) ; -)

((7 ,7 ,7 , 7) ; ; -) ;

Suppose the ASC II repr esentation of re f Pe lt , that is the pelt of the
prompted X specimen, is ' ABCD' , and that r e cPe1 t = ' EFGH'. Accord
ing to the script, repPelt = ' 7© 7 7 ' = 'AFCD ' . T his is the resul t of the
unidirecti onal transfer of information from Y t o X using ©. The t ran sfer of
information from X to Y is coded in the pair of put and delet e inst ru ct ions
<1 (# , Y, # , #) and >1 ('© 7©© ' , Y, 0 , 1) . We first remove one memb er of
t he Y species, and then immediately create a new one of the same state and
eigenlife as the original rec Pe lt , but with r e c Pe lt = ' © 7©©' = ' EBGH' .

E xample 6. The following sample ru le shows how the "%n" inst ru ction is
used to create a repPe 1t and a putPe1t that are the same as the refPelt
except that a randomly chosen block of n bits is replaced by a block of n
ran dom bits:

(#,X ,#,#). [1, #] (#,Y ,O ,l)
-r > ((%10 , 7 , 7, 7) ; <1 (#, Y, # , #) , >1 (%5, Y, 0 , 1) ; -)

((7, 7,7,7);; -);

T he effect is

refPelt = b1101111101011111001001100011101
repPel t = b1 1 0 1 ~1 0 1 0 1 1 0 1 0 1~ 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1

put Pelt = b11 01111101011111 001110001P 01 1101

where the boxed portions of the bit- strings indicate the replaced blocks.

Example 7. T he following sample rule shows how the "en" instruct ion is
used to create a repPelt and a putPelt that are the same as the r ef Pe lt
except that a ran domly chosen block of n bits is repl aced by the corr esponding
n -bit block of r e c Pelt :

(# ,X ,# ,#) . [1, #] (# ,Y ,O , l)
- > ((¢8 , 7 , 7 , 7) ; <1 (# , Y, # , #) , >1 (¢16 , Y, 0 , 1) ; -)

((7 ,7 ,7 ,7) ; ; -) ;

The Cellular Device Machine Development Syst em

The effect is

ref Pe l t = b l l 0 l llll 0 l 0 l l lll0 0 l 0 0 l l 0 0 0 l l l 0 l
rec Pel t = b 0 0 01 00l0 ll 00l0l0 ll l lllllll 0 l 000
repPel t =bll0l ~0101 100~111001 0 0 1 100011 1 0 1

p u tPelt =bll0lllll0l0lll ~O l llllllll 10100ol

where the boxed portions of the bit-strings indicate the repl aced blo cks .

587

The full langu age specificat ion is summarized in Backus-Naur Form [27]
in listing 4. It is easy to see that any SLANG production ru le correspo nds
to a 2-ar c subgraph of a hypergraph (figure 3). Therefore, it is possib le to
design a visual programming language equivalent for SLANG [2]. The use of
grap hics is par ti cularly at t ractive for non- sp ecialists interest ed in using t he
CDM-DS.

Another coro lla ry of the corr espondence between SLANG scripts and
graphs is that we can wr it e a SLANG debugger based on a circuit -checking
algorit hm . This algorit hm derives from the following resu lt [3J:

Theorem. A directed graph G with transition matrix A contains a path of
length A iff A~ # 0; it contains no circuits iff, for all A sufficie ntly large,
A), =0.

The need for circuit checking arises since any closed path ("circuit") in a cell
device 's graph can lead to an endless loop in which the ac t ive reference device
becomes a "dict ator" of the expe riment , whi ch forever controls t he op erating
syste m . The introduction of t he break command "." avoids "dict a torship".
Howeve r , qu it e ofte n situations arise in which the user wants to have a cell
device exec u te a chain reaction ; that is , several production ru les are processed
in succession , and t herefore selectively om it t he terminator from the true or
default actions. In this case, the circuit checker constitutes a last safeguard
that alerts the user to the potential dangers of his or her inten tions.

All production rul es in a cell device script file using a reference bun
dle of the form (re f Pe l t, r e f Pop , re f State r #) , where re f Pel t is ei
t her given explicit ly or by "#", are included in a check for circuits . The
checker first crea tes t he matrix of all state t ransit ions that are not termi
nated with a ". " . If in this matrix of transitions t hat can contribute to
a circuit t here are no non-zero diagonal elements (= no self-loops), it t hen
keeps ca lculating powers of t his matrix until either t he result ing matrix is
a-in which case there are no circuits-or until the Nth power is reached,
where N := min{number of edges + 1, number of vertices} . If t his power
matrix is sti ll # 0, t he t rans itio n graph contains a circuit since , if there is
a path of lengt h greate r than the number of edges , an edge was traversed
twice , and if t here is a path of length greater than or equal to the number
of vertices, we return to at least one ver t ex a second t ime. Furt hermore, if
the r efState entry is a wild card ("#") , an aler t is posted whenever a". "
command is missing, as endless loops and ot her pitfalls happen very easily

588 Hans B. Sieburg and Oliver K. Clay

sente nce = un conditionaLsenten ce I condit ionaLsente nce .

uncondit ionaLsentence =refOClass - > (repObject;IO; [d irect ione]); .
condit ional.sent ence = refO Class.recWindow recOClass

-> (repObject ;IO ; [direct ione])
:(repO bj ect ;IO ; [direct ione]); .

IO = io.
io = (io.op [,] } .
io.op = delet e I put

dir ection = C I N INE I ElSE I S I SW I W I NW I ®

recWindow = [recMin ,recMax] .
recMin = threshold .
recMax = thresh old.

delet e = < t hr esho ld ob ject.class , .
put = > n ob ject , .
refO Class = object.class . (add it ional rest riction : NO ?, I, ®, ©, %, ¢ anyw here)
recO Class = ob ject.class .
repOb ject = ob ject .

object = ob ject.class . (addit ional restrict ion: NO # 's anywhere)
object.class = (pelt.class , devi ce. clas s , state.class , eigenlife. class) .

pelt.class = ba I $H I ' A' I N32 I ? I ! I # I ® I © I %Ns I ¢ Ns •
device.class = X I ? I # •
sta te.class = Na I ? I # •
eigenlife. class = N1S I ? I ? +N1S I ? - N1S I # •

thres ho ld = n I # •

B b [b] [b] .. . [b] (string of length ~ 1 and ~ 32)
H = h [h] [h] [h] [h] [h] [h] [h] .
A = ala] [a] [a] .
Nk = 0 I 1 I 2 I 3 I ... (dec imal st ring representing any k-bit

integer O.. . 2k - 1)

X = devicenamel I devicename2 I .. . (ASCII name-string for any of
the devices)

b 0 1 I e
h 0 1 I 2 I I 9 I A I F e
a A I z I a I . . . I z I n I e

e ? ! I # ® I © .
n 0 1 I 2 3 I

List ing 4: CDM-DS scr ipt language definit ion in Backus-Naur Form
(BN F) . Using t his lan gu age specificat ion format , the sy ntact ically cor
rect production rul es are t hose that can be obtained from "sentence"
by success ively applying t he equa tions or substitution rules in this list -
ing. "... 1 " mean s "... or ..."; " [...] " means "... is optional"; "{... }"
means " may be rep eated as man y times as we wish , but is optional" .
Strings in t he standard text font (e.g., pelt ..class and repObject) and
bold capital let ters in typewr ite r font (e.g., H and A) are used as non
terminal sym bols to represent parts of t he sentence. Bold lowercase
let ters in ty pewriter font (e.g ., h and a) are non- terminal symbols
for single characters in the sentence. Plain characte rs in ty pewrite r
font (e.g., (and 6) are terminal symbols, that is charact ers as t hey
actually appear in t he script files . Bold non-alphanumeric characters
in type writer font (e.g., I and {) are BNF met asymbols.

Th e Cellular Device Machine Developm ent System 589

(# ,X,n ,#). [# ,#] (#,Y,# , #)
- > ((?,X ,k,?);; e)

((? , X , h , ?) ; ; e) ;

F igure 3: The one-to-one correspo nde nce between a SLANG produ c
tion rul e and a sma ll hyp ergraph is established using dialog windows
for 'each edge and vertex. Specifically, a vertex dialog requests infor
mat ion regarding bundle data st ructures of the spec ies. Also covered
are mot ion instru ct ions and breaks. T he vertex dialog also takes into
account t hat, in lar ger graphs, particular vert ices may pose as both a
replacement and a reference device. An edge dialog requests informa
tion regardin g the transition condit ions. In the example shown, suc
cessful recognit ion is encoded in the edge labelled "Y- »" and requires
thresho lds for the recogni tion window and the set t ings of the bu nd le
data st ructure of species Y . The edge labelled "y :" is the default
edge . Defining th e default involves only two user responses: ente ring
"Y" as the edge name and set ting the "default" radi o button to "ON" ,
which disab les all ot her resp onses. Not shown in the figure is that , in
our present implementation of the int erface, we use rectan gular ver
tices to represent any action that may result from a tr ansition. The
connecting edge between a rect an gular "act ion vertex" and a circular
"replacement vertex" , for example "k" or "h" above, is automa t ically
characterized as an "action edge" and therefore requires no fur th er
user information.

in th is case. For exam ple ,

(# ,A ,#,#) - > ((? ,A ,2 ,?+1) ; ;) ;

leads to a n end less loop as soon as a member of population A wit h state 2 is
prompted. Also ,

(# ,A ,# ,#) -r > ((? ,A , ? ,? +l) ; ;) ;

will a lways lead to a n end less loop as soon as a m ember of population A is
p rompted.

4. Explicit exam p les

We chose exam ples t hat are well es t ablished in t he lit era ture to encourage
compar iso ns and thereby facilit ate the learning of the language . A more
ela borate applicat ion to HIV infecti on is discussed in [19, 20]. All exa m ples
were run on an Apple Macint osh Il cx'" p ersonal com puter wit h 8 megabyt es
of m emory.

590 Hans B. Sieburg and Oliver K. Clay

Figure 4: T he plots show two intermedia te clusterings in the la t tice
world of "E" . Global motion and auto matic eigenlife decrement are
turned "OF F" in this experiment. 100% of the body is scanned per
cycle. We used a random init ial distr ibution for "A", which occupi es
25% of a 642 sites body. For "E" we used a single initi al seed , which
was placed approximately at t he cente r of t he lat t ice world. Since
there is no automatic eigenlife decrement ing, we set the init ial eigen
life for both species to 1. We used the full Moore neighborhood for
the input and output neighborhoods. Note that, du e to the periodic
bo undar y conditions, wrap -around clust er ing occurs on the left and
upper sides of the plot on the right .

1. Cluster Form ation on a Torus: One of the simplest examples lead ing
to complex behavior , namely fra ct al spatial st ructure , is dend rit ic growth
through diffusion-limit ed aggregat ion . In our pr esent implementation , two
spe cies are required to visualize this pro cess. One, denot ed by "A", consists
of rand omly mobile spec imens describ ed by the following script :

(#,A, l ,#). [l , # J (#, B, l,#)

- > ((? ,A , l , ?) ; > l (? , B ,l, ?) , <1(? ,A ,l,?) ;.)

((? , A, 1 , ?) ; ; ®.) ;

This mean s that any "A" spec imen that recognizes at least one "E" spec i
men will transform itself into a memb er of species "E" according to the self
eliminat ion (? , A , 1 , ?) ; . . . t < 1 (? r A , 1 t ?) and the reappearance state
ment ... ; >1 (? t B , 1 , ?) r • • • T he new "E" spec imen inherits the pelt and
the eigenlife value from t he depart ing member of "A" . By default, if an "A"
does not see a "E" specimen, it will move one st ep in a random dir ection .
Note that the "®" instruction functi ons as the diffusion term in an environ
ment where global motion is turned "OF F" . T he second species, denoted by
"E", is immobile and passive, and therefore has the tri vial script

(# r B , 1 , #) - > ((? ,? , ? ,?) ; ; Ce) ;

The Cellular Device Machine Developm ent System 591

T he funct ion of the "E" spec ies is purely auxiliary since it carries the initi al
gluing seed and the growing clust er.

As shown by this example, dendritic growt h throu gh diffusion-limited ag
gregat ion does not seem to be depend ent on the CA update parad igm ; that
is, t he asy nchronously updated CDM CA shows the same overall dynam ical
behavior as a synchronously upda ted CA [24, 16, 29]. This raises the in
teresting question whether asy nchronicity should be the "normal" mode of
CA implementation from which synchronicity can evolve as a model prop
erty. Also , we noticed that var ying the width of the recogniti on window
using (#, A, l, #). [l , k] (#, B, l, #) where 1 ::; k ::; 9, inst ead of just
(# , A , 1 , #) . [1 , #] (# , B , 1, #) - will result in different clust er densities.
W hether this is reflect ed in variations of the fractal dimension is cur rently
under investigation .

2. Ising Models. We included this example to illustrate the power of
the SLANG language to encode lengthy verbal model descripti ons in very
few produ ction ru les. In [21], the author s describe how "On e can calculate
the spontaneous magnetisat ion on the computer [program ISING]. We set
a 'spin' IS (atomic magneti c dipole moment) at each lattice position of a
square la tti ce; IS = 1 or - 1 according to whether the spin is up or down.
Neighb oring spins want to be parallel in this 'Ising '-ferromagnet of 1925. T he
energy will thus be conserved in a reversal of spin, if as many of the spins
are up as are down , i.e. if the sum over the four neighboring IS is zero. In
t his sense the program reverses a spin [IS(i) = -IS(i)] if, and only if, t he
sum over the neighboring spins vanishes ." The lattice in the demonstration
program ISING is an L x L lat t ice with helical bo undary condit ions and two
"pass ive" (unchanging) boundar y rows added on top and bot tom (t herefore
an (L+ 2) x L lattice). The inpu t neighb orhood used is the peripheral part of
the von Neumann neighborhood , nam ely "N E S W". Conservation of energy
must hold in the full von Neumann neighborhood "C N E S W" , so the sum
of the spins in "C N E S W" must be +1 or -1 , and therefore the sum of
the spins in "N E S W" must be O. Since every site is occupied by a spin
(+ 1 or - 1) this can only happen if exact ly two in "N E S W" have spin -1
and two have spin + 1. In this case, the cente r spin will flip . Initi ally the
spins are rand omly oriented : IS = 1 with probability p, ot herwise IS = - 1.
In ot her words , p * 100% of the spins are 1, the rest are - 1. T he program
is demonstrated using L = 40 and p = 0.2, and run for 100 time ste ps on a
fully updated CA .

T his model is po rte d to the CDM-DS under the following conditions:
(1) toroidal boundar y conditions inst ead of helical boundary conditions,
(2) lat tice sizes 32 x 32 or 64 x 64 instead of 40 x 40, (3) Spin = - 1 ¢}

pelt = $00000000, spin = + 1 ¢} pelt = $FFFFFFFF, (4) flipping of spin
¢} inverting (complementing) of pelt. T he la t ter demonstrat es the usage of
the " !" complement inst ructi on in the repPel t of the replacement ob ject.
When tr anslated into SLANG , pro gram ISING is just one pr oduct ion rule
(!) :

592 Hans B. Sieburg and Oliver K. Clay

.) • - r - r -- .) - .) -
(t

r
(t

.. •(t

~
I'-t:.- 1I.:..!".,
n- I~
~ ..

- 'I,r
.) - .) - .) -- - -

(t
I, ..

~ ..(t

T!ff ~[rJ ~11Wf.~
1 - ,-s 1 II.I -

.)~~ I I,:' I '=-~Y/~~ ~?~·iii'LL.

~r~~~1~~1~ II~I ~ II~l iII !I~~(-::,i I IJ r ~I":i I. I , ;:':
Figure 5: T his figure shows 9 screen snapshots of live cells , nam ely cell
devices of the bundle class (# , L , 1 t #) , taken at irr egular intervals
during a simulat ion . T ime evolut ion is shown from left to righ t . We
chose regu lar start -up patterns, among them a glider sha pe placed in
the lower half of the lat ti ce world . As shown in the first plot , this glider
explodes early on in the simulat ion, and the remnan ts of this explosion
event ually fill all available space. For this demonst ration we chose a
body size of 322 la t t ice sites all of which are filled wit h memb ers of
the population L. Those members of L representing live cells are
shown as black squares. The dead cells of bund le class (#, L , 0 , #)
ar e invisible, repr esented by white squa res . We chose the full Moore
set as our input neighborhood . Since any subset of the Moor e set can
serve as the out put neighborhood , we select ed the cente r site "C" .
Neither pelt s nor eigenlives are significant for this model. Global
motion is t urn ed "OF F" and individual motion does not occur.

Th e Cellular Device Machine Developm ent Syst em

(# , 1 8 ,# ,#) . [2, 2] (0, 18, # , #)

- > ((l , I8 ,? , ?) ; ; -)

((7,18,7 ,7) ;;-);

593

In our experiment we used the input neighborhood "N E S W" and the output
neighborhood "C" . Automatic decrement ing of eigenlives and global motion
were turned "OFF" . 100% of th e body was scanned per cycle. Initi ally, 20%
of the body was randomly filled with pelt $FFFFFFFF and the rest with pelt
$00000000. The dynamical behavior is the same as in the examples shown
in [21J.

3. Game of Life. We have ported this rule into SLANG because we
wanted to see which pat terns are generated by the asynchronous updating.
T he Ga me of Life [8] is based on the following verbal rule: "A dead cell
(spontaneously) comes to life, if 3 live cells are in its neighborh ood ; if there
are less than 2 live cells in the neighborhood of a live cell, the cell will die
of loneliness; if more than 3 live cells are in the neighborhood of a live cell,
this cell will die of overcrowding ." This descript ion eas ily t ranslates into the
following SLANG script, where a cell device "L" in state 0 repr esents a dead
cell, and a cell device in state 1 repr esents a live cell:

(#, L, O, #) . [3, 3] (# ,L ,l,#)

-r > ((? ,L ,l , ?) ;>l(l,L , l , l) ; -)

((?,L, 0,7); ;-) ;

(# ,L ,l ,#). [2,3] (# , L ,l, #)

-"> ((? ,L ,l ,?) ; ; -)

((?, L, 0 ,7) ; <1 (# , L , # , #) ; -) ;

As shown in figur e 5, the long-term resul ts of an asy nchronous Gam e of
Life simulation are irregularly st ructured patterns reminiscent of an elect ronic
chip layout . As a simulat ion progresses , the microscopic connect ivity of this
layout cont inues to shift and rearrange itself. We are presently invest igating
the significance of these observations.

4. Turing-Gierer-Meinhardt (TGM) Chemistry. In this example taken
from [4] we investigate a model system of pattern-generat ing chemical re
actions. Four species are involved , denot ed S , X , Z , and C . Sp ecies Z is
capable of different iation , which is ind uced by the act ivato r X . The differen
ti ation process is irreversible and C is the result ing differentiation product .
Product ion of X requires a substrate S (figure 6) .

For our demonstration experiment we init ially seeded the S and X layers
at 20%, and Z at 5% random uniform distribution of 322 sites (in other
experiments we also tried 15%, 10%, 1%, and a single-site seeding for Z).

594 Hans B. Sieburg and Oliver K. Clay

(# ,8 ,1 ,#) - > ((? , ? ,? ,?) ; ;®.) ;

(# ,X , l,#) . [1, #] (# , 8 ,1 ,#)
-r > ((? ,? ,?, ?);>1(?,X,? ,?) , <1(#,8 , 1 , #) ; .)

{ (? I ?' ?, ?) ; i ®-) ;

(# ,Z , l ,#) . [1, #] (# , X , l ,#)
- > ((? ,Z ,2 , ?) ;>1 (? ,Z ,1 , ?) ,<1(# , X,1 , #) ; .)

((? , ? , ?, ?) ; ;®.) ;

(#,Z ,2 ,#) -r > ((? , ? ,?,?) ;>l('C ' ,C ,l ,l) ; .) ;

(# , C , 1 , #) - > ((?,? ,?, ?) ;;®.) ;

c
Figure 6: T his figure shows the bas ic scheme of t he sample TGM
model on the right. To the left we have the corresponding SLANG
production rules. This example demonstrates how eas ily graphical
mod els typically employed by natural scient ists to comm unicate ideas
can be ported into SLANG and run on the CDM-DS. No particular
pa ttern elements are used in this example, hence all pelts involved
are wildcards "#" . Both Sand C have trivial scripts except that they
are capable of random diffusion. The condit ional rule for X states
that, if S occurs at any non-zero concentrat ion ([1 , #]) in the neigh
borhood of an X specimen, S will be taken up and the X speci
men will reproduce. If the concentrat ion of S is 0, the specimen will
continue its random motion. The prod uct ion rul es for Z state that
any non-zero concent ration of X will t rigger differentiation of the Z
specimen into a te rminal state (? , Z , 2 , ?) , which inherits pelt and
eigenlife. Also, Z will produce a st ate 1 offspring , and in the whole
process will ingest 1 unit of the act ivator X. If no activat ion occurs,
the Z specimen will cont inue random motion. A terminally differen
tiat ed Z spec imen, as indicated by the self-inheritance (# , Z, 2 , #)
- > ((? ,? ,? ,?) ; . . .) rule segment , follows an uncond itional ru le,
which states that each time the specimen is pro mpted , it will produce
1 uni t of the differentiation product C. As an aside, the example shows
some of the basic production rules and reaction schemes from which
large-scale immune or nervous syst em mode ls are typically composed.

T he input and output neighborhoods were both the full Moor e neighborhood.
Automatic eigenlife decremen t and glo bal m oti on were set to "OF F " . 100%
of sites wer e prompt ed per time step . The spat ial dynamic of the model is
shown in figure 7.

As an afterthought , it is worth p ointing out t ha t t his example also dem on
strates an explic it relationship b etween SLANG production rules and systems
of ordinary differ en ti al equa t ions (modulo parameter functi on s) of t he general
form

p I = production - decay + di ffusion

The Cellular Device Machine Development System 595

,
I

II
r , I

II r I}

~ r ~I ~ r ~III
,
I· 1~1: ",

l"rl ~ t" r'I II lIi I ,
I "" ,, I ~ " ,

~ l~ ' ~·l~i·l W:l~W! r~:~ ~r;!
r ~ 1:1.... ~

~I ',fft: I :1 ~ :) ~ [oj " ~
" ~, " ~, ~ "I ~' ~,", l

F igure 7: This figur e shows 10 sna pshots of the emerging patterns in
the Z species layer taken at irr egu lar time st eps . We used a start-up
density of 1% randomly placed init ial seeds . T ime evolution is shown
from left to right . Charact erist ic for the dyn am ics of this sys te m is
the formation of long subtly br an ched fibers, which event ually form
tangled network st ruc tures . Depending on the initi al seeding density
th ese st ructures become more, or less, pronoun ced. The pr edom i
nantly "upward" growt h direct ion is du e to the algorit hm that we use
for placing product s in the clockwise orde r C N NE E SE S SW W
NW . Therefore, if C is occupied , t he product will be placed at N; if
C and N are occupied the ob ject will wit h first pr eference be placed
at NE; and so forth. We are pr esently extending this algorit hm to
include flexible placemen t by combining the "put" instruction with
the "mot ion" instruction. This would make >1® (' y ' , Y, 3 r 12) a
syntact ically correct statement where a member of spec ies Y is placed
into a random neighborhood site if this site is no t already occ upied.
If, for example, > 2NE (, X ' , X , 1 , 2) is used , t hen 2 units of species
X are placed into any free locat ion start ing at NE . The state ment
>2C (' X ' , X , 1 r 2) is equivalent to the old >2 (' X' ,X, 1 , 2) . In our
pr esent implementat ion , it is possib le to program a direct ional put
using a comb ination of non-directional "c-" and "<" instructions. The
idea is that ">2 . . . , <1 . . . " will place' a product at NE , ">3 .. . r

<2 .. . " at E , and so on. Unfortuna tely, placement using this ap
pr oach will be precise if and only if all sites except the center are
unoccupied (occupied sites will randomize placement) . To obtain pre
cision, which for certain models may be desirab le, it is necessar y to
exte nd the language as sugges te d . It is clear that whichever typ e of
placement the user decides to ap ply, th e spatial dynamics of the model
will always be a network-like pattern.

596 Hans B. Sieburg and Oliver K. Clay

F :
h u n t :
(# ,F, l, #). [1 , #] (# ,R ,# ,#)

-"> ((? ,F , 2, ?+2) ; < l(#,R, #, #) ;)
((? , F , 2 ,?) ; ;) ;

mate :
(# ,F ,2 ,#) . [1, #] (# , F , # , #)

-> ((? ,F ,1 , ? +1) ;>2(? ,F ,1 ,8) ; e)
((? , F , l, ?) ; ; e)

R :
feed:
(#, R , l, #) - > ((? ,R ,2,?+1) ; ;) ;
flight :
(# ,R ,2 ,#) . [1, #] (# , F , #, #)

-' > ((? ,R ,3 ,?+2) ; ;)
((? , R, 3 ,?); ;) ;

mate :
(# ,R ,3,#). [1,#] (# , R , # , #)

-t > ((? ,R , 1 , ?+ 1) ;>4(? ,R,1 ,20) ; e)
((? , R , l,?) ; ; e) ;

1024

o TIME 200

F igur e 8: On the left of this figure we have listed the SLANG
scripts for 2 qu asi-single-sex species (F = "foxes" = predators,
R = "ra bbit s" = pr ey) . We allocated 2 behavioral state s for the
predator species , the first of which corres ponds to "hunt ing" and the
second to "mating". The prey spec ies uses 3 states : t he first corr e
sponds to "feeding", t he second to "flight", and the third to "mat ing" .
Successful execut ion of a behavior resul t s in eigen life increases in both
spec ies, where "a t tack" and "flight" are awarded with "7 + 2" , and
"feeding" and "mating" wit h "7 + 1" . We did not go so far as to rep
resent successless behaviors by a private form of stress that leads to
an eigenlife decrease "7 - 1" . Instead , t he eigenlife value remains un
changed "7" . T he global eigenlife decrementer is set to "ON" . In this
demonst ration experiment pelt s are never used , and states are on ly
used "internally" by the devices to order their own pr oduction rul es,
not "externally" by other devices to recognize them . If a fox or rabbit
meets another memb er of it s spec ies, offspring are born. If there are
as many males as females, t he number of offspr ing will corr espo nd
roughly to 1/ 2 of the biological lit t er count, as we are pooling males
and females in this model. Here, t he rabbits ' lit ter size is chosen to be
twice that of the foxes. In a more elabora te set-up , we might use pelts
to distinguish between female and male members of a species. T his
is interest ing becau se we can pick up mor e dynamical fine st ru ct ur e
th an in the time plot shown on the righ t of the figure, since the sur
vival of a spec ies depends on the survival of sufficient numbers of both
sexes. At the beginni ng of the exp eriment shown , rab bit s (R) were
in troduced as a rand omly dist ribut ed populat ion with life expect ancy
of 20 per specimen popula t ing 20% of their lattice world . 30 foxes (F)
wit h life expect ancy 8 were released from one locati on into this pop
ulatio~ . T he t ime plot shows the dyn amics of both populat ions for
160 t ime steps . The population densities are plot ted on the vertical
ax is versus time on the hori zont al axis.

Th e Cellular Device Machine Developm ent System 597

which are frequently used in mathematical biology and biochemist ry. In t he
syste m shown in figur e 6, the equat ion for the species X , for example, would
derive pro du cti on term s from the concentrat ion of S and from its own con
cent ration, which is related to it s replication rat e. Decay occurs through the
uptake by Z , and diffusion comes from the "®" instructi on . Rate chan ges in
the dyn ami cs are obtained by changing the width of the recognition window,
and/or the pu t and the delete rates in th e pr oduction rul e. It was pr evi
ously indi cated that cellular automata represent an alte rnative to , rather
than an approximat ion of, different ial equations in modeling physics [23J.
Whether the relat ionship between differentiable sys tems and asy nchronous
CAs programmed with SLANG rules indicates a similar alte rnative for mod
eling biological sys tems requi res fur ther explorat ion .

5. Predator/Prey Ecology. In this example we consider a modified
Volt err a-Lot ka model of a 1 pr edi tor ("Foxes") , 1 pr ey ("Rabbits ") ecological
system. The genera l model definition is as follows. Reproduction is between
any two specimens of the same species that are in the matin g state. We
mod el feeding through increases in the eigenlife value of a specimen. We
ass ume, as in the classic Volt err a-Lot ka model [14, 26], that the rabbits have
access to an unlimited food supply, and therefore their eigenlife is always
increased. A fox , in turn, must hunt , and therefore must have a rabbit in it s
neighborhood if it is to prolong its eigenlife by feeding. T he model assumes
that a fox can only eat one rabbit "per prompt". Eigenlife also is increased
if a fox or a rab bit mates, or if a rabbit escapes a hunting fox. This last
case can be interpreted as an increase in fitness when a rabbit sur vives a
chase . In thi s very simple model, the site select ion algorithm determines the
outcome of such a chase. If a fox is select ed , one rabbit is caught ; if a rabbit
is select ed, the rabbit escapes and its eigenlife is increased. Therefore the
select ion algorithm's numerical par ameter(s) must thus enco de the ratio of
captures versus escapes . Each spec ies is given more than one state (figur e 8).

It should be noted that if the global eigenlife decrementer is turned "ON",
preditor and prey specimen alike will survive only for the length of their ini ti al
eigenlife value (given upon birth). To counteract this global aging process
we give each species in this CDM model a repertoire of strat egies, which it
can use t o increase it s eigenlife. For examp le, the rabbits can prolong their
lives by feeding, by int eracting with other rabbits (members of the opposite
sex), or by sur viving a chase by the pr edat or.

5 . Discussion

The Cellular Device Machine Development Syst em is an example of a new
breed of biologically motivated simulation software that has recently begun
to emerge at the interface of mathematics, computer science , genetics, and
cellular physiology. It was first conceived as a way of combining the advan
tages of autonomous, self-mo difying, and mobile, finit e automata ("devices")

598 Hans B. Sieburg and Oliver K. Clay

that can be programmed using a dedicated object-base d language, with those
of a globally updated cellular automaton environment ("bo dy") . In closing
this pap er , we would like to remark on the mod ificati ons to tradit ional cellu
lar automaton (CA) algorit hms that we use in our implementat ion , and on
improvements to our system that are presently in progress.

The t rad it ional CA implementation requires strict qu asi-parallelism ; that
is, any update algorit hm has to be equivalent to a fully parallel algorit hm . In
pr acti ce this tr anslates to a procedure remini scent of the "screen-swapping"
technique used in computer games . No content of a cell may be alt ered unt il
it s value has been checked by all the ot her cells of which it is a neighbor.
If memory space is not a prob lem , this is done by maintaining two or more
copies of the lat ti ce. T he program reads the values of the selected cell's
neighbors from the "old" copy and enters the new value for that cell into a
buffer , or "new", copy. On ly afte r each cell has been selected exactly once
does the "new" array become the "old" array, and processing starts over.
Since all updates thus become valid simultaneously at the end of a sequent ial
"searchlight sweep", the order in which the cells ar e selected does not affect
the result , and if the host proce ssor allows para llel comput at ion they could
equally well be selected all at once ("floodlit") . While st ill using quasi
par allel updating, the CDM simulator program departs from t he CA tradit ion
by not selecting all of the cells in every t ime ste p but , more generally, by
select ing a subset . While the subset is implicitly defined by prompting lat ti ce
sites according to a random sequence un til a user-selected percentage of the
lat ti ce space is covered , the up dat ing itself is deterministic.

Originally cellular automata were int rodu ced as synchro nously updated
nearest-neighbor lat tice dyn amical sys tems (see [7, 5, 22] for overv iews) .
Consequently, in most cellular automato n mo dels studied elsewhere, some
form of synchronous up dating is applied . It was demonstrated previously
that changing the updat e scheme can change the pat tern-forming cap acity of
a cellular automaton [13]. As illustrated by our asynchrono us Gam e of Life,
apparent self-organiza tion such as that found in gliders is crit ically dependent
on synchronous updati ng. Another example is the "land developers ' ru le" ,
which erodes soil only in the synchronous version [24, 6]. As we showed in
section 4, ot her CA systems display similar patterns under either mode of
updat ing (see Examp les 1, 2, and 5) . From a theoretical point of view, neither
up date scheme is "wrong", nor will it produce "wrong" dynam ics; rather , if
each is taken by itself, it may conceal struc ture-forming behaviors from the
other. Based on this considerat ion and the observation that, in CA mod els
of lar ge biological syst ems, it is more realistic to think of synchronicity as
a locally emerging non-stationary property of rul e popul ations not initially
locked in simultaneous conversat ion , we use st rict asy nchronous prompting
of cell devices in the CDM simulato r program . This choice is also consiste nt
wit h our aim of retaining an object- and event-driven dynamic with as few
arbitrary int ervent ions from a global cont roller as possible. A variety of
strateg ies for ru nning efficient par allel simulations of asy nchronous CAs are
outlined in [15].

The Cellular Device Machine Development System 599

Going back to the future, we are now working on sever a l improvement s
of the development system. First , a revis ion of the main data structures
will enable us t o keep all scr ip ts in RAM. Second, we are developing some
langu age exte ns ions t hat reflect our past working expe riences with SLANG ,
such as the use of rule nest ing, of logica l ope rators for connectin g refere nce
objects, of constants, and of macros. Third, we are working on a version of
the CDM-DS that runs on electronic netwo rk s so t hat t he sharing of SLANG
scrip t libraries and ther efore of un ambiguou s and reproducib le experiment s
becomes po ssible between remote users . T he non -ASCII instruct ion sym
bo ls ®, ©, "¢", and "e" will be rep laced by ASCII-compa t ibl e sy mbols.
Fourth , development of more intrinsic data-analysis capabilities will enable
t he simulator t o evaluat e much of it s own da ta . Finally, Us ing t he flexible
neighborhood represen t a ti on by pointer sets we will be able to run a larger
spect rum of user-defin ed loca l t op ologies on our sys te m than just the input
and output subse ts of t he Moore neighborhood.

A ckn owledgm ent s

This work is parti ally supported by NIMH grant R2 9 MH 45688 to HBS . The
autho rs are grateful for suggestions and crit icism by Christa Miiller-Sieburg,
Ruth Williams, Huber t Halkin, Scott Kelley, and Cristoval Baray.

R eferences

[1] A. O. Anderson , "St ructure and Organi zation of the Lymphat ic Syst em," in
Im m uno-physiology, edited by J . J . Oppenheim and E. M. Shevach (Oxford,
Oxford University Press, 1990).

[2] C. Bar ay and H. B. Sieburg, "An Intelligent Interface for a Cellular Automa
ton Simulator ," research report fund ed under the Howard Hugh es Medical
Institut e Academic Enrichment Program for Women and Minorit ies (1991) ;
pap er in preparation.

[3] C. Berge, Graphs, second edit ion (Amsterda m , Nor th-Holland, 1985).

[4] J .-P. Boon and A. Noullez, "Development , Growt h , and Form in Living Sys
tems," in On Growth and Form , edite d by H. E. St anley and N. Ostr owsky
(Dordrecht , Martinus Nijhoff P ub lishers, 1986).

[5] A. W. Burks, editor, Essays on Cellular Automata (Urb ana, University of
Illinois Press, 1970).

[6] O. K. Clay and H. B. Sieburg, "Generalized Asynchronous Cellular ' Au
tomata" ; pap er in preparation .

[7] E. F. Codd, Cellular Automata (New York , Academic P ress, 1968).

[8] M. Gardner, "The Fant astic Combinatio ns of John Conway's New Solitaire
Game 'Life' ," Scientific American, 223 (1970) 120- 123.

600 Hans B. Sieburg and Oliver K. Clay

[9] L. Hayflick , "T he Limited In Vit ro Lifet ime of Human Diploid Cell St rains,"
Experim ental Cell Research, 37 (1965) 614-636.

[10] L. Hayflick and P. S. Moor head, "T he Serial Cult ivation of Human Diploid
Cell Strains," Exper-ime nta l Cell Research, 25 (1961) 585-621.

[11] D. O. Hebb, The Organization of Behavior- (New York , Wi ley, 1949).

[12] J . H. Holland , Adaptation in Natural and Ar-tificial Systems (Ann Arbor, The
University of Michigan P ress, 1975).

[13] T. E . Ingerson and R. L. Buvel, "Structur e in Asynchronous Cellular Au
tomata ," Physica D, 10 (1984) 59-68.

[14] A. J. Lotka, Elements of Physical Biology (Balt imo re, Willi am s and Wi lkins,
1925) . (Re issued as Elements of Math ematical Biology by Dover, 1956.)

[15] B. D. Lubachevsky, "Efficient Parallel Simulations of Asynchronous Cellular
Arrays," Complex Systems, 1 (1987) 1099- 1123.

[16] P . Meakin , "Compute r Simula tion of Growth and Aggregation P rocesses," in
On Growth and For-m, edited by H. E. St anl ey an d N. Ostrowsky (Dor dreclit,
Mart inus Nijhoff Publishers, 1986).

[17] H. B. Sieburg, "A Logical Dyn amic Sys tems Approach to the Reg ulation of
Antigen-driven Lymphocyt e Stimulation ," in Th eoretical Immunology, edite d
by A. S. Perelson , Sant a Fe Insti tu te Studies in the Sciences of Complexity,
Proceedings volumes 2-3 (Reading , MA , Addison-Wesley, 1988).

[18] H. B. Sieburg, "T he Cellular Device Machine: P oint of Depar ture for La rge
Scale Simula tions of Com plex Biological Systems," Compu ters and Mathe
matics with App lications , 20 (1990) 247-267.

[19] H. B. Sieburg, J . A . McC utchan, O. K. Clay, L. Caballero, and J . J . Ostlund ,
"Simula t ion of HIV Infecti on in Artificial Immu ne Systems," Physica D, 45
(1990) 208-227.

[20] H. B. Sieburg , "P hysiological St udies in Silico," in 1990 Lectur-es in Comp lex
Syst ems, edited by L. Nad el and D. St ein, Santa Fe Institute Studies in the
Sciences of Complexity , Lectures volume III (Read ing , MA, Addison-Wesley,
1991).

[21] D. Stauffer and H. E. St anley, From Newton to Mand elbrot: A Prim er- in
Theoretical Physics (New York , Springer-Verlag, 1990).

[22] T. Toffoli, "Cellular Automata Mechani cs" (Doctoral disserta tion , T he Uni
versity of Michigan , 1977) .

[23] T . Toffoli, "Cellular Automata as an Alternative to (Rather T ha n an Ap
proximation of) Differential Equations in Modeling Physics," Physica D, 10
(1984) 195-204.

[24] T. Toffoli and N. Margolus, Cellular Automata Machin es: A New Environ
m ent for Modelling (Cambridge, MA , MIT P ress, 1987).

The Cellular Device Machine Developm ent System 601

[25] S. M. Ulam, "On Som e Mathematical P rob lems Connect ed wit h P atterns of
Growt h of Figures ," Proceedings of Symposia in Applied Mathematics (A MS) ,
14 (1962) 215-224.

[26] V. Volt err a , "Variazioni e F lut t uaz ioni del Numero d'Individ ui in Specie An
im ali Convivienti," Mem . Academia Lincei, 2 (1926) 31- 113.

[27] E . W ..Dijk stra , A Discipline of Programming (Englewood Cliffs, NJ , Prenti ce
Hall , 1976).

[28] S. Wolfram, "Random Sequ en ce Gen era tion by Cellular Autom ata," Advances
in Ap plied Mathematics, 7 (1986) 123-169.

[29] T . A. Witt en and L. M. Sander , "Diffusion-limit ed Aggregation: A Kinetic
Crit ical Phenomenon," Phy sical Review Lett ers, 47 (1981) 1400- 1403.

